Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni
118° (2000), Vol. XXIV, fasc. 1, pagg. 81-110

EDOARDO VESENTINI (*)

Linear Isometries of Vector-Valued Functions (**)

SUMMARY. — Let M be a compact Hausdorff space and let $C(M)$ be the Banach space of all complex-valued continuous functions on M. The classical Banach-Stone theorem, which associates to any surjective linear isometry $A : C(M) \to C(M)$ a homeomorphism of M, was generalized by W. Holsztynski to the case in which the linear isometry A is not necessarily surjective. Holsztynski’s result — which was further extended by M. Cambern to Banach spaces of continuous vector-valued functions on M — associates to A a subset $K(A)$ of M and a continuous surjective map $\psi : K(A) \to M$. In this paper, a maximal ψ-invariant subset of M is constructed in terms of the iterates of A. Actually, the construction of the invariant subset is carried out replacing the discrete subgroup of the iterates of A by a strongly continuous semigroup of linear isometries.

Isometrie lineari di funzioni a valori vettoriali

SUNTO. — Sia M uno spazio compatto di Hausdorff, e sia $C(M)$ lo spazio di Banach delle funzioni continue a valori complessi su M. Il classico teorema di Banach-Stone, che associa ad ogni isometria lineare $A : C(M) \to C(M)$ un omeomorfismo di M, è stato generalizzato da W. Holsztynski al caso in cui l’isometria lineare A non è necessariamente surgettiva. Il risultato di Holsztynski — esteso da M. Cambern a spazi di Banach di funzioni a valori vettoriali, continue su M — associa a A un sottoinsieme $K(A)$ di M ed una applicazione continua ψ di $K(A)$ su M. In questo lavoro, si costruisce un sottoinsieme ψ-invariante massimale di M definito mediante le iterate di A. Di fatto, il sottoinsieme invariante viene costruito sostituendo al semigruppo discreto delle iterate di A un sottoinsieme fortemente continuo di isometrie lineari.

In one of the final chapters of [2], S. Banach made the important observation that two compact metric spaces M and N are homeomorphic if, and only if, the uniform spaces of all continuous, real-valued functions on M and N are isometric. As a byproduct of his proof, if A is such an isometry, there are a homeomorphism ψ of N onto M

(*) Indirizzo dell’Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
(**) Memoria presentata il 30 marzo 2000 da Edoardo Vesentini, uno dei XL.
and a continuous function α, with modulus one at all points of N, such that

$$
(Af)(y) = \alpha(y)f(\psi(y))
$$

at all $y \in N$ and for any real-valued, continuous function f on M. This ground-breaking result was the starting point of a research field which is quite alive today. In [13] M. Stone extended Banach’s theorem to continuous, complex-valued functions on compact (not necessarily metric) Hausdorff spaces and set the stage, within the framework of Boolean algebras, of what would later be called the Banach-Stone problem (see [3] also for exhaustive historical references until 1979), involving continuous vector-valued functions.

In [9], W. Holsztynski considered the case in which the linear isometry A is not surjective (1), and proved that (1) still holds, but gives only a partial description of A in the sense that ψ is then a continuous map of a closed subset $K(A)$ of N onto M and $y \in K(A)$. As was shown in [15], the case $K(A) = N$ can be characterized in terms of the behaviour of A on the extreme points of the closed unit ball of the space of all continuous, complex-valued functions on M.

In [4] M. Cambern proved that Holsztynski’s result extends mutatis mutandis to Banach spaces of continuous vector-valued functions from M to a complex Banach space E and from N to a strictly convex complex Banach space \overline{E}.

In the case in which $M = N$ the question arises, for both Holsztynski’s and Cambern’s theorems, whether there exists a subset $K(A) \subseteq M$ that is invariant under the action of A and on which the action of A is therefore completely described by (1) or by a generalization thereof. In this paper, a maximal invariant set will be constructed in terms of the iterates of A. However, instead of considering these iterates, a more general situation will be investigated, replacing A by a strongly continuous semigroup of linear isometries.

After a first section devoted to the set of all extreme points of the closed unit ball of the Banach space of all continuous maps from M to E, and of the closed unit ball of the dual space, n. 2 investigates the set $K(A) \subseteq N$, establishing a necessary and sufficient condition for $K(A)$ to coincide with N, and a sufficient condition for $K(A)$ to be closed, retrieving, as a consequence, a result of M. Cambern whereby $K(A)$ is closed when \overline{E} has finite dimension.

In n. 3, A is replaced — under the hypotheses $M = N$ and $\overline{E} = \overline{\overline{E}}$ — by a semigroup T of linear isometries, which, in particular, may coincide with the family of all iterates of A. Under rather weak hypotheses on T (that are fulfilled when \overline{E} has finite dimension), a maximal «invariant» set $K_\omega(T) \subseteq M$ will be shown to exist, on which the action of T is determined by a semiflow ϕ acting on $K_\omega(T)$ and by an operator-valued cocycle associated to ϕ. If $K_\omega(T)$ is closed and the semigroup T is assumed to be strongly continuous — as will be done in nn. 5 and 6 — the semiflow ϕ is continuous,

(1) According to the Mazur-Ulam theorem ([2], pp. 166-168) surjective isometries are linear over the reals. The case of non-linear isometries was briefly investigated in [15].
and the infinitesimal generator of the semigroup defined by \(T \) in \(K_\infty(T) \) is a bounded perturbation of the infinitesimal generator of the semigroup determined by \(\phi \).

Finally, in n. 7 the particular case of scalar-valued continuous functions will be considered, extending to semigroups of general linear isometries some results established in [17] under additional conditions.

1. Let \(\mathcal{E} \) be a complex Banach space with norm \(\| \cdot \| \). If \(M \) is a compact Hausdorff space, \(C(M, \mathcal{E}) \) will stand for the complex Banach space of all continuous functions \(f : M \to \mathcal{E} \), with the uniform norm \(\| f \|_{C(M, \mathcal{E})} = \sup \{ \| f(x) \| : x \in M \} \). For any complex Banach space \(\mathcal{E} \), \(\mathcal{E}' \) will stand for the strong dual of \(\mathcal{E} \); \(\mathcal{B}_\mathcal{E}, \mathcal{B}_\mathcal{E}' \) will indicate respectively the unit ball of \(\mathcal{E} \) and its closures.

Proposition 1: Let \(\mathfrak{A} \neq \{0\} \) be a closed linear subspace of \(C(M, \mathcal{E}) \). If \(f \in \mathfrak{A} \),

\[
\| f \|_{C(M, \mathcal{E})} = \sup \{ \langle f, A \rangle : A \text{ extreme point of } \mathcal{B}_\mathcal{E} \}.
\]

Proof: Obviously,

\[
\| f \|_{C(M, \mathcal{E})} \geq \sup \{ \langle f, A \rangle : A \text{ extreme point of } \mathcal{B}_\mathcal{E} \}.
\]

Let now \(\| f \|_{C(M, \mathcal{E})} = 1 \).

Since \(M \) is compact, there is some \(x_0 \in M \) such that \(1 = \| f \|_{C(M, \mathcal{E})} = \| f(x_0) \|_\mathcal{E} \).

For any \(\lambda \in \partial \mathcal{B}_{\mathcal{E}'} \), with \(\| \lambda \|_{\mathcal{E}'} = 1 \), the continuous linear form on \(\mathfrak{A} \)

\[
\delta_{x_0} \hat{\otimes} \lambda : f \mapsto \langle f(x_0), \lambda \rangle
\]

has norm one, showing that the closed set

\[
S := \{ A \in \mathcal{B}_\mathcal{E}' : \langle f, A \rangle = 1 \} \subset \mathfrak{A}'
\]

is not empty. Since, for \(A_1, A_2 \in S \) and \(0 < t < 1 \),

\[
\langle f, tA_1 + (1-t)A_2 \rangle = t + 1 - t = 1,
\]

\(S \) is also convex, and therefore is compact for the weak-star topology of \(\mathfrak{A}' \). By the Kreš-
Milman theorem, \(S \) has one extreme point at least.

Let \(A_0 \) be one of these extreme points, and let \(A_1, A_2 \in \mathcal{B}_\mathcal{E}' \), \(0 < t < 1 \) be such that

\[
A_0 = tA_1 + (1-t)A_2.
\]

Since \(A_0 \in S \),

\[
\ell(f, A_1) + (1-\ell)(f, A_2) = 1,
\]

where \(\ell(f, A) := \langle f, A \rangle \).
whence
\[1 \leq t|\langle f, A_1 \rangle| + (1 - t)|\langle f, A_2 \rangle| \]
\[\leq t\|f\|_\alpha \|A_1\|_\alpha + (1 - t)\|f\|_\alpha \|A_2\|_\alpha \]
\[\leq t + (1 - t) = 1 , \]
and therefore
\[|\langle f, A_1 \rangle| = |\langle f, A_2 \rangle| = 1 ; \]
(3) yields then
\[\langle f, A_1 \rangle = \langle f, A_2 \rangle = 1 , \]
\text{i.e.} \(A_1, A_2 \in S. \)

Hence
\[1 = \|f\|_{CM, \alpha} = \langle f, A_0 \rangle , \]
and this fact, together with (2) completes the proof of the proposition (2) \(\Box \)

Lemma 1: Let the closed linear subspace \(\mathcal{A} \) of \(CM, \{0\} \) be such that, for every \(x \in M \) and every open neighbourhood \(U \) of \(x \) in \(M \) there is \(g \in \mathcal{A} \setminus \{0\} \) with \(\text{Supp} \, g \subset U \). If \(f \in \mathcal{A} \) is a complex extreme point of \(B_{\mathcal{A}} \), then \(\|f(x)\|_\varepsilon = 1 \) for all \(x \in M \).

Proof: If \(\|f(x_0)\|_\varepsilon < 1 \) for some \(x_0 \in M \), there exist an open neighbourhood \(U \) of \(x_0 \) and some \(\varepsilon > 0 \) for which
\[\|f(x)\|_\varepsilon < 1 - \varepsilon \quad \forall \, x \in U . \]
Let \(g \in \mathcal{A} \setminus \{0\} \) be such that \(\text{Supp} \, g \subset U \) and \(\|g\|_{CM, \alpha} \leq \varepsilon \). Given any \(\zeta \in \mathcal{A} = \{ r \in \mathbb{C} : |r| < 1 \} \),
\[\|f(x) + \zeta g(x)\|_\varepsilon \leq \|f(x)\|_\varepsilon + \|\zeta\| \|g(x)\|_\varepsilon \]
\[\leq \|f(x)\|_\varepsilon + \|g(x)\|_\varepsilon \]
\[< 1 - \varepsilon + \varepsilon = 1 \]
if \(x \in U \), and
\[\|f(x) + \zeta g(x)\|_\varepsilon = \|f(x)\|_\varepsilon \]
if \(x \in M \setminus U \). Thus,
\[\|f + \zeta g\|_{CM, \alpha} \leq 1 \]
(2) The proof follows the ideas in [7], pp. 145-146.
for all $\zeta \in \mathcal{A}$, contradicting the hypothesis whereby f is a complex extreme point of $\overline{B_{\mathcal{E}}}$.

Lemma 1 and the following lemma characterize all extreme points of $\overline{B_{\mathcal{E}}}$, where \mathcal{E} is strictly convex.

Lemma 2: Let \mathcal{E} be strictly convex. If, and only if,
$$
\|f(x)\|_{\mathcal{E}} = 1 \quad \forall x \in M,
$$
$f \in C(M, \mathcal{E})$ is an extreme point of $\overline{B_{\mathcal{E}}}$.

Proof: Let $g \in C(M, \mathcal{E})$ and let $t \in (0, 1) \setminus \{0\}$ be such that
$$
\|f + tg\|_{C(M, \mathcal{E})} \leq 1.
$$
Then
$$
\|f(x) + tg(x)\|_{\mathcal{E}} \leq 1 \quad \forall x \in M.
$$
Since $f(x) \in \partial B_{\mathcal{E}}$ is an extreme point of $\overline{B_{\mathcal{E}}}$, then $g(x) = 0$ for all $x \in M$.

Let
$$
\Theta(\mathcal{E}) = \{g \in \overline{B_{\mathcal{E}}}: g \text{ extreme point of } \overline{B_{\mathcal{E}}}\}.
$$
Lemma 1 and Lemma 2 yield

Theorem 1: If \mathcal{E} is strictly convex and $\mathcal{A} \neq \{0\}$ is a closed linear subspace of $C(M, \mathcal{E})$ such that, for every $x \in M$ and every open neighbourhood of x in M there is $g \in \mathcal{A} \setminus \{0\}$ with $\text{Supp } g \subset U$, then
$$
\Theta(\mathcal{E}) = \{g \in \mathcal{A}: \|g(x)\|_{\mathcal{E}} = 1 \quad \forall x \in M\}.
$$
In particular, if \mathcal{E} is strictly convex, then

$$
\Theta(C(M, \mathcal{E}')) = \{f \in C(M, \mathcal{E}): \|f(x)\|_{\mathcal{E}} = 1 \quad \forall x \in M\}.
$$
We will now describe $\Theta(C(M, \mathcal{E}'))$.

Let
$$
C := \{\delta_x \otimes \lambda: x \in M, \lambda \in \overline{B_{\mathcal{E}'}}\} \subset \overline{B_{C(M, \mathcal{E})}}.
$$

Lemma 3: The set C is weak-star closed in $C(M, \mathcal{E}')$.

Proof: If Ω is contained in the weak-star closure of C, there is a generalized sequence $\{\delta_{x_j} \otimes \lambda_j\}$, with $x_j \in M$ and $\lambda_j \in \overline{B_{\mathcal{E}'}}$, converging to Ω, i.e., such that

$$
\langle f, \Omega \rangle = \lim \langle f(x_j), \lambda_j \rangle \quad \forall f \in C(M, \mathcal{E}).
$$
Up to replacing this generalized sequence by a generalized subsequence, there is
no restriction in assuming that \(\{ x_i \} \) converges to a point \(x_0 \in M \), and that \(\{ \lambda_i \} \) converges to \(\lambda_0 \in B_E^\prime \) for the weak-star topology. Hence, (5) yields
\[
\langle f, \Omega \rangle = \langle f(x_0), \lambda_0 \rangle \quad \forall f \in C(M, \sigma)^
\]

Lemma 4: If \(\Omega \in C(M, \delta)' \) is an extreme point of \(\overline{B_{C(M, \delta')}} \), there exist \(x_0 \in M \) and \(\lambda_0 \) an extreme point of \(B_E^\prime \) such that \(\Omega = \delta_{x_0} \otimes \lambda_0 \).

Proof: The closure \(\overline{\text{co}}(C) \) of the convex hull \(\text{co}(C) \) of \(C \) coincides with the closed convex hull \(\overline{\text{co}}(C) \), which is closed in \(B_E^\prime \).

If \(\Omega \notin \overline{\text{co}}(C) \), there exist, ([6], p. 417), \(f \in C(M, \delta) \), \(c \in \mathbb{R} \) and \(\epsilon > 0 \) such that
\[
\Re(f, \Omega) \geq c
\]
and
\[
\Re(f, A) \leq c - \epsilon \quad \forall A \in C ,
\]
i.e.,
\[
\Re(f(x), \lambda) \leq c - \epsilon \quad \forall x \in M, \lambda \in B_E^\prime.
\]
Since
\[
\|f(x)\|_\infty = \sup \{ \|f(x), \lambda\| : \lambda \in B_E^\prime \},
\]
then
\[
\|f(x)\|_\infty \leq c - \epsilon \quad \forall x \in M ,
\]
and therefore
\[
\|f\|_{C(M, \delta)} \leq c - \epsilon .
\]
If \(\|\Omega\| \leq 1 \), then
\[
\epsilon \leq \Re(f, \Omega) \leq \|f, \Omega\| \leq \|f\|_{C(M, \delta)} \|\Omega\| \leq \|f\|_{C(M, \delta)} \leq c - \epsilon .
\]
This contradiction shows that
\[
\Omega \notin \overline{\text{co}}(C) \Rightarrow \Omega \notin \overline{B_{C(M, \delta')}} ,
\]
i.e.,
\[
\overline{B_{C(M, \delta')}} \subset \overline{\text{co}}(C) \subset \overline{B_{C(M, \delta')}} ,
\]
and therefore
\[
\overline{\text{co}}(C) = \overline{B_{C(M, \delta')}} .
\]
Since the extreme points of $\mathfrak{C}(C)$ are contained in C (see, e.g., [6], pp. 440-441), there are $x_0 \in M$ and $\lambda_0 \in \overline{B}_C$ such that $\Omega = \delta_{x_0} \otimes \lambda_0$.

If λ_0 is not an extreme point of \overline{B}_C, there are $\lambda_1, \lambda_2 \in \overline{B}_C$ and $t \in (0, 1)$ such that

$$\Omega = \delta_{x_0} \otimes \lambda_0 = t\delta_{x_0} \otimes \lambda_1 + (1-t)\delta_{x_0} \otimes \lambda_2.$$

In conclusion, the following theorem holds.

Theorem 2: A linear form $A \in C(M, \mathfrak{C})'$ is an extreme point of $\overline{B}_{C(M, \mathfrak{C})}$ if, and only if, there exist $x \in M$ and an extreme point λ of \overline{B}_C such that $A = \delta_x \otimes \lambda$.

2. Let M and N be compact Hausdorff spaces and let \mathfrak{E} and \mathfrak{F} be complex Banach spaces, with \mathfrak{F} strictly convex. In [4], M. Cambern has characterized all linear isometries of $C(M, \mathfrak{E})$ into $C(N, \mathfrak{F})$, proving the following theorem, which extends previous results established by W. Holsztyński in [9] for the case $\mathfrak{E} = \mathfrak{F} = C$.

Theorem 3: Let $A \in \mathfrak{L}(C(M, \mathfrak{E}), C(N, \mathfrak{F}))$ be a linear isometry. If \mathfrak{F} is strictly convex, there exist:
- a set $K(A) \subset N$;
- a continuous, surjective map $\psi : K(A) \rightarrow M$;
- a map $\gamma : N \ni y \mapsto C_y \in \mathfrak{L}(\mathfrak{E}, \mathfrak{F})$, which is continuous for the strong operator topology in $\mathfrak{L}(\mathfrak{E}, \mathfrak{F})$, such that

$$\gamma((Af)(y)) = C_y(f \circ \psi(y))$$

for all $y \in K(A)$ and all $f \in C(M, \mathfrak{E})$.

The set $K(A)$ and the map ψ are described as follows. For $x \in M$, $\xi \in \partial B(M, \mathfrak{E})$, let

$$F(\xi, x) = \{ f \in C(M, \mathfrak{E}) : f(x) = \| f \|_{C(M, \mathfrak{E})} \xi \},$$

$$K_A(\xi, x) = \{ y \in N : \| (Af)(y) \|_\mathfrak{E} = \| f \|_{C(M, \mathfrak{E})} \forall f \in F(\xi, x) \},$$

$$K_A(x) = \bigcup \{ K(\xi, x) : \xi \in \partial B(M, \mathfrak{E}) \},$$

$$K(A) = \bigcup \{ K_A(x) : x \in M \}.$$

In [4], Cambern shows that $K_A(\xi, x) \neq \emptyset$ for all $x \in M$, and

$$x_1 \neq x_2 \Rightarrow K_A(x_1) \cap K_A(x_2) = \emptyset.$$

Hence, for every $y \in K(A)$ there is a unique $x \in M$ such that $y \in K_A(x)$. The map $\psi : K(A) \rightarrow M$ is defined by setting $x = \psi(y)$.
Any $\xi \in \mathcal{E}$ defines a function $\xi \in C(M, \mathcal{E})$ as follows:

$$\xi(x) = \xi \quad \forall x \in M.$$ For $y \in N$, the operator $C_y \in \mathcal{L}(\mathcal{E}, \mathcal{F})$ is given by

$$C_y(\xi) = A(\xi).$$

Since, for any $y \in N$,

$$\|C_y\xi\|_\sigma = \|(A(\xi))(y)\|_\sigma \leq \|A\| \|\xi\|_{C(M, \mathcal{E})}$$

$$= \|\xi\|_{C(M, \mathcal{E})} = \|\xi\|_\sigma,$$

then

$$\|C_y\| \leq 1 \quad \forall y \in N.$$ Being $\xi \in F(\xi, x)$ for all $x \in M$, then

$$\|C_y\xi\|_\tau = \|\xi\|_\tau \quad \forall \xi \in \mathcal{E}, \quad \forall y \in K(A).$$

Since $y \mapsto C_y \xi$ is continuous for all $\xi \in \mathcal{E}$, that proves

Lemma 5: For any $y \in K(A)$, C_y is a linear isometry of \mathcal{E} into \mathcal{F}.

In [4] M. Cambern shows that, if $y \in K(A)(x)$, then

$$(Af)(y) = C_y(f(x)) \quad \forall f \in C(M, \mathcal{E}).$$

By the construction of ψ, that yields (6).

Proposition 2: If the map $C : y \mapsto C_y$ of N into $\mathcal{L}(\mathcal{E}, \mathcal{F})$ is continuous for the uniform operator topology of $\mathcal{L}(\mathcal{E}, \mathcal{F})$, the set $K(A)$ is closed.

Proof: Let $y_0 \in K(A)$.

For any $f \in B_{C(M, \mathcal{E})}$ and for $n = 1, 2, \ldots$ there is some $y_n \in K(A)$ such that

$$\|(Af)(y_0) - (Af)(y_n)\|_\sigma < \frac{1}{n},$$

i.e.,

$$\|(Af)(y_0) - C_{y_n}(f(\psi(y_n)))\|_\sigma < \frac{1}{n},$$

and moreover

$$\|C_{y_0} - C_{y_n}\| < \frac{1}{n}.$$
Suppose that the set \(\{ \psi(y_n) \} \) is infinite. Because \(M \) is compact, the set \(\{ \psi(y_n) \} \) has at least one cluster point \(x_0 \). For any \(\varepsilon > 0 \) there is an open neighbourhood \(U \) of \(x_0 \) in \(M \) such that

\[
\| f(x) - f(x_0) \|_\varepsilon < \varepsilon \quad \forall x \in U.
\]

Let \(n_0 > 0 \) be so large that \(\frac{1}{n_0} < \varepsilon \), and let \(n > n_0 \) be such that \(x_n \in U \). Then

\[
\|(Af)(y_0) - C_{y_0}(f(x_n))\|_\varepsilon \leq \|(Af)(y_0) - C_{y_0}(f(x_0))\|_\varepsilon +
\]

\[
+ \|(C_{y_0} - C_{y_0})(f(x_n))\|_\sigma +
\]

\[
+ \|C_{y_0}(f(x_n) - f(x_0))\|_\sigma
\]

\[
\leq \|(Af)(y_0) - C_{y_0}(f(x_0))\|_\varepsilon +
\]

\[
+ \|C_{y_0} - C_{y_0}\|_\sigma \|f(x_n)\|_\sigma +
\]

\[
+ \|C_{y_0}\|_\sigma \|f(x_n) - f(x_0)\|_\sigma
\]

\[
< \frac{1}{n} + \frac{1}{n} + \varepsilon < 3 \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, that shows that

\[(Af)(y_0) = C_{y_0}(f(x_0)).\]

Obviously, the same conclusion holds when the set \(\{ \psi(y_n) \} \) is finite; in which case \(x_0 \in \{ \psi(y_n) \} \) can be chosen such that \(\psi(y_n) = x_0 \) for \(n_1 < n_2 < \ldots \).

Let now \(u_0 \) be another cluster point of the set \(\{ \psi(y_n) \} \) when this latter set is infinite, or such that \(\psi(y_m) = u_0 \) for \(m_1 < m_2 < \ldots \). By the same argument as before, one shows that

\[(Af)(y_0) = C_{y_0}(f(u_0)).\]

Hence,

\[C_{y_0}(f(x_0) - f(u_0)) = 0,
\]

and therefore

\[f(x_0) = f(u_0) \quad \forall f \in C(M, \mathcal{E})
\]

because \(C_{y_0} \) is injective. If \(x_0 \neq u_0 \), given any two vectors \(\xi_1 \) and \(\xi_2 \) in \(\mathcal{E} \), there is a function \(f \in C(M, \mathcal{E}) \) such that

\[f(x_0) = \xi_1, \quad f(u_0) = \xi_2.
\]

Thus \(x_0 = u_0 \), and \(y_0 \in \psi_A(x_0). \)
In view of the definition of C_{ϵ}, the hypothesis of Proposition 2 can be rephrased by requiring that the restriction of A to the closed subspace of $C(M, \mathcal{E})$ consisting of all \mathcal{E}-valued constant functions on M be continuous for the uniform operator topology.

Corollary 1: [4] If $\dim \mathcal{E} < \infty$, $K(A)$ is closed in N.

Lemma 6: Let \mathcal{F} be strictly convex and \mathcal{E} reflexive. If $y \in N$ and there is $\mu \in \partial B_{\mathcal{F}}$ such that
\[
A'(\delta_\lambda \otimes \mu) = \delta_\lambda \otimes \lambda
\]
for some $x \in M$ and $\lambda \in \partial B_{\mathcal{F}}$, then $y \in K(A)$.

Proof: Since \mathcal{E} is reflexive, there exists $\xi \in \mathcal{E}$ such that $\langle \xi, \lambda \rangle = 1$. If $f \in C(M, \mathcal{E})$ is such that $f(x) = \|f\|_{C(M, \mathcal{E})} \xi$, then
\[
\langle (Af)(y), \mu \rangle = \langle Af, \delta_\lambda \otimes \mu \rangle = \langle f, A'(\delta_\lambda \otimes \mu) \rangle
= \langle f, \delta_\lambda \otimes \lambda \rangle = \langle f(x), \lambda \rangle
= \|f\|_{C(M, \mathcal{E})} \langle \xi, \lambda \rangle = \|f\|_{C(M, \mathcal{E})}.
\]

Since
\[
\|f\|_{C(M, \mathcal{E})} = \langle (Af)(y), \mu \rangle \leq \|Af\|_{\mathcal{E}} \|\mu\|_{\mathcal{F}}
= \langle (Af)(y) \rangle_{\mathcal{F}} \leq \|Af\|_{C(M, \mathcal{E})} = \|f\|_{C(M, \mathcal{E})},
\]
then
\[
\|Af\|_{\mathcal{F}} = \|f\|_{C(M, \mathcal{E})},
\]
and therefore $f \in K(A)$.

On the other hand, if $y \in K(A)$, for any $\mu \in \partial B_{\mathcal{F}}$ and all $f \in C(M, \mathcal{E})$
\[
\langle f, A'(\delta_\lambda \otimes \mu) \rangle = \langle Af, \delta_\lambda \otimes \mu \rangle
= \langle (Af)(y), \mu \rangle = \langle C_\lambda(f(\psi(y))), \mu \rangle
= \langle f(\psi(y)), C_\lambda'(\mu) \rangle = \langle f, \delta_{\psi(y)} \otimes C_\lambda'(\mu) \rangle.
\]

In conclusion, in view of Theorem 2, the following theorem holds

Theorem 4: If \mathcal{F} is strictly convex, and \mathcal{E} is uniformly convex, then $K(A) = N$ if, and only if,
\[
A'(\Theta(C(N, \mathcal{F}'))) \subseteq \Theta(C(M, \mathcal{E}')).
\]
3. Let M be, as before, a compact Hausdorff space, let \mathcal{E} be a strictly convex complex Banach space, and let $T : R_+ \to \mathcal{E}(C(M, \mathcal{E}))$ be a semigroup of linear isometries $T(t) : C(M, \mathcal{E}) \to C(M, \mathcal{E})$.

According to Theorem 3, for every $t \geq 0$ there exist:

a subset $K(T(t))$ of M;

a continuous surjective map $\phi_t : K(T(t)) \to M$;

a map $x \mapsto C_{t, x}$ of M into $\mathcal{E}(\mathcal{E})$, continuous for the strong operator topology in $\mathcal{E}(\mathcal{E})$, such that

\begin{equation}
(T(t) f)(x) = C_{t, x}(f(\phi_t(x))) \quad \forall f \in C(M, \mathcal{E}), \forall x \in K(T(t)).
\end{equation}

If $t = 0$, then $K(I) = M$, $\phi_0 = I$ and $C_{0, x} = I$ for all $x \in M$.

If $t > 0$, for all $x \in M \|C_{t, x}\| \leq 1$, and, if $x \in K(T(t))$, $C_{t, x}$ is a linear isometry of \mathcal{E}.

Lemma 7: Let $t, s \geq 0$ and $x \in M$. If $x \in K(T(t))$ and $\phi_t(x) \in K(T(s))$, then $x \in K(t + s)$. If $x \in K(T(t)) \cap K(T(t + s))$, then $\phi_t(x) \in K(T(s))$.

Proof: If $\phi_t(x) \in K(T(s))$, then $x \in K(T(t)) \cap K(T(t + s))$ and, for all $f \in C(M, \mathcal{E})$,

\begin{equation}
(T(t + s) f)(x) = (T(t) \circ T(s) f)(x) = C_{t, x}((T(s) f)(\phi_t(x))) = C_{t, x} \circ C_{t, \phi_t(x)}(f(\phi_t \circ \phi_t(x)))
\end{equation}

\begin{equation}
= C_{t, x} \circ C_{t, \phi_t(x)}(f(z)) = C_{t, x} \circ C_{t, \phi_t(x)}(f(z)),
\end{equation}

where $z = (\phi_t \circ \phi_t)(x)$. If $f(z) = \|f\|_{C(M, \mathcal{E})} \xi$, with $\|\xi\|_{\mathcal{E}} = 1$, then

\begin{equation}
\left\|T(t + s) f(x)\right\|_{\mathcal{E}} = \|f(z)\|_{\mathcal{E}} = \|f\|_{C(M, \mathcal{E})} = \left\|T(t + s) f\right\|_{C(M, \mathcal{E})}.
\end{equation}

Therefore $x \in K(T(t + s))$ and

\begin{equation}
T(t + s) f(x) = C_{t + s, x}(f(\phi_{t + s}(x))).
\end{equation}

Choosing $f = \xi$, for any $\xi \in \mathcal{E}$, (8) and (9) yield

\begin{equation}
C_{t + s, x}(\xi) = T(t + s) \xi(x) = C_{t, x} \circ C_{t, \phi_t(x)}(\xi),
\end{equation}

whence

\begin{equation}
C_{t + s, x} = C_{t, x} \circ C_{t, \phi_t(x)} \quad \forall t, s \in R_+,
\end{equation}

and therefore

\begin{equation}
f(\phi_{t + s}(x)) = f(\phi_t \circ \phi_t(x)) \quad \forall f \in C(M, \mathcal{E}).
\end{equation}
If $x \in K(T(t)) \cap K(T(t + s))$, then
\[C_{t+s}(f(x)) = (T(t + s) f)(x) = (T(t) \circ T(s) f)(x) = C_t(f(x)). \]
Letting $z = \phi_{t+s}(x)$, if $f(z) = \|f\|_{C_{t+s}(D)} \xi$, with $\|\xi\|_\infty = 1$, then
\[\|f(T(t) f)(\phi_{t+s}(x))\|_\infty = \|C_{t+s}(f(x))\|_\infty = \|f(T(t + s) f)(x)\|_\infty \]
and therefore $\phi_{t+s}(x) \in K(T(s))$.

Corollary 2: If $t, s \geq 0$,
\[K(T(t)) \cap K(T(t + s)) = \phi_t^{-1}(K(T(s))), \]
and $\phi_{t+s} = \phi_t \circ \phi_s$ on $\phi_t^{-1}(K(T(s)))$.

In general, the family $\{K(T(t)) : t > 0\}$ is not increasing, as the following lemma shows.

Lemma 8: If
\[(11) \]
for some $t \geq 0$ and some $s > 0$, then $K(T(t)) = M$ for all $r \geq 0$.

Proof: If (11) holds for some $t \geq 0$ and some $s > 0$, then
\[K(T(t)) = K(T(t)) \cap K(T(t + s)) = \phi_t^{-1}(K(T(s))), \]
and therefore
\[M = \phi_t(K(T(t))) = K(T(s)). \]
Hence, if $0 < l < s$ and $r = s - l$, then
\[K(T(r)) = K(T(r)) \cap K(T(s)) = K(T(r)) \cap K(T(r + l)) = \phi_{s}^{-1}(K(T(l))), \]
and therefore
\[M = \phi_{s}(K(T(r))) = K(T(l)), \]
showing that, if $K(T(s)) = M$ for some $s > 0$, then $K(T(r)) = M$ for all $r \in [0, s]$.

Let
\[s_0 = \sup \{ s \geq 0 : K(T(s)) = M \}. \]
If $0 < s_0 < \infty$, there are t, s, with $0 < t < s_0$ and $0 < s < s_0$, such that $t + s > s_0$.

— 92 —
Then $K(T(t)) = M = K(T(s))$, and therefore
$$K(T(t + s)) = K(T(t)) \cap K(T(t + s)) = \phi_t^{-1}(K(T(s)))$$
$$= \phi_t^{-1}(M) = K(T(t)) = M.$$

This contradiction shows that either $s_0 = 0$ or $s_0 = +\infty$, and completes the proof of the lemma.

If (11) holds for some $t \geq 0$ and some $s > 0$, (7) holds for all $t \geq 0, f \in C(M), x \in M$.

Let $n > 1$ and let $t_j > 0$ for $j = 1, 2, \ldots, n$. Then

(12)
$$K(T(t_1)) \cap K(T(t_1 + t_2)) \cap \ldots \cap K(T(t_1 + t_2 + \ldots + t_n)) =$$
$$= (K(T(t_1)) \cap K(T(t_1 + t_2))) \cap (K(T(t_1 + t_2))) \cap \ldots \cap$$
$$\cap (K(T(t_1 + t_2 + \ldots + t_n))) = \phi_1^{-1}(K(T(t_2))) \cap \ldots \cap$$
$$\cap \phi_{t_1}^{-1}(K(T(t_2))) \cap \ldots \cap \phi_{t_1}^{-1}(K(T(t_2 + \ldots + t_n))) =$$
$$= \phi_{t_1}^{-1}(K(T(t_2))) \cap \ldots \cap K(T(t_2 + \ldots + t_n)) =$$
$$= \phi_{t_1}^{-1} \circ \phi_{t_2}^{-1} \circ \ldots \circ \phi_{t_{n-1}}^{-1}(K(T(t_n))) = \ldots =$$
$$= \phi_{t_1}^{-1} \circ \phi_{t_2}^{-1} \circ \ldots \circ \phi_{t_{n-1}}^{-1}(K(T(t_n))) = \ldots =$$

Lemma 9: The set
$$\bigcap \{K(T(t)) : t \geq 0\}$$
is compact and non-empty.

Proof: By the chain of equalities above, the family $\{K(T(t)) : t \geq 0\}$ of closed sub-
sets of the compact space M has the finite intersection property.

Corollary 3: If $K(T(t))$ is closed for all $t \in R_+$, the set

(13)
$$K_\infty(T) = \bigcap \{K(T(t)) : t \geq 0\}$$
is compact and non-empty.

The fact that the set $K_\infty(T)$ is non-empty follows from weaker conditions.

Theorem 5: If there is some $s > 0$ such that $K(T(t))$ is closed whenever $0 \leq t \leq s$,
the set $K_\infty(T)$ defined by (13) is non-empty.
PROOF: Consider the set (12), where \(t_p > 0 \) for \(p = 1, 2, \ldots, n \). Letting \(t_p = q_p s + r_p \), with \(q_p \in \mathbb{Z}_+ \) and \(0 \leq r_p < s \) for \(p = 1, 2, \ldots, n \), the set (12) contains the set

\[
G(t_1, \ldots, t_n) := K(T(t_1)) \bigcap \left(\bigcap_{p=1}^{n} \left(K(T(t_1 + \cdots + t_{p-1} + j_s)) \right) \right),
\]

which — as was noticed before — is not empty. Since \(K(T(t_1 + \cdots + t_{p-1} + q_p s)) \bigcap K(T(t_1 + \cdots + t_{p-1} + q_p s + r_p)) = \phi_{t_1 + \cdots + t_{p-1} + q_p s}^{-1}(K(T)) \), the set \(G(t_1, \ldots, t_n) \) is closed. By the finite intersection property, the intersection of all sets \(G(t_1, \ldots, t_n) \) is not empty. Hence \(K_\infty(T) \) is not empty. \(\blacksquare \)

As a consequence of Proposition 2, the following lemma holds.

Lemma 10: If there is some \(t_0 > 0 \) such that the map \(x \mapsto C_{t, s} \) of \(M \) into \(\mathcal{E}(\mathcal{E}) \) is continuous for the uniform operator topology whenever \(t \in [0, t_0] \), then \(K_\infty(T) \neq \emptyset \). If the hypothesis holds for all \(t \in \mathbb{R}_+ \), \(K_\infty(T) \) is also closed.

Corollary 4 yields

Corollary 4: If \(\dim_{\mathcal{E}} C_{t, s} \) \(\leq \infty \), \(K_\infty(T) \) is closed and non-empty.

Let \(K_\infty(T) \) be non-empty.

Since \(K(T(s)) = \phi_s^{-1}(M) \), for all \(s \geq 0 \)

\[
\phi_s^{-1}(K_\infty(T)) = \phi_s^{-1}(\bigcap \{ K(T(s)) : s \geq 0 \}) = \bigcap \{ \phi_s^{-1}(K(T(s))) : s \geq 0 \}
\]

\[
= \bigcap \{ K(T(t + s)) : s \geq 0 \} = \bigcap \{ K(T(s)) : s \geq t \}
\]

\[
\supset \bigcap \{ K(T(s)) : s \geq 0 \} = K_\infty(T),
\]
and therefore

\[\phi_t(K_\infty(T)) \subset K_\infty(T) \quad \forall t \geq 0. \]

Remark: The set \(K_\infty(T) \) — if non-empty — is the largest subset of \(M \) which is \(\phi_t \)-invariant for all \(t \geq 0 \). Let \(x \in M \). Then \(x \in \phi_t^{-1}(K_\infty(T)) \setminus K_\infty(T) \) for some \(t > 0 \) if, and only if,

\[x \in K(T(t)) \cap K(T(t+s)) \quad \forall s \geq 0, \]

i.e.,

\[x \in K(T(s)) \quad \forall s \geq t, \]

and moreover

\[x \notin K(T(r)) \quad \text{for some } r \in (0, t). \]

Hence

\[\phi_t^{-1}(K_\infty(T)) \setminus K_\infty(T) \subset \bigcap \{ K(T(s)) : s \geq t \} \setminus K(T(r)) \]

for some \(r \in (0, t) \).

If

\[K(T(t)) \subset K_\infty(T) \]

for some \(t > 0 \), then \(K(T(s)) \supset K(T(t)) \) for all \(s > 0 \), and Lemma 8 yields

Theorem 6: If, and only if, (16) holds for some \(t > 0 \), then \(K_\infty(T) = M \), and (7) holds for all \(t \geq 0 \).

Let \(K_\infty(T) \) be closed and non-empty. In view of the \(\phi_t \)-invariance of \(K_\infty(T) \), one defines a semigroup \(\bar{T} : \mathbb{R}_+ \to \mathbb{L}(C(K_\infty(T), \mathcal{E})) \) of linear contractions of \(C(K_\infty(T), \mathcal{E}) \), by

\[(\bar{T}(t)g)(x) = C_{t,s}(g(\phi_x(t, x))) \]

for all \(t \geq 0, g \in C(K_\infty(T), \mathcal{E}), x \in C(K_\infty(T)). \)

4. Let \(M, N, P \) be compact Hausdorff spaces, \(\mathcal{E}, \mathcal{F}, \mathcal{G} \) be complex Banach spaces, with \(\mathcal{F}, \mathcal{G} \) strictly convex, and let

\[A \in \mathbb{L}(C(M, \mathcal{E}), C(N, \mathcal{F})), \quad B \in \mathbb{L}(C(N, \mathcal{F}), C(P, \mathcal{G})) \]

be linear isometries. Then \(B \circ A \) is a linear isometry of \(C(M, \mathcal{E}) \) into \(C(P, \mathcal{G}) \).

Arguing as in the proof of Lemma 7, one shows that

\[K(B) \cap K(B \circ A) = \psi^{-1}(K(A)) \]
and

\[\psi_B \circ \psi_A = \psi_B \circ \psi_A \] on \(\psi_B^{-1}(K(A)) \).

If \(M = P \) and \(\delta = \gamma \), and if \(B \circ A \) is the identity on \(M \), then \(K(B \circ A) = P \), and (17) becomes

\[\psi_B(K(B)) = K(A) \]

whence \(K(A) = N \). That implies M. Jerison's extension, [10], of the classical Banach-Stone theorem to vector-valued, continuous functions.

Let now \(M = N \) and \(\delta = \delta' \). By similar arguments to those developed in n. 3, one can handle the discrete case, in which the semigroup \(T \) is replaced by the iterates \(\{ A^n \colon n \in \mathbb{N} \} \) of an isometry \(A \in \mathcal{E}(C(M, \delta)) \), and the Banach space \(\delta \) is strictly convex. Assuming in Theorem 3 \(N = M \), \(\delta = \delta' \), and replacing \(A \) by \(A^n \), \(K(A) \) by \(K(A^n) \), \(C \) by \(C_{A^n} \), \(\psi \) by \(\psi_{A^n} \), one shows, as in n. 3, that

\[K(A^n) \cap K(A^{n+\delta}) = \psi_{A^n}^{-\delta}(K(A^n)) \]

Let \(n_1, n_2, \ldots, n_p \) be positive integers. As in n. 3 one proves that

\[K(A^{n_1}) \cap K(A^{n_1+\delta_2}) \cap \cdots \cap K(A^{n_1+\cdots+\delta_p}) = \psi_{A_1}^{-1} \circ \cdots \circ \psi_{A_p}^{-1}(K(A^{n_1})) \neq \emptyset \]

and this shows that

\[\bigcap \{ K(A^n) \colon n \in \mathbb{Z}_+ \} \neq \emptyset \]

Since the left-hand side of (18) contains the set

\[\bigcap_{n=1}^{n_1+\cdots+n_p} K(A^n) = \psi_{A_1}^{-1} \circ \psi_{A_2}^{-1} \circ \cdots \circ \psi_{A_p}^{-1}(K(A)) \]

which is (non-empty and) closed when \(K(A) \) is closed, the following proposition holds.

Proposition 3: If \(K(A) \) is closed, the set

\[K_\infty(A) := \bigcap \{ K(A^n) \colon n \in \mathbb{Z}_+ \} \]

is non-empty.

Similar arguments as those developed in the proof of Lemma 8 lead to
Lemma 11: If

\[K(A^p) \subset K(A^{p+q}) \]

for two positive integers \(p \) and \(q \), then \(K(A) = M \).

Arguing as in Theorem 6 one proves

Theorem 7: If, and only if,

\[K(A^p) \subset K_\infty(A) \]

for some \(p \geq 0 \), then \(K(A) = M \).

If \(\bar{A} \in \mathscr{L}(C(K_\infty(A), \mathcal{E})) \) is defined by

\[(\bar{A} \sigma)(x) = C_{A, \sigma}(\sigma(x)) \]

for all \(x \in K_\infty(A) \) and all \(\sigma \in C(K_\infty(A), \mathcal{E}) \), then \(\bar{A} \) is a contraction of \(C(K_\infty(A), \mathcal{E}) \).

If \(A_{\xi} = \xi_{\xi} \) for some \(\xi \in \mathcal{C} \) and \(\xi \in \mathcal{E} \setminus \{0\} \), then \(|\xi| = 1 \) and \(A_{\xi} = \xi_{\xi} \), i.e.,

\[C_{A, \sigma}(\xi) = \xi_{\xi} \quad \forall x \in K_\infty(A), \]

and vice versa. That proves

Lemma 12: Let \(K_\infty(A) \neq \emptyset \). If, and only if, \(\xi \) is an eigenvalue of \(C_{A, \sigma} \) with an eigenvector \(\xi \in \mathcal{E} \setminus \{0\} \) for all \(x \in K_\infty(A) \), then \(|\xi| = 1 \) and \(\xi \) is an eigenvalue of \(\bar{A} \) with an eigenvector \(\xi_{\xi} \).

Let now

\[(Af)(y) = \xi f(y) \quad \forall f \in C(M, \mathcal{E}) \]

and for some \(y \in M \) and \(\xi \in \mathcal{C} \). Then \(|\xi| \leq 1 \). If \(f \in C(\mathcal{E}, y) \) for some \(\xi \in \mathcal{E} \) with \(\|\xi\|_{\mathcal{E}} = 1 \), then

\[\|(Af)(y)\|_{\mathcal{E}} = |\xi| \|f\|_{C(M, \mathcal{E})} = |\xi| \|Af\|_{C(M, \mathcal{E})}. \]

Thus

\[\xi \in \partial \mathcal{A} \Rightarrow y \in K(A), \]

and therefore

\[C_{A, \sigma}(f(\psi_A(y))) = (Af)(y) = \xi f(y) \quad \forall f \in C(M, \mathcal{E}). \]
Because C_{γ} is an isometry, that implies that

$$\|f(\psi_{\gamma}(y))\| = \|f(y)\|$$

for all $f \in C(M, \mathcal{B})$, and therefore $\psi_{\gamma}(y) = y$, proving thereby

Proposition 4: If $y \in M$ and $\zeta \in \mathcal{A}$ satisfy (19), then $y \in K(A)$, $\psi_{\gamma}(y) = y$ and $C_{\gamma, \gamma} = \zeta I$.

We shall conclude this section with a result on the compression spectrum of A in the case in which $M = N$, $\tilde{\sigma} = \sigma = \sigma$ and A is a linear isometry of $C(M)$ onto $C(N)$. Now $K(A) = M$, and A is expressed by (1) for all $y \in M$ and all $f \in C(M)$, with $a \in \Theta(C(M))$ and ψ a homeomorphism of M onto itself.

The compression spectrum of A is, by definition, the point spectrum $p\sigma(A')$ of the dual operator A' of A. If $\zeta \in p\sigma(A')$, there is some $\lambda \in C(M) \setminus \{0\}$ such that

$$\langle Af, \lambda \rangle = \zeta(f, \lambda) \quad \forall f \in C(M),$$

i.e.,

$$\int a(x) f(\psi(x)) \, d\lambda(x) = \zeta \int f(x) \, d\lambda(x)$$

for all $f \in C(M)$, where λ has been identified with its representative Borel measure.

This implies, first of all, that $\zeta \neq 0$.

Let $x_0 \in \text{Supp} \lambda$ be such that $\psi(x_0) \notin \text{Supp} \lambda$. Let U be an open neighbourhood of x_0 in M, disjoint from $\text{Supp} \lambda$, and let $V = \psi^{-1}(U)$.

For any $f \in C(M)$ such that $\text{Supp} f \subset U$,

$$\int f(x) \, d\lambda(x) = 0,$$

and therefore

$$\int a(x) f(\psi(x)) \, d\lambda(x) = 0. \quad (21)$$

If $g \in C(M)$ is such that $\text{Supp} g \subset V$, then, setting $f = g \circ \psi^{-1}$, $\text{Supp} f \subset U$, and (21) yields

$$\int a(x) g(x) \, d\lambda(x) = 0,$$

showing that $x_0 \notin \text{Supp} \lambda$: which is a contradiction.

Hence, $\psi(\text{Supp} \lambda) \subset \text{Supp} \lambda$, and therefore $\psi(\text{Supp} \lambda) = \text{Supp} \lambda$ because ψ is a homeomorphism. That proves

Theorem 8: If $A \in \mathcal{L}(C(M))$ is a bijective isometry and if $\zeta \in p\sigma(A')$, then
$\zeta \not= 0$. Furthermore, the support of any $\lambda \in C(M) \setminus \{0\}$ satisfying (20), is ψ-invariant.

As a consequence, if $\text{Supp} \lambda = \{x_0\}$, then x_0 is fixed by ψ. In that case, $\zeta = f(x_0)$.

5. – Applying some of the results of n. 4 to $T(t)$, for any $t > 0$, we see that, if $K(T(t))$ is closed, the set

$$K_0(T(t)) := \bigcap \{K(T(nt)) : n \in \mathbb{N}\}$$

is non-empty and $\bar{T}(t)$ is a contraction of $C(K_0(T(t)), \delta)$.

Lemma 13: If $(T(t)f)(x) = \zeta f(x)$ for some $\tau > 0$, $x \in M$ and $\zeta \in \partial A$, and for all $f \in C(M, \delta)$, then $x \in K(T(\tau))$, $\phi_j(x) = x$ and $C_{\tau, x} = \zeta I$.

Corollary 5: Let $K(T(\tau))$ be closed. If $x \in K_0(T)$ and $\tau > 0$ are such that

$$(\bar{T}(t)g)(x) = g(x) \quad \forall g \in C(K_0(T), \delta)$$

and if, for every $t \in (0, \tau)$ there is some $k \in C(K_0(T), \delta)$ for which

$$(\bar{T}(t)k)(x) \not= k(x),$$

then $C_{\tau, x} = I$ and the semiflow ϕ is periodic with period τ at the point x.

So far, no hypothesis on the topological structure of the semigroups T and \bar{T} has been introduced.

Throughout this and the following sections, $K_0(T)$ will be assumed to be closed and non-empty.

For any $t \geq 0$ and any $x \in K_0(T)$,

$$(T(t)f)(x) = C_{\tau, x}(f(\phi_j(x))) = (\bar{T} f_{|K_0(T)})(x)$$

for all $f \in C(K_0(T), \delta)$.

Let the semigroup \bar{T} be strongly continuous.

Since, for any $\xi \in \delta$,

$$C_{\tau, x}(\xi) = (\bar{T}(t)\xi)(x),$$

the map $(t, x) \mapsto C_{\tau, x}$ of $\mathbb{R}_+ \times K_0(T)$ into $\mathcal{E}(\delta)$ is continuous for the strong operator topology in $\mathcal{E}(\delta)$.

We will show now that $\phi : t \mapsto \phi_j$ is a continuous semiflow in $K_0(T)$, i.e.,

$(t, x) \mapsto \phi_j(x)$ is a continuous map of $\mathbb{R}_+ \times K_0(T)$ into $K_0(T)$.

If that is not the case, there exist $t_0 \geq 0$, $x_0 \in K_0(T)$ and an open neighbourhood U
of \(\phi_t(x_0) \) such that, for every \(\delta > 0 \) and for every open neighbourhood \(V \) of \(x_0 \) there are \(t \in \mathbb{R}_+ \cap (t_0 - \delta, t_0 + \delta) \) and \(x \in V \) for which \(\phi_t(x) \notin U \). In view of the compactness of \(K_u(T) \), there are generalised sequences \(\{t_j\} \) in \(\mathbb{R}_+ \) and \(\{x_j\} \) in \(K_u(T) \) converging to \(t_0 \) and to \(x_0 \), such that \(\phi_{t_j}(x_j) \notin U \) and that \(\{\phi_{t_j}(x_j)\} \) converges to some \(y_0 \in K_u(T) \setminus U \).

Hence, for any \(f \in C(K_u(T), \mathbb{R}) \),
\[
C_{t_j, y_0}(f(\phi_{t_j}(x_0))) = C_{t_j, y_0}(f(y_0)).
\]
The injectivity of \(C_{t_j, y_0} \) implies then that \(f(\phi_{t_j}(x_0)) = f(y_0) \) for all \(f \in C(K_u(T), \mathbb{R}) \), and therefore \(\phi_{t_j}(x_0) = y_0 \), contradicting (22) and proving thereby that the semiflow \(\phi \) is continuous.

If \(L : \mathbb{R}_+ \rightarrow \mathcal{L}(C(K_u(T), \mathbb{R})) \) is the semigroup defined by the continuous semiflow \(t \rightarrow \phi_t \) on \(K_u(T) \); i.e.
\[
L(t) g = g \circ \phi_t,
\]
for all \(t \geq 0 \) and all \(g \in C(K_u(T), \mathbb{R}) \), then
\[
(\overline{T}(t) g)(x) = C_{t, x}((L(t)g)(x)) \quad \forall t \geq 0, g \in C(K_u(T), \mathbb{R}), x \in K_u(T).
\]

The map \(\overline{T}(t) \) is a linear isometry if, and only if, \(\phi_t \) is surjective. It is easily seen, [18], that the set of all \(t > 0 \) for which \(\overline{T}(t) \) is an isometry is either \(\mathbb{R}_+^* \) or the empty set.

If the semigroup \(T \) is strongly continuous, Corollary 5 may yield more information on the global behaviour of \(\phi_t \) and \(C_{t, x} \). As an example, assume now that \(M \) is the unit circle: \(M = \mathbb{S} \). According to Proposition 3 of [19], if the continuous semiflow \(\phi \) has a periodic point with period \(\tau > 0 \), then \(\phi \) is periodic with period \(\tau \). Hence, the following theorem holds.

Theorem 9: Let the semigroup \(T \) be strongly continuous. If \(M \) is the unit circle and \(x \) and \(\tau \) satisfy the hypotheses of Corollary 5, then \(\phi \) is the restriction to \(\mathbb{R}_+ \) of a continuous periodic flow, and \(T \) is the restriction to \(\mathbb{R}_+ \) of a strongly continuous periodic group \(\mathbb{R} \times C(\mathbb{S}, \mathbb{R}) \rightarrow C(\mathbb{S}, \mathbb{R}) \) of surjective linear isometries of \(C(\mathbb{S}, \mathbb{R}) \).

For any \(t \in \mathbb{R} \) and \(g \in C(\mathbb{S}, \mathbb{R}) \), \(x \in \mathbb{S} \), \(T(t) g \) is expressed by
\[
(T(t) g)(x) = C_{t, x}(g(\phi_t(x))),
\]
where, \(C_{t, x} \) is invertible in \(\mathcal{L}(C(M, \mathbb{R})) \) for all \(t \in \mathbb{R} \), and, if \(t \leq 0 \), \(C_{t, x} \) is expressed by
\[
C_{t, x} = C_{-t, x}^{-1}.
\]

Going back to the general case of \(C(M, \mathbb{R}) \), since \(K_u(T) \) is closed and non-empty, the contraction semigroup \(\overline{T} \) acting on the Banach space \(C(K_u(T), \mathbb{R}) \) is strongly con-
continuous, its infinitesimal generator \(\tilde{X} : \mathcal{O}(\tilde{X}) \subset C(K_* (T), \mathcal{E}) \to C(K_* (T), \mathcal{E}) \) is \(m \)-dissipative.

If the semigroup \(T \) is strongly continuous — in which case its infinitesimal generator \(X : \mathcal{O}(X) \subset C(M, \mathcal{E}) \to C(M, \mathcal{E}) \) is conservative and \(m \)-dissipative, \[16\] — also \(\tilde{T} \) is strongly continuous.

The space \(\mathcal{A} \) consisting of the restrictions to \(K_* (T) \) of the elements of \(\mathcal{O}(X) \) is contained in \(\mathcal{O}(\tilde{X}) \). Hence, if \(Y \) is the linear operator with domain \(\mathcal{O}(Y) = \mathcal{A} \) defined on the restriction to \(K_* (T) \) of any \(f \in \mathcal{O}(X) \) by

\[
(Yf|_{K_* (T)})(x) = (Xf)(x) \quad \forall x \in K_* (T),
\]

then \(Y \subset \tilde{X} \).

Because \(T(t) \mathcal{O}(X) \subset \mathcal{O}(X) \), then

\[
\tilde{T}(t) \mathcal{O}(Y) \subset \mathcal{O}(Y).
\]

Since \(\mathcal{O}(X) \) is dense in \(C(M, \mathcal{E}) \), if the space \(C(M, \mathcal{E})|_{K_* (T)} \) of the restrictions to \(K_* (T) \) of all \(f \in C(M, \mathcal{E}) \) is dense in \(C(K_* (T), \mathcal{E}) \), then \(\mathcal{A} \) is dense in \(C(K_* (T), \mathcal{E}) \). Thus \(\mathcal{A} = \mathcal{O}(Y) \) is a core of \(\tilde{X} \), and the following lemma holds.

Lemma 14: If \(C(M, \mathcal{E})|_{K_* (T)} \) is dense in \(C(K_* (T), \mathcal{E}) \), the operator \(\tilde{X} \) is the closure of \(Y \).

If \(\tilde{T} \) is strongly continuous, also the semigroup \(L \) is strongly continuous. Denoting by \(D : \mathcal{O}(D) \subset C(K_* (T), \mathcal{E}) \to C(K_* (T), \mathcal{E}) \) the infinitesimal generator of \(L \), then, for any \(\xi \in \mathcal{E} \), \(\xi \in \mathcal{O}(D) \) and \(D\xi = 0 \).

The space \(C(K_* (T), \mathcal{E}) \) is a module over the ring \(C(K_* (T)) \) of all complex-valued continuous functions on \(K_* (T) \). The infinitesimal generator \(D_0 \) of the Markov lattice semigroup \(L_0 \) defined in \(C(K_* (T)) \) by the semiflow \(\phi \) is a derivation \(D_0 : \mathcal{O}(D_0) \subset C(K_* (T)) \to C(K_* (T)) \). If \(q \in \mathcal{O}(D_0) \) and \(f \in \mathcal{O}(D) \), then \(qf \in \mathcal{O}(D) \) and

\[
D(qf) = D_0 q \cdot f + q \cdot Df.
\]

Hence, if \(\xi \in \mathcal{E} \),

\[
D(q \cdot \xi) = D_0 q \cdot \xi.
\]

Since all non-trivial derivations in \(C(K_* (T)) \) are unbounded \[3\], and since \(D \) is closed, the following lemma holds.

Lemma 15: If \(\mathcal{O}(D) = C(K_* (T), \mathcal{E}) \), then \(D = 0 \).

\[3\] See \[12\], or also \[17\] for a direct proof.
For all \(t > 0 \) and all \(g \in C(K_\alpha(T), \mathcal{H}) \),
\[
\frac{1}{t} (\tilde{T}(t) g - g)(x) = \frac{1}{t} (C_{t, \alpha} - I)((L(t) g)(x))
+ \frac{1}{t} (\tilde{L}(t) - I)(g(x)) .
\]

Hence, if \(g \in \mathcal{O}(\tilde{X}) \cap \mathcal{O}(D) \), the limit
\[
\lim_{t \downarrow 0} \frac{1}{t} (C_{t, \alpha} - I)(g(x)) = \lim_{t \downarrow 0} \frac{1}{t} (C_{t, \alpha} - I)(g(x)) ,
\]
exists for all \(x \in K_\alpha(T) \), and
\[
(\tilde{X}g)(x) = \lim_{t \downarrow 0} \frac{1}{t} (C_{t, \alpha} - I)(g(x)) + (Dg)(x) .
\]

In particular, letting
\[
\mathcal{K} = \{ \xi \in \mathcal{E} : \xi \in \mathcal{O}(\tilde{X}) \} ,
\]
then
\[
(\tilde{X}\xi)(x) = \lim_{t \downarrow 0} \frac{1}{t} (\tilde{T}(t) \xi - \xi)(x)
= \lim_{t \downarrow 0} \frac{1}{t} (C_{t, \alpha} - I)(\xi)
\]
for all \(\xi \in \mathcal{K} \) and all \(x \in K_\alpha(T) \).

Since \(\tilde{X} \) is closed and also the image \(\mathcal{K} \) of \(\mathcal{K} \) in \(C(K_\alpha(T), \mathcal{H}) \) by the map \(\xi \mapsto \tilde{\xi} \) is a closed subspace of \(\mathcal{O}(\tilde{X}) \), the operator \(\tilde{X}|_{\mathcal{K}} \) is closed. As a consequence:

Lemma 16: If \(\tilde{T} \) is strongly continuous, for every \(x \in K_\alpha(T) \) the linear operator \(Z_\alpha : \mathcal{O}(Z_\alpha) = \mathcal{K} \subset \mathcal{E} \rightarrow \mathcal{E} \)
defined by
\[
Z_\alpha \xi = (\tilde{X}\xi)(x)
\]
is closed\(^4\).

\(^4\) Here is a direct proof. Let \(\xi \in \mathcal{O}(Z_\alpha) \) and let \(\{ \xi_n \} \) be a sequence in \(\mathcal{O}(Z_\alpha) \), converging to \(\xi \) and such that \(\{ Z_\alpha \xi_n \} \) converges to some \(\eta \in \mathcal{E} \). Since the sequences \(\{ \xi_n \} \) and \(\{ Z_\alpha \xi_n \} = \{ \tilde{X}\xi_n \} \) in \(C(M, \mathcal{E}) \) converge respectively to \(\xi \) and to \(\eta \), then \(\tilde{\xi} \in \mathcal{O}(\tilde{X}) \) and \(\tilde{\eta} = \tilde{X}\tilde{\xi} \), i.e., \(\tilde{\xi} \in \mathcal{O}(Z_\alpha) \) and \(\eta = Z_\alpha \xi \).
Let $g \in \mathcal{O}(\mathcal{X}) \cap \mathcal{O}(D)$. Since $g(x) \in \mathcal{X}$, (25) yields
\[(Xg)(x) = Z_x(g(x)) + (Dg)(x)\]
for all $x \in K_x(T)$.

If $\mathcal{X} = \mathcal{E}$, that is, if $\xi \in \mathcal{O}(\mathcal{X})$ for all $\xi \in \mathcal{E}$, then $g(x) \in \mathcal{O}(\mathcal{X})$, and the following lemma holds.

Lemma 17: If $\mathcal{X} = \mathcal{E}$, then $Z_x \in \mathcal{L}(\mathcal{E})$, $\mathcal{O}(D) = \mathcal{O}(\mathcal{X})$ and (27) holds for all $g \in \mathcal{O}(D)$ and all $x \in K_x(T)$.

Since the closed operator X is densely defined, conservative and m-dissipative, its spectrum $\sigma(X)$ is non-empty, \([16]\). Either $\sigma(X)$ is the closed left half-plane \(\{ \xi \in \mathbb{C} : \Re \xi \leq 0 \} \), or $\sigma(X)$ is contained in the imaginary axis; in which case T is the restriction to \mathbb{R}_+ of a strongly continuous group of surjective linear isometries of $C(M, \mathcal{E})$ (and $K_x(T) = M$).

If T is an eventually differentiable semigroup, according to a theorem of A. Pazy (see [11], Theorem 4.7, pp. 54-57), there are $a \in \mathbb{R}$ and $b \in \mathbb{R}^+$ such that the resolvent set of X contains the set
\[\{ \xi \in \mathbb{C} : \Re \xi \geq a - b \log |\Im \xi| \} .\]

As a consequence, the first of the two possibilities listed above is ruled out, and $\sigma(X)$ turns out to be a compact subset of the imaginary axis. But then (see [5], Corollary 8.20), $X \in \mathcal{L}(C(M, \mathcal{E}))$. Hence $\mathcal{O}(X) = C(M, \mathcal{E})$, and (25) — which holds (with X replaced by \mathcal{X}) for all $g \in C(M, \mathcal{E})$ and at all $x \in M$ — yields: $\mathcal{O}(D) = C(M, \mathcal{E})$. Thus, by Lemma 15 the following proposition holds.

Proposition 5: If T is an eventually differentiable semigroup, there is a conservative operator $X \in \mathcal{L}(C(M, \mathcal{E}))$ such that T is the restriction to \mathbb{R}_+ of the group $G : \mathbb{R} \to \mathcal{L}(C(M, \mathcal{E}))$ of surjective linear isometries defined by
\[(G(t)f)(x) = ((\exp tX)f))(x)\]
for all $f \in C(M, \mathcal{E})$, $t \in \mathbb{R}$ and $x \in M$.

Remark: The same argument as before shows, more in general, that any strongly continuous, eventually differentiable semigroup of linear isometries of a complex Banach space \mathcal{F} is the restriction to \mathbb{R}_+ of a strongly continuous group of surjective linear isometries of \mathcal{F}.

\(^{(5)}\) We correct a misprint in [16], where the inclusion $r(X) \subset \mathcal{M}$, displayed at p. 309, shall be replaced by $r(X) \supset \mathcal{M}$.\)
6. Since, for $t > 0$ and $\beta > 0$,
\[C_{t + h, x} = C_{t, x} \circ C_{h, \phi_x(s)} , \]
then, for any $\xi \in \mathcal{K}$, (25) yields
\[\lim_{h \to 0} \frac{1}{h} (C_{t + h, x} - C_{t, x})(\xi) = C_{t, x} \circ \lim_{h \to 0} \frac{1}{h} (C_{h, \phi_x(s)} - I)(\xi) \]
\[= C_{t, x} ((\bar{X}(\xi))(\phi_x(s))) = C_{t, x} (Z_{\phi_x(s)}(\xi)). \]
Hence, the map $t \mapsto C_{t, x}(\xi)$ of \mathcal{R}_+ into \mathcal{E} is of class C^1 on \mathcal{R}_+, and
\[(28) \quad \frac{d}{dt} C_{t, x}(\xi) = C_{t, x} (\bar{X}(\xi)(\phi_x(s))) \]
\[= C_{t, x} (Z_{\phi_x(s)}(\xi)) \]
for all $x \in K_x(T)$ and all $\xi \in \mathcal{K}$.
For $t \geq 0$, let
\[A(t) : \mathcal{O}(A(t)) \subset \mathcal{L}(C(K_x(T), \mathcal{E}), \mathcal{E}) \to \mathcal{L}(C(K_x(T), \mathcal{E}), \mathcal{E}) \]
be the linear operator defined on
\[\mathcal{O}(A(t)) = \mathcal{L}(\bar{X}(\mathcal{K}), \mathcal{E}) \]
by
\[(A(t) R)(\xi) = R(\bar{X}(\xi)) , \]
i.e.
\[((A(t) R)(\xi))_x = (R(\bar{X}(\xi)))_x \]
\[= R_x(Z_{\phi_x(s)}(\xi)) , \]
where $R \in \mathcal{L}(\bar{X}(\mathcal{K}), \mathcal{E})$.
Let $C_t \in C(M, \mathcal{L}(\mathcal{E}))$ be defined by
\[C_t : x \mapsto C_{t, x}. \]
Then (28) yields the initial value problem
\[
\begin{cases}
\frac{d}{dt} C_t = A(t) C_t \\
C_0 = I ,
\end{cases}
\]
\[\left\{ \begin{array}{l}
\left(\frac{d}{dt} C_t \right)_x = C_{t, x} (Z_{\phi_t, x}(\xi)) \\
C_{0, x} = I
\end{array} \right. \]

for all \(t \in \mathbb{R}_+ , x \in K_x(T), \xi \in K \).

As before, let \(K \) be strictly convex and let \(T : \mathbb{R} \to \mathcal{L}(C(M, \mathcal{E})) \) be a strongly continuous group of linear isometries of \(C(M, \mathcal{E}) \). Then \(K_\alpha(T) = M \), and \(T \) is expressed by

\[
(T(t) f)(x) = C_{t, x}(f(\phi_t(x)))
\]

for all \(f \in C(M, \mathcal{E}), x \in M, t \in \mathbb{R} \), where \(\phi : t \mapsto \phi_t \) is a continuous flow on \(M \), and \(C_{t, x} \in \mathcal{L}(\mathcal{E}) \) is a surjective isometry such that

\[
C_{t+s, x} = C_{t, x} \circ C_{s, \phi_t(x)} \quad \forall \, t, s \in \mathbb{R}, \, x \in M.
\]

Suppose now that \(M \) is a compact differentiable (i.e. \(C^\infty \)) manifold, and that the flow \(\phi \) is determined by a \(C^\infty \) vector field \(v \) on \(M \). For any \(f \in C^1(M, \mathcal{E}) \) we define \(v(f) \in C(M, \mathcal{E}) \) componentwise; that is to say, setting for \(x \in M \) and \(\lambda \in \mathbb{E}' \),

\[
\langle (v(f))(x), \lambda \rangle = \langle v(f(\cdot)), \lambda \rangle(x).
\]

Clearly

\[
f \in C^\infty(M, \mathcal{E}) \implies v(f) \in C^\infty(M, \mathcal{E}).
\]

If \(L : \mathbb{R} \to \mathcal{L}(C(M, \mathcal{E})) \) is the group defined by (23) for all \(t \in \mathbb{R} \) and all \(g \in C(M, \mathcal{E}) \), and if \(D \) is its infinitesimal generator, then

\[
C^\infty(M, \mathcal{E}) \subset \mathcal{O}(D)
\]

and

\[
D(f) = v(f) \quad \forall f \in C^\infty(M, \mathcal{E}).
\]

Lemma 18: If the map \(x \mapsto C_{t, x} \) of \(M \) into \(\mathcal{L}(\mathcal{E}) \) is of class \(C^\infty \) for all \(t \in \mathbb{R} \), the map \(t \mapsto C_{t, x} \) is of class \(C^\infty \) on \(\mathbb{R} \) for all \(x \in M \).

Proof: For \(t_0 \in \mathbb{R} \) and \(r > 0 \), let \(\varrho : \mathbb{R} \to [0, 1] \) be a \(C^\infty \) function for which

\[
\varrho(t) = 1 \quad \text{if} \quad |t - t_0| \leq r
\]

\[
0 < \varrho(t) < 1 \quad \text{if} \quad r < |t - t_0| < 2r
\]

\[
\varrho(t) = 0 \quad \text{if} \quad |t - t_0| \geq 2r.
\]
Then
\[+ \int_{-\infty}^{+\infty} q(s) C_{t+s, x} ds = C_{t, x} \left(+ \int_{-\infty}^{+\infty} q(s) C_{t, \phi(s)} ds \right), \]
i.e.,
\[+ \int_{-\infty}^{+\infty} q(s-t) C_{t, x} ds = C_{t, x} \left(+ \int_{-\infty}^{+\infty} q(s) C_{t, \phi(s)} ds \right). \]
A neighbourhood \(U \) of \(t_0 \) in \(R \) and \(r > 0 \) can be so chosen that
\[\int_{-\infty}^{+\infty} q(s) C_{t, \phi(s)} ds \neq 0 \]
whenever \(t \in U \).

Differentiation with respect to \(t \in U \) shows that the function \(t \mapsto C_{t, x} \) is of class \(C^1 \) on \(U \) for all \(x \in M \), and
\[- \int_{-\infty}^{+\infty} \left(\frac{d}{dt} \right) (s-t) C_{t, x} ds = 2 \int_{-\infty}^{+\infty} q(s) C_{t, \phi(s)} ds + \]
\[+ C_{t, x} \left(+ \int_{-\infty}^{+\infty} q(s) v(C_{t, \phi(s)}) ds \right). \]

Iteration of this computation completes the proof of the lemma. ■

Thus, \(Z_x \in \mathcal{L}(\delta) \) for all \(x \in M \), and
\[(29) \quad Z_x = \frac{d}{dt} C_{t, x}. \]

By the same argument leading to Theorem 4 of [17] one proves then

Theorem 10: If the strongly continuous group \(T : R \rightarrow \mathcal{L}(C(M, \delta)) \) of linear isometries is such that
\[T(t) C^\infty(M, \delta) \subset C^\infty(M, \delta) \quad \forall t \in R, \]
then: \(\mathcal{O}(D) = \mathcal{O}(X) \); (27) holds for all \(g \in \mathcal{O}(X) \) and all \(x \in M \), where \(Z_x \) is expressed by (29), and \(C^\infty(M, \delta) \) is a core for \(X \).

7. If \(\dim \delta < \infty \) and \(\dim \mathcal{F} < \infty \), the sets \(K(A) \) and \(K(T(t)) \) for all \(t \geq 0 \) are closed, \(K_{\infty}(T) \) is closed and non-empty, the linear isometries \(C_{A, x} \) and \(C_{t, x} \) are invertible for all \(t \geq 0 \).
If the semigroup \(T \) (or the semigroup \(T_A \)) is strongly continuous, the isometries \(C_t \), \(x \) are continuous functions of \((t, x) \in \mathbb{R}_+ \times M\) (or of \((t, x) \in \mathbb{R}_+ \times K_{\infty}(T)\) respectively).

In the case in which \(\mathcal{C} = \mathcal{F} = \mathcal{C}, [9], \) \(C_t \) is represented by a continuous function \(\alpha : M \to \mathfrak{D}; \) (4) and Theorem 2 yield

\[
\Theta(C(M)) = \{ b \in C(M) : |b(x)| = 1 \ \forall x \in M \},
\]

\[
\Theta(C(M)') = \{ c_\alpha : c \in \mathfrak{D}, x \in M \}.
\]

Lemma 19: [15] If \(\lambda \in C(M)' \), then \(\lambda \in \Theta(C(M)') \) if, and only if,

\[
|\langle b, \lambda \rangle| = 1
\]

for all \(b \in \Theta(C(M)) \).

Theorem 4 generalizes the second part of the following

Theorem 11: [15] If either

\[(30) \quad A(\Theta(C(M))) \subset \Theta(C(N)), \]

or

\[(31) \quad A'(\Theta(C(N)')) \subset \Theta(C(M)'), \]

then \(K(A) = N \), i.e.,

\[(32) \quad (Af)(y) = \alpha(y)(f \circ \psi(y)) \quad \forall y \in K(A), \quad f \in C(M). \]

Proof: The theorem is equivalent to the following chain of implications:

\[(30) \Rightarrow (31) \Rightarrow (32) \Rightarrow (30). \]

If (31) holds, for every \(y \in N \) there are a unique \(x \in M \) and a unique \(c \in \mathfrak{D} \) for which

\[
A' \delta_y = c \delta_x,
\]

i.e.,

\[(Af)(y) = cf(x)\]

for all \(f \in C(M) \). Setting \(c = \alpha(y) \) and \(x = \psi(y) \), (32) follows.

If (30) holds, then, for every \(y \in N \) and all \(b \in \Theta(M) \),

\[
1 = |(Ab)(y)| = |\langle Ab, \delta_y \rangle| = |\langle b, A' \delta_y \rangle|,
\]

and therefore, by Lemma 19, (31) holds.
Viceversa, if (32) is satisfied, with $\alpha \in \Theta(N)$ and ψ a continuous surjective map of N onto M, then (30) holds.

By the Tietze extension theorem, Lemma 14 yields

Proposition 6: If $\dim_c \mathcal{E} < \infty$, the operator \bar{X} is the closure of Y.

We consider now the strongly continuous semigroup $T : \mathbb{R} \to \mathcal{L}(C(M))$ of linear isometries of $C(M)$, and the strongly continuous semigroup $\bar{T} : \mathbb{R} \to \mathcal{L}(C(K_\omega(T)))$ expressed on any $g \in C(K_\omega(T))$ by

$$\overline{T}(t) g(x) = \alpha_t(x) g(\phi_t(x)),$$

where $\alpha_t \in \Theta(C(K_\omega(T)))$ is a continuous function of t, and $\phi : t \mapsto \phi_t$ is a continuous semiflow on $K_\omega(T)$.

The existence of fixed points of the semiflow ϕ yields some information on the point spectrum $\rho \sigma(X)$ and the residual spectrum $\sigma(X)$ of X, as will be illustrated now in the case $\mathcal{E} = \mathcal{C}$.

If $x_0 \in K_\omega(T)$ is fixed by ϕ, i.e.,

$$\phi_t(x_0) = x_0 \quad \forall t \geq 0,$$

then

$$\overline{T}(t) f(x_0) = \alpha_t(x_0) f(\phi_t(x_0)) = \alpha_t(x_0) f(x_0)$$

for all $f \in C(M)$, and

$$\alpha_{t+s}(x_0) = \alpha_t(x_0) \alpha_s(\phi_t(x_0)) = \alpha_t(x_0) \alpha_s(x_0)$$

for all $t, s \geq 0$.

Letting

$$\alpha_t(x_0) = \frac{1}{\alpha_t(x_0)} = \alpha_t(x_0),$$

we extend the map $R_+ \ni t \mapsto \alpha_t(x_0)$ to a continuous homomorphism of \mathbb{R} into the multiplicative group \mathfrak{D}. Hence there is $a \in \mathbb{R}$ such that

$$\alpha_t(x_0) = e^{at}$$

for all $t \in \mathbb{R}$, and therefore (33) becomes

$$\overline{T}(t) f(x_0) = e^{at} f(x_0) \quad \forall t \in \mathbb{R}_+,$$

i.e.,

$$((\overline{T}(t) - e^{at} I, \delta_{x_0}) = 0 \quad \forall t \in \mathbb{R}_+.$$
For any \(f \in \mathcal{O}(X) \),
\[
(Xf)(x_0) = \langle Xf, \delta_{x_0} \rangle = \lim_{t \downarrow 0} \frac{1}{t} (T(t) - I) f, \delta_{x_0} \bigg|_{Xf} = \lim_{t \downarrow 0} \frac{1}{t} (\alpha_t(x_0) f(\phi_t(x_0)) - f(x_0)) = \lim_{t \downarrow 0} \frac{1}{t} (\alpha_t(x_0) - 1) f(x_0) = \lim_{t \downarrow 0} \frac{1}{t} (e^{it} - 1) f(x_0) = iaf(x_0) = \langle (X - iaI) f, \delta_{x_0} \rangle.
\]

Hence, \(ia \in \rho \sigma(X) \cup \sigma(X) \).

In conclusion, the following theorem holds.

Theorem 12: If \(x_0 \in K_\alpha(T) \) is fixed by the semiflow \(\phi \), there is \(a \in \mathbb{R} \) such that \(ia \in \rho \sigma(X) \cup \sigma(X) \), and (34) holds for all \(t \in \mathbb{R}_+ \).

If \(ia \) is an isolated point of \(\sigma(X) \), then ([14], p. 178) \(ia \in \rho \sigma(X) \).

References

