The severity of the damages to the cultivation and the difficulty of the chemical and agronomic control of the pathogen, led to purify the phytotoxin produced in the culture filtrates, to use the active compound in a programme of genetic improvement and to study its role in the pathogenesis.

The fungus was grown on a synthetic medium containing sucrose, L-asparagine, yeast extract, mineral salts and vitamins. The shaken cultures were incubated for 12 days at 26° C.

The culture filtrates, which were tested for toxicity on tomato cuttings, did not show the occurrence of any lipophilic phytotoxin, but of an hydrophilic and polymeric compound, stable at 70° C for 30'. The culture filtrates were submitted to precipitation with cold acetone; the resulting phytotoxic supernatant was dialyzed against bidistilled water, using a tube with a cut off of 3500 dalton. The resulting non permeated activity was purified by gel filtration, affording a very active fraction.

The chemical and electrophoretic analysis strongly suggested for such fraction a nature of an acidic glycoprotein with an apparent molecular weight of 13000-14000 dalton.

The toxin showed strong phytotoxicity still at 0.05 mg/ml. Work is in progress to further define the chemical and biological characterization of the active compound.

EFFECT OF FUSARIC ACID ON THE VACUOLAR MEMBRANE

R. CERANA, R. COLOMBO and P. LADO
Centro del C.N.R. sulla Biologia Cellulare e Molecolare delle Piane, Dipartimento di Biologia, Università di Milano.

The effect of fusaric acid, a phytotoxin of Fusarium spp., on the tonoplast was investigated.

In the classical test of betacyanin release from red beet root disks, the toxin fed at millimolar concentrations induced a marked release of betacyanins, suggesting that the tonoplast functionality in the intact cell was somehow affected (Radice and Pesci, this same issue).

A possible direct effect on the tonoplast was thus tested both at morphological and biochemical levels. Fusaric acid (up to 15 mM) did not affect the intactness of Acer pseudoplatanus isolated vacuoles, observed at the optical microscope. In microsomal preparations from cultures cells of both Acer pseudoplatanus and Arabidopsis thaliana, fusaric acid at concentrations from 0.25 mM to 3 mM inhibited (−10 to −35%) the nitrate-sensitive (tonoplast) ATPase, whereas it was ineffective on another tonoplast enzyme activity, the K⁺-stimulated pyrophosphatase.

The structural analogues picolinic and nicotinic acids at the same concentrations showed a similar behaviour (inhibition of nitrate-sensitive ATPase and no effect on K⁺-stimulated PPase).

These results indicate that fusaric acid can directly affect some tonoplast function without inducing a general alteration of the state of the membrane.