Gli antidoti come farmaci orfani

La epidemiologia delle intossicazioni acute rappresenta un problema sociale ed assistenziale in continua espansione, da essere considerato sempre con maggiore attenzione dagli operatori sanitari sensibili ai problemi medici attuali e futuri. Le occasioni di contrarre malattie acute e croniche da agenti chimici sono sempre più frequenti: l'aria ambientale può divenire veicolo di malattie per contaminazioni plurime, come l'ossido di carbonio, che costituisce negli Stati Uniti la principale causa di morte per avvelenamento, con una media di 3.500-4.000 decessi annui [1]; il piombo; il cadmio; il mercurio; i gas nitrosi, ed altri_pollutanti atmosferici di origine industriale. Le acque superficiali e marine subiscono una progressiva contaminazione sia per scarico in esse di rifiuti industriali, sia per il ritorno nelle acque di pollutanti atmosferici per mezzo delle piogge. Nell'ambiente sono presenti anche sostanze ad alto rischio come i pesticidi e gli erbicidi, oltre alle numerose sostanze chimiche usate per rendere più appetibile il cibo o per facilitarne la conservazione.

Un recente esempio di «sofisticazione alimentare», che ha provocato un pesante bilancio nel nostro Paese con 24 decessi su 153 soggetti intossicati nel solo 1986 [2], è stato quello riguardante la sofisticazione del vino, al fine di aumentarne la resa alcolica, tramite una quantità di metanolo di gran lunga ecce- dentemente dose consentita.

Se la epidemiologia delle intossicazioni è un problema in continua espansione in tutte le civiltà industrializzate — come si può chiaramente vedere dall’analisi dinamica del numero dei ricoveri per intossicazioni acute nel Servizio Autonomo di Tossicologia dal 1917 ad oggi, riportata nella Tabella 1, e indicativa di una espansione della casistica di un fattore superiore a 10, quando la valutazione sia eseguita sui soli ricoveri per patologia acuta — le cause erziolo-

(*) Dipartimento di Farmacologia Preclinica e Clinica e Servizio Autonomo di Tossicologia, Università di Firenze - USL 10/D.
(**) Presentato al Convegno «Sanità Militare e Farmaci Orfani» (Firenze, 7 Ottobre 1989).
Tab. 1 — Andamento temporale del numero dei ricoveri per intossicazioni acute nell’Unità di Tossicologia di Firenze.

<table>
<thead>
<tr>
<th>Anni</th>
<th>N° annuo medio dei pazienti ricoverati</th>
<th>Rassegne epidemiologiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917-1934</td>
<td>98</td>
<td>Alazzì-Mancini & Donatelli, 1937</td>
</tr>
<tr>
<td>1935-1937</td>
<td>90</td>
<td>Marzi, 1939</td>
</tr>
<tr>
<td>1938-1949</td>
<td>128</td>
<td>Abbazia & Genaizani, 1951</td>
</tr>
<tr>
<td>1950-1952</td>
<td>465</td>
<td>Abbazia, 1953</td>
</tr>
<tr>
<td>1953-1955</td>
<td>375</td>
<td>Beani & Pepus, 1956</td>
</tr>
<tr>
<td>1956-1958</td>
<td>400</td>
<td>Beani, Pepus & Mannocini, 1960</td>
</tr>
<tr>
<td>1959-1964</td>
<td>380</td>
<td>Mannocini et al., 1966</td>
</tr>
<tr>
<td>1965-1969</td>
<td>976</td>
<td>Ledda et al., 1971</td>
</tr>
<tr>
<td>1980-1983</td>
<td>976</td>
<td>Rapporto annuale</td>
</tr>
<tr>
<td>1984-1988</td>
<td>1156</td>
<td>Rapporto annuale</td>
</tr>
</tbody>
</table>

le sono sostanzialmente mutate. Infatti, i dati riportati nella Tabella 2 colpiscono soprattutto per l’espansione della casistica: 96 ricoveri nel 1917 rispetto a 2395 del 1988; ma non possono sfuggire anche le sostanziali modificazioni eziologiche. Nel 1988 sono i farmaci la causa più frequente di intossicazione acuta con 406 ricoveri (Figure 1 e 2), di cui i primi quattro agenti offendenti sono le benzodiazepine, la «overdose» da oppio-narcotici, la intossicazione mista da alcool etilico e da sedativi ipnotici e la intossicazione da antidepressivi triciclici; tali intossicazioni sono assenti nel 1917 (Fig. 3).

Infatti le cause di intossicazione presenti nella casistica del 1917 [3] non compaiono se non in misura minima nel 1988; è ovvio che l’errore di assunzione o di posologia, così come il gesto autolesivo, si compie assumendo ciò che

Tab. 2 — La Clinica Tossicologica nel 1917 e nel 1988: continuità ed evoluzione.

<table>
<thead>
<tr>
<th>Anno</th>
<th>N° dei ricoveri</th>
<th>1° causa di ricovero</th>
<th>2° causa di ricovero</th>
<th>Mortalità %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1917</td>
<td>96</td>
<td>sublimato corrosivo</td>
<td>tintura di iodio</td>
<td>9,6</td>
</tr>
<tr>
<td>1988</td>
<td>2395</td>
<td>etiliamo acuto</td>
<td>benzodiazepine</td>
<td>0,16</td>
</tr>
</tbody>
</table>
è presente nell'ambiente, da cui il suicidio «povero» del 1917 con qualche compressa di sublimato corrosivo o con alcuni millilitri di tintura di iodio, due fra i pochi disinfettanti presenti a quel tempo; la grave intossicazione barbiturica degli anni '50: tali farmaci hanno infatti dominato la scena tossicologica per 20 anni, costituendo negli USA fino al 25% di tutte le ammissioni ospedaliere per cause tossicologiche, con una mortalità dell'8% [4]; ed infine il suicidio «consumistico» degli anni '80 compiuto ingerendo whiskey di qualità in-sieme a benzoïlzezipine dell'ultima generazione (Tab. 3).

I dati fin qui riportati ci sembrano eloquenti nell'indicare le intossicazioni acute non professionali come una nuova patologia emergente a cui gli operatori sanitari debbono rivolgersi adoperando gli strumenti disponibili per realizzare sia una prevenzione primaria che secondaria di tali malattie.

Se la prevenzione primaria si attua attraverso una corretta educazione sanitaria, creando e diffondendo una coscienza tossicologica ed un controllo accurato

<table>
<thead>
<tr>
<th>Veleni Animali</th>
<th>Pz. Ricoverati</th>
<th>Morte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morso di serpenti</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Puntura di insetti</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Veleni Vegetali</th>
<th>Pz. Ricoverati</th>
<th>Morte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funghi</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostanze Organiche</th>
<th>Pz. Ricoverati</th>
<th>Morte</th>
</tr>
</thead>
<tbody>
<tr>
<td>bevande alcoliche</td>
<td>257</td>
<td>0</td>
</tr>
<tr>
<td>detergents</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>etere</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>metano</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>nitroderivati</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ossido di carbonio</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>pesticidi</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>petrolio e derivati</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>sostanze chimiche di uso domestico</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>tricloroetilene</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sostanze Inorganiche</th>
<th>Pz. Ricoverati</th>
<th>Morte</th>
</tr>
</thead>
<tbody>
<tr>
<td>acido borico</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>acidi forti</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>candeggianti</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>sostanze caustiche</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. Intossicazioni acute e numero dei morti per cause non farmacologiche (anno 1988).
della distribuzione dei farmaci, la prevenzione secondaria si articola in una pronta e corretta diagnosi e nell’uso terapeutico di antidoti, di antagonisti e di tecnologie biomediche atte a limitare l’assorbimento, a promuovere l’escrezione o a diminuire gli effetti delle sostanze tossiche. Pertanto, ogni sostanza capace di limitare gli effetti indesiderati prodotti da un’altra sostanza fino ad annullarli, è indicata come antidoto.

Il meccanismo dell’azione antidotale è principalmente fisico: mediante cioè la formazione di legami fisici tra l’antidoto e il tossico; chimico: mediante la formazione di legami chimici di vario tipo; o biologico: attraverso la riparazione o riattivazione di materiali essenziali danneggiati dalla sostanza tossica. Sebbene il numero delle intossicazioni acute sia in costante aumento, gli antidoti sono farmaci di limitata diffusione, anche in considerazione del tumultuoso e rapido variare della etiologia tossicologica, ma di « grande valore » per i singoli malati trattati. Tali farmaci, come del resto quelli usati per le malattie rare o comunque che hanno limitati e magari momentanei campi di impiego, definiti recentemente « orphan drugs », sono difficilmente ottenibili attraverso la ricerca industriale: in regime di controllo dei prezzi non tornerebbero probabilmente i conti aziendali tra costi e ricavi, e per far quadrare i conti qualcuno potrebbe favorire l’estensione dell’uso ad indicazioni non specifiche.

Autorevoli testi, quali il Benedicti, riportano che Cornelio Botaloe, professore di Francoforte morto nel 1685, era solito affermare che « ...per stare bene in salute bisogna fumare molto e bere dalle cinquantina alle cento tazze di tè al giorno!... ». Si riporta anche che ricevette una pensione dal Governo olandese, che aveva allora il monopolo del tè, di 25.000 franchi.
Fig. 3. Avvelenati che furono ricoverati nella clinica tossicologica nell'anno 1917, classificati secondo la specie del veleno.
Dei M. Aiazzi-Mancini, L. Donatelli, 1937 [8].

Tab. 3 — Variazione dell’ezioologia delle intossicazioni acute.

<table>
<thead>
<tr>
<th>Anno</th>
<th>N° dei pazienti ricoverati</th>
<th>Sostanza implicata</th>
<th>Tipo</th>
<th>N° intossicazioni</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1918</td>
<td>75</td>
<td>Mercurio bicloruro</td>
<td>27</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>1953</td>
<td>376</td>
<td>Barbiturici</td>
<td>38</td>
<td>10,7</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>953</td>
<td>Benzodiazepine</td>
<td>132</td>
<td>13,8</td>
<td></td>
</tr>
</tbody>
</table>
I numerosi antidoti oggi disponibili, molto spesso strumenti indispensabili e salvavita, che hanno contribuito al decremento della mortalità per intossicazioni acute nella casistica fiorentina dal 9,6% del 1917 [5] allo 0,16% del 1988, sono per lo più « farmaci orfani », talvolta di difficile reperimento, e nel loro approvvigionamento hanno avuto ed hanno un ruolo importante sia le farmacie ospedalieri che lo Stabilimento Chimico Farmaceutico Militare.

I principali antidoti che anche attualmente possono essere considerati « farmaci orfani » sono riportati nella Tab. 4. Alcuni di essi agiscono diminuendo l’assorbimento delle sostanze tossiche mediante reazioni di tipo fisico o chimico a livello dell’apparato gastro-enterico rendendo la sostanza tossica inassorbibile o la detossicano alterandone la struttura; altri agiscono dopo l’assorbimento con meccanismi specifici a livello dei recettori dell’effetto tossicologico.

Tra le sostanze che agiscono durante l’assorbimento ricordiamo, come « farmaci orfani », il tiosolfato di sodio, che viene somministrato in bolus unico alla dose di 100-500 ml di una soluzione al 10% nella intossicazione per ingestione orale di iodio, specie nella comune forma farmaceutica di soluzione iodo-iodurata (tintura di iodio). Avviene così nell’interno dell’apparato gastro-enterico una reazione di doppio scambio in cui si forma iodo-tetraionato insolubile, che è in questo modo sottratto all’assorbimento. Analogamente, nella intossicazione da solfato di tallio, un comune rodenticida, la somministrazione per via orale di ferrocianuro ferrico potassico (Blu di Prussia) alla dose di 250 mg/Kg porta alla formazione di composti di tallio non assorbibili e quindi facilmente eliminabili per

Tab. 4 — Antidoti come « Farmaci Orfani » — Razionale per il loro uso in Tossicologia.

<table>
<thead>
<tr>
<th>Farmaco</th>
<th>Intossicazione</th>
<th>Razionale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiosolfato di sodio</td>
<td>Iodo</td>
<td>Azione bloccante</td>
</tr>
<tr>
<td>Escianato potassico-ferrico</td>
<td>Cianuro</td>
<td>Detossicazione enzimatica</td>
</tr>
<tr>
<td>Dizzone</td>
<td>Tallio</td>
<td>Azione bloccante</td>
</tr>
<tr>
<td>EDTA dicobaltoico</td>
<td>Cianuro</td>
<td>Azione chelante</td>
</tr>
<tr>
<td>Blu di metilene</td>
<td>Sostanze metemoglobiniogeni</td>
<td>Ristabilirsi per ossidoriduzi</td>
</tr>
<tr>
<td>Tiofungina</td>
<td>Sostanze metemoglobiniogeni</td>
<td>zione</td>
</tr>
<tr>
<td>Tampone Sörensen pH 8</td>
<td>Acidi forti</td>
<td>Effetto tampone</td>
</tr>
<tr>
<td>Fab-digossina</td>
<td>Digitale</td>
<td>Azione bloccante</td>
</tr>
<tr>
<td>Obidossina cloruro</td>
<td>Esteri fosforici</td>
<td>Ristabilirsi enzimatica</td>
</tr>
<tr>
<td>Eserina salicilato</td>
<td>Antidepressivi triciclici</td>
<td>Rimozione dell’effetto atropi-</td>
</tr>
<tr>
<td>Picrotossina</td>
<td>Barbiturici</td>
<td>nosimile</td>
</tr>
</tbody>
</table>
via gastrointestinale (Tab. 5). Nell’intossicazione da tallio può essere usato anche il Ditizone (difeniltiocarbazone) alla dose di 10-20 mg per Kg di peso, con la limitazione a pochi giorni di terapia a causa della sua tossicità. Questo antidoto aumenta l’escrezione urinaria del metallo attraverso la formazione di un complesso chelato.

Tra i chelanti di comune impiego, ma di difficile reperibilità, troviamo anche l’EDTA (edetato) dicobaltico che chela lo ione cianuro (CN⁻) per l’alta affinità tra cobalto e CN⁻, fisiologicamente chelato nella cianocobalamin. L’EDTA dicobaltico è uno degli antidoti interni nell’intossicazione da cianuro, in cui si somministra alla dose di 300-600 mg per via e.v., avendo cura di correggere l’eventuale ipocalcemia, da chelazione di calcio, con appropriate somministrazioni di calcio gluconato.

La neutralizzazione dello ione CN⁻ può essere ottenuta, oltre che con l’EDTA dicobaltico, facendo produrre nell’organismo ferro trivalente in concentrazioni utili a combinarsi con lo ione CN⁻, impedendo così il suo legame al ferro trivalente delle citocromossidasi. Ciò si ottiene somministrando sostanze atte a produrre la metemoglobina il cui ferro trivalente funziona da accettore inerte di CN⁻. La metemoglobina è anche in grado di spostare lo ione CN⁻ già legato alle citocromossidasi, che in tal modo vengono rigenerate ripristinando la respirazione mitocondriale. Il complesso cianuro-metaemoglobina è dissociabile ed il cianuro che si libera viene escreto dal rene come tiocianato dopo la reazione:

\[
\begin{align*}
\text{Na}_2\text{S}_2\text{O}_3 & + \text{CN}^- & \rightarrow & \text{SCN}^- & + & \text{Na}_2\text{SO}_3 \\
\text{tiosolfato} & & & \text{tiocianato} & & \text{solfito}
\end{align*}
\]

di sodio & & di sodio & &

catalizzata dalla solfotransferasi (rod: nasi mitocondriale), che ha il suo fattore limitante nella disponibilità in tiosolfato di sodio. Pertanto la somministrazione di tiosolfato di sodio aumenterà la velocità di reazione e quindi la quantità di cianuro detossificata.

L’efficacia dei vari antidoti nella intossicazione sperimentale da cianuro di potassio nel topo è riportata nella Tab. 6. Il blu di metilene e la tibiona

Tab. 5 — Azione del blu di Prussia sulla escrezione fecale di Tallio nel ratto.

<table>
<thead>
<tr>
<th></th>
<th>1° giorno</th>
<th>2° giorno</th>
<th>3° giorno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trattati</td>
<td>15.300</td>
<td>16.200</td>
<td>16.300</td>
</tr>
<tr>
<td>Controlli</td>
<td>4.200</td>
<td>4.300</td>
<td>5.800</td>
</tr>
</tbody>
</table>

Gli animali trattati avevano ricevuto 30 mg di tallio solfato radioattivo (²⁰⁴Tl) per Kg di peso corporeo per via orale.

I numeri esprimono le c.p.m. per grammo di feci (peso secco).
Tab. 6 — Effetto degli antidoti sulla DL₅₀ di cianuro di potassio nel topo.

<table>
<thead>
<tr>
<th>Antidoti</th>
<th>DL₅₀ di cianuro (µmole/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>81.2 (66.3 - 99.3)</td>
</tr>
<tr>
<td>Na₂S₂O₃</td>
<td>436 (373 - 559)</td>
</tr>
<tr>
<td>NaNO₂</td>
<td>281 (229 - 344)</td>
</tr>
<tr>
<td>CoCl₂</td>
<td>293 (246 - 353)</td>
</tr>
<tr>
<td>Co₂EDTA</td>
<td>204 (166 - 250)</td>
</tr>
<tr>
<td>NaNO₂ + Na₂S₂O₃</td>
<td>968 (789 - 1184)</td>
</tr>
<tr>
<td>CoCl₂ + Na₂S₂O₃</td>
<td>786 (642 - 965)</td>
</tr>
<tr>
<td>Co₂EDTA + Na₂S₂O₃</td>
<td>706 (531 - 940)</td>
</tr>
</tbody>
</table>

sono gli antidoti dell'intossicazione da sostanze metaemoglobinizzanti (anilina, nitrobenzolo, nitriti, clorati, fenacetina) in quanto, essendo sostanze ad elevato potenziale ossido-riduttivo, operano la riduzione della metaemoglobina ad emoglobina. Il loro meccanismo di azione consiste in una serie accoppiata di reazioni redox. In vivo, il blu di metilene viene ridotto nel leuco-derivato in presenza di NADPH; a sua volta il leucoderivato si ossida a blu di metilene riducendo la metaemoglobina ad emoglobina secondo le reazioni riportate nella Fig. 4.

![Diagram](attachment:diagram.png)
Di fronte all’ingestione di acidi forti in quantità importanti, da circa 20 anni, l’unica manovra terapeutica ritenuta valida è, insieme all’intervento chirurgico precoce di gastrectomia subtotale, il tamponamento loco sistemic con soluzione tampone a pH 8 (tampone di Sörensen), come riportato da Guidotti [6]. Anche la prognosi dell’intossicazione acuta da glucosidi digitalici è sostanzialmente cambiata da quando sono disponibili gli anticorpi antidigossina. Terapeuticamente viene usato un frammento dell’anticorpo, il segmento Fab, che mantenendo intatta la sua affinità per l’antigene può essere facilmente eliminato per via renale per il basso peso molecolare.

La rapida clearance sierica della digossina durante la terapia con l’anticorpo è riportata in Fig. 5. Tale farmaco però sia per lo scarso numero di pazienti che ogni anno potrebbero avvalersi di tale terapia, sia per il suo elevato costo, non è ancora disponibile in Italia.

![Diagram](image_url)

Fig. 5. Andamento nel tempo della concentrazione sierica totale di digossina [SDC]ₚ, e di quella libera [SDC]ₚ, in rapporto alla concentrazione degli anticorpi antidigossina [Fab].

Nonostante che il numero delle intossicazioni da insetticidi organofosforici sia ogni anno elevato e con una significativa mortalità [7], l’antidoto di scelta è l’obidossima in quanto più permeabile della pralidossina attraverso la barriera ematoencefalica, consentendo così una migliore riattivazione delle acetylcolinenesterasi cerebrali, ma non è ancora in vendita in Italia. Il meccanismo d’azione di tali farmaci consiste nel loro legarsi, attraverso un gruppo ammonico quaternario, al centro anionico delle acetylcolinenesterasi e, con la rimanente porzione libera delle molecole, al fosforo dell’insetticida che occupa il centro esterasico. Avvenuto il doppio legame, l’intero complesso ossima-fosfonato si stacca dall’enzima, rendendo l’acetylcolinenesterasi di nuovo libera di reagire con l’acetylcolina e quindi di compiere l’idrolisi enzimatica. Va sottolineato che la riattivazione dell’enzima sarà tanto maggiore quanto più precoce l’uso dell’antidoto, poiché le acetylcolinenesterasi fosforilate vanno incontro a rapide modificazioni allosteriche che le rendono non più idonee per operare l’idrolisi dell’acetylcolina anche quando vengono liberate dal gruppo fosforico per intervento delle ossime.

Infine, fra gli antidoti che agiscono come antagonisti competitivi accanto al naloxone, farmaco salvavita nella overdose da oppioidi, all’atropina, utile nella intossicazione da insetticidi fosforici, al recente Ro 15-1788 (Flumazenil, Anexate) nell’intossicazione da benzodiazepine, ci preme ricordare la eserina salizilata (fisostigmina), antidoto nella overdose da antidepressivi tricicli (Tab. 7); infatti pochi milligrammi di eserina somministrati per via e.v. sono in grado di risvegliare il paziente in coma per intossicazione da antidepressivi tricicli nel giro di pochi minuti. Bisogna ricordare a questo punto che nella tossicologia clinica non esistono soltanto «farmaci orfani», ma anche «tecnologie orfane». E’ questo il caso della emoperfusione. Tale tecnologia biomedica consiste nel far circolare il sangue di un paziente intossicato, per mezzo di uno shunt artero-venoso attraverso una colonia di carbone attivato, biocompatibile, in grado di adsorbire le molecole causa di intossicazione, come schematicamente riportato nella Fig. 6.

La emoperfusione è il provvedimento di elezione nelle gravi intossicazioni acute da farmaci con elevati livelli plasmatici, come i barbiturici, i salicilati, la

Tab. 7 — La terapia del coma da antidepressivi tricicli con Eserina salicilato.

<table>
<thead>
<tr>
<th>Paziente</th>
<th>Grado di coma</th>
<th>FC/m</th>
<th>Eserina mg</th>
<th>FC/m</th>
<th>Esito dopo 10'</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>II</td>
<td>120</td>
<td>3</td>
<td>80</td>
<td>risveglio</td>
</tr>
<tr>
<td>RA</td>
<td>III</td>
<td>136</td>
<td>3</td>
<td>92</td>
<td>risveglio</td>
</tr>
<tr>
<td>FS</td>
<td>II</td>
<td>128</td>
<td>4</td>
<td>72</td>
<td>risveglio</td>
</tr>
<tr>
<td>CV</td>
<td>I</td>
<td>88</td>
<td>2</td>
<td>70</td>
<td>risveglio</td>
</tr>
<tr>
<td>SF</td>
<td>II</td>
<td>110</td>
<td>2</td>
<td>82</td>
<td>risveglio-agitazione</td>
</tr>
</tbody>
</table>
Fig. 6. Circuit di emoperfusione.

Fig. 7. Profilo delle concentrazioni plasmatiche del Butobarbital in pazienti trattati o con emoperfusione o con diuresi forzata alcalina o con emodialisi.
Tab. 8 — L'emoperfusione su carbone attivato nella terapia del coma barbiturico.

<table>
<thead>
<tr>
<th></th>
<th>Livelli plasmatici</th>
<th>Clearance (ml/min)</th>
<th>Quantità totale rimossa (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg % pre post</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.M. 31</td>
<td>7,1 3,9</td>
<td>180</td>
<td>1523</td>
</tr>
<tr>
<td>G.A.M. 46</td>
<td>8,5 3,3</td>
<td>170</td>
<td>1870</td>
</tr>
<tr>
<td>A.A. 32</td>
<td>5,8 2,5</td>
<td>135</td>
<td>1205</td>
</tr>
<tr>
<td>R.P.G. 20</td>
<td>8,7 3,8</td>
<td>195</td>
<td>2609</td>
</tr>
<tr>
<td>F.M. 20</td>
<td>8,4 2,7</td>
<td>190</td>
<td>2702</td>
</tr>
<tr>
<td>S.N. 18</td>
<td>5,4 2,1</td>
<td>180</td>
<td>1590</td>
</tr>
</tbody>
</table>

teofillina, in quanto la clearance del farmaco è estremamente più rapida che non con le altre tecniche detossicanti come la diuresi osmotica e la stessa emodialisi (Fig. 7).

I vantaggi della metodica consistono nella massima diminuzione dell'eminvita della sostanza intossicante e nella relativa semplicità e maneggevolezza nell'attuazione, ma purtroppo alcune di queste colonne che si sono dimostrate particolarmente attive nella nostra esperienza, nella detossicazione del grande coma barbiturico (Tab. 8), non sono attualmente più reperibili in commercio.
BIBLIOGRAFIA

