On the Growth of Coefficients of Entire Functions (**)(***)

SUMMARY. — The decomposition theorem proved in [1] for entire functions of Sato growth fails for those functions which have lower $(p, 1)$-type zero or $(p, 1)$-type infinity. Here we deal with this situation using the concept of proximate order introduced in [8].

Sulla crescita dei coefficienti delle funzioni intere

RIASSUNTO. — Il teorema di decomposizione dimostrato in [1] per le funzioni intere con crescita del tipo di Sato non si applica al caso in cui la funzione abbia uno zero di tipo $(p, 1)$ inferiore o un infinito di tipo $(p, 1)$. In questo lavoro ci si occupa appunto di questo caso, impiegando il concetto di ordine approssimato introdotto in [8].

0. - INTRODUCTION

Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a nonconstant entire function, where $\lambda_0 = 0$ and $\{\lambda_k\}_{k=1}^{\infty}$ is a strictly increasing sequence of positive integers and assume that $a_k \neq 0$ for $k = 1, 2, \ldots$. We set $M(r) = \mu(r, f) + \mu(r, f) = \max_{k=1}^{\infty} \{a_k \cdot r^k\}$ and $\nu(r, f) = \max_{k=1}^{\infty} \{\lambda_k : \mu(r) = |a_k| \cdot r^k\}$. Then $M(r), \mu(r)$ and $\nu(r)$ are called respectively the maximum modulus, maximum term and rank of the maximum term, of $f(z)$ for $|z| = r$. The concepts of index-pair (p, q), $p \geq q \geq 1$, (p, q)-orders and (p, q)-types were introduced by Juneja et al. ([4],[5]).

The growth of an entire function $f(z)$ can be studied in terms of its (p, q)-orders and (p, q)-types. However, these parameters are inadequate for comparing the growth of those entire functions which are of the same (p, q)-orders but of infinite (p, q)-type. In order to refine this scale Nandan et al. [11] introduced the concept of proximate order for entire functions with index-pair (p, q) as follows.

(*) Indirizzi degli Autori: H. S. Kasana: Department of Mathematics, Uppsala University, Thunbergsg. 3, S-75238, Uppsala, Sweden: D. Kumar e G. S. Srivastava: Department of Mathematics, University of Roorkee, Roorkee-247667, (U.P.), India.

(**) This work was supported by The Swedish Institute, Stockholm.

(***) Memoria presentata il 18 Feb. 1991 da Giuseppe Scorza Dragoni, uno dei XL.
DEFINITION 1: A positive function \(\varphi_{p,q}(r) \) defined on \([r_0, \infty), r_0 > \exp^{q-1} 1 \), is said to be a proximate order of an entire function with index-pair \((p, q)\) if

(i) \(\varphi_{p,q}(r) \to \rho(p, q) \equiv \rho \) as \(r \to \infty \), \(b < \rho < \infty \),
(ii) \(\Delta_{p,q}(r) \rho'(r) \to 0 \) as \(r \to \infty \);

where \(\varphi'_{p,q}(r) \) denotes the derivative of \(\varphi_{p,q}(r) \), \(b = 1 \) if \(p = q \), \(b = 0 \) if \(p > q \) and, for convenience, \(\Delta_{p,q}(r) = \prod_{i=0}^{q} \log^{i+1} r \).

The generalized \((p, q)\)-type \(T^* \) and generalized lower \((p, q)\)-type \(\tau^* \) of \(f(z) \) are defined as

\[
\lim_{r \to \infty} \sup_{\tau < \infty} \frac{\log^{\tau} M(r)}{(\log^{\tau+1} r)^{\frac{p}{p+1}}} = T^*(p, q) = T^*, \quad 0 \leq \tau^* \leq T^* \leq \infty.
\]

If the quantity \(T^* \) is different from zero and infinity then \(\varphi_{p,q}(r) \) is said to be the proximate order of a given entire function \(f(z) \) with index-pair \((p, q)\). Clearly, the proximate order and the corresponding generalized \((p, q)\)-type of an entire function are not uniquely determined. For example, if the function \(c/\log^{\frac{p}{p+1}} r \), \(0 < c < \infty \) is added to the proximate order \(\varphi_{p,q}(r) \) then it can be seen that \(\varphi_{p,q}(r) + c/\log^{\frac{p}{p+1}} r \) is also a proximate order satisfying (i) and (ii) and consequently, the generalised \((p, q)\)-type turns out to be \(e^{\tau^*} T^* \). Following Levin[10], Nandan et al. [11] established that there exists a proximate order for every entire function with index-pair \((p, q)\).

In a similar manner if \(\tau^* \) is different from zero and infinity then \(\varphi_{p,q}(r) \) is said to be the lower proximate order of the entire function \(f(z) \). Kasana and Sahai[8] have proved the existence theorem for such functions.

DEFINITION 2: An entire function \(f(z) \) is said to be of generalized \((p, q)\)-growth \(\{ \rho, T^* \} \) with respect to a proximate order \(\varphi_{p,q}(r) \) if the \((p, q)\)-order of \(f(z) \) does not exceed \(\rho \), if \(f(z) \) has \((p, q)\)-order \(\rho \) the generalized \((p, q)\)-type does not exceed \(T^* \).

The generalized \((p, q)\)-growth number \(\mu^* \) and generalized lower \((p, q)\)-growth number \(\delta^* \) of \(f(z) \) are defined as

\[
\lim_{r \to \infty} \sup_{\tau < \infty} \frac{\log^{\tau+1} \nu(r)}{(\log^{\tau+2} r)^{\frac{p}{p+1}}} = \mu^*(p, q) \equiv \mu^*,
\]

where \(A = 1 \) if \((p, q) = (2, 2)\) and \(A = 0 \) if \((p, q) \neq (2, 2)\).

DEFINITION 3: An entire function \(f(z) \) of \((p, q)\)-order \(\rho(b < \rho < \infty) \) is said to be of perfectly regular \((p, q)\)-growth with respect to a proximate order \(\varphi_{p,q}(r) \) if \(0 < \tau^* = T^* < \infty \).

DEFINITION 4: An entire function with index-pair \((p, q)\) is said to be of minimal, normal or maximal \((p, q)\)-type with respect to a proximate order according as \(T^* \) is zero, positive finite and infinite respectively.

In this paper we prove a decomposition theorem for entire functions which are not of perfectly regular \((p, q)\)-growth in reference to \(\varphi_{p,q}(r) \). The second section deals with the result which describes the growth of \(u^*_i \)'s for entire functions of \((p, q)\)-order \(0 \) or 1.
and in other situations for entire functions of minimal generalized \((p, q)\)-type. As a last result of this section we have obtained the necessary conditions for an entire function to be of perfectly regular \((p, q)\)-growth. Finally, some inequalities connecting generalized \((p, q)\)-type and generalized lower \((p, q)\)-type of an entire function \(f(z)\) with the ratio \(|a_{n-1}/a_n|\) of the coefficients occurring in its power series expansion have been derived. Also, some results have been obtained involving coefficients and exponents of entire gap power series and generalized \((p, q)\)-growth numbers.

It is known [11, Thm. 4] that \((\log [r^{1 - \gamma} r])^{\gamma, \gamma - A}\) is a monotonically increasing function of \(r\) for \(r > r_0\). Hence we can define the function \(\psi(x)\) to be the unique solution of the equation

\[
(0.3) \quad \phi = (\log [r^{1 - \gamma} r])^{\gamma, \gamma - A} \implies \phi(x) = \log [r^{1 - \gamma} r],
\]

where \(A\) has the same meaning as in (0.2).

Consequently, we have the following results [12]:

\[
(0.4) \quad \lim_{x \to \infty} \frac{d [\log \phi(x)]}{d [\log x]} = \frac{1}{\rho - A},
\]

and for every \(\eta\) such that \(0 < \eta < \infty\),

\[
(0.5) \quad \lim_{x \to \infty} \frac{\phi(\eta x)}{\phi(x)} = \eta^{1/(\rho - A)},
\]

1. Decomposition theorem

Basically, this theorem was obtained by Bai, et al. [11] for entire functions of index \((p, 1)\) i.e., Sato growth [13]. Later on, in a subsequent paper [5], they themselves extended this to entire power series with index-pair \((p, q)\). It has been observed that their decomposition theorem fails for entire functions of infinite \((p, 1)\)-type or infinite \((p, q)\)-type and moreover, for entire functions of lower \((p, 1)\)-type or lower \((p, q)\)-type as zero. To deal with these situations we review their decomposition theorem and extend this also to entire gap power series.

Theorem 1: Let \(f(z) = \sum_{\beta = 0}^\infty a_{\beta} z^{\beta}\) be an entire function having \((p, q)\)-order \(\rho (\beta < \rho < \infty)\), generalized \((p, q)\)-type \(T^*\) and generalized lower \((p, q)\)-type \(t^*\), and \(\beta\) be a number such that \(0 < t^* < \beta < T^* < \infty\). Then

\[
f(z) = g_{\beta}(z) + b_{\beta}(z),
\]

where either the index-pair of \(g_{\beta}(z)\) is less than \((p, q)\) or \(g_{\beta}(z)\) is of \((p, q)\)-growth \(\{\rho, \beta\}\) with respect to \(\rho_{p, q}(r)\) of \(f(z)\) and \(b_{\beta}(z) = \sum_{k = 0}^\infty b_{\beta} z^{\beta k}\), \(b_{\beta} \neq 0, \forall k\) satisfies:

\[
(1.1) \quad t^* \geq \beta \lim_{m \to \infty} \frac{\log [\rho - 21](\phi(\lambda m))]^*}{(\phi(\log [\rho - 21] \lambda m_{*}))^*},
\]

where \(\phi(\lambda)\) is the function defined by (0.3).
Proof: Let \(g(z) = \sum_{k=0}^{\infty} c_k z^k \), where

\[
c_k = \begin{cases}
 a_k & \text{if } |a_k| \leq \exp \left(-\lambda_k \exp^{\beta - 2}\left(\frac{g(\log^{p - 2} \lambda_k)}{\beta M^{1/(q - A)}} \right) \right), \\
 0 & \text{otherwise.}
\end{cases}
\]

Clearly, \(g(z) \) is an entire function. Assume that \(g(z) \) has the index-pair \((p', q') \) and \((p', q')\)-order \(\rho' \). In case \(\{\lambda_k\} \) is the strictly increasing sequence of positive integers such that \(c_k \neq 0, \forall k \), then it is known \([4, \text{Thm. 1}]\) that

\[
\rho' = P(L'(p', q')),
\]

where

\[
L'(p', q') = \lim_{k \to \infty} \sup \frac{\log^{q - 1} \lambda_k}{\log^{q - 1} \left| c_m \right|^{1/\lambda_m}}.
\]

Hence the index-pair \((p', q') \) of \(g(z) \) is of generalized \((p, q)\)-growth \(\{\rho, \beta\} \). Define

\[
b_k(z) = f(z) - g_k(z) = \sum_{k=0}^{\infty} b_k z^{\lambda_k}.
\]

Then,

\[
\log |b_2| > -\lambda_m \exp^{\beta - 2}\left(\frac{g(\log^{p - 2} \lambda_m)}{\beta M^{1/(q - A)}} \right).
\]

Let \(r_k \) be the unique root of the equation

(1.3) \[\exp^{\beta - 2}\left(\frac{g(\log^{p - 2} \lambda_m)}{\beta M^{1/(q - A)}} \right) + \]

\[
\frac{\Delta_{p - 2} (\log^{p - 2} \lambda_m)}{\rho - A} \frac{E_{p - 2}(\log^{p - 2} \lambda_m)}{\Delta_{p - 2} (\lambda_m)} = \frac{\log r_k,}{\log r_k,}
\]

where \(E_{i}(r) = \prod_{i=0}^{\infty} \exp^{l_j} r \) and

\[
M = M(p, q) = \begin{cases}
 (p - 1)^{-1}/p & \text{if } (p, q) = (2, 2), \\
 1/p & \text{if } (p, q) = (2, 1), \\
 1 & \text{otherwise.}
\end{cases}
\]
Further, assume that \(r_n \leq r \leq r_{n+1} \). In view of (1.2) and (1.3), we have

\[
(1.4) \quad \log M(r) \geq \log |b_k| + \lambda_m \log r \geq -\lambda_m \exp^{(r-2)} \left(\frac{\phi(\log^{p-2}(\lambda_m))}{(\beta/M)^{1/p}} \right) + \\
+ \lambda_m \log r_k = \frac{\lambda_m (\phi(\lambda_m))^{p-A}}{(\beta/M)^{1/p} (\lambda_m)^{p-A} E_{p-2} (\phi(\log^{p-2}(\lambda_m)) (\beta/M)^{1/p} (\lambda_m)^{p-A} E_{p-2})}.
\]

Using the equation (1.3) for \((p, q) = (2, 1)\), we observe that \(r_k = \phi(\lambda_m)/(\beta p)^{1/p} \) as \(k \to \infty \) (since \(\phi(\lambda_m) / \lambda_m \to 1 \) as \(k \to \infty \)) and hence (1.4) gives

\[
\log M(r) \geq \left(\frac{(\phi(\lambda_m))^{p}}{\beta (r_k + 1)^{1/(r_k+1)}} \right) = \left(\frac{(\phi(\lambda_m))^{p}}{\beta (r_k + 1)^{1/(r_k+1)}} \right) \cdot \left(\frac{(\phi(\lambda_{m+1}))^{p}}{\beta (r_k + 1)^{1/(r_k+1)}} \right).
\]

On passing to limits, we get

\[
\\^* \geq \beta \left(\frac{(\phi(\lambda_m))}{(\phi(\lambda_{m+1}))} \right).
\]

Again, for \((p, q) = (2, 2)\), we observe from (1.3) that

\[
\log r_k = \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} + \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} = \\
= \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} + \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} = \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} (1 + \frac{1}{\beta - 1}) = \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}}.
\]

Using this in (1.4) and further application of (0.5) yields

\[
\log M(r) \geq \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} = \frac{(\phi(\lambda_m))^{p}}{\beta^{1/(p-1)}} (\phi(\lambda_{m+1}))^{p/(p+1)}.
\]

On taking limit, we get (1.1) for the case when \((p, q) = (2, 2)\).

Finally, consider the case \(p \geq 3 \). From (1.3),

\[
\log^{p-1} r_k = \frac{\phi(\log^{p-2}(\lambda_m))}{\beta^{1/p}} \quad \text{as } k \to \infty,
\]

and from (1.4),

\[
\log M(r) > O(1) + \rho \log \phi(\lambda_m) + \log \frac{\phi(\log^{p-2}(\lambda_m))}{\beta^{1/p}} + \\
+ \sum_{i=0}^{p-1} \exp^{(i)} \left(\frac{\phi(\log^{p-2}(\lambda_m))}{\beta^{1/p}} \right) - \sum_{i=2}^{p-1} \log^{(i)} \lambda_m,
\]
or
\[
\log^{(p-1)} M(r) > (1 + o(1)) \log^{p-2} (\phi(\lambda_{n_0}))^p .
\]

Hence
\[
\frac{\log^{(p-1)} M(r)}{\log^{(q-1)} \lambda_n} > (1 + o(1)) \frac{\log^{p-2} (\phi(\lambda_{n_0}))^p}{\phi(\log^{p-2} \lambda_{n_{m+1}}) \lambda_{n_{m+1}}} .
\]

On passing to limits (consider (0.1) for \(t^* \)), we get (1.1) and hence the theorem.

2. In this section we establish the growth of coefficients for those entire functions which have zero or one as \((p, q) \)-order and otherwise minimal generalized \((p, q) \)-type. The next result of this section describes the necessary conditions for an entire function to be of perfectly regular \((p, q) \)-growth with respect to a proximate order.

Theorem 2: Let \(f(z) \) be an entire function with index-pair \((p, q) \) such that \(p = b \), then for every \(\epsilon > 0 \),
\[
\lim_{n \to \infty} \sup \frac{(\log^{p-2} \lambda_n)^\epsilon}{\log^{(q-1)} |a_n|^{-1/\lambda_n}} = 0 .
\]

Further, if \(p > b \) and \(f(z) \) is of minimal generalized \((p, q) \)-type, then
\[
\lim_{n \to \infty} \sup \frac{\phi(\log^{p-2} \lambda_n)}{\log^{(q-1)} |a_n|^{-1/\lambda_n}} = 0 ,
\]
where \(b \) has the same meaning as in Definition 1.

Proof: Since \(p = b \), it follows from the definition of \((p, q) \)-order that for given \(\epsilon > 0 \) and \(r > r_0 \),
\[
\log M(r, f) < \exp^{(q-2)} (\log^{(q-1)} r)^b + \epsilon .
\]

Using Cauchy's inequality we get
\[
\log |a_n| < \exp^{(q-2)} (\log^{(q-1)} r)^b + \epsilon - \log r .
\]

Choose the value of \(r \) satisfying
\[
r = \exp^{(q-1)} \left(\frac{\lambda_n}{b + \epsilon} \right)^{1/(b + \epsilon)} .
\]

For \((p, q) = (2, 1) \), (2.2) implies \(r = (\lambda_n/\epsilon)^{1/\epsilon} \) and using this value in (2.1), we get
\[
|a_n| < \left(\frac{\epsilon x}{\lambda_n} \right)^{1/\epsilon} ,
\]
or
\[|a_n|^{1/\lambda_n} < \left(\frac{e \varepsilon}{\lambda_n} \right)^{1/\lambda_n}, \]

which on taking limits gives
\[\lim_{n \to \infty} \sup \lambda_n^{1/\lambda_n} |a_n|^{1/\lambda_n} < \infty. \]

In case of \((p, q) = (2, 2)\) we observe that \(\log r = (\lambda_n/(1 + \varepsilon))^{1/(1 + \varepsilon)}\) satisfies (2.2) and (2.1) is reduced to
\[\log |a_n| < \frac{\lambda_n}{1 + \varepsilon} - \lambda_n \left(\frac{\lambda_n}{1 + \varepsilon} \right)^{1/(1 + \varepsilon)}, \]
or
\[\log |a_n|^{-1/\lambda_n} > (1 + o(1)) \left(\frac{\lambda_n}{1 + \varepsilon} \right)^{1/(1 + \varepsilon)}. \]

Thus,
\[\lim_{n \to \infty} \sup \frac{\lambda_n^{1/(1 + \varepsilon)}}{\log |a_n|^{-1/\lambda_n}} \leq 1. \]

Finally, for \((p, q) \neq (2, 1)\) and \((p, q) \neq (2, 2)\), (2.1) and (2.2) give
\[\log^{p - 1} |a_n|^{-1/\lambda_n} > (1 + o(1)) \left(\log^{p - 1} \frac{\lambda_n}{\varepsilon} \right)^{1/\lambda_n}, \quad p > q, \]
or
\[\log^{p - 1} |a_n|^{-1/\lambda_n} > (1 + o(1)) \left(\log^{p - 1} \frac{\lambda_n}{1 + \varepsilon} \right)^{1/(1 + \varepsilon)}, \quad p = q. \]

This means that for all \(p > q \geq 3,\)
\[\lim_{n \to \infty} \sup \frac{(\log^{p - 1} \lambda_n)^{1/(1 + \varepsilon)}}{\log^{q - 1} |a_n|^{-1/\lambda_n}} \leq 1. \]

Clearly, (2.3), (2.4) and (2.5) combine to give
\[\lim_{n \to \infty} \sup \frac{(\log^{p - 1} \lambda_n)^{1/\varepsilon}}{\log^{q - 1} |a_n|^{-1/\lambda_n}} < \infty, \quad \text{for every } \varepsilon > 0. \]

If the \(\limsup\) in (2.6) is finite and positive for some \(\varepsilon > 0\) then for every \(\alpha > 0,\) we have
\[\lim_{n \to \infty} \sup \frac{(\log^{p - 1} \lambda_n)^{1/\varepsilon + \alpha}}{\log^{q - 1} |a_n|^{-1/\lambda_n}} = \infty. \]
(2.7) is a contradiction to what we obtained in (2.6) and thus the first part is proved.

In case when $p > b$, Kasana [5] has proved that generalized (p, q)-type of an entire function is given by

\[
T^* = \lim_{s \to -} \sup_{z \in M} \left(\frac{\phi(\log^{p-2} \lambda_k)}{\log^{p-1} |a_n|^{-1/\omega_n}} \right)^{s-A}.
\]

If we put $T^* = 0$ in (2.8), the second result is immediate.

Finally, we study the subsequence $\{n_k\}$ of λ_n such that, for $f = \sum_{n=0}^\infty a_n z^{\lambda_n}$, one has

\[
|a_{n_k-1}(f)| > |a_{n_k}(f)| \quad \text{and} \quad a_n(f) = a_{n_k-1}(f) \quad \text{for} \quad \lambda_{n_k-1} \leq n < \lambda_{n_k}.
\]

The next theorem shows how this sequence influences the growth of an entire function in reference to its generalized (p, q)-type and generalized lower (p, q)-type. This also describes the condition for f to be an entire function of perfectly regular (p, q)-growth with respect to a proximate order.

\textbf{Theorem 3:} Let $f(z)$ be an entire function having (p, q)-order $\rho(b < p < \infty)$, generalized (p, q)-type T^* and generalized lower (p, q)-type t^*. Let $\{\lambda_{n_k}\}$ be the sequence defined by (2.9). Then

\[
t^* \leq T^* \lim_{k \to -} \inf \left(\frac{\phi(\log^{p-2} \lambda_{n_k-1})}{\phi(\log^{p-2} \lambda_{n_k})} \right)^{s-A}, \quad p \geq 3.
\]

Further, if $\{\lambda_{n_k}\}$ be the sequence of principal indices satisfying $\lambda_{n_k-1} = \lambda_{n_k}$ as $k \to -\infty$, then

\[
t^* \leq T^* \lim_{k \to -} \inf \left(\frac{\phi(\lambda_{n_k-1})}{\phi(\lambda_{n_k})} \right)^{s-A}.
\]

\textbf{Proof:} Let us define a function $u(z)$ such that

\[
u(z) = \sum_{n=1}^\infty (a_{n-1}(f) - a_n(f)) z^{\lambda_n} = \sum_{n=1}^\infty a_q(f) z^{\lambda_n},
\]

where

\[
a_q(f) = a_{n_q-1}(f) - a_{n_q}(f).
\]

In view of the definition (2.9) it can be proved that $u(z)$ and $f(z)$ have the same (p, q)-order and generalized (p, q)-types such that

\[T^*(f) = T^*(u) \quad \text{and} \quad t^*(f) = t^*(u).
\]
Thus, using (2.8) it can be shown that

\[
\frac{T^* (f)}{M} = \lim_{m \to \infty} \sup \left[\frac{\phi(\log^{p-2} \lambda_{m,1})}{\log^{p-1} \alpha_{m}^{-1/2m}} (f) \right]^{a_A}.
\]

Considering the above formula and Theorem 2 of Kasana et al. [8], we observe that for \(p \geq 3 \),

\[
t^* (f) = \max_{(\lambda_m)} \left\{ \lim_{m \to \infty} \min_{\left(\lambda_{m,1} \right)} \left(\frac{\log^{p-2} \lambda_{m,1}}{\log^{q-1} \alpha_{m}^{-1/2m}} \right)^{a_A} \right\} \leq \max_{(\lambda_m)} \left\{ \lim_{m \to \infty} \sup \left(\frac{\phi(\log^{p-2} \lambda_{m,1})}{\log^{q-1} \alpha_{m}^{-1/2m}} (f) \right)^{a_A} \right\}.
\]

Similarly, for the case \(p = 2 \) and \(q = 1 \), let \(\{\lambda_m\} \) be the sequence of principal indices such that \(\lambda_{m,1} = \lambda_m \) as \(k \to \infty \), we have

\[
t^* (f) \leq T^* (f) \lim_{k \to \infty} \inf \left(\frac{\phi(\lambda_{m,1})}{\phi(\lambda_m)} \right)^{a_A}.
\]

Corollary 1: If \(f(z) \) is an entire function of perfectly regular \((p,q)\)-growth with respect to \(\rho_{p,q} (r) \), then

\[
\log^{p-2} \lambda_{m,1} = \log^{p-2} \lambda_m \quad \text{as} \quad k \to \infty.
\]

Corollary 2: If \(f(z) \) is an entire function having \((p,q)\)-order \(\rho(b < \rho < \infty) \), \((p,q)\)-type \(T \) and lower \((p,q)\)-type \(t \) such that \(0 \leq t \leq T < \infty \), then

\[
t \leq T \lim_{k \to \infty} \inf \frac{\log^{p-2} \lambda_{m,1}}{\log^{p-2} \lambda_m}, \quad p \geq 3.
\]

This inequality also holds for \(p = 2 \) if \(\{\lambda_m\} \) is the sequence of principal indices satisfying \(\lambda_{m,1} = \lambda_m \) as \(k \to \infty \).

3. This section contains various inequalities, some of which are extensions of results in [3, 16] and [1].

Theorem 4: Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) be an entire function having \((p,q)\)-order \(\rho(b < \rho < \infty) \), generalized \((p,q)\)-type \(T^* \) and generalized lower \((p,q)\)-type \(t^* \). Then

\[
YR^* \leq t^* \leq T^* \leq XQ^* ,
\]
where
\[R^* = R^*(p, q) = \lim_{k \to \infty} \inf \left[\frac{\phi(\log^{(p-2)}(\lambda_{k-1}))}{\log^{(p-1)}(d_{k-1}/d_k)^{1/(\lambda_k - \lambda_{k-1})}} \right]^{1-A}, \]
\[Q^* = Q^*(p, q) = \lim_{k \to \infty} \sup \left[\frac{\phi(\log^{(p-2)}(\lambda_k))}{\log^{(p-1)}(d_{k-1}/d_k)^{1/(\lambda_k - \lambda_{k-1})}} \right]^{1-A}. \]

\[X = 1/p \text{ if } p = 2, \ X = 1 \text{ if } p \geq 3, \text{ and} \]

\[Y = Y(p, q) = \begin{cases} \frac{\epsilon^{(p-1)}}{\rho} & \text{if } (p, q) = (2, 1), \\ \frac{1}{\rho} \left(\frac{p-1}{\rho - \alpha} \right)^{1/(p-1)} & \text{if } (p, q) = (2, 2), \\ 1 & \text{otherwise}, \end{cases} \]

such that
\[\alpha = \lim_{k \to \infty} \inf \frac{\lambda_k-1}{\lambda_k}. \]

Proof: From definition, \(R^* \geq 0 \). If \(R^* = 0 \), first part of the inequality (3.1) is trivial. Hence, let \(R^* > 0 \). In this case, for given \(\epsilon > 0 \) and \(k > k_0 \), we have
\[\frac{\phi(\log^{(p-2)}(\lambda_{k-1}))}{\log^{(p-1)}(d_{k-1}/d_k)^{1/(\lambda_k - \lambda_{k-1})}} > (R^* - \epsilon)^{1/(p-A)}, \]
or
\[\log \left| \frac{d_{k-1}}{d_k} \right| < (\lambda_k - \lambda_{k-1}) \exp^{(p-2)} \left(\frac{\phi(\log^{(p-2)}(\lambda_{k-1}))}{(R^* - \epsilon)^{1/(p-A)}} \right). \]

Putting \(k = n_0, n_0 + 1, \ldots, n \) in above and adding the inequalities thus obtained, we get
\[\log \left| \frac{d_{n-1}}{d_{n}} \right| < \sum_{k = n_0}^{n} (\lambda_k - \lambda_{k-1}) \exp^{(p-2)} \left(\frac{\phi(\log^{(p-2)}(\lambda_{k-1}))}{(R^* - \epsilon)^{1/(p-A)}} \right) < \]
\[< \lambda_1 \phi(\lambda_{n-1}) - \lambda_{n-1} \phi(\lambda_{n-2}) - \sum_{k = n_0 + 1}^{n} (\phi(\lambda_{k-1}) - \phi(\lambda_{k-2})) \lambda_{k-1}, \]
where
\[\log(q - 2) \phi(x) = \frac{\phi(\log(q - 2) x)}{(R^a - \epsilon)^{1/A}}. \]

Hence
\[\log \left| \frac{a_{n-1}}{a_n} \right| < \lambda_n \phi(\lambda_n - 1) - \lambda_{n-1} \phi(\lambda_{n-1}) - \int_{\lambda_{n-1}}^{\lambda_n} x d[\phi(x)]. \]

Considering (3.2) for \((p, q) = (2, 1)\),
\[\log \left| \frac{a_n}{a_{n-1}} \right| > \lambda_{n-1} \phi(\lambda_{n-1}) - \lambda_n \phi(\lambda_n - 1) + \int_{\lambda_{n-1}}^{\lambda_n} x d \left[\log \frac{\phi(x)}{(R^a - \epsilon)^{1/p}} \right], \]
or
\[\log |a_n| > O(1) - \lambda_n \phi(\lambda_n - 1) + \int_{\lambda_{n-1}}^{\lambda_n} \frac{x \phi'(x)}{\phi(x)} dx. \]

Using the property (1.2), we get
\[\log |a_n|^{-1/\rho} < o(1) + \phi(\lambda_n - 1) - \frac{1}{\rho + \epsilon} \frac{\lambda_{n-1}}{\lambda_n} \leq o(1) + \log \frac{\phi(\lambda_n - 1)}{(R^a - \epsilon)^{1/p}} - \frac{\rho}{\rho + \epsilon}. \]

Hence
\[e^{\rho/\epsilon + o(1)} (R^a - \epsilon) < (1 + o(1)) \left(\frac{\phi(\lambda_n - 1)}{|a_n|^{-1/\rho_n}} \right)^{\rho}. \]

Passing to limits and using [9, Thm. 1], we get
\[e^{\rho - 1} R^a \leq \rho^a. \]

For the case \((p, q) = (2, 2)\), inequality (3.2) yields
\[\log \left| \frac{a_n}{a_{n-1}} \right| > O(1) - \lambda_n \phi(\lambda_n - 1) + \int_{\lambda_{n-1}}^{\lambda_n} x d[\phi(x)] = \]
\[O(1) - \lambda_n \phi(\lambda_n - 1) + \lambda_{n-1} \phi(\lambda_{n-1}) - \int_{\lambda_{n-1}}^{\lambda_n} \phi(x) dx = \]
\[= O(1) - \lambda_n \phi(\lambda_n - 1) + \lambda_{n-1} \phi(\lambda_{n-1}) - \frac{\rho - 1}{\rho (R^a - \epsilon)^{1/(\rho - 1)}} \left[\phi(x) \right]_{\lambda_{n-1}}^{\lambda_n}. \]
or
\[
\log |a_n|^{1/k_n} < \left(1 - \frac{\lambda_n - 1}{\lambda_n}\right) \frac{\phi(\lambda_n - 1)}{(R^* - \varepsilon)^{1/(\beta - 1)}} + (1 + o(1)) \frac{\varepsilon - 1}{\rho} \frac{\phi(\lambda_n - 1)}{(R^* - \varepsilon)^{1/(\beta - 1)}} \]
\[= \left(1 - \alpha + \frac{\varepsilon - 1}{\rho}\right) \frac{\phi(\lambda_n - 1)}{(R^* - \varepsilon)^{1/(\beta - 1)}}.
\]

Thus
\[R^* - \varepsilon < (1 + o(1)) \left(\frac{\varepsilon - 1}{\rho}\right)^{1/2} \left(\frac{\phi(\lambda_n - 1)}{\log |a_n|^{1/k_n}}\right)^{1/2}.
\]

Passing to limits as \(n \to \infty\) (again, in view of [9, Thm. 1]; we get
\[\alpha^{1/(\beta - 1)} \left(\frac{\varepsilon - 1}{\rho - \alpha}\right)^{1/2} R^* \leq t^*.
\]

Finally, let us consider the case when \((p, q) \neq (2, 1)\) and \((p, q) \neq (2, 2)\). In this situation (3.2) is reduced to
\[
\log \left|\frac{\sigma_{n+1}}{\sigma_n}\right| = O(1) + \lambda_n \phi(\lambda_n - 1) - \int_{\lambda_n - 1}^{\lambda_n} t d[\psi(t)] <
\]
\[< O(1) + \lambda_n \phi(\lambda_n - 1) - \lambda_n - 1 \phi(\lambda_n - 1) < O(1) + \lambda_n \phi(\lambda_n - 1) - \lambda_n - 1 \phi(\lambda_n - 1),
\]
or
\[
\log |a_n|^{1/k_n} < (1 + o(1)) \phi(\lambda_n - 1) = (1 + o(1)) \exp^{[\rho - 1]} \left(\frac{\phi(\log^{[\rho - 1]} \lambda_n - 1)}{(R^* - \varepsilon)^{1/\rho}}\right).
\]

Proceeding to limits as \(n \to \infty\), we get
\[R^* \leq t^*.
\]

This inequality together with (3.3) and (3.4) give \(YR^* \leq t^*\) for all index-pairs \((p, q)\).

In order to prove the third part of the inequality (3.1) we assume that \(Q^* < \infty\). Then, for given \(\varepsilon > 0\) and \(k > k_0\), we have
\[
\frac{\phi(\log^{[\rho - 1]} \lambda_k)}{\log^{[\rho - 1]} \left|\frac{\sigma_{k+1}}{\sigma_k}\right|^{1/(\lambda_k - \lambda_{k-1})}} < (Q^* + \varepsilon)^{1/\rho - \lambda_0},
\]
or

\[
\log \left| \frac{a_{k-1}}{a_k} \right| > (\lambda_k - \lambda_{k-1}) \exp^{(p-2)} \left(\frac{\phi(\log^{(p-2)} x)}{(Q^* + \varepsilon)^{1/(p-1)}} \right).
\]

Putting \(k = n_0, n_0 + 1, \ldots, n \) in above and adding the inequalities thus obtained we have

\[
\log \left| \frac{a_{n_0-1}}{a_{n_0}} \right| > \sum_{k=n_0}^{n} (\lambda_k - \lambda_{k-1}) \xi(\lambda_k) > \lambda_n \xi(\lambda_n) - \lambda_{n_0-1} \xi(\lambda_{n_0}) - \sum_{k=n_0+1}^{n} (\xi(\lambda_k) - \xi(\lambda_{k-1})) \lambda_{k-1},
\]

where

\[
\log^{(p-2)} \xi(x) = \frac{\phi(\log^{(p-2)} x)}{(Q^* + \varepsilon)^{1/(p-1)}}.
\]

Hence we have

\[(3.5) \quad \log \left| \frac{a_{n_0-1}}{a_{n_0}} \right| > \lambda_n \xi(\lambda_n) - \lambda_{n_0-1} \xi(\lambda_{n_0}) - \int_{\xi(\lambda_n)}^{\xi(\lambda_{n_0})} x d[\xi(x)].
\]

Consider (3.5) for \((p, q) = (2, 1)\). Then

\[
\log \left| \frac{a_{n_0-1}}{a_{n_0}} \right| > O(1) + \lambda_n \xi(\lambda_n) - \int_{\xi(\lambda_n)}^{\xi(\lambda_{n_0})} \frac{\phi(x)}{(Q^* + \varepsilon)^{1/p}} > O(1) + \lambda_n \log \left(\frac{\phi(\lambda_n)}{(Q^* + \varepsilon)^{1/p}} \right) - \frac{1}{p - \varepsilon} (\lambda_n - \lambda_{n_0+1}),
\]

or

\[
\log |a_n|^{-1/p} > o(1) + \log \left(\frac{\phi(\lambda_n)}{(Q^* + \varepsilon)^{1/p}} \right) - \frac{1}{p - \varepsilon},
\]

which implies

\[
|a_n|^{-1/p \cdot e^{1/p - \varepsilon}} > (1 + o(1)) \frac{\phi(\lambda_n)}{(Q^* + \varepsilon)^{1/p}}.
\]
Proceeding to limits as \(n \to \infty \), we have

\[
Q^n \geq \frac{1}{\varepsilon} \lim_{n \to \infty} \sup \left(\frac{\phi(\lambda_n)}{|a_n|^{-1/n}} \right)\]

Next, for \((p, q) = (2, 2)\), we observe that

\[
\log \left| \frac{d_{\lambda_n} - 1}{a_n} \right| > \lambda_n \tilde{\eta}(\lambda_n) - \lambda_n \tilde{\eta}(\lambda_n - 1) - \int_{\lambda_n}^{\lambda_n} s d[\tilde{\xi}(x)] > O(1) + \int_{\lambda_n}^{\lambda_n} \tilde{\xi}(x) dx.
\]

Hence

\[
\log |a_n|^{-1} > O(1) + \frac{1}{(Q^n + \varepsilon)^{1/\lambda_n - 1}} \int_{\lambda_n}^{\lambda_n} \tilde{\xi}(x) dx,
\]

or

\[
\log |a_n|^{-1} > O(1) + \frac{\varepsilon - 1}{\varepsilon (Q^n + \varepsilon)^{1/\lambda_n - 1}} \left[\{\tilde{\xi}(x)\}^{\lambda_n} \right]
\]

or

\[
\log |a_n|^{-1/\lambda_n} > o(1) + \frac{(\varepsilon - 1) \tilde{\eta}(\lambda_n)}{\varepsilon (Q^n + \varepsilon)^{1/\lambda_n - 1}} \left(\frac{\phi(\lambda_n)}{\lambda_n} - \frac{\phi(\lambda_n)}{\lambda_n \phi(\lambda_n)} \right),
\]

which further implies that

\[
\log |a_n|^{-1/\lambda_n} > o(1) + \frac{(\varepsilon - 1) \tilde{\eta}(\lambda_n)}{\varepsilon (Q^n + \varepsilon)^{1/\lambda_n - 1}}
\]

i.e.,

\[
Q^n + \varepsilon > (1 + o(1)) \left(\frac{\varepsilon - 1}{\varepsilon} \right)^{1 - \frac{1}{\lambda_n}} \left(\frac{\phi(\lambda_n)}{\log |a_n|^{-1/\lambda_n}} \right)^{1 - \frac{1}{\lambda_n}}
\]

Taking limits, we have

\[
Q^n \geq \left(\frac{\varepsilon - 1}{\varepsilon} \right)^{1 - \frac{1}{\lambda_n}} \lim_{n \to \infty} \sup \left(\frac{\phi(\lambda_n)}{\log |a_n|^{-1/\lambda_n}} \right)^{1 - \frac{1}{\lambda_n}}
\]

Finally, if the index-pair \((p, q)\) of the function \(f(x) \) is such that \(3 \leq p < \infty \), then
by (3.5)

\[\log \left| \frac{a_n - 1}{a_n} \right| > \lambda_n \xi(\lambda_n) - \lambda_{n-1} \xi(\lambda_{n-1}) - \int_{\lambda_{n-1}}^{\lambda_n} \int \overline{a}(z) \overline{\xi(z)}\,dz > 0(1) + \lambda_n \xi(\lambda_n) + o(\lambda_n), \]

so that

\[\log \left| \frac{a_n}{a_{n+1}} \right|^{-1/\lambda_n} > o(1) + \xi(\lambda_n), \]

or

\[\log^{(\rho - 1)} \left| \frac{a_n}{a_{n+1}} \right|^{-1/\lambda_n} > \frac{\rho(\log^{(\rho - 1)} \lambda_n)}{(Q^* + \varepsilon)^{1/\rho}}. \]

Passing to limits as \(n \to \infty \), we get \(Q^* \geq T^* \) for \(p \geq 3 \). Since this inequality is seen to be true by (3.6) and (3.7) when the index-pair of the function is \((2, 1) \) or \((2, 2) \), we have \(XQ^* \geq T^* \) and this completes the proof.

Corollary 3: Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) be an entire function having \((p, q)\)-order \(\rho(\rho < p, q < \infty) \), generalized \((p, q)\)-type \(T^* \) and generalized lower \((p, q)\)-type \(t^* \) such that

(i) \(\log^{(\rho - 1)} \lambda_{k-1} = \log^{(\rho - 1)} \lambda_k \) as \(k \to \infty \),

(ii) \(R^* = Q^* \).

Then \(f(z) \) is of perfectly regular \((p, q)\)-growth with respect to \(\rho_{p, q}(r) \), and \(T^* = t^* = XR^* \).

Theorem 5: Let \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) be an entire function of \((p, q)\)-order \(\rho(\rho < p, q < \infty) \) and generalized \((p, q)\)-type \(T^* \) and suppose that \(\left| \frac{a_k}{a_{k+1}} \right|^{1/(\lambda_{k+1} - \lambda_k)} \) forms a nondecreasing function of \(k \) for \(k > k_0 \), then

\[T^* \geq MQ^*. \]

Proof: Let

\[\theta(k) = \left| \frac{a_k}{a_{k+1}} \right|^{1/(\lambda_{k+1} - \lambda_k)}. \]

Then

\[\log \left| \frac{a_k}{a_{k+1}} \right| = (\lambda_{k+1} - \lambda_k) \log \theta(k). \]
Adding these equations for \(k = n_0, n_0 + 1, \ldots, n - 1 \), we get, since \(\theta(k) \) is nondecreasing,

\[
\log \left| \frac{a_k}{a_n} \right| = \sum_{k=n_0}^{n-1} (\lambda_{k+1} - \lambda_k) \log \theta(k) <
\]

\[
< \log \theta(n-1) \sum_{k=n_0}^{n-1} (\lambda_{k+1} - \lambda_k) = (\lambda_n - \lambda_{n_0}) \log \left| \frac{a_{n-1}}{a_n} \right|^{1/(\lambda_n - \lambda_{n_0})},
\]

or

\[
\log |a_k|^{-1/\lambda_k} < (1 + o(1)) \log |a_{n-1}|^{1/(\lambda_n - \lambda_{n_0})}.
\]

Hence

\[
\left[\frac{\phi(\log^{(p-2)/n} \lambda_k)}{\log^{(p-2)/n} |a_k|^{-1/\lambda_k}} \right]^{-\lambda_k} > \left[\frac{\phi(\log^{(p-2)/n} \lambda_n)}{\log^{(p-2)/n} |a_{n-1}|^{-1/\lambda_n}} \right]^{-\lambda_n}.
\]

Passing to limits we get the desired result (2.8) on using [5, Thm. 1].

Remark 1: If we assume \(\rho_{p,q}(r) = \rho \) for all \(r > n_0 \) and define \(\phi(x) = x^{1/(\rho - A)} \) then Theorems 4 and 5 include the results of Dudeja [3], Srivastava and Singh [16] for \((p, q) = (2, 1)\) and Bajpai et al. [1], for \((p, q) = (p, 1)\).

Theorem 6: Let \(f(z) = \sum_{k=0}^{\infty} a_k z^{\lambda_k} \) be an entire function with index-pair \((p, q)\) and \(\mu^* \) and \(\delta^* \) be \((p, q)\)-growth number and lower \((p, q)\)-growth number, respectively of \(f(z) \) with respect to a proximate order \(\rho_{p,q}(r) \). Then

\[
(3.9) \quad \delta^* \leq \mu^* \liminf_{|z| \to \infty} \frac{\log^{(p-2)/n} \lambda_k}{\log^{(p-2)/n} \lambda_{k+1}}.
\]

Further, if \(\theta(k) = |a_k/a_{k+1}|^{1/\lambda_k} \) forms a strictly increasing sequence for \(k > k_0 \), then

\[
(3.10) \quad \mu^* = Q^* \quad \text{and} \quad \delta^* = R^*,
\]

where \(Q^* \) and \(R^* \) are defined in Thm. 1.
Proof: Let r_1 be the value of r at which $v(r)$ jumps from a value less than or equal to $\lambda_{(0)}$ to a value greater than or equal to $\lambda_{(0)+1}$. Then

$$z^* \leq \lim_{k \to \infty} \inf \left(\frac{\log^{(p-k)} v(r_1 - 0)}{\log^{(p-k)} v(r_1 + 0)} \right) \leq \lim_{k \to \infty} \sup \left(\frac{\log^{(p-k)} v(r_1 + 0)}{\log^{(p-k)} v(r_1 - 0)} \right) \leq \mu^* \lim_{k \to \infty} \inf \left(\frac{\log^{(p-k)} \lambda_k}{\log^{(p-k)} \lambda_{k+1}} \right).$$

This proves (3.9). For proving (3.10) we have, from (0.2), for given $\epsilon > 0$ and sufficiently large values of k,

$$\log^{(p-k)} v(r) < (\mu^* + \epsilon)(\log^{(p-k)} v)^{\mu^*(\epsilon - A)},$$

Since $\{\theta(k)\}$ forms a strictly increasing sequence of k, the k-th term will be the maximum term for $|z| = r$, if and only if

$$v(r) = \lambda_k \quad \text{and} \quad \mu(r) = \frac{\lambda_k}{r^{\lambda_k}}, \quad \text{for } \theta(k-1) \leq r < \theta(k).$$

Thus, in view of (3.11), we have

$$\log^{(p-k)} \lambda_k < (\mu^* + \epsilon)(\log^{(p-k)} v)^{\mu^*(\epsilon - A)},$$

or

$$\frac{\Phi(\log^{(p-k)} \lambda_k)}{\mu^* + \epsilon} < \Phi(\log^{(p-k)} v)^{\mu^*(\epsilon - A)}.$$\)

Using (1.1) and the property (1.3), we have

$$\frac{\Phi(\log^{(p-k)} \lambda_k)}{(\mu^* + \epsilon)^{1/(\epsilon - A)}} < \log^{(p-k)} v.$$\)

Hence

$$\frac{\Phi(\log^{(p-k)} \lambda_k)}{\log^{(p-k)} v} < (\mu^* + \epsilon)^{1/(\epsilon - A)},$$

which on taking limits gives

$$\lim_{k \to \infty} \sup \left[\frac{\Phi(\log^{(p-k)} \lambda_k)}{\log^{(p-k)} v} \right]^{\epsilon - A} \leq \mu^*,$$

and hence

$$Q^* \leq \mu^*.$$
Further, from (0.2) we have
\[\log^{b-2\epsilon} n(r) > (\mu_{x} - \epsilon)(\log^{a+1} n(r) n^{a+\lambda}) \]
for a sequence of values of \(r = r_{1}, r_{2}, \ldots, r_{k} \to \infty \). Thus (3.11), for \(k \)'s corresponding to these values of \(n_{k} \)'s yields
\[\log^{a+1} n_{k} > (\mu_{y} - \epsilon)(\log^{a+1} n_{k} n_{k}^{a+\lambda}) \]
or
\[\left(\phi(\log^{a+1} n_{k}) \frac{n_{k}^{a+\lambda}}{a+1} \right)^{\frac{a+1}{a+\lambda}} > \mu_{x} - \epsilon. \]
Since \(\rho(n_{k}) \to \rho \) as \(n \to \infty \), on taking limits and combining the result with (3.12), we get
\[Q^{*} = \mu^{*}. \]
The case \(z^{*} = R^{*} \) can be handled in a similar fashion.

Remark 2: For our studies in this paper we have preferred \((\rho, \varphi) \)-growth to \((\alpha, \beta) \)-growth which was introduced by Seremata [14] and later, on extensively discussed by Balasov [2] and Shah [15].

Let \(L^{0} \) denote the class of functions \(b \) satisfying the following conditions (H, i) and (H, ii):

(H, i) \hspace{1cm} \(b(x) \) is defined on \([a, \infty) \) and is positive strictly increasing, differentiable and tends to \(\infty \) as \(x \to \infty \).

(H, ii) \hspace{1cm} \(\lim_{x \to \infty} \frac{b((1 + 1/\psi(x))^{-1})}{b(x)} = 1 \),

for every function \(\psi(x) \) such that \(\psi(x) \to \infty \) as \(x \to \infty \).

Let \(\Lambda \) denote the class of functions \(b \) satisfying conditions (H, i) and (H, iii):

(H, iii) \hspace{1cm} \(\lim_{x \to \infty} \frac{b(x)}{b(x)} = 1 \),

for every \(\epsilon > 0 \).

Let \(f(x) \) be any entire function and suppose that \(\alpha(x) \in \Lambda \), \(\beta(x) \in L^{0} \). Write
\[\rho(\alpha, \beta, f) = \sup \{ \log M(r, f) \} \]
\[\lambda(\alpha, \beta, f) = \lim_{r \to \infty} \inf \frac{\beta(\log r)}{\alpha(\log r)}. \]

Then \(\rho(\alpha, \beta, f) \) is called the generalized order of \(f \) and \(\lambda(\alpha, \beta, f) \) the generalized lower order of \(f \).

It has been observed that for \(\alpha = \beta \) the results of these authors are not valid (cf.
Kapoor and Nautiyal [6]). Hence to study entire functions of slow growth the functions α and β are defined in a different way for which independent discussion is required and interestingly, (p, q)-scale covers all cases simultaneously.

REFERENCES

