REACTION OF CICER ARIETINUM TO CULTURE FILTRATE OF ASCOCHYTA RABIEI

C. MOSCONI and P. CRINÒ
ENEA, Dipartimento Ricerche e Sviluppo Agroindustriali, CRE Casaccia, Roma.

Ascochyta rabiei (Pass.) Labr., the casual agent of the blight, is the most destructive pathogen of chickpea crop in areas where rainfall or high humidity occur during growing season. Until now, involvement of toxic metabolites in the pathogenesis have not been reported except for a note reported by Alam and Strange (1989, NATO ASI Series, Vol. H 27:385-386).

In our work we assessed the phytotoxic activity of culture filtrate of A. rabiei. Chickpea lines differently reacting to the artificial inoculation with the fungus have been challenged with the toxic filtrate.

On the basis of preliminary experiments, the toxic filtrate has been obtained by a static culture of Ascochyta virulent isolates for 21 days (21 ± 1 °C) on the broth described by Nachmias et al. (Physiol. Plant. Path. 1977, 10:147-157). The crude culture filtrate inhibited root elongation of germinating chickpea seeds and caused chlorosis and epinasty on chickpea cuttings.

Toxic activity of culture filtrate at different concentrations has been tested on chickpea lines both susceptible and resistant to the artificial inoculation with the fungus. When used at the concentration of 60%, a correlation between insensitivity to the filtrate and resistance to the pathogen has been observed. Chickpea genotypes reacted differentially when tested with filtrates of different pathogenic groups of A. rabiei according to their reaction to artificial inoculation.

Our study indicates that toxic metabolites produced by A. rabiei could be involved in the pathogenesis and could have selective toxicity on chickpea genotypes. If these results will be confirmed, culture filtrate would have a practical importance as screening tool of resistant genetic material. The role as well as the host and race specificity of the filtrates have to be elucidated. A characterization of the phytotoxic compounds would be also profitable for an application of them as reliable selective agents in the screening for resistance to Ascochyta blight.

CHARACTERIZATION AND PHYTOTOXIC ACTIVITY OF PECTIC ENZYMES PRODUCED BY PHOMA TRACHEIPHILA (PETRI) KANC. ET GIK.

M. NATOLI, G. PETRONE, S.O. CACCIOLA and A.Pane
1 Istituto di Scienze biochimiche e farmacologiche, Università di Catania.
2 Istituto di Patologia vegetale, Università di Catania.

Pectic enzymes produced by pathogens have been supposed to be involved in the pathogenesis of vascular diseases of plants. In order to elucidate the molecular mechanism of the pathogenesis of citrus malsecco disease, a severe wilt disease cau-