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ABSTRACT. — We study the existence and the asymptotic behaviour of bounded solutions of
a quasi-linear relaxed Dirichlet problem, involving a Dirichlet form. The classical problem, that
is when the Dirichlet form is associated with the Laplace operator with Dirichlet boundary con-
dition, has been studied by S. Finzi Vita, F.Murat and N.Tchou in [16]. The same classical
problem, in the non-relaxed case, has been treated by L. Boccardo, F. Murat and J. P. Puel in
[7]. We prove the existence result under a suitable assumption on non-linear term that, in [16],
corresponds to the requirement of quadratic growth with respect to the gradient. As in [16],
the proof is divided in five steps of which first three steps extend the techniques used in [7]. We
also show a stability property of solutions with respect to the g-convergence of measures when
the limit measure is sufficiently regular. In this case, the assumption on the non-linear term cor-
responds, in [16], to the requirement of strictly subquadratic growth with respect to the gradi-
ent. The proof makes essential use of correctors result of M. Biroli, C. Picard and N. A. Tchou
([4]).

I problemi di dirichlet rilassati quasi-lineari per una forma di dirichlet

SUNTO. — Studiamo l’esistenza ed il comportamento asintotico delle soluzioni limitate del
problema di Dirichlet rilassato, quasi-lineare, per una forma di Dirichlet. Il problema classico,
ossia quando la forma di Dirichlet è associata all’operatore di Laplace con condizioni di Diri-
chlet al bordo, è stato studiato da S. Finzi Vita, F. Murat and N. Tchou in [16]. Lo stesso pro-
blema classico, nel caso non-rilassato, è stato trattato da L. Boccardo, F. Murat and J. P. Puel in
[7]. Proviamo il risultato di esistenza sotto un’opportuna ipotesi sul termine non-lineare che, in
[16], corrisponde alla richiesta di crescita quadratica rispetto al gradiente. Come in [16], la di-
mostrazione è divisa in cinque passi dei quali, i primi tre, estendono le tecniche usate in [7].
Mostriamo anche una proprietà di stabilità delle soluzioni rispetto alla g-convergenza di misu-
re, quando la misura limite è sufficientemente regolare. In questo caso, l’ipotesi sul termine
non-lineare corrisponde, in [16], alla richiesta di crescita strettamente sottoquadratica ri-
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spetto al gradiente. Nella dimostrazione si fa un uso essenziale del risultato dei correttori
di M. Biroli, C. Picard e N. A. Tchou ([4]).

1. - INTRODUCTION

In this paper we are interested in the study of the existence and the asymptotic be-
haviour of bounded solutions of quasi-linear relaxed Dirichlet problems involving a
Dirichlet form. The problem, in the classical case of the Dirichlet form a(u , v) 4

4 �
V

˜u ˜v dx with domain H 1
0 (V), was studied by S. Finzi Vita, F. Murat and N. Tchou

in [16]. In this case, the Dirichlet form is associated with the Laplace operator with
Dirichlet boundary condition on ¯V and the problem can be formally written as

.
/
´

2Du1l 0 u1mu4 f (x , u , Du) in V

u40 on ¯V
(1.1)

where V is a bounded domain in Rn , l 0 is a positive constant, f is a given function that
satisfies a quadratic growth hypothesis with respect to Du and m is a measure in the
class M0 (V) of all non-negative Borel measures on V that vanish on subsets of V with
zero capacity.

Let us recall that the relaxed Dirichlet problem in the linear case have been intro-
duced by G. Dal Maso and U. Mosco in [11] and [12] to study limits of Dirichlet
problems in highly perturbed domains. The generalisation when a Dirichlet form ap-
pears has been studied by G. Dal Maso, V. De Cicco, L. Notarantonio, N. Tchou in
[10] and by M. Biroli and N.Tchou in [5] in the symmetric case, by S. Mataloni and N.
Tchou in [24] without any assumption of symmetry. In all these works a particular
class of Dirichlet forms has been considered: the strongly local regular Dirichlet forms
satisfying, as it will be explain with details in Section 2, a Poincaré inequality and a
suitable duplication condition. These forms are called regular Poincaré-Dirichlet
forms and their properties have been investigated by M. Biroli and U.Mosco in [2].
They prove that this framework is «rich enough» in the sense that the theory that they
developed includes some aspects of the classical variational theory of second order el-
liptic equations and also a wide class of degenerate elliptic operators with discontinu-
ous coefficients, such as weighted and subelliptic operators.

Let us come back to our problem to explain it more precisely.
Let X be an arbitrary connected locally compact separable Hausdorff space and let

m be a given positive Radon measure supported on the whole of X . Let (a , D(a) ) a
regular Poincaré-Dirichlet form on the Lebesgue space L 2

m (X), with energy measure
a(u , u)(x) �L 1

m (V), and let V be a relatively compact open subset of X . Let us denote
by D0 (a , V) the closure in D(a) of D(a)OC0 (V). Let us define V 0

m (V) as the space
D0 (a , V)OL 2

m (V) where the measure m belongs to the space of the non-negative
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Borel measures on V that vanish on subsets of V with zero a-capacity (Definition 3.1).
We are interested in the bounded solutions of the following problem

.
`
/
`
´

u�V 0
m (V)OL Q

m (V)

a(u , v)1l 0�
V

uv dm1�
V

uv dm4�
V

f(x , u(x), a 1/2 (u , u)(x) ) v dm

(v�V 0
m (V)OL Q

m (V)

(1.2)

where l 0D0 and f is a Carathéodory function defined on V3R3R1 such
that

Nf(x , s , p)NGc01b(NsN) p 2

for some constant c0 and an increasing function b .
In order to prove the existence of bounded solutions of (1.2) we use the tech-

niques of [16] that extend which ones used by L. Boccardo, F. Murat, J. P. Puel in [7]
in the classical (non relaxed) case. More precisely, as in [7], we prove the existence of
a sequence ]ue( of solutions of approximate problems and we show that such a se-
quence is uniformly bounded in V 0

m (V)OL Q
m (V). In the last two steps, as in [16], we

prove the strongly convergence of the sequence ]ue( in D0 (a , V) and in L 2
m (V) to a

function u that we will prove to be the solution of the problem (1.2). In particular let
us show that the uniform bound in V 0

m (V)OL Q
m (V) of the solution of (1.2) is inde-

pendent of the measure m . This property will be essential to prove in Section 4 the ho-
mogenization result of Theorem 4.10. In this theorem we show a stability property of
solutions of (1.2) with respect to the g-convergence of measures (Definition 4.2),
when the limit measure is sufficiently regular, under a suitable assumption on f that in
the classical case (1.1) correspond to the requirement on the growth of f with respect
to Du to be strictly subquadratic. Let us underline that, in the proof of Theorem 4.10,
an important role is played by the use of the correctors result in the linear case of M.
Biroli, C. Picard, N. Tchou (Proposition 4.7).

2. - SETTING AND NOTATION

Let X be an arbitrary connected locally compact separable Hausdorff space and let
m be a given positive Radon measure supported on the whole of X . We denote by
L 2

m (X) the usual Lebesgue space endowed with the inner product (u , v) 4�
X

uv dm

and the norm VuV

2
L 2

m
4 (u , u).

We assume that we are given a strongly local, regular, symmetric Dirichlet form
a(Q , Q) on L 2

m (X) whose domain will be denoted by D(a). Such a form admits the inte-
gral representation a(u , v) 4�

X

a(u , v)(dx) for every u , v�D(a) where a(u , v) is a

non-negative Radon measure on X , uniquely associated with the functions u and v and
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is called the energy measure of the form a . Let us recall that a form a(Q , Q) is regular if
there exists a core C%C0 (X)OD(a), which is dense in C0 (X) with respect to the uni-
form norm and in D(a) with respect to the intrinsic norm:

VuVa1
4 (a(u , u)1VuVL 2

m

2 )1/2 .

We assume that C is an m-separating core, see [2], that is for every x , y�X , xcy ,
there exists f�C such that f(x) cf(y) and a(f , f) Gm where the last inequality is
understood in the sense of measures on X .

By the strong locality of the form, for any open subset A of X the restriction of the
energy measure a(u , v) to A depends only on the restrictions of u and v to A , then this
property allows us to define D(a , A) as the set of all functions uNA when u�D(a). We
define D0 (a , A) as the closure of D(a)OC0 (A) in D(a) endowed with the intrinsic
norm. We refer to [2], [17], [22] for the properties of a(u , v) with respect to Leibnitz,
chain and truncation rules.

We define a distance d associated with the form by

d(x , y) 4 sup ]W(x)2W(y) : W�D(a)OC0 (X) with a(W , W) Gm on X(

and denote by B(x , r) the ball ]y�X : d(x , y) E r(.
Moreover, for every compact set K%X , we make the following assumptions:
(D) The metric topology induced by the distance d on X is equivalent to the given

topology of X . Further we assume that there exist three constants n , R0D0 and
C0D1 (with n independent of K) such that a duplication property holds for the balls
B(x , r) with x�K and rG2 rGRGR0 , that is

m(B(x , r) ) FC0u r

R
vn

m(B(x , R) ) .

Then metric space (X , d), together with this doubling measure m is a locally space of
homogeneous type or a homogeneous space in the sense of Coifman-Weiss (see
[9]).

Let us remark that if X is the union of a sequence of balls of radius R0 , then the
separability of X is a consequence of the homogenity.

(P) For every ball B(x , r), x�K , (rGR0 ) and every f�Dloc (B(x,kr)) the Poincaré
inequality

�
B(x , r)

Nf2 fx , rN
2 dmGC1 r 2 �

B(x , kr)

a( f , f )(dx)

holds, where C1D0 and kF1 are constants independent of x , rGR0 and fx , r is the
average of f on B(x , r) with respect to the measure m .

From property (P), assuming that B(x , r) ’B(x , 2 r) cX grG
R0

2
h , we obtain, by
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standard methods, the inequality

�
B(x , r)

NfN2 dmGC2 r 2 �
B(x , r)

a( f , f )(dx)(P0)

for every f�D0 (a , B(x , r) ); by a covering argument it is easy to prove that the inequa-

lity (P0) holds also if rF
R0

2
, with a constant C2 that depends on R0 .

We recall that in this assumption the following embedding result holds:

THEOREM 2.1 Compact embedding property: Let BR a ball in X. Then the
property

D0 (a , BR ) is compactly embedded into L 2
m (BR )

is fulfilled.

PROOF: See Lemma 2.5 in [5]. r

Finally, for any open subset A of X , we assume the existence of Radon Nikodym
derivative

a(u , u)(Q) 4
a(u , u)(dx)

dm
�L 1

loc (A) .(A)

Let us conclude this section with some examples in which our results can be
applied:

(a) forms connected with second order elliptic operators for X4Rn , nF2 and
dx»4m the Lebesgue measure on X . Here the distance is equivalent to the usual Eu-
clidean distance;

(b) forms connected with degenerate elliptic operators with a weight w in the
Muckenhoupt’s class A2 ; let us recall that in the model case X4Rn and nF2, w(x) 4

4NxNa the requirement w�A2 means that 2nEaEn . Here the distance is equivalent
to the usual Euclidean distance (refer to [15] for the validity of properties (D) and
(P));

(c) forms connected with subelliptic operators in the case of smooth or non-
smooth coefficients. Here the distance is defined in relation with the operator (we re-
fer to [19] for properties (D) and (P));

(d) forms connected with vector fields satisfying Hörmander condition in the
case of smooth or non-smooth coefficients, given by a matrix, that is uniformly elliptic
with respect to a weight in the intrinsic Muckenhoupt’s class: here the distance is the
same as in the non-weighted case, property (D) derives from the definition of the in-
trinsic Muckenhoupt’s class and we refer to [23] for property (P) – see also [18], [25]
for the non-weighted case.



— 72 —

3. - THE PROBLEM. EXISTENCE RESULT

From now on let V be a relatively compact open set in X such that V’BR’B2R

with B2RcX . For every Borel subset E , let

capa (E , V) 4 inf ]a(v , v) /v�D(a)OC0 (V), vF1 on a neighbourhood of E( .

We refer, for all properties holding for the capacity related to a Dirichlet form, to the
book of Fukushima [17], only observing that they hold again, in our case, due to val-
idity of property (P0 ).

In particular we say that a property P(X) holds quasi everywhere (abridged as q.e.) in
a set E% E%V , if it holds for all x�E except of a subset N of E with capa(N , V) 40.
A function u : VKR is said to be quasi continuous if for every eD0 there exists a set
A%V , with capa(A , V) Ee , such that the restriction of u to V0A is continuous.

Every u�D(a , V) has a quasi continuous representative, which is uniquely de-
fined up to a set of capacity zero. In the sequel we shall always identify u with is quasi
continuous representative, so the pointwise values of a function u�D(a , V) are de-
fined quasi everywhere.

DEFINITION 3.1: For a relatively compact open set V%X , let M0
a (V) be the set of all

non-negative Borel measures m on V which are absolutely continuous with respect to
capa, i.e., m(E) 40 for every Borel set E%V with capa (E , V) 40.

Let us consider a Carathéodory function f on V3R3R1 that is f is such that

.
/
´

i) ((s , p) �R3R1 , xKf(x , s , p) is a measurable function

ii) for a.e. x�V , (s , p) Kf(x , s , p) is a continuous function
(E1)

and let us assume that the following inequality holds:

for a.e. x�V , (s�R , (p�R1 , Nf(x , s , p)NGc01b(NsN) p 2(E2)

where b(Q) is an increasing function from R1 to R1 and c0�R1 . Let us remark that
the assumption «b increasing» is not a restriction indeed we can replace b with b de-
fined as b(s) 4 sup

0 G rG s
b(r) for any s�R1 . Moreover let us consider

l 0D0 m� M0
a (V) .(E3)

We are interested in bounded solutions of the following problem

.
`
/
`
´

u�V 0
m (V)OL Q

m (V)

al0
(u , v)1�

V

uv dm4�
V

f(x , u , a 1/2 (u , u) ) v dm

(v�V 0
m (V)OL Q

m (V)

(3.1)
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where V 0
m (V) 4D0 (a , V)OL 2

m (V), al0
(u , v) 4a(u , v)1l 0 (u , v). (a , D(a) ) is a

Dirichlet form with the assumptions of the previous section and a(u , u) is its energy
measure. Let us observe that, since u�D(a , V)OL Q

m (V), the function
f(x , u(x), a 1/2 (u , u)(x) ) belongs to L 1

m (V) by (E2), indeed:

�
V

Nf(x , u(x), a 1/2 (u , u)(x) )N dmGc0 m(V)1b(VuVQ )�
V

a(u , u) dmEQ .

THEOREM 3.2: Under assumptions (E1), (E2), (E3), there exists at least a bounded
solution u of problem (3.1).

REMARK 3.3: Theorem 3.2 extends the result of [16] (Theorem 3.2) when the re-
laxed Dirichlet problem involves a Dirichlet form.

PROOF OF THEOREM 3.2.

Step 1: Existence of approximate solutions.

For sake of simplicity we introduce the operator F from D(a , V)OL Q
m (V) to

L 1
m (V) defined as

F(u) 4f(x , u , a 1/2 (u , u) ) .

We construct a sequence of problems that approximate (3.1) by introducing for any
eD0 the bounded operator

Fe (u) 4
F(u)

11NF(u)Ne
.

Let us note that

NFe (u)NG
1

e
NFe (u)NGNF(u)N a.e. .(3.2)

We shall first prove, for eD0 fixed, the existence of a solution ue of the quasi-linear
problem

.
/
´

ue�V 0
m (V)OL Q

m (V)

al0
(ue , v)1�

V

ue v dm4�
V

Fe (ue ) v dm (v�V 0
m (V) .(3.1e)

Claim: the mapping S : V 0
m (V) KV 0

m (V) that associates with each function
w�V 0

m (V) the unique solution w 4Sw of the linear problem (whose existence is as-
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sured by [10] (Prop. 4.2)

.
/
´

w �V 0
m (V)

al0
(w, v)1�

V

wv dm4�
V

Fe (w) v dm (v�V 0
m (V)

satisfies the hypothesis of Schauder fixed-point theorem. Indeed let us denote by V
the following set

V»4 {v�V 0
m (V) : VvVV 0

m (V)G
m(V)1/2

l
A

0 e
}

where l
A

04min (1 , l 0 ) and

VvVV 0
m (V) »4 ua1 (v , v)1�

V

NvN2 dmv1/2

and let us observe that, for every lF0, al (v , v) and a1 (v , v) are equivalent norms on
D0 (a , V). It results that, if w�V 0

m (V) then Sw�V 0
m (V) and

al0
(Sw , Sw)1�

V

NSwN2 dmGVFe wVL 2
m
VSwVL 2

m
G

m(V)1/2

e
VSwVV 0

m

then

VSwVV 0
m
G

m(V)1/2

l
A

0 e

that is Sw�V .
S is a compact operator: let ]wn( be a bounded sequence of V 0

m (V). For e fixed,
Fe (u) �L Q

m (V) hence Fe (wn ) is bounded in L 2
m (V) uniformly with respect to n and

Fe (wn ) �F 0
e weakly in L 2

m (V). Let ]wn( »4 ]Swn( �V 0
m (V). Since wn is bounded in

V 0
m (V), there exists a subsequence ]un( such that un � u weakly in D0 (a , V), un � u

weakly in L 2
m (V) and unK u strongly in L 2

m (V) -since the embedding of D0 (a , V) in
L 2

m (V) is compact, see Theorem 2.1. Let us denote by ]un( the subsequence of ]wn(

such that Sun4 un for every n�N . It results that

al0
(un , un2u)1�

V

un (un2u) dm4�
V

Fe (un )(un2u) dm

then

al0
(un2u, un2u )1�

V

(un2u )2 dm1al0
(u, un2u )1�

V

u(un2u ) dm4�
V

Fe (un)(un2u ) dm .
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Letting n to infinity we have

lim
nKQ

al0
(un2u, un2u) 40

and

lim
nKQ

�
V

(un2u)2 dm40

that is unK u in V 0
m (V). Thus the mapping S has a fixed point that is the problem

(3.1e) has at least a solution that belongs to V 0
m (V). Moreover, this solution is in

L Q
m (V), with

2
1

l 0 e
GueG

1

l 0 e
.(3.3)

To prove this, we use the function gue2
1

l 0 e
h1

4ze as the test function in problem

(3.1e). This is possible since ze�D0 (a , V) and since 0 GzeGue
1 then ze belongs to

L 2
m (V) and thus to V 0

m (V). Then, since mF0 and by (3.2) we have

0 Ga(ze , ze ) 4�
V

a(ze , ze ) dm4�
V

x ]ueD (1/l0 e)( a(ue , ze ) dmG

�
V

a(ue , ze ) dm1�
V

ze ue
1 dm4a(ue , ze )1�

V

ze ue dm4

�
V

(2l 0 ue1Fe (ue ) ) ze dmG�
V

u2l 0 ue1
1

e
v ze dm

4�
V

u2l 0 ue1
1

e
v uue2

1

l 0 e
v1

dmG0

so that ze40. This proves one of the inequality of (3.3). The other inequality is proved

in the same way by considering the test function 2gue1
1

l 0 e
h2

. Thus ue�L Q
m (V).

We have also proved that ue�L Q
m (V) since V 0

m (V)OL Q
m (V) %V 0

m (V)OL Q
m (V).

Indeed if u�V 0
m (V)OL Q

m (V), its quasi-continuous representative uA is such that
NuA NGk q.e..Since u�L 2

m (V) then u is m-measurable and since m� M0
a (V) hence

NuA NGk m-a.e. that is u�L Q
m (V).
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Step 2: The solutions ue of problem (3.1e ) are uniformly bounded in L Q
m (V).

More precisely we can prove that

Vue VQG
c0

l 0

(3.4)

where c0 is the constant that appears in (E2). Let us denote by

te4
b 2 (VueVQ )

2
and Te (v) 4v exp (te v 2 ) .

Let us consider ze4ue2
c0

l 0

and let us note that Te (ze
1 ) �V 0

m (V) by the chain rule

and since ze
1�V 0

m (V)OL Q
m (V)OL Q

m (V). To prove the uniform bound in L Q
m (V)

(3.4) we use Te (ze
1 ) as test function in (3.1e):

al0
(ze , Te (ze

1 ) )1�
V

ze Te (ze
1 ) dm4

a(ze , Te (ze
1 ) )1l 0 (ze , Te (ze

1 ) )1�
V

ze Te (ze
1 ) dm4

a(ue , Te (ze
1 ) )1l 0uue2

c0

l 0

, Te (ze
1 )v1�

V

ze Te (ze
1 ) dm4

al0
(ue , Te (ze

1 ) )1�
V

ue Te (ze
1 ) dm2c0�

V

Te (ze
1 ) dm2

c0

l 0

�
V

Te (ze
1 ) dm4

�
V

Fe (ue ) Te (ze
1 ) dm2c0�

V

Te (ze
1 ) dm2

c0

l 0

�
V

Te (ze
1 ) dm

since a is a strongly local form. Let us observe now that T 8e (v) 4exp (te v 2 )1

12 te v 2 exp (te v 2 ) hence, denoted by ee4exp [te (ze
1 )2 ], by chain and truncation rules

it results that

�
V

a(ze , Te (ze
1 ) ) dm4�

V

T 8e (ze
1 ) a(ze , ze

1 ) dm

4�
V

ee a(ze , ze
1 ) dm12 te�

V

(ze
1 )2 ee a(ze , ze

1 ) dm .

Moreover let us note that a(ze , ze
1 ) 4x ]zeD0( a(ze , ze ) 4a(ze

1 , ze
1 ), then by previous
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computation, by (3.2) and by (E2), we have

�
V

ee a(ze
1 , ze

1 ) dm12 te�
V

(ze
1 )2 ee a(ze

1 , ze
1 ) dm1l 0�

V

ze ze
1 ee dm

1�
V

ze ze
1 ee dm4�

V

Fe (ue ) ee ze
1 dm2c0�

V

ee ze
1 dm2

c0

l 0

�
V

ee ze
1 dm

Gb(Vue VQ )�
V

a(ue , ue ) ee ze
1 dm2

c0

l 0

�
V

ee ze
1 dm

Gb(Vue VQ )�
V

ee a(ue , ue )1/2 z 1
e a(ue , ue )1/2 dm

4b(Vue VQ )�
V

ee a(ze
1 , ze

1 )1/2 z 1
e a(ze

1 , ze
1 )1/2 dm

G
1

2
�

V

ee a(ze
1 , ze

1 ) dm1
b 2 (Vue VQ )

2
�

V

ee (ze
1 )2 a(ze

1 , ze
1 ) dm

where we have used the fact that

ze
1 a(ze

1 , ze
1 ) 4ze

1 a(ze , ze ) 4ze
1 a(ue , ue ) .

Finally, by the definition of te the last two terms are involved in the corresponding
terms that reduce the first term in the left hand-side, so

1

2
�

V

ee a(ze
1 , ze

1 ) dm1
b 2 (Vue VQ )

2
�

V

ee (ze
1 )2 a(ze

1 , ze
1 ) dmG0

then, since eeF1 we have ze
140 and ueG

c0

l 0

. The inequality ueF2
c0

l 0

can be
proved by the same methods.

Step 3: Uniform estimate in D0 (a , V).

Let c14b g c0

l 0
h . To show the uniform estimate in D0 (a , V), we use as test func-

tion in (3.1e) the function T(ue ) �V 0
m (V) where T(v) 4v exp (tv 2 ) and t4

c1
2

2
. In the

following we denote by Ee4exp (tu 2
e ). We have

�
V

a(ue , T(ue ) )1l 0�
V

ue T(ue ) dm1�
V

ue T(ue ) dm4�
V

Fe (ue ) T(ue ) dm
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then, by chain rule,

�
V

(Ee12 tue
2 Ee ) a(ue , ue ) dm1l 0�

V

ue
2 Ee dm1�

V

ue
2 Ee dm

4�
V

Fe (ue ) Ee ue dm

G�
V

(c01b(Nue N) a(ue , ue ) ) Ee NueN dm

G�
V

c0 NueNEe dm1�
V

c1 NueNEe a(ue , ue ) dm

Gc0 exp ut
c0

2

l 0
2
v c0

l 0

m(V)1�
V

Ee

2
a(ue , ue ) dm1�

V

Ee c1
2 ue

2

2
a(ue , ue ) dm

then

1

2
�

V

Ee a(ue , ue ) dm1
1

2
�

V

Ee c1
2 ue

2 a(ue , ue ) dm1l 0�
V

ue
2 Ee dm1�

V

ue
2 Ee dm

Gc0 exp ut
c0

2

l 0
2
v c0

l 0

m(V) .

Since EeD1 we have

�
V

ue
2 dm1�

V

a(ue , ue ) dmGK»42
c0

2

l 0

exp u c0
2 c1

2

2l 0
2
v m(V) ,(3.5)

which means that ue is uniformly bounded in V 0
m (V). Extracting a subsequence (still

denoted by ue ), we have proved the existence of a function u�V 0
m (V)OL Q (V) such

that ue �u weakly in D0 (a , V), ue �u weakly in L 2
m (V), weakly * in L Q

m (V) and ueK

Ku a.e. in V , then ueKu strongly in L p
m (V) for any 1 GpEQ . Hence we conclude in

particular that

VuVQG
c0

l 0

and VuVa1
GK .

Note that the L Q
m (V) bound as well as the D0 (a , V) bound do not depend on the

measure m but only on c0 , l 0 , c1 and V .
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Step 4: The sequence ue converges strongly in D0 (a , V) and in L 2
m (V) to the

function u.

Let e and h be two positive parameters and ue and uh be the corresponding sol-
utions of (3.1e) and (3.1h). Let T(v) 4v exp (tv 2 ), t416c1

2 and c14b(c0 /l 0 ). Subtract-
ing (3.1h) from (3.1e) and using the test function T(ue2uh ) which belongs to V 0

m (V),
we obtain

�
V

a(ue2uh , T(ue2uh ) ) dm1l 0�
V

(ue2uh ) T(ue2uh ) dm

1�
V

(ue2uh ) T(ue2uh ) dm

4�
V

[Fe (ue )2Fh (uh ) ] T(ue2uh )

G�
V

[2c01c1 a(ue , ue )1c1 a(uh , uh ) ]NT(ue2uh )Ndm

(3.6)

where we have use the hypothesis (E2) on Fh (uh ) and on Fe (ue ).
Let us observe now that for any u , v�D(a), since the density a(u , v)(Q) is a sym-

metric bilinear form such that a(u , u)(Q) F0, then

Na(u , v)(Q)NG
1

2
a(u , u)(Q)1

1

2
a(v , v)(Q)(3.7)

that implies

a(u , u)(Q) 4a(u2v1v , u2v1v)(Q)

4a(u2v , u2v)(Q)1a(v , v)(Q)12a(u2v , v)(Q)

G2a(u2v , u2v)(Q)12a(v , v)(Q)

hence

�
V

a(ue2uh , T(ue2uh ) ) dm1l 0�
V

(ue2uh ) T(ue2uh ) dm

1�
V

(ue2uh ) T(ue2uh ) dmG

�
V

2c0 NT(ue2uh )Ndm12 �
V

c1 NT(ue2uh )N[a(ue2uh , ue2uh )1a(ue , ue ) ] dm

1�
V

c1 NT(ue2uh )Na(ue , ue ) dmG
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�
V

2c0 NT(ue2uh )N dm1�
V

3c1 NT(ue2uh )Na(ue , ue ) dm

12 �
V

c1 NT(ue2uh )Na(ue2uh , ue2uh ) dm .

Since the second and third integrals of the left hand side are non-negative, we get by
the chain rule

�
V

[T 8 (ue2uh )22c1 NT(ue2uh )N]a(ue2uh , ue2uh ) dm

G�
V

2c0 NT(ue2uh )N dm1�
V

3c1 NT(ue2uh )Na(ue , ue ) dm .
(3.8)

Let us observe that the left-hand side is weak lower semicontinuous. Indeed,

�
V

a(ue2uh , ue2uh ) F(ue2uh ) dm4

�
V

a(G(ue2uh ), G(ue2uh ) ) dm

where F(ue2uh ) »4T 8 (ue2uh )22c1 NT(ue2uh )ND0 (by the choice of t) and
G 8 (ue2uh ) »4F 1/2 (ue2uh ), hence by the weak lower semicontinuity of the form a ,
it results that

a(G(ue2u), G(ue2u) ) G lim inf
hK0

a(G(ue2uh ), G(ue2uh ) )

4 lim inf
hK0

�
V

a(ue2uh , ue2uh ) F(ue2uh ) dm .

Now let h go to zero in (3.8). By the results of Step 3 on the sequence uh , the continu-
ity of functions T and T 8 and the weak lower semicontinuity of the left-hand side, we
easily pass to the limit in (3.8), so that

�
V

[T 8 (ue2u)22c1NT(ue2u)N] a(ue2u , ue2u) dm

G�
V

2c0 NT(ue2u)N dm1�
V

3c1 NT(ue2u)Na(ue , ue ) dm

G�
V

2c0 NT(ue2u)N dm1�
V

6c1 NT(ue2u)N[a(ue2u , ue2u)1a(u , u) ] dm
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then, by the choice of t that implies T 8 (v)28c1 NT(v)NF
1

2
, we have

1

2
�

V

a(ue2u , ue2u) dmG�
V

[T 8 (ue2u)28c1 NT(ue2u)N] a(ue2u , ue2u) dm

G�
V

2c0 NT(ue2u)N dm1�
V

6c1 NT(ue2u)Na(u , u) dm .

Since the last integral tends to zero as e tends to zero, we have proved that ue tends to
u strongly in D0 (a , V). The convergence is strong in L 2

m (V) too, since, coming back to
the first inequality in (3.6), we get

�
V

Nue2uh N2 dmG�
V

Nue2uhNNT(ue2uh )Ndm

G�
V

[2c01c1 a(ue , ue )1c1 a(uh , uh ) ]NT(ue2uh )N dm

that tends to zero as eK0 and hK0 since ueKu and uhKu strongly in
D0 (a , V).

Step 5: Passing to the limit in (3 . 1e ) and proving that u is a solution of problem
(3.1).

By Step 4 we know that ue tends to u strongly in D0 (a , V) (up to the extraction of
a subsequence) that implies a(ue , ue ) Ka(u , u) a.e. in V . Then, by the continuity of
f with respect to (s , p),

Fe (ue ) 4
f(x , ue , a 1/2 (ue , ue ) )

11ef(x , ue , a 1/2 (ue , ue ) )
Kf(x , u , a 1/2 (u , u) ) 4F(u) a.e. in V .

Moreover, since a(ue , ue ) Ka(u , u) in L 1
m (V) hence, by Vitali’s Theorem, for any

subset E%V ,

lim
m(E) K0

�
E

a(ue , ue ) dm40

uniformly with respect to e , and by (E2) with c14b g c0

l 0
h

�
E

NFe (ue )N dmG�
E

[c01c1 a(ue , ue ) ] dm

then

lim
m(E) K0

�
E

NFe (ue )N dmG lim
m(E) K0

c0 m(E)1 lim
m(E) K0

c1�
E

a(ue , ue ) dm40
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uniformly with respect to e . Applying Vitali’s theorem again,

Fe (ue)4
f(x, ue , a 1/2 (ue , ue))

11ef(x, ue , a 1/2 (ue , ue))
Kf(x, u, a 1/2 (u, u))4F(u) strongly in L 1

m (V) .

This shows that u solves problem (3.1), as we wanted to prove. r

REMARK 3.4: As already observed in [7] Remark 3.3 and in [16] Remark 2.2, the
strict positivity of l 0 is essential in the proof of Theorem 3.2 because it allows us to ob-
tain the L Q

m (V) bound on ue . Since the term containing the measure could degenerate
somewhere in V (either with mf0 or with mf1Q), the existence of a solution is no
more guaranteed in the absence of the zero-order term in the operator. As a coun-
terexample, one could consider which one considered by J. L. Kazdan in [20] (see also
[7] Counter-ex. 3.1) with an extra term mu with either mf0 or or mfQE , E being a
closed subset of V and QE being the measure defined by

QE (B) 4
.
/
´

0

1Q

if capa (BOE , V) 40

otherwise .

Of course, hypothesis (E3) can be replaced by

l 0F0, m� M0
a (V), m1l 0 dmFa0 dm

for a strictly positive constant a0 .

4. - HOMOGENIZATION

In this section we study the convergence of the solutions of (3.1) when the measure
m varies. For sake of simplicity we consider only non-linear terms that do not depend
explicitly on ue . More precisely, let us consider the sequence of problems:

.
`
/
`
´

ue�V 0
me

(V)OL Q
m (V)

al0
(ue , v)1�

V

ue v dme4�
V

f(x , a 1/2 (ue , ue ) ) v dm

(v�V 0
me

(V)OL Q
m (V)

(4.1e)

where l 0D0, ]me( � M0
a (V) and V is a relatively compact subset of X . Let suppose

that V is uniformly regular too, that is



— 83 —

DEFINITION 4.1: V is an uniformly regular domain with respect to the form a if for
any x�¯V

lim
rK0

inf
x�¯V

�
r

R
capa (VOB(x , s), B(x , 2 s) )

capa (B(x , s), B(x , 2 s) )

ds

s
41Q .

Let us underline that this assumption is necessary in order to prove the corrector
result enunciated in Proposition 4.7 that play an important role in the proof of the ho-
mogenization theorem (Theorem 4.10). Let us recall the definition of g-convergence
of a sequence of measures in space M0

a (V). For any measure m� M0
a (V), let us consid-

er the following functional F m defined on L 2
m (V)OL 2

m (V):

F m (v) »4

.
/
´

�
V

a(v , v) dm1�
V

v 2 dm if v�V 0
m (V)

1Q otherwise .

(4.1)

DEFINITION 4.2: Let e be a sequence of positive numbers converging to zero, ]me( a
sequence of measures in the space M0

a (V) and m� M0
a (V). Let F me and F m the function-

als associated with ]me( and m , as in (4.1). Then

me g-converges to m

if the sequence of functionals F me G-converges in the sense of De-Giorgi and Franzoni
[14] to the functional F m.

As in the classical case (i.e. a(u , v) 4�
V

˜u ˜v dx), it is possible to prove that the G-

convergence of F me to F m is equivalent to the L 2
m (V)-convergence of the solutions ue of

the homogeneous relaxed Dirichlet problem with respect to the form a , the function
f�D 21 (a , V) -dual space of D0 (a , V)- and the sequence ]me(:

.
/
´

ue�V 0
me

(V)

a(ue , v)1�
V

ue v dme4 a f , vb (v�V 0
me

(V)(4.2e)

to the solution u of the homogeneous relaxed Dirichlet problem with respect to the
form a , the function f�D 21 (a , V) and the sequence ]m(:

.
/
´

u �V 0
m (V)

a(u, v)1�
V

uv dm4 a f , vb (v�V 0
m (V)(4.2)

for every f�D 21 (a , V). It is easy to prove that ue � u weakly in D0 (a , V).
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We want to prove a stability property for bounded solutions with respect to the g-
convergence of measures when the limit measure is sufficiently regular, making essen-
tial use of the correctors result of Biroli, Picard, Tchou. To this aim we recall here
some definitions and properties on Kato measures and correctors.

Firstly, let us recall (see [3]) the notion of Kato measure associated with a regular
Dirichlet form.

DEFINITION 4.3: Let V be a relatively compact open subset of X with 2 diam (V) 4

4RER0 where R0 is the constant which appears in doubling condition (D) of Section 2.
Assume that there exists x0�V with B(x0 , 4R) %%X and B(x0 , 4R) cX. We say that m
is a Kato measure on V if m is a Radon measure on V such that

lim
rK0

sup
x�V

�
VOB(x , r)

u �
d(x , y)

R
s

m(B(x , s) )
dsvNmN(dy) 40

where NmN denotes the total variation of the measure m. In [1], M. Biroli has studied
some properties of weak Kato measure associated with a regular Dirichlet form.

DEFINITION 4.4: Let V and X as in the previous definition. We say that m is a weak
Kato measure on V if m is a Radon measure on V such that

lim
rK0

sup
x�V

�
VOB(x , r)

u �
d(x , y)

40 r
s

m(B(x , s) )
dsvNmN(dy) 40 .

Let now ze be the solutions of the problems

.
/
´

ze�Vme
(V) 4D(a , V)OL 2

me
(V) ze21 �D0 (a , V)

a(ze , v)1�
V

ze v dme40 (v�V 0
me

(V)(4.3)

and let z be the solution of the problem

.
/
´

z�Vm (V) 4D(a , V)OL 2
m (V), z21 �D0 (a , V)

a(z , v)1�
V

zv dm40 (v�V 0
m (V) .

(4.4)

REMARKS 4.5: As in the classical case we always suppose that

D(a , V)OL 2
me

(V)O ]v�D(a , V) : v21 �D0 (a , V)( c¯
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and

D(a , V)OL 2
m (V)O ]v�D(a , V) : v21 �D0 (a , V)( c¯ .

By comparison principle it is simple to show that

0 Gze , zG1 .

Moreover, as in [11] (Prop. 5.13) it is easy to prove that if

supp me%%V and me g-converges to m

then the sequence ze converges to z strongly in L 2
m (V) and weakly in D(a , V).

We are now in position to state the definition of correctors.

DEFINITION 4.6: If the sequence me g-converges to m , a sequence we in Vme
is said to

be a sequence of correctors for the problem (4 . 1e ) if for any f , defining ue and u as sol-
utions of (4 . 1e ) for me and m respectively, one has, as e tends to 0

ue2we uK0 strongly in D0 (a , V) .

In the following correctors result we would like to define the correctors as the
quotient we »4ze /z where ze and z are respectively the solutions of (4.3) and (4.4). In
order to do it we have to assume that there exists a positive constant dD0 such
that

zFdD0 m-a.e. in V .

Actually, using continuity arguments and Harnack inequality proved in Theorem 4.3
in [1], this assumption is satisfied if m is a weak Kato measure and V is uniformly
regular.

PROPOSITION 4.7: Let V be an uniformly regular domain (see Definition 4.1), m a
weak positive Kato measure (see Definition 4.4) and f a weak Kato measure. Then the
functions

we »4
ze

z
(4.5)

where ze and z are defined in (4.3) and (4.4), belongs to Vme
(V)OL Q

m (V). This se-
quence is a corrector sequence since there exist a function u(t) : [0 , T0 ] KR such that
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u(t) K0 as tK0 and the following inequality holds for ue and u , defined in (4.1e ) for
me and m respectively, with Vue2we uVL 2

m
GT0 ,

�
V

a(ue2we u , ue2we u)(dx)1�
V

Nue2we uN2 dme
G

Cu(Vwe21VL 2
m
) .

PROOF: See Theorem 4.1 in [4]. r

In order to prove our homogenization problem, in the following we will often use
the following proposition.

PROPOSITION 4.8: Let us assume that c�D(a , V)OL Q
m (V) and that

Vve VQGC for some constant C

ve �v a.e. with respect to m

v�D(a , V)OL Q
m (V)

and the sequence we�D0 (a , V) verifies

Vwe VQGC and we �w weakly in D0 (a , V)

then

�
V

a(we , c) ve dmK�
V

a(w , c) v dm .

PROOF: See Lemma 3.3 in [5]. r

Let f(x , p) with x�V , p�R1 be a Carathéodory function. We assume the fol-
lowing hypothesis:

.
/
´

Nf(x , p1 )2f(x , p2 )NGK(11p1
s2g1p2

s2g )Np12p2Ng

for any p1 , p2�R1 with 0 EgG1 and gG sE2 ;

Nf(x , 0 )NGc0

(H1)

.
/
´

l 0D0, Vme
(V)O]v�D(a, V) : v21�D0 (a, V)(c¯

m 0 weak positive Kato measure Vm0
(V)O]v�D(a, V) : v21�D0 (a, V)(c¯

meg-converges to m 0, supp me%%V .

(H2)
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Note that (H1) implies in particular that

Nf(x , p)NGc1 (11NpNs ) for any p�R1 sE2(4.6)

so hypothesis (E2) is satisfied. Therefore the existence result of Theorem 3.2 holds in
this case. On the other hand, hypothesis (H2) allows us to use the corrector result of
Proposition 4.7 and the properties described in Remarks 4.5. We also assume an addi-
tional hypothesis on the correctors we defined by (4.5) We assume that

a(we , we ) K0 a.e. in V .(H3)

REMARK 4.9: Hypothesis (H3) holds -for example- in the classical case for a peri-
odically perforated domains with holes of critical size (see [16], [6], [21]). Moreover
(H3) holds in the classical case for the correctors considered by Casado-Diaz in [8]
and Dal Maso Murat in [13].

We are going to prove the following theorem

THEOREM 4.10: Assume (H1), (H2), and (H3), and let ue�V 0
me

(V)OL Q
m (V) be

any sequence of solutions of (4.1e ) with Vue VQGc0 /l 0 . Up to the extraction of a subse-
quence we have

ue �u0 weakly in D0 (a , V)

where u0 is a solution of

.
/
´

u0�V 0
m0

(V)OL Q
m (V)

al0
(u0 , v)1�

V

u0 v dm 04�
V

f(x , a 1/2 (u0 , u0 )(x) ) v dm (v�V 0
m0

(V)OL Q
m (V) .(4.7)

PROOF: From now on, in order to simplify the writing, we pose, for any
u�D(a , V)OL Q

m (V)

F(u) »4f(x , a 1/2 (u , u)(x) ) .

Step 1: Bounds for the solutions ue and F(ue ).

In view of (4.6), by Theorem 3.2, we know the existence of at least one solution ue

of (3.1e) with Vue VQG
c0

l 0

. It also follows from the proof of Theorem 3.2 that

Vue Va1
1VueVme

GK(4.8)

and the constant depends only on c1 , l 0 and V . We can thus extract a subsequence
(still denoted by ue) such that ue �u0 weakly in D0 (a , V), ueKu0 strongly in L p

m (V)
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for any pEQ , weakly* in L Q
m (V) and a.e. in V . Taking q4

2

s
D1, we get

�
V

NF(ue )Nq dmGc1
q�
V

(11a(ue , ue )s/2 )q dmG

const . �
V

(11a(ue , ue ) ) dmGconst .

Extracting a new subsequence, there exists a function F 0 such that F(ue ) �F 0 weak-
ly in L q

m (V).

Step 2: A first passage to the limit in (4.1e).

In this step and in Step 3, we use the corrector result. Let us consider the sequence
of functions we defined by (4.5) and let us mention below the main properties.

we �1 weakly in D(a , V) ,(4.9)

indeed, as we have observed in Remarks 4.5, ze �z weakly in D(a , V) and
1

z
�D(a , V)OL Q

m (V) then ze

z
�1 weakly in D(a , V). This implies

weK1 strongly in L 2
m (V) .(4.10)

Moreover, as a simple consequence of what observed just before Proposition 4.7,

Vwe VQG
1

d
(4.11)

and then by (4.10) and (4.11)

weK1 strongly in L p
m (V) for any 1 GpEQ and weakly* in L Q

m (V) .(4.12)

We claim

.
`
/
`
´

ve�V 0
me

(V)OL Q
m (V), Vve VQGconst . , v0�V 0

m0
(V)

ve �v0 weakly in D0 (a , V) ¨

�
V

a(ve , we ) dm1�
V

ve we dmeK�
V

v0 dm 0 as eK0 .
(4.13)

Indeed, by Leibnitz rule and by (4.3) with v4
ve

z
we have

�
V

a(ve , we ) dm1�
V

ve we dme4

�
V

a uve ,
ze

z
v dm1�

V

ze

z
ve dme4
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�
V

1

z
a(ve , ze ) dm1�

V

ze a uve ,
1

z
v dm1�

V

ze

z
ve dme4

�
V

a u ve

z
, zev dm2�

V

ve a u 1

z
, zev dm1�

V

ze a uve ,
1

z
v dm1�

V

ze ve

z
dme4

�
V

ze a uve ,
1

z
v dm2�

V

ve a u 1

z
, ze21v dm .

Let us observe that 1

z
�D(a , V)OL Q

m (V), ve , (ze21) �D0 (a , V)OL Q
m (V). More-

over ve �v0 , ze21 �z21 weakly in D0 (a , V), thus letting eK0 by Proposition 4.8,
by using strong locality of the form, it results that

�
V

a(ve , we ) dm1�
V

ve we dme

K�
V

za uv0 ,
1

z
v dm2�

V

v0 a u 1

z
, z21v dm4

2�
V

1

z
a(v0 , z) dm2�

V

v0 a u 1

z
, zv dm4

2�
V

a u v0

z
, zv dm4�

V

v0

z
z dm 04�

V

v0 dm 0

by (4.4) with v4
v0

z
, so (4.13) is proved.

For c�V 0
m0

(V)OL Q
m (V) take cwe which belongs to V 0

me
(V)OL Q

m (V), as a test
function in (4 . 1e). This yields

al0
(ue , cwe )1�

V

ue cwe dme4�
V

F(ue ) cwe dm .(4.14)

Now we tends to 1 strongly in L p
m (V) for any pEQ – see (4.12) – while

F(ue ) �F 0 weakly in L q
m (V) with q4

2

s
D1, thus the right-hand side of (4.14) con-

verges as eK0 to

�
V

F 0 c dm .
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We rewrite the left-hand side of (4.14):

�
V

a(ue , cwe ) dm1l 0�
V

ue cwe dm1�
V

ue cwe dme4

�
V

[ca(ue , we )1we a(ue , c) ] dm1l 0�
V

ue cwe dm1�
V

ue cwe dme4

�
V

[a(cue , we )2ue a(c , we )1we a(ue , c) ] dm

1l 0�
V

ue cwe dm1�
V

ue cwe dme4

I1 II

with

I4�
V

a(cue , we ) dm1�
V

ue cwe dme

and

II4�
V

[2ue a(c , we )1we a(ue , c) ] dm1l 0�
V

ue cwe dm

4�
V

[2ue a(c , we21)1we a(ue , c) ] dm1l 0�
V

ue cwe dm .

Let us pass to the limit as eK0 using (4.13) with ve4cue in I, since
cue�V 0

me
(V)OL Q

m (V), cu0�V 0
m0

(V), cue �cu0 weakly in D0 (a , V) and
Vcue VQE (VcVQ c0 ) /(l 0 ),

lim
eK0

I4�
V

cu0 dm 0 .

By Proposition 4.8, letting eK0 in II, we have

lim
eK0

II4�
V

a(u0 , c) dm1l 0�
V

u0 c dm .

From Definition 4.1 of the g-convergence, we finally deduce that u0 belongs to V 0
m0

(V)
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and u0 satisfies

.
/
´

u0�V 0
m0

(V)OL Q
m (V)

al0
(u0 , c)1�

V

u0 c dm 04�
V

F 0 c dm (c�V 0
m0

(V)OL Q
m (V) .

Step 3: Correctors results for non-linear problem.

Let us take v4ue as a test function in (4.1e). We pass easily to the limit since ue

converges strongly to u0 in L p
m (V) for any 1 GpEQ . We obtain

.
/
´

�
V

a(ue , ue ) dm1�
V

ue
2 dme4�

V

F(ue ) ue dm2l 0�
V

ue
2 dm

K�
V

F 0 u0 dm2l 0�
V

u0
2 dm4�

V

a(u0 , u0 ) dm1�
V

u0
2 dm 0 .

(4.15)

We now claim that for any c�V 0
m0

(V)OL Q
m (V)

.
`
/
`
´

�
V

a(ue2we c , ue2we c) dm1�
V

(ue2we c)2 dme

K�
V

a(u02c , u02c) dm1�
V

(u02c)2 dm 0

as eK0 .

(4.16)

To prove this claim, we write the left-hand side of (4.16) as

�
V

[a(ue , ue )1a(we , c 2 we )22a(we , cue )1we
2 a(c , c)22we a(ue , c) ] dm

12 �
V

ue a(we , c) dm1�
V

ue
2 dme1�

V

c 2 we
2 dme22 �

V

cwe ue dme4

y �
V

a(ue , ue ) dm1�
V

ue
2 dmez1 y �

V

a(we , c 2 we ) dm1�
V

(c 2 we ) we dmez

22 y �
V

a(we , cue ) dm1�
V

cwe ue dmez

1y �
V

[we
2 a(c , c)22we a(ue , c) ] dm12 �

V

ue a(we , c) dmz
I1 II1 III1 IV .
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I4 y �
V

a(ue , ue ) dm1�
V

ue
2 dmez

K y �
V

a(u0 , u0 ) dm1�
V

u0
2 dm 0z

as eK0 by (4.15),

II4 y �
V

a(we , c 2 we ) dm1�
V

(c 2 we ) we dmezK�
V

c 2 dm 0

as eK0 by (4.13) with ve4c 2 we .

III422 y �
V

a(we , cue ) dm1�
V

(cue ) we dmezK2 2 �
V

cu0 dm 0

as eK0 by (4.13) with ve4cue . Moreover, by Proposition 4.8

IV4

�
V

[we
2 a(c , c) dm22we a(ue , c) ] dm12 �

V

ue a(we , c) dm4

�
V

[we
2 a(c , c) dm22we a(ue , c) ] dm12 �

V

ue a(we21, c) dm

K�
V

[a(c , c)22a(u0 , c) ] dm .

Therefore

lim
eK0

I1 II1 III1 IV4

�
V

a(u0 , u0 ) dm1�
V

u0
2 dm 01�

V

c 2 dm 0

22 �
V

cu0 dm 01�
V

a(c , c) dm22 �
V

a(u0 , c) dm4

�
V

a(u02c , u02c) dm1�
V

(u02c)2 dm 0 ,

that is (4.16) holds.
Taking now c4u0 in (4.16) we obtain that

ue2we u0K0 as eK0 strongly in D0 (a , V) .(4.17)

Step 4: Identifying F 0 as F(u0 ) 4f(x , a 1/2 (u0 , u0 ) ).
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Firstly let us make some remarks. Let us consider the inequality (3.7) when v is re-
placed by nv with n4 (a 1/2 (u , u)(x) ) /(a 1/2 (v , v)(x) ). The function a(u , v) is contin-
uous on V2E where m(E) 40. Let x�V2E fixed. Then

Na(u , v)(Q)NGa 1/2 (u , u)(Q) a 1/2 (v , v)(Q) .(4.18)

It implies

(a 1/2 (u , u)(Q)2a 1/2 (v , v)(Q) )24

a(u , u)(Q)1a(v , v)(Q)22a 1/2 (u , u)(Q) a 1/2 (v , v)(Q)

Ga(u , u)(Q)1a(v , v)(Q)22a(u , v)(Q) 4a(u2v , u2v)(Q) .

(4.19)

In the proof of this step we use hypothesis (H1) with p14a 1/2 (ue , ue ) and p24

4a 1/2 (we u0 , we u0 ). By (4.19) we have

NF(ue )2F(we u0 )NG

K(11a(ue , ue )(s2g) /21a(we u0 , we u0 )(s2g) /2 ) a(ue2we u0 , ue2we u0 )g/2 .

It can be easily proved that any term in the right-hand side converges to zero strongly
in L 1

m (V). Let us consider, for example, the last term in the case sDg . It is enough to

apply Hölder’s inequality with p4
2

s2g
and p 84

2

22 s1g
to get

�
V

a(u0 we , u0 we )(s2g) /2 a(ue2u0 we , ue2u0 we )g/2 dm

G u �
V

a(u0 we , u0 we ) dmv(s2g) /2u �
V

a(ue2u0 we , ue2u0 we )g/(22 s1g) dmv(22 s1g) /2

.

The condition sE2 implies that g

22 s1g
E1, and the result follows from (4.17).

Then we have proved that

F(ue )2F(we u0 ) K0 as eK0 strongly in L 1
m (V)(4.20)

that is

f(x , a 1/2 (ue , ue ) )2f(x , a 1/2 (we u0 , we u0 ) ) K0 as eK0 strongly in L 1
m (V) .

Let us now prove that

F(we u0 ) KF(u0 ) as eK0 strongly in L 1
m (V) .(4.21)

Let us observe that, by the Leibnitz rule,

a(we u0 , we u0 ) 4u0
2 a(we , we )1we

2 a(u0 , u0 )12u0 we a(we , u0 ) .(4.22)

Let us consider (4.18) with u4u0 and v4we . By (H3) a(we , u0 ) converges to 0 a.e. in
V . Thus, letting e to zero in (4.22), using again (H3) and since weK1 a.e. in V we
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have that a(we u0 , we u0 ) Ka(u0 , u0 ) a.e. in V . By the continuity of f with respect to
p we have

f(x , a 1/2 (we u0 , we u0 ) ) Kf(x , a 1/2 (u0 , u0 ) ) as eK0 a.e. in V ,

that is

F(we u0 ) KF(u0 ) a.e. in V .

On the other hand, by (4.6) and by (4.20)

�
V

NF(we u0 )N dm

Gc1�
V

k11a s/2 (we u0 , we u0 )l dm

Gconst . �
V

[11Nu0Ns a s/2 (we , we )1NweN
s a s/2 (u0 , u0 )1Nwe u0Ns/2 Na s/2 (we , u0 )N] dm .

The limit of the right hand side is zero when m(V) tends to zero. Indeed we know that
we , u0�L Q

m (V) (then also their product belongs to the same space), and since we �1
weakly in D(a , V) then we is bounded in D(a , V):

�
V

a(we , we ) dmGconst .

Then, for any subset E%V ,

lim
m(E) K0

�
E

Nu0Ns a s/2 (we , we ) dmG lim
m(E) K0

Vu0
s
VQ m(E)(22 s) /2�

V

a(we , we ) dm40

and

lim
m(E) K0

�
E

NweN
s a s/2 (u0 , u0 ) G lim

m(E) K0
Vwe

s
VQ�

E

a s/2 (u0 , u0 ) dm40 ,

by the equicontinuity of the Lebesgue integral. Moreover, since

�
V

Na(u0 , we )NG
1

2
�

V

a(u0 , u0 )1
1

2
�

V

a(we , we ) Gconst . ,

thus

lim
m(E)K0

�
E

Nu0weN
s/2a s/2 (we , u0) dmG lim

m(E)K0
V(u0 we)s/2

VQm(E)(22s)/2�
V

Na(we , u0)N dm40 .
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All these computations implies that, for any subset E%V ,

lim
m(E) K0

�
E

NF(we u0 )N dm40 .

The proof of (4.21) is then achieved using Vitali’s convergence Theorem. From (4.20)
and (4.21) we obtain that

F(ue)4f(x, a 1/2(ue , ue))Kf(x, a 1/2(u0 , u0))4F(u0) as eK0 strongly in L 1
m (V) ,

which proves that

F 04f(x , a 1/2 (u0 , u0 ) ) 4F(u0 ) .

Using this result in the limit problem for u0 at the end of Step 2, we complete the
proof of the Theorem. r
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