WOJCIECH ZYGMUNT (*)

On the Approximation of Semicontinuous Scorza-Dragonians by the Multifunctions of Carathéodory Type (**)}

ABSTRACT. — Two theorems on the monotone approximation to a multifunction, measurable in first variable and semicontinuous in second variable are given.

Sulle funzioni semicontinue di Scorza-Dragonni e le loro approssimazioni mediante multifunzioni di Carathéodory

RIASSUNTO. — In questa Nota sono dimostrati due teoremi su approssimazioni monotone di una multifunzione di due variabili misurabili rispetto alla prima e semicontinue rispetto alla seconda.

INTRODUCTION

The well known Baire's theorem on the monotone approximation to a semicontinuous function by continuous functions asserts that a real valued function \(f \) of one variable only is lower (resp. upper) semicontinous if and only if there exists a nondecreasing (resp. nonincreasing) sequence of continuous functions which pointwise converges to \(f \). There exist equivalents for multifunctions of this theorem (see for example Aseev [2] and de Blasi [7]). On the other hand, if \(f \) is a real valued function of two variables, measurable in first and lower (resp. upper) semicontinuous in second variable, then it turns out that \(f \) will be a limit of a nondecreasing (resp. nonincreasing) sequence of Carathéodory type functions if and only if \(f \) has the so called Scorza-Dragonni's type property. This has been proved by Zygmunt [15]. The aim of the present paper is to give a set-valued analog of the above fact for compact convex valued multifunctions.

(**) Memoria presentata il 4 luglio 1988 da Giuseppe Scorza Dragoni, uno dei XL.

ISSN 0392-4106
2. - Preliminaries

We assume the reader is familiar with such notions concerning multifunctions as closedness, topologically or metrically lower and upper semicontinuity, \(\Sigma \)-measurability and weakly \(\Sigma \)-measurability with respect to some \(\sigma \)-field \(\Sigma \). In case of need the necessary information can be found in Berge [3], de Blasi-Mijak [8] and Himmelberg [9]. Since for a compact valued multifunction topologically semicontinuity coincides with metrical one and weakly \(\Sigma \)-measurability coincides with \(\Sigma \)-measurability, often we shall simply say «lower» or «upper semicontinuous» and «measurable». Furthermore, the semicontinuity and measurability of real valued functions are understood in the usual sense.

Throughout the paper \(T \) denotes a metric compact Hausdorff space with the Borel \(\sigma \)-finite regular and complete measure \(\mu \) defined on a \(\sigma \)-field \(\mathcal{A} \) of subsets of \(T \) and \(X \) denotes a separable complete metric space. By \(\mathcal{B}(X) \) we denote the \(\sigma \)-field of Borel subsets of \(X \) and by \(\mathcal{A} \times \mathcal{B}(X) \)—the product \(\sigma \)-field on \(T \times X \). \(\mathbb{R}^d \) (\(\mathbb{R} = \mathbb{R}^1 \)) is a \(d \)-dimensional Euclidean space with the scalar product \(\langle a, b \rangle \in \mathbb{R}^d \) denoted by \(a \cdot b \) and with a norm denoted by \(\| a \| = (a \cdot a)^{1/2} \). \(K(a, r) \) denotes the open ball centered at \(a \in \mathbb{R}^d \) and with radius \(r \). If \(A \subseteq \mathbb{R}^d \) is a subset then \(\overline{A} \) (resp. \(\text{co} \ A \)) denotes the closure (resp. the closed convex hull) of \(A \). The function \(s(\cdot; A): \mathbb{R}^d \rightarrow [0, + \infty] \) defined by \(s(p; A) = \sup \{ p(y) : y \in A \}, \quad p \in \mathbb{R}^d \), is said to be the support function of the set \(A \). Finally we denote by \(\text{Conv} \mathbb{R}^d \) (resp. \(\text{Conv} \mathbb{R}^d \)) the family of all nonempty closed (resp. compact convex) subsets of \(\mathbb{R}^d \) and we assume that \(\text{Conv} \mathbb{R}^d \) is endowed with Hausdorff metric \(d \).

Now we are going to define some classes of functions and multifunctions which are of importance in what follows. So, we say that a function \(f: T \times X \rightarrow \mathbb{R} \) is lower Carathéodory's type function (resp. upper Carathéodory's type function, Carathéodory's type function) if

(i) \(f(\cdot, x) \) is \(\mathcal{A} \)-measurable for each \(x \in X \),

(ii) \(f(t, \cdot) \) is lower semicontinuous (resp. upper semicontinuous, continuous) for each \(t \in T \).

At this point let us notice that the concept of Carathéodory type function is also well posed for every function with values in topological space.

Next, we say that a function \(f: T \times X \rightarrow \mathbb{R} \) belongs to the class \(SD^* \) (resp. \(SD^+, SD \)) if \(f \) is lower Carathéodory's type function (resp. upper Carathéodory type function, Carathéodory's type function) and for every \(\varepsilon > 0 \) there exists a closed subset \(T_\varepsilon \) of \(T \), with \(\mu(T \setminus T_\varepsilon) < \varepsilon \), such that the restriction \(f|_{T_\varepsilon \times X} \) is lower semicontinuous (resp. upper semicontinuous, continuous) in both variables jointly. For a multifunction \(F: T \times X \rightarrow \text{Conv} \mathbb{R}^d \) we introduce the same classification.
3. SOME AUXILIARY LEMMAS

Lemma 1: A function \(f: T \times X \to \mathbb{R} \) belongs to \(SD^* \) if and only if there exists a nonincreasing sequence \(\{f_n\} \) of Carathéodory type functions \(f_n: T \times X \to \mathbb{R} \) which pointwise converges to \(f \).

Proof: See Zygmunt [15, Theorem 3].

Lemma 2: Let \(A \in \text{Conv} \mathbb{R}^d \) and let \(\{p_1, p_2, \ldots\} \) be a dense set in the unit sphere of \(\mathbb{R}^d \). Then

\[
A = \bigcap_{n=1}^{\infty} \{ y : p_n \cdot y < s(p_n; A) \}, \quad \overline{K(A, \varepsilon)} = \bigcap_{n=1}^{\infty} \{ y : p_n \cdot y < s(p_n; A) + \varepsilon \}.
\]

Proof: Easily follows from the best known properties of the support function \(s(\cdot; A) \) (see for example Blagodatskii ... [4]) which is continuous on \(\mathbb{R}^d \) (see Artstein [1, Lemma 3.1]).

Lemma 3: Let \(p \in \mathbb{R}^d \) and let a multifunction \(F: T \times X \to \text{Conv} \mathbb{R}^d \) belongs to \(SD^* \). Then the function \(f_p: T + X \to \mathbb{R} \) defined by \(f_p(t, x) = s(p; F(t, x)) \) belongs to \(SD^* \).

Proof: We observe that, for every \(r \in \mathbb{R} \),

\[
\{(t, x) \in T \times X : f_p(t, x) > r\} = \{(t, x) \in T \times X : F(t, x) \cap \{ y \in \mathbb{R}^d : p \cdot y > r\} \neq \emptyset\}.
\]

Now it is not difficult to deduce that \(f_p \in SD^* \).

Lemma 4: If multifunctions \(F_i: T \times X \to \text{Cl} \mathbb{R}^d, \ i = 1, 2, \ldots, n, \ n \in \mathbb{N} \), are closed and a multifunction \(G: T \times X \to \text{Conv} \mathbb{R}^d \) is upper semicontinuous, then the multifunction \(G \cap \bigcap_{i=1}^{n} F_i: T \times X \to \text{Conv} \mathbb{R}^d \) is upper semicontinuous.

Proof: By virtue of Berge [3, Chapt. VI, § 1, Theorems 5 and 6] the multifunction \(G \cap \bigcap_{i=1}^{n} F_i \) is topologically and hence metrically upper semicontinuous. Thus it is simply upper semicontinuous.

Lemma 5: If a multifunction \(F: T \times X \to \text{Conv} \mathbb{R}^d \) belongs to \(SD^* \), then there exists a Carathéodory type function \(r: T \times X \to [0, \infty) \) such that

\[
F(t, x) \subset K(\theta, r(t, x) + 1)
\]

for each \((t, x) \in T \times X \),

where \(\theta \) denotes the origin of \(\mathbb{R}^d \).
PROOF: Let us put \(\varrho(t, x) = \sup \{ y : y \in F(t, x) \} \), \((t, x) \in T \times X\). Thus defined function \(\varrho : T \times X \rightarrow [0, \infty) \) belongs to \(SD^\ast \). To see this, notice that for each \(a \in \mathbb{R} \) we have

\[
\{(t, x) \in T \times X : \varrho(t, x) > a \} = \{(t, x) \in T \times X : F(t, x) \cap K^\ast(\theta, a) \neq \emptyset \}
\]

where

\[
K^\ast(\theta, a) = \begin{cases}
\mathbb{R}^n \setminus K(\theta, a) & \text{if } a > 0, \\
\mathbb{R}^n & \text{if } a < 0.
\end{cases}
\]

Thus, in view of Lemma 1, there is a Carathéodory's type function \(r : T \times X \rightarrow \mathbb{R} \) which satisfies, for each \((t, x) \in T \times X\), the inequality \(\varrho(t, x) < r(t, x) \). Then, obviously, \(F(t, x) \subset K(\theta, r(t, x) + 1) \).

4. MAIN THEOREMS

THEOREM 1: Let a multifunction \(F : T \times X \rightarrow \text{Conv } \mathbb{R}^n \) be given. Then the following two statements are equivalent:

(a) \(F \in SD^\ast \),
(b) there exists a sequence \(\{ F_n \} \) of Carathéodory type multifunctions \(F_n : T \times X \rightarrow \text{Conv } \mathbb{R}^n \) satisfying, for each \((t, x) \in T \times X\), the conditions:

\[
(b_1) \quad F_n(t, x) \subset F(t, x) \quad \text{for } n = 1, 2, \ldots,
\]

\[
(b_2) \quad F_n(t, x) \subset F_{n+1}(t, x) \quad \text{for } n = 1, 2, \ldots,
\]

\[
(b_3) \quad F(t, x) = \lim_{n \to \infty} F_n(t, x) = \bigcup_{n=1}^{\infty} F_n(t, x).
\]

(The limit

\[
A = \lim_{n \to \infty} A_n,
\]

where \(A, A_n \in \text{Conv } \mathbb{R}^n, \quad n \in \mathbb{N} \), means \(\lim d(A_n, A) = 0 \).

PROOF: \((b) \Rightarrow (a)\). By Himmelberg [9, Theorem 2.3] \(F(\cdot, x) \) is weakly measurable for each \(x \in X \) and by Hukuhara [10, Propositions 1.2 and 7.2] \(F(t, \cdot) \) is lower semicontinuous as the limit of a nondecreasing sequence \(\{F_n(\cdot, \cdot)\} \) of continuous multifunctions. Now let's fix \(\varepsilon > 0 \). Since every Carathéodory's type compact convex valued multifunction has the Scorza-Dragoni property (see Brunovsky [5, Theorem 2.5]) we can obtain a sequence \(\{T_n\} \) of closed sets such that, for \(n = 1, 2, \ldots, \quad T_n \subset T_{n-1} \) where \(T_0 = T_1, \mu(T_{n-1} \setminus T_n) < (\varepsilon)^n \) and the restriction \(F_{n|T_n \times X} \) is continuous in both variables
jointly. Then the set \(T_s \subset \bigcap_{n=1}^{\infty} T_n \) is closed, \(T_s \subset T \), \(\mu(T_s \setminus T_n) < \varepsilon \) (see Zygmunt [15]) and each multifunction \(F_n \) is continuous in both variables jointly on \(T_s \times X \). Hence the multifunction \(F = \bigcup_{n=1}^{\infty} F_n \) is lower semicontinuous on \(T_s \times X \). Thus \(F \in SD_\ast \).

(a) \(\Rightarrow \) (b). Since any multifunction belonging to \(SD_\ast \) is weakly \(\mathcal{A} \times \mathcal{B}(X) \)-measurable (see Zygmunt [16, Theorem 3]), by a Rybiński's result [14, Theorem 3] (see also Kim, ... [12, Lemma 5.2]) there is an infinite sequence \(\{ f_n \} \) of Carathéodory type selections \(f_n : T \times X \rightarrow \mathbb{R}^d \) of \(F \) satisfying, for each \((t, x) \in T \times X \), the equality

\[
F(t, x) = \bigcup_{n=1}^{\infty} \{ f_n(t, x) \}.
\]

For every \(n \in \mathbb{N} \), let \(F_n : T \times X \rightarrow \text{Conv} \mathbb{R}^d \) be the multifunction defined by

\[
F_n(t, x) = \overline{\text{co}} \{ f_1(t, x), f_2(t, x), ..., f_n(t, x) \}.
\]

Clearly, for each \(t \in T \), \(F_n(t, -) \) is continuous and, for each \(x \in X \), by Himmelberg [9, Theorem 9.1] \(F_n(\cdot, x) \) is weakly measurable. Thus \(F_n \) is a Carathéodory's type multifunction. Obviously such a defined sequence \(\{ F_n \} \) satisfies the conditions \((b_1) \) and \((b_2) \) while the condition \((b_3) \) follows from Hukuhara [10, Proposition 1.2]. This complete the proof of Theorem.

Theorem 2: Let a multifunction \(F : T \times X \rightarrow \text{Conv} \mathbb{R}^d \) be given. Then the following two statements are equivalent:

(a) \(F \in SD_\ast \),

(b) there exists a sequence \(\{ F_n \} \) of Carathéodory's type multifunctions \(F_n : T \times X \rightarrow \text{Conv} \mathbb{R}^d \) satisfying, for each \((t, x) \in T \times X \), the conditions:

(b1) \(F(t, x) \subset F_n(t, x) \) for \(n = 1, 2, ..., \)

(b2) \(F_{n+1}(t, x) \subset F_n(t, x) \) for \(n = 1, 2, ..., \)

(b3) \(F(t, x) = \bigcap_{n=1}^{\infty} F_n(t, x) \).

Proof: (b) \(\Rightarrow \) (a). Similarly to the proof of part (b) \(\Rightarrow \) (a) of the previous Theorem 1, employing Himmelberg's result [9, Theorem 3.5 (iii)] and Hukuhara's result [10, Proposition 1.2 and 7.1] we show that \(F \in SD_\ast \).

(a) \(\Rightarrow \) (b). Let \(\{ p_1, p_2, ... \} \) be a dense subset of a unit sphere in \(\mathbb{R}^d \). Let \(f_i : T \times X \rightarrow \mathbb{R} \), \(i = 1, 2, ..., \) be a function defined by the formula \(f_i(t, x) = i(p_i; F(t, x)) \), \((t, x) \in T \times X \). By Lemma 3 every \(f_i \) belongs to \(SD_\ast \) and,
hence, by Lemma 1, there exist sequences \(\{f_{i,j}\} \) of Carathéodory type functions \(f_{i,j} : T \times X \to \mathbb{R} \) such that

\[
f_i(t, x) < \ldots < f_{i,j+1}(t, x) < f_{i,j}(t, x) < \ldots < f_{i,1}(t, x)
\]

and

\[
\lim_{j \to \infty} f_{i,j}(t, x) = f_i(t, x) \quad \text{for } i = 1, 2, \ldots, (t, x) \in T \times X.
\]

Put

\[
H_i(t, x) = \{ y \in \mathbb{R}^s : p_i \circ y < f_i(t, x) \},
\]

\[
H_{i,j}(t, x) = \{ y \in \mathbb{R}^s : p_i \circ y < f_{i,j}(t, x) + \frac{1}{j} \}, \quad i, j = 1, 2, \ldots, (t, x) \in T \times X.
\]

It is easy to verify that such defined multifunctions \(H_i : T \times X \to \text{Cl} \, \mathbb{R}^s \) and \(H_{i,j} : T \times X \to \text{Cl} \, \mathbb{R}^s \) are of Carathéodory type and have the following properties:

\[
F(t, x) \subset (K(F_i, x), 1/j) \subset H_{i,j}(t, x), \quad i, j = 1, 2, \ldots, (t, x) \in T \times X,
\]

\[
H_{i,j+1}(t, x) \subset H_{i,j}(t, x), \quad i, j = 1, 2, \ldots, (t, x) \in T \times X,
\]

\[
F(t, x) = \bigcap_{i=1}^{\infty} H_i(t, x) = \bigcap_{i=1}^{\infty} \left(\bigcap_{j=1}^{\infty} H_{i,j}(t, x) \right), \quad (t, x) \in T \times X.
\]

Let, further, \(r : T \times X \to [0, \infty) \) be a function defined as in Lemma 5. Then the multifunction \(G : T \times X \to \text{Conv} \, \mathbb{R}^s \) given by formula

\[
G(t, x) = K(\emptyset, r(t, x) + 1)
\]

is obviously of Carathéodory type. Now define, for each \(s \in \mathbb{N} \), the multifunction \(F_s : T \times X \to \text{Conv} \, \mathbb{R}^s \) as follows

\[
F_s(t, x) = G(t, x) \cap \bigcap_{i=1}^{s} H_{i,s}(t, x), \quad (t, x) \in T \times X.
\]

We claim that \(\{F_s\} \) is the required sequence of Carathéodory type multifunctions. Indeed, first of all, by standard argument we easily obtain that, for each \((t, x) \in T \times X \),

(i) \(F(t, x) \subset F_s(t, x) \) for \(s = 1, 2, \ldots, \)

(ii) \(F_{i+1}(t, x) \subset F_i(t, x) \) for \(i = 1, 2, \ldots, \)

(iii) \(\bigcap_{s=1}^{\infty} F_s(t, x) = \bigcap_{i=1}^{\infty} H_i(t, x) = F(t, x) \).
Further we conclude that, in view of Himmelberg [9, Theorem 4.1], $F_n(t, x)$ is weakly A-measurable for each $x \in X, n \in \mathbb{N}$, and, by Lemma 4, $F_n(t, \cdot)$ is upper semicontinuous for each $t \in T, n \in \mathbb{N}$. Next, since $F_n(t, x)$ has a nonempty interior (namely, it is $F(t, x) \cap \text{Int } H_{\alpha}(t, x)$, $i = 1, 2, \ldots, n$) it follows (see Lechicki, ... [13, Theorem B]) that $F_n(t, \cdot)$ is lower semicontinuous for each $t \in T, n \in \mathbb{N}$. Thus $F_n(t, \cdot)$ is continuous. Finally we see that $F_n : T \times X \rightarrow \text{Conv } \mathbb{R}^n$ is a Carathéodory's type multifunction for $n = 1, 2, \ldots$ and $(t, x) \in T \times X$. This completes the proof of Theorem 2.

Remark: A result closely related to the above theorem, part (a) \Rightarrow (b), was first given by Jarník and Kurzweil [11, Theorem 2.5]. Namely, they proved that if a multifunction $F : T \times X \rightarrow \text{Conv } \mathbb{R}^n$ belongs to SD^*, then there exists a sequence $\{F_n\}$ of Carathéodory type multifunctions and a measurable set $Z \subset T$ so that $\mu(Z) = 0$,

$$F_n(t, x) \subset F_n(t, x), \quad n = 1, 2, \ldots,$$

$$F(t, x) = \bigcap_{n=1}^{\infty} F_n(t, x) \text{ for } (t, x) \in (T \setminus Z) \times X,$$

$$F_n(t, x) = \emptyset \text{ for } (t, x) \in Z \times X, \quad n = 1, 2, \ldots.$$

REFERENCES

