REACTION OF CICER ARIETINUM TO CULTURE FILTRATE OF
ASCOCHYTA RABIEI

C. MOSCONI and P. CRINO
ENEA, Dipartimento Ricerche e Sviluppo Agroindustriali, CRE Casaccia, Roma.

Ascochyta rabiei (Pass.) Labr., the casual agent of the blight, is the most
destructive pathogen of chickpea crop in areas where rainfall or high humidity
occur during growing season. Until now, involvement of toxic metabolites in the
pathogenesis have not been reported except for a note reported by Alam and

In our work we assessed the phytotoxic activity of culture filtrate of A. rabiei.
Chickpea lines differently reacting to the artificial inoculation with the fungus have
been challenged with the toxic filtrate.

On the basis of preliminary experiments, the toxic filtrate has been obtained
by a static culture of Ascochyta virulent isolates for 21 days (21 ± 1 °C) on the
broth described by Nachmias et al. (Physiol. Plant. Path. 1977, 10:147-157). The
crude culture filtrate inhibited root elongation of germinating chickpea seeds and
caused chlorosis and epinasty on chickpea cuttings.

Toxic activity of culture filtrate at different concentrations has been tested on
chickpea lines both susceptible and resistant to the artificial inoculation with the
fungus. When used at the concentration of 60%, a correlation between insensitivity
to the filtrate and resistance to the pathogen has been observed. Chickpea genotypes
reacted differentially when tested with filtrates of different pathogenic groups
of A. rabiei according to their reaction to artificial inoculation.

Our study indicates that toxic metabolites produced by A. rabiei could be
involved in the pathogenesis and could have selective toxicity on chickpea genotypes.
If these results will be reconfirmed, culture filtrate would have a practical
importance as screening tool of resistant genetic material. The role as well as the
host and race specificity of the filtrates have to be elucidated. A characterization of
the phytotoxic compounds would be also profitable for an application of them as
reliable selective agents in the screening for resistance to Ascochyta blight.

CHARACTERIZATION AND PHYTOTOXIC ACTIVITY OF PECTIC
ENZYMES PRODUCED BY PHOMA TRACHEIPHILA (PETRI) KANC.
ET GIK.

M. NATOLI,1 G. PETRONE,1 S.O. CACCIOLA1 and A. PANE2
1 Istituto di Scienze biochimiche e farmacologiche, Università di Catania.
2 Istituto di Patologia vegetale, Università di Catania.

Pectic enzymes produced by pathogens have been supposed to be involved in
the pathogenesis of vascular diseases of plants. In order to elucidate the molecular
mechanism of the pathogenesis of citrus malsecco disease, a severe wilt disease cau-
sed by *Phoma tracheiphila* (Petri) Kanc. et Gik., we have studied the patterns of polygalacturonase activities in the culture filtrates of this fungus.

Two strains of the fungus, Pr 42 and Pr 55, which differed in pathogeneticity and some cultural characteristics, were tested for their ability to produce pectic enzymes. The two strains were grown on a medium containing 1% pectin as sole carbon source. Culture filtrates were collected by filtration and then partially purified through DEAE-Sepharose. The eluates, containing the polygalacturonase activities, were tested for both enzymatic and phytotoxic activities. Eluates obtained from both strains showed a significant toxic effect on sour orange leaf explants along with a four-fold increase in the polygalacturonase specific activity. Electrolyte leakage was enhanced in leaf explants treated with the eluates. The patterns of polygalacturonase activities were further studied after purification of the DEAE eluate through a CM-Sepharose column.

The isoenzymatic pattern showed the presence of three major enzymatic forms in the Pr 42 strain whereas in the strain Pr 55 four different activities were found. Two enzymatic forms in both strains were chromatographically similar, suggesting that the pathogenicity of the two strains may be related to the excretion of particular polygalacturonase forms. However, we cannot exclude that all enzymatic species are important for plant cell wall degradation.

As polygalacturonases are excreted after their synthesis in the cytosol, it was interesting to find out whether the secreted forms were similar to the cytosolic enzymes. To this end we have partially purified the polygalacturonase activities in the mycelium of both strains in the same conditions used for the secreted forms.

Our results show that for both strains tested the number of enzymatic forms is the same both in the mycelium and in the culture filtrate; however, the chromatographic behavior of the cytosolic enzymes was different. This is not surprising as excreted proteins are largely processed before their release. However, when the two mycelium isoenzymatic patterns were compared we found that the cytosolic enzymes were similar in both strains. This last finding could be explained by assuming that the two *P. tracheiphila* strains, Pr 42 and Pr 55, contain different processing peptidases in the excreting pathways.

**D-GLUCOSAMINE AND N-ACETYLD-GLUCOSAMINE METABOLISM DURING ELONGATION GROWTH INDUCED BY FUSICOCCIN IN AVENA COLEOPTILE SEGMENTS**

G. PIRO, A. MONTEFUSCO and G. DALESSANDRO

Dipartimento di Biologia, Università di Lecce.

Plant glycoproteins are accumulated in vacuoles, are secreted into the walls, and are incorporated into the membranes of the reticulum endoplasmic, the Golgi apparatus, the nuclear envelope and the plasmamembrane. Many of these glycoproteins have asparagine-N-acetyl-D-glucosamine-linked oligosaccharide chains (Kaushal G.P., Szamilo T., Elbein A.D. 1988. In: The Biochemistry of Plants, J. Press ed., Academic Press, New York 14:421).