The structure of the cladochrome A 1 and B 2, isolated from etiolated cucumber seedlings infected with fungal spores of *C. cucumerinum* have been revised recently (2) and established as that of a diester of 3-hydroxybutyric acid, and a mono-3-hydroxybutyrate monobenzoate with *ent*-isophlelichrome 3 respectively. An *in vitro* culture of *C. cladosporioides* produces 3, and cladochrome C 4, D 5, and E 6; compounds 5 and 6 are novel carboxylic acid ester derivatives of 3. Their structure and stereochemistry were assigned on the basis of spectroscopic measurements and CD spectra.

Some cladochromes present an interesting inhibition of protein kinase C.

$$
\begin{align*}
1 & \quad R^1 = R^2 = \text{CO-CH}_2\text{-CHOH-Me} \\
2 & \quad R^1 = \text{CO-CH}_2\text{-CHOH-Me}, \quad R^2 = \text{CO-Ph} \\
3 & \quad R^1 = R^2 = \text{H} \\
4 & \quad R^1 = \text{CO-Ph}, \quad R^2 = \text{CO-Ph} \\
5 & \quad R^1 = \text{CO-p-PhOH}, \quad R^2 = \text{COO-p-PhOH} \\
6 & \quad R^1 = \text{CO-Ph}, \quad R^2 = \text{COO-p-PhOH}
\end{align*}
$$

METABOLITES OF THE PLANT PATHOGEN PSEUDOMONAS SYRINGAE PV. SYRINGAE

A. BALLIO

Dipartimento di Scienze Biochimiche, Università di Roma «La Sapienza».

Some years ago a multidisciplinary study directed to define the structure and investigate the biological and physicochemical properties of substances produced by *Pseudomonas syringae* pv. *syringae*, a bacterial pathogen of numerous monocot and dicot plants, was started in Italy. At present the groups participating into this joint venture belong to the two Universities of Rome, to those of Florence and Naples, to CNR laboratories in Rome, Montelibretti-Rome, and Bari, and to the ETH of Zürich.

The first metabolite studied has been syringomycin (SR), a substance produced by pathogenic isolates from stone fruits, pears and grass hosts (De Vay et al., 1968). We have shown that SR preparations obtained according to Gross et al. are in fact mixtures of several structurally similar lipopeptides together with some unrelated peptides; in collaboration with a group of Utah State University we have determi-
ned the structures of three lipopeptides (SR-A, SR-E, and SR-G). Later, SR-E has been also identified by a Japanese group in a strain pathogenic to sugar cane.

Recently we have completed the structure determination of syringotoxin (ST), a metabolite produced by citrus isolates of the above bacterium. ST had been partially characterized several years ago by De Vay et al. The accompanying communication by Segre et al. gives details on our structural work. ST is strictly related to the syringostatins produced by a P. syringae pv. syringae strain isolated from lilac in Japan.

All the above reported metabolites are members of an apparently large family of new natural lipodepsipeptides which display a high antibiotic activity. Particularly interesting is the occurrence in all of them of the new amino acid 4-chlorothreonine, whose total synthesis has been recently completed in Rome. The chlorine atom can be replaced by bromine in both SR and ST when the fermentations are carried out in a medium deprived of Cl⁻ and supplemented with Br⁻ (see the accompanying communication by Grigurina et al.).

Some biological properties of impure SR have been reported by De Vay et al. several years ago; pure SR has been shown more recently by Takemoto et al. to affect transport phenomena at the level of the plasma membrane of eukaricotic organisms. Biological tests with several of the above reported metabolites are presently under way in our laboratories.

This work has been supported by the Italian Ministry for the University and for Scientific and Technological Research, as well as by grants of the Italian Research Council (CNR-Progetto Finalizzato «Chimica fine II» and of NATO.

FURTHER STUDIES ON MINOR TOXINS PRODUCED BY THREE SPECIES OF SEIRIDIUM IN CULTURE

A. BALLIO,¹ A. EVIDENTE,² A. GRANITI,¹ G. RANDAZZO² and L. SPARAPANO¹
¹ Dipartimento di Scienze biochimiche, Università di Roma «La Sapienza».
² Dipartimento di Scienze chimico-agrarie, Università «Federico II», Portici (Napoli).
³ Dipartimento di Patologia vegetale, Università di Bari.
⁴ Istituto di Industrie agrarie, Università «Federico II», Portici (Napoli).

S. cardinale, a strain of S. cupressi and S. unicorne are associated with canker diseases of cypress (Cupressus semprevirens) in the Mediterranean area. Previous research has shown that five major phytotoxins were produced by these fungi in culture, namely; seiridin, iso-seiridin and seicardine A by all the Seiridium species; seicuprolide by S. cupressi and S. unicorne; and cyclopaldic acid by S. cupressi.

Further studies are in progress to elucidate the structures of five minor metabolites isolated from culture filtrates of the above mentioned fungal species. Chemical and spectroscopic data so far obtained indicate that three metabolites are bicyclic sesquiterpenes structurally related to seicardine A, whereas the other two compounds are butenolides closely related to seiridins.