NADIA ROBOTTI (*)

La tela del ragno: storia di una misura di carica elettrica (**)
«I fenomeni che accompagnano la scarica attraverso i gas sono così belli e vari che hanno attirato l'attenzione di numerosi osservatori. L'attenzione data a questi fenomeni non è dovuta tanto alla bellezza degli esperimenti, quanto alla convinzione assai diffusa che non vi sia forse altro ramo della fisica in grado di offrirci una opportunità così promettente di penetrare il segreto dell'elettricità perché, mentre il passaggio di questo agente attraverso un metallo o un elettrolito è invisibile, quello attraverso un gas è accompagnato da effetti estremamente luminosi e, in molti casi, è talmente influenzato dalle variazioni nelle condizioni di scarica da offrirci molte opportunità di verificare le varie concezioni che possiamo farci sulla natura dell'elettricità, della scarica elettrica e della relazione tra elettricità e materia».

Così, nel 1893, J.J. Thomson, allora Direttore del Cavendish Laboratory di Cambridge, si esprimeva nel volume «Notes on Recent Researches in Electricity and Magnetism» [1]. Non a caso in quel periodo i processi di scarica attraverso i gas stavano diventando il tema centrale dell'attività teorica e sperimentale condotta personalmente da Thomson o da questi promossa presso il Cavendish Laboratory. Sarà da questo tipo di attività e, in particolare, dalle indagini sui così detti raggi catodici che Thomson, come è noto, riuscì a cogliere, nel 1897 [2], i primi segnali circa l'esistenza di un costituente atomico: l'elettrone o «corpuscolo», come era stato chiamato dallo stesso Thomson.

Esulerebbe dall'argomento che qui si vuole trattare entrare nello specifico delle varie e complesse motivazioni che spinsero Thomson a individuare nei raggi catodici una prima particella subatomica [3]. Basti ricordare che dopo aver dimostrato che i «raggi» catodici erano, in realtà, costituiti da particelle cariche negativamente, Thomson misurava il rapporto massa/carica di queste ultime. Così facendo egli otteneva, indipendentemente dal tipo di gas usato e dal materiale che costituiva il cattodo, un valore sempre uguale e dell'ordine di 10⁻⁷ u.e.s., cioè più piccolo di un fattore 10⁻³ rispetto al valore più piccolo fino a quel momento noto, che era il valore dello ione idrogeno. Questo risultato, inserito in un contesto in cui la concezione d'atomo inteso come struttura semplice cominciava a vacillare e letto alla luce di determinati esperimenti, portava Thomson a pensare che le particelle che costituivano i raggi catodici (i «corpuscoli») fossero particelle sub-atomiche e, in quanto tali, «più piccole dell'atomo di idrogeno».

A questo punto un nuovo interrogativo immediatamente si apriva per Thomson: se davvero queste ipotetiche particelle esistevano, quanto «più piccole dell'atomo d'idrogeno» erano in realtà? In quanto segue ci occuperemo proprio di questo interrogativo, cercando di ricostruire il cammino attraverso il quale Thomson, tra il 1897 e il 1899, riuscì a quantificare l'attributo «più piccolo dell'atomo di idrogeno» in un valore numerico ben preciso e fondata su una misura di carica, giungendo in tal modo a «provar» l'esistenza di quel primo costituente atomico chiamato corpuscolo.

1. La carica unitaria e l'atomo divisibile: una premessa

Nel 1891 G. Stoney [4] introduceva un nuovo termine scientifico: «elettrone». Esso, nell'intento di Stoney, stava ad indicare quella «quantità definita di elettricit-
tà» tramite la quale, o tramite multipli di essa, gli atomi sembravano combinarsi chimicamente tra di loro e che si rendeva manifesta nei processi elettrolitici allorquando le molecole dell'elettrolita, sotto l'azione del campo elettrico presente, si dissociavano in «ioni» positivi e «ioni» negativi. A questa «quantità definita di elettricità» Stoney era appreso già nel 1874 [5], interpretando alla luce della teoria atomica della valenza avanzata poco tempo prima da Kekulé le leggi dell'elettrolisi formulate da Faraday. A una concezione del tutto simile, rivisitando il lavoro di Faraday, giungeva autonomamente anche Helmholtz nel 1881. Sosteneva Helmholtz, in una relazione presentata alla Società Chimica di Londra e significativamente intitolata: «Lo sviluppo moderno delle concezioni di Faraday sull'elettricità» [6], che «la legge di Faraday ci indica come attraverso ogni sezione di un conduttore elettrolitico abbiamo sempre moto elettrico e moto chimico equivalenti. La stessa quantità definita di elettricità positiva o negativa si muove sempre con ogni ione monovalente o con ogni unità di affinità di uno ione multivalenti e lo accompagna durante tutti i suoi muoti all'interno del fluido elettrolitico. Possiamo chiamare questa quantità la carica elettrica dell'atomo».

A differenza di Helmholtz, Stoney, già nel 1874 [7], aveva dato una stima del valore della «carica unitaria». Sulla base di considerazioni di teoria cinetica che consentivano di determinare il numero di Avogadro, e di conseguenza la massa dell'atomo di idrogeno, e prendendo in esame alcune tabelle di equivalenti elettrochimici relative all'elettrolisi dell'acqua, Stoney ricavava per questa grandezza il valore 3×10^{-11} u.e.s. Successivamente altre stime furono fatte e tutte portarono a un valore compreso tra 14.0×10^{-11} e 12.9×10^{-11} u.e.s. In tal modo, nell'ultimo decennio dell'800, il concetto di «carica unitaria» o «elettrone» e con esso il concetto di «ione» inteso come «l'atomo di materia con la sua carica», vennero a far parte del linguaggio scientifico comune [8].

Detto questo, un interrogativo si pone immediatamente: perchè Thomson, quando nel 1897 identificava nel «corpuscolo» un primordio costituente atomico e ne misurava il rapporto massa/carica, non associava a tale corpuscolo una carica di valore pari all'«unità di carica» emersa dalle indagini sui processi elettrolitici, riuscendo così in questo modo a dare immediatamente una prima stima della massa del «corpuscolo», senza dover aspettare, come di fatto è successo, una misura separata della carica?

La risposta, a mio avviso, va ricercata nel significato attribuito da Thomson al termine «corpuscolo» e nel carattere innovativo che quest'ultimo andava ad assumere nell'ambito della concezione atomica di quel tempo. Un conto, infatti, era pensare, come sino a quel momento si era pensato, che gli atomi o le molecole contenessero una o più cariche unitarie e che queste, come per primo aveva suggerito Stoney, stessero alla base dei legami chimici, dei fenomeni elettrolitici, etc.: l'atomo, in questo modo risultava certamente una struttura complessa, ma pur sempre indivisibile. Un altro conto, invece, era supporre, come proponeva Thomson nel 1897, che l'atomo non solo fosse costituito da particelle materiali cariche — i corpuscoli — ma che esso potesse rompersi e scindersi in questi «corpuscoli»: in questo caso l'indivisibilità dell'atomo veniva automaticamente violata e, come faceva osservare Fitzgerald [9], si sarebbe dovuto prospettare la possibilità di una «trasmutazione della materia». Ecco come Thomson, nel 1897, presentava il nuovo atomo:
«La spiegazione che mi sembra render conto dei fatti nella maniera più sempli-
ce e più corretta è quella basata sull’ipotesi (...) secondo cui gli atomi dei vari ele-
menti chimici sono aggregati differenti di atomi dello stesso tipo. Nella forma sotto-
la quale questa ipotesi era stata formulata da Prout, gli atomi costituenti ...sono ato-
mi di idrogeno; tale ipotesi non può essere accettata in questa forma; ma se sosti-
tuiamo all’idrogeno una sostanza primordiale X sconosciuta non vi è nulla di no-
to che sia inconsistente con questa ipotesi. ...Se nel campo molto intenso presente nei
dintorni del catodo le molecole del gas vengono dissociate e quindi scisse non nei
comuni atomi chimici, ma in questi atomi primordiali, che per brevità chiameremo
corpuscoli, e se questi corpuscoli sono elettricamente carichi e vengono proiettati
dal campo elettrico lontano dal catodo, essi dovrebbero comportarsi esattamente
come i raggi catodici».

E così Thomson concludeva:

«Noi, dunque, troviamo nei raggi catodici un nuovo stato della materia, uno
stato in cui la suddivisione della materia è spinta molto più in là che nel comune
stato gassoso: uno stato in cui tutta la materia — cioè materia derivata da sorgenti
diverse, quali idrogeno, ossigeno, etc. — è di un unico tipo, essendo questa materia
la sostanza che compone tutti gli elementi chimici» [10].

Dal momento che il «corpuscolo» veniva così inteso, appare chiaro che nel 1897
non esisteva alcuna ragione a priori per riconoscere la carica del «corpuscolo» con
l’«elettrone». In altri termini, le due entità, «elettrone» da un lato, «corpuscolo» dal
l’altro lato, erano nate e continuavano a presentarsi come entità non necessariamente
legate tra di loro e come tali dovevano essere trattate. Era, insomma, questa la ra-
gione di fondo per la quale Thomson, di fronte al problema di caratterizzare fisica-
mente il «corpuscolo», si sarebbe dovuto impegnare, tra il 1897 e il 1899, in un pro-
gamma di ricerca volto alla realizzazione di una misura di carica specifica per il «cor-
puscolo»: un programma che solo alla fine lo avrebbe portato a identificare la cari-
ca del «corpuscolo» con l’«elettrone», fondando in questo modo due aspetti della
realtà che fino a quel momento potevano anche sembrare distinti.

Questo programma di ricerca, a causa delle difficoltà subito incontrate da Thom-
son nel progettare una misura di carica nel caso dei «raggi» catodici, implicò indagi-
ni in altri settori e poté essere realizzato grazie a quella fitta rete di attività presso
il Cavendish Laboratory che Thomson aveva incominciato a tessere sin dall’inizio
degli anni 1890 intorno al grande tema del «passaggio dell’elettricità attraverso i gas».

2. Una nuova tecnica

tore del Cavendish Laboratory, offrendosi come candidato al Clerk Maxwell Scho-
larship:

«L’argomento che vorrei proporre è l’analisi del modo in cui un corpo dissolto
si distribuisce nel suo solvente quando la cima e il fondo della soluzione sono tenu-
te a due temperature diverse. ...Vorrei determinare la concentrazione delle varie parti
della soluzione per via ottica».

Questa nota, che non aveva nulla a che vedere con il programma di studi proposto a suo tempo da Wilson, segnava l'inizio, presso il Cavendish Laboratory, di una nuova attività sperimentale volta a studiare i processi di condensazione di vapori saturi e sovrasaturi e i loro legami con la presenza di cariche. In realtà l'interesse verso questo tipo di indagini da parte di coloro che lavoravano al Cavendish Laboratory, e in particolare da parte di J.J. Thomson, non era completamente nuovo. Thomson stesso, già nel 1893 [13], aveva studiato quegli strani fenomeni di condensazione di un getto di vapore visti in aria da Helmholtz, da Richarz e da Aitken in presenza «dell'elettrificazione e dell'azione chimica»; e aveva collegato tali fenomeni alla presenza di ioni, dimostrando che gli «ioni liberi, in virtù della carica che essi portano, favoriscono la condensazione». Di conseguenza, come segnalava Thomson, «l'uso di un getto di vapore» si presentava come un promettente metodo «per rivelare l'elettrificazione presente». L'intervento di Thomson, però, era rimasto soltanto a livello teorico: l'occasione di un intervento anche a livello sperimentale venne offerta dall'arrivo al Cavendish Laboratory di C.T.R. Wilson, un giovane, a detta di Thomson, molto capace e promettente sul versante della progettualità.

Come primo passo della sua attività presso il Cavendish Laboratory, Wilson spostava l'interesse dalla «condensazione di un getto di vapore» alla «condensazione di gas saturi», riuscendo così a realizzare, nel 1895, un apparato sperimentale in grado di produrre, tramite un raffreddamento ad espansione adiabatica, la condensazione di una certa quantità di aria satura di vapor d'acqua, «anche in assenza di pulviscolo» [14].

Attraverso questo tipo di studi Wilson otteneva che le condizioni per la condensazione nel caso di esposizione sia a raggi X, sia a raggi Uranici, erano le stesse di quelle stabilite in precedenza nel caso dell'aria ordinaria ma con la differenza che in questi casi, benché si fosse proceduto all'eliminazione di tutte le impurità presenti, il numero di gocce formate nel processo di condensazione era di gran lunga maggiore. Ciò, secondo Wilson, stava a significare che sia i raggi X, sia i raggi Uranici, nell'attraversare l'aria umida, producevano un aumento del numero dei «nuclei» capaci di agire come centri di condensazione e che questi nuclei erano «dello stesso tipo, o almeno della stessa efficienza nel promuovere la condensazione, di quelli che sono sempre presenti in aria».

Ma quale era la natura di questi «nuclei» che si rendevano manifesti nei fenomeni di condensazione? Se si tenevano presenti le altre attività condotte presso il Cavendish Laboratory la risposta era immediata. Infatti, mentre Wilson studiava gli

Con la conclusione che emergeva dall'analisi di C.T.R. Wilson [17], secondo la quale gli «ioni», attraverso un processo di espansione di gas saturo, potevano essere isolati sotto forma di goccioline d'acqua, si chiudeva una prima fase di quel processo che, in breve tempo, avrebbe portato alla misura della carica del «corpuscolo».

3. La carica degli ioni gassosi

L'attività scientifica che Thomson svolse o promosse presso il Cavendish Laboratory a partire dal 1897 (cioè dopo aver identificato i raggi catodici con un primo costituente atomico e dopo averne misurato il rapporto massa/carica) fino al 1899 può sembrare, a prima vista, alquanto curiosa: essa, infatti, non riguarda più un argomento così promettente come quello dei raggi catodici, ma spazia da analisi sulla natura dei raggi X a misure sulla velocità di propagazione di ioni gassosi in ambienti rarefatti.

Tra tutti questi lavori esiste però un sottile filo conduttore che può essere individuato non appena si legga la relazione tenuta da Thomson al Congresso della British Association del 1899 [18]. Osservava, infatti, Thomson:

«In un precedente articolo (Phil. Mag. 1897) ho ottenuto una misura del rapporto tra la massa «m» e la carica «e» nel caso del fascio di elettricità negativa che costituisce i raggi catodici. (...) Sebbene vi fossero ragioni per pensare che la carica «e» non fosse molto diversa da quella elettrolitica e che pertanto avessimo a che fare con masse più piccole dell’atomo, tuttavia, poiché queste ragioni erano in qualche modo indirette, ho desiderato, nei limiti del possibile, ottenere una misura diretta di «m» oppure di «e», come del resto di m/e. Nel caso dei raggi catodici non sono riuscito a trovare il modo di fare questo, ma un altro caso, in cui l'elettricità negativa è trasportata da particelle cariche, è sembrato più promettente».

Ecco, dunque, la chiave di lettura dell’attività di Thomson in questi due anni: dopo il «fallimento» con i raggi catodici, Thomson era alla ricerca di nuove fenomenologie in cui fossero coinvolti i «corpuscoli» e che consentissero per il corpuscolo una misura di carica oppure di massa, oltre che una misura del rapporto massa/carica.

Questa ricerca, comunque, non portò a risultati immediati. La prima fenomenologia che Thomson prese in considerazione fu la ionizzazione di un gas investito da radiazione X. Questo argomento, come si è già brevemente accennato, era già stato al centro delle varie attività promosse presso il Cavendish Laboratory nell’ultimo decennio dell’800 e, tra il 1896 e il 1897, aveva comportato una serie di indagi-
ni a tappeto, soprattutto da parte di Thomson e di Rutherford, sia sul versante sperimentale che su quello teorico. Queste indagini avevano ben presto segnalato alcune differenze di comportamento tra gli ioni positivi e gli ioni negativi (ad esempio il fatto che gli ioni negativi erano molto più veloci di quelli positivi) e avevano portato Thomson a un’interpretazione della ionizzazione in termini di «dissociazione e frantumazione delle molecole». Thomson, tuttavia, nel 1898 non aveva ancora elementi sufficienti per identificare (come di fatto fece in seguito, per lo meno nel caso dei gas inerti o monoatomici) gli ioni negativi con i «corpuscoli». Pertanto, al momento, l’obiettivo che egli si poneva era quello di «mettere a punto un metodo per la misura della carica di elettricità trasportata dagli ioni che sono prodotti quando i raggi Roentgen passano attraverso un gas» [19].

Il metodo progettato da Thomson era molto ingegnoso, anche se non molto immediato, e fondeva assieme tutta una serie di competenze e di risultati acquisiti negli ultimi anni presso il Cavendish Laboratory. Esso era così schematizzabile. La corrente I attraverso un gas esposto ai raggi Roentgen e sottoposta all’azione di una forza elettromotrice nota, f, era esprimibile come $I = nev$, dove n era il numero di ioni per unità di volume del gas, e la carica di uno ione e v la velocità media degli ioni sotto l’azione della forza elettromotrice f. Conseguentemente, misurando la corrente I era possibile stabilire il valore del prodotto nev (1). La velocità v, d’altra parte, era stata già misurata da Rutherford per vari gas e varie forze elettromagnetiche e di conseguenza, utilizzando il valore appropriato di v, dalla (1) era possibile risalire al valore del prodotto ne. A questo punto, per determinare il valore di n, era sufficiente riuscire a stabilire il valore di e.

Per far questo Thomson sfruttava la proprietà, messa in luce dagli esperimenti di C.T.R. Wilson di cui si è già detto, secondo la quale se dell’aria satura di vapor d’acqua oppure altre miscele di gas e vapore venivano raffreddati attraverso un’espansione adiabatica, gli ioni presenti servivano come nuclei attorno ai quali il vapore si condensava sotto forma di goccioline d’acqua. Pertanto, se ad ogni ione presente prima dell’espansione corrispondeva, dopo l’espansione, una gocciolina d’acqua, il calcolo di n, e cioè del numero di ioni per unità di volume di gas, era ridotto al calcolo del numero di gocce d’acqua depositate per unità di volume. La massa totale M di acqua depositata per unità di volume di gas era facilmente misurabile ed era legata ad n dalla relazione

$$M = n a^3 \pi 4/3$$

dove a era il raggio di ogni gocciolina d’acqua. A questo punto per determinare n bisognava determinare a. La grandezza a, a sua volta, era legata alla velocità v' di caduta della goccia nel campo gravitazionale g dalla legge di Stokes:

$$v' = 2 g a^2 / 9 \mu$$

dove μ era il coefficiente di viscosità del mezzo. Di conseguenza misurando v' si poteva risalire al valore di a, quindi ad n e infine ad e.
Questo procedimento, sebbene concettualmente ineccepibile, presentava, dal punto di vista sperimentale, una serie di difficoltà e margini di errore di cui Thomson era ben conscio e ai quali cercava di sopporre con vari accorgimenti.

Mettendo in pratica la via sopra descritta, Thomson alla fine giungeva al risultato che «quando un gas è ionizzato dai raggi Roentgen, le cariche sugli ioni sono identiche qualunque sia la natura del gas (ovvero otteniamo le stesse cariche sugli ioni sia che ionizziamo idrogeno oppure ossigeno) e queste cariche sono uguali o, per lo meno, dello stesso ordine di grandezza della carica dell’atomo di idrogeno nell’elettrolisi, ossia dell’ordine di 10^{-10} u.e.s».

Da queste misure di Thomson incominciava dunque a delinearsi un panorama in cui una stessa carica sembrava essere alla base di più fenomenologie. Ma quale conclusione si poteva trarre sul legame tra questa carica e la carica del «corpuscolo»? Evidentemente nessuna, visto che, da un lato, la carica misurata rappresentava il valor medio della carica trasportata da ciascun «ione» (sia negativo che positivo), e dall’altro lato, come si è già detto, non esistevano ragioni sufficienti per identificare gli «ioni negativi» con i «corpuscoli». Con questo intervento, però, Thomson aveva raggiunto un risultato: era riuscito a mettere a punto un metodo di misura per la carica che, a differenza dei metodi fino a quel momento proposti per i fenomeni elettrolitici, non si basava sulla conoscenza di alcun parametro atomico o molecolare e quindi si presentava idoneo a una misura di carica indipendentemente dal «portatore» di tale carica, fosse esso una molecola, un atomo, o un «corpuscolo».

Questo metodo, tuttavia, come aveva già riconosciuto Thomson, a causa delle condizioni sperimentali richieste per la produzione dei «raggi catodici» non si prestava a una misura di carica nel caso di questi «raggi». Si trattava quindi, per Thomson di cercare un’altra fenomenologia, interpretabile in termini di «corpuscoli», che consentisse una misura di carica del tipo appena messo a punto e che nello stesso tempo consentisse anche, analogamente al caso dei «raggi catodici», una misura del rapporto massa/carica. E, ancora una volta, Thomson poteva fare un’indagine del genere grazie a quell’insieme di competenze che egli stesso aveva acquisito nel campo della scarica nei gas e sulle quali aveva indirizzato l’attività del Cavendish Laboratory.

4. Unificazione

Nel volume, pubblicato nel 1895, «Notes on Recent Researches in Electricity and Magnetism», a proposito del problema relativo al «passaggio dell’elettricità attraverso un gas», tra le varie fenomenologie che Thomson segnalava, una riguardava «l’effetto della luce ultra-violetra sulla scarica». Dopo aver ripercorso le varie tappe attraverso le quali, a partire da un’osservazione di Hertz del 1887, si giunse a stabilire che «una superficie metallica, quando esposta all’azione della luce ultra-viola, perde velocemente una carica negativa, mentre la stessa superficie conserva una carica positiva», Thomson concludeva richiamandosi al seguente risultato ottenuto nel 1890 da Elster e Geitel:
«Quando la pressione del gas è inferiore a 1 mm (Hg) la fuga dell’elettricità negativa dalla superficie illuminata è considerevolmente frenata se si pone la superficie in un forte campo magnetico».

Questa proprietà, nel 1895, non destava, per Thomson, particolare interesse se non dal punto di vista fenomenologico e venivano viste come una delle tante manifestazioni che accompagnavano i processi di scarica nei gas. Molto differente sarebbe invece stata la portata assunta da questa stessa fenomenologia quando nel 1898, Thomson avrebbe cercato un nuovo campo d’indagine, diverso da quello dei raggi catodici e diverso da quello della ionizzazione da raggi Roentgen, in cui riuscire a definire fisicamente il «corpuscolo». Come faceva osservare Thomson [20], le proprietà sapra segnalate stavano ad indicare un’emissione di particelle negative da parte della lastra illuminata e si accordavano completamente con la concezione di un atomo strutturato e divisibile: bastava infatti supporre che gli atomi che costituivano la lastra fossero composti da «corpuscoli» e che questi fossero estraibili per irraggiamento da luce ultravioletta. In questo modo la prima proprietà, e cioè la perdita di carica negativa, risultava immediatamente spiegata. Anche la seconda proprietà riusciva a trovare una spiegazione se si teneva conto delle varie delussioni che una particella carica, a seconda della direzione della sua velocità, poteva subire in presenza di un campo magnetico: la deflessione, infatti, poteva essere tale che alcune particelle ritornavano sulla lastra di partenza, riducendo in questo modo il flusso complessivo di carica uscente.

Una volta data questa interpretazione, e ammesso che questa interpretazione fosse corretta, come osservava Thomson, «i fenomeni a cui si assiste quando una lastra metallica in un gas a bassa pressione viene investita da luce ultravioletta» cessavano di apparire come puri fatti empirici e diventavano un «promettente campo in cui tentare di determinare contemporaneamente sia il valore della carica, sia il valore del rapporto massa/carica del corpuscolo».

Ed è proprio in questa prospettiva che Thomson, nello stesso anno 1898, promuoveva presso il Cavendish Laboratory una serie di indagini volte a studiare «l’emissione fotoelettrica» nelle sue varie manifestazioni. Attraverso queste analisi fu innanzitutto verificato che, a basse pressioni, «la maggior parte dell’elettrificazione era trasportata da ioni gassosi negativi che alla superficie della lastra» e che questi «portatori dell’eletrizzazione negativa» (la cui velocità veniva misurata da Rutherford in presenza di forze elettromotrici diverse) «agivano come quelli originati dai raggi Roentgen nel formare nuclei intorno ai quali l’acqua condensa». A questo punto era garantita la fattibilità, nel caso di «emissione per luce ultravioletta», di una misura di carica per il «portatore dell’eletrizzazione negativa»: bastava infatti utilizzare l’apparecchiatura già costruita da Thomson per il caso degli ioni prodotti da raggi Roentgen, introducendo nel recipiente dove avveniva la condensazione una lamina metallica illuminata da luce ultravioletta, e poi procedere, come nel caso dei raggi Roentgen, a una misura di carica.

Per quanto riguardava la realizzazione di una misura del rapporto massa/carica Thomson prendeva spunto dalla proprietà, segnalata nel 1895, secondo cui un campo magnetico, posto parallelamente alla lastra illuminata da luce ultravioletta, attenuava l’emissione di carica negativa.
Il dispositivo messo a punto da Thomson è riportato in figura. AB era la lastra di zinco che veniva illuminata da luce ultravioletta, CD era una grata metallica a maglie molto fitte attraverso cui poteva passare la luce, ed L era un’asta metallica che consentiva di variare la distanza tra AB e CD; il tutto veniva racchiuso in un tubo di vetro e connesso a una pompa a vuoto. Tra AB e CD, perpendicolarmente ad AB, veniva posto un campo elettrico X (CD era a un potenziale maggiore di AB in modo che le cariche negative emesse da AB si dirigessero verso CD); perpendicolarmente al campo X veniva posto un campo magnetico H.

In queste condizioni era facile dimostrare che le particelle emesse dalla lastra AB percorrevano una traiettoria cicloidale di diametro pari a:

\[2 \times \frac{m}{e} \cdot \frac{X}{H}\]

dove \(m\) ed \(e\) indicavano rispettivamente la massa e la carica di tali particelle.

Pertanto, se la distanza tra AB e CD era minore del diametro (*) della cicloide, tutte le particelle emesse dalla lastra AB raggiungevano la grata CD e potevano essere rivelate (utilizzando, ad esempio, un elettrometro collegato con CD). Aumentando la distanza tra AB e CD la carica negativa che giungeva su CD rimaneva costante fino a che, per una distanza tra AB e CD uguale o maggiore al diametro (*) della cicloide, incominciava a diminuire in quanto le particelle emesse ritornavano attraverso un percorso circolare, sulla lastra AB di partenza. Misurando allora la
distanza tra AB e CD in corrispondenza della quale la carica rivelata su CD incominciava a diminuire (e conoscendo valori del campo elettrico, X, e magnetico, H) era possibile, attraverso la relazione (*), ricavare il valore del rapporto m/e.

Thomson otteneva per i «portatori di carica negativa prodotti da luce ultravioletta» un rapporto carica/massa di valore pari a 7 10^{-6} u.e.m., ovvero «dello stesso ordine di grandezza del valore misurato per i raggi catodici». Non solo: un valore pressoché identico veniva ricavato anche nel caso di un’altra fenomenologia, sempre legata alla scarica nei gas, e cioè nel «caso dell’emissione di carica negativa da parte di un filamento di metallo o di carbone portato all’incandescenza» [21].

A questo punto l’unicità del «portatore di carica negativa» sembrava garantita e si poteva procedere a una misura di carica. Utilizzando nel caso di emissione fotoeletrica il metodo messo a punto in precedenza, Thomson ricavava «il valore 7 10^{-10} u.e.s. lo stesso valore, praticamente, della carica dello ione prodotto dai Raggi Roentgen e dello ione idrogeno dell’elettrolisi».

Questo risultato, unito a quello relativo al rapporto massa/carica, consentiva a Thomson di dare finalmente una stima della massa del «portatore della carica negativa». Essa risultava essere dell’ordine di 3 10^{-26} gr, e cioè circa 1/700 cella massa dello ione idrogeno.

Così Thomson commentava i risultati ottenuti:

«Questi esperimenti, uniti a quelli sul valore di m/e per i raggi catodici, mostrano che nei gas a bassa pressione l’elettricità negativa, sebbene possa essere prodotta in modi molto diversi, è fatta di unità ciascuna delle quali ha una carica di grandezza definita; la grandezza di questa carica negativa è circa 6 10^{-10} u.e.s ed è uguale alla carica positiva trasportata dall’atomo di idrogeno nell’elettrolisi di soluzioni. Nei gas a bassa pressione queste unità di carica negativa sono sempre associate a portatori di massa definita. Questa massa è estremamente piccola, essendo soltanto 1,4 10^{-3} di quella dello ione idrogeno che è la massa più piccola finora riconosciuta come capace di un’esistenza separata (...). Pertanto noi abbiamo la chiara dimostrazione che i portatori di carica negativa hanno una massa molto più piccola degli atomi ordinari, così che nella convezione di elettricità negativa a bassa pressione noi abbiamo qualcosa di più piccolo anche dell’atomo, qualcosa che implica la suddivisione dell’atomo stesso».

Attraverso queste misure di Thomson, dunque, il «corpuscolo», ovvero quella particella carica negativamente più piccola dell’atomo ipotizzata nel 1897, riusciva finalmente a diventare una realtà fisica ben definita. Anche l’ipotesi di un atomo divisibile diventava una realtà perché, come ribadiva Thomson, «nella convezione di elettricità a basse pressioni abbiamo preso dall’atomo una parte, seppur piccola, della sua massa». La prova identità tra il valore della carica del «corpuscolo» e il valore della «carica unitaria» o «elettrone» consentiva inoltre di rinforzare il concetto stesso di «carica unitaria» e, con esso, il concetto di «ione», collegandoli entrambi a un’ipotesi generale sulla struttura dell’atomo. Ad esempio, come osservava Thomson, se si considerava l’atomo costituito da un insieme di «corpuscoli» e da «qualcosa di positivo» che ne garantiva la neutralità elettrica, «la carica unitaria positiva» risultava essere «la carica di un atomo che ha perso un corpuscolo», mentre lo «ione positivo» risultava essere quell’atomo che aveva perso «un corpuscolo».
Insomma, con l'individuazione del «corpuscolo», tutti i fenomeni elettrici dovevano essere rivisitati. Osservava Thomson:

«Da quanto si è visto, il portatore della carica negativa deve essere una quantità di importanza fondamentale in qualsiasi teoria dell'azione elettrica; infatti non sembra improbabile che esso sia la quantità fondamentale in termini della quale tutti i fenomeni elettrici possono essere espressi. Come abbiamo visto, la sua massa e la sua carica sono invariabili, indipendenti sia dai processi attraverso i quali l'elettrizzazione è prodotta, sia dal gas da cui vengono liberati. Esso dunque possiede le caratteristiche per essere un concetto fondamentale nell'elettricità».

5. Conclusione

Nelle ricostruzioni storiografiche della scoperta dell'elettrone atomico si ha, in genere, la tendenza a dare ampio risalto alla misura effettuata da Thomson nel 1897 sul rapporto massa/carica dei così detti «raggi catodici» e a trascurare la successiva determinazione della carica, rimandando a questo riguardo alle misure effettuate molto tempo prima in relazione ai fenomeni elettrolitici.

Dall'analisi che abbiamo fatto è emerso, invece, che la realizzazione di una misura di carica riferita al «corpuscolo», nell'ambito dei programmi sulla struttura della materia portati avanti alla fine dell'800, risultava fondamentale: il «corpuscolo», infatti, rappresentava una nuova entità fisica, diversa da quelle introdotte in precedenza per interpretare i fenomeni elettrolitici (quali l'elettrone di Stoney oppure l'«atomo di elettricità» di Helmoltz) e, in quanto tale, si configurava come una entità tutta da costruire e da definire. Di qui la ricerca affannosa, da parte di Thomson, di un metodo sperimentale per la misura della carica del «corpuscolo» libero da ipotesi su altre grandezze fisiche, quali atomi e molecole.

Nello stesso tempo la ricostruzione della prima misura della carica del «corpuscolo» ci ha portato a rivisitare tutta una serie di attività promosse da Thomson presso il Cavendish Laboratory e sfociate in seguito nella messa a punto di nuove tecnologie (quali ad esempio la camera di Wilson). Furono infatti queste attività che, opportunamente indirizzate, riviste e modificate consentirono a Thomson, alla guisa di una tela di ragno, di ottenere una misura dei parametri fisici del «corpuscolo». Ma ciò che emergeva da questa misura non era più semplicemente quel concetto di «corpuscolo» introdotto nel 1897 per spiegare una fenomenologia molto specifica quale la radiazione catodica: ciò che ora emergeva era la «grandezza fondamentale» attraverso la quale finalmente si poteva penetrare «nel segreto dell'elettricità», coronando in questo modo le aspettative riposte da Thomson in anni di ricerche teoriche e sperimentali intorno al grande tema della scarica nei gas.
BIBLIOGRAFIA