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Lattice-Thearetic Aspects of Dactrines and Hyperdoctrines (*%)

Aspetti reticolari di dourine ¢ iperdorteine

IxtrovucTiod

Lavwevece [6] introdueed doctrines and hyperdoctrings on a bse catcgory €
a1 contravariant functors £: ¢ —» CAT such that for cvery morphism | the
fanctoe P(f) has a left adjoine 3, and—in the case of hyperdoctrines—alio &
right adjnine ¥,. In common examples £(A) is the poset of subobjects of A
and P(f} the invezse image opesatas along /o
In shis paper we introduce categories 0f posets which bre esdomain cate-
by (direce and inverse) transfer
ofsuhhpm for r=‘u|ll> logiaal, Heyting and boolean categaries (see [8]).
Actually we introduce genclizations of the ltter forgetting preducts o
replacing them by 1 monoidal structute; these mlLbe-LIndnhwla i
J.g..' subleyting, ribivolorn and rogulir siveldel can Corsspoading w0
such categories we introduce ralegorier of pastie (respectively semilattices, distsi-
butive lattices, Heyting algebeas and boolean algebras) and vemesiont Girloir
ommaions. As in these categorics the ndubects eorrespsud o prineipal ddeals we
prove them to be respectively subregular, sublogicil, subHeysing and sub-
Boolean and their « Sub» ficers to be respectively subregolar and 56 o
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Moreover we show that ewry semilattics, distributive lattice, Heyting algebra
and boolean algebes is immerplic 1o a peial of evbsbpects in the above categories.
Finally we prove that she censtracrion of Sub is «.amirersal .

Analogous results were sbtsined by Geandis [3] (sce also [4]) for exact
catcgaries (in the sease of Puppe-Mitchell),

GENERAL ConvewTions; ‘This paper eoncems pairs (€, ) where © i &
catcgory and . 3 subratcgory. of « distigguisbed masas n such that Teog € 4G
€ Menog; for cach object A ot €, we write Sub (1) the poset of J-sub-
objects of A, which we ahrays assume 1o be sanll. Actually, for the sake of
brevity, a « calsgory » € will mean sach 1 pair and 1 « fisvser » will be assumed
to preseeve distinguished monos. In such & category 8 morphism / will be
said o be surjective if / = mg with me A, imply w 50, The categorics Sef
of seis and mapping and Fer ot pasess and order-preserving mappiogs bave
all monos as distinguished ones: tor S0, the opposite of the category of
semilattioss (= infsemilatices with 1) and bomomorphisms, we choose the
regulir monos (= susjective homemorphism of $C/) as distinguished ones,
In categorics where maps are cermain Galofs connectians we choose a5 distin-
guished monos those &~ u* such that u; is an injective mApplog

1 - Dinrcr AND INVERSE IMAGES OF SUBGDJECTS

1.1, We shall say that a category € has dmerse imager if the follawing pull-
Backs (7 )

“ =]
e s

exists and /1 5)e A

If € his inverse images then we get the funcior Sub: € — 36/, seting
Sub (4-5 B) = Sub () £ Sub (A); it cleacly preserves inverse images. More-
oves an inverscimage preserving fanctor Fi € » 1 between categories with
inverse images yicds 2 natural tansformation Sub”:Sub F—» Sub'C — St
wking % to F(x).

1.2. We say that o categoey € has divnt imges if:

i) for each map / of € there is n smallest subobject i f theough which
J factors;

i) for each f: A B sutjective () and for cvery »% Be .l thre s
#o A e M such that im (/) =y

) By i) = moephisen s vuricsbee {scconding t0 oue somvensiom) iffimf = 1.
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Now if we st 3(x) = im (/) for all fz A~ and x& Sob () we get
o foncion fiom Sab () to 5ub (8); by . /5 srfesve
iﬂ,:.mmummm Morcover if & bas the following property

e K and o a iply € €4

g vy cuegory i it s e g peviog
'Smur Sub: € - far; mareover 3 cror 1€ D between Categories
with dircet ingapm«mmmm’ Sub -+ Sobe 1€ For It natural.

1.3 Divirrion: A caiegory € is inbregular if it bas direct and inverse
fmages, A functor is sbragaler if it prescrves direer and inverse images.
14, I € has inverse images the following conditions are equivalent:
) 121} s verified,
) cvery mapf of € factors as f = 3z with g surjective and y in X,
o) foc every map [ of €, £ has & lefe adjoint 3,

d) for cvery map f of © there Is & smallese distinguished subobject y
ot Bk P

15, Let € have fnverse images and verify 1.20); then 3, i lft adjaine
£~ and the following conditions ase equivalent:

) @ s subrogulae (namely 1.21) Is verified),

) i f is surjective then 3,7t =1,

) i [ I surjecive, In evory inversc image squire fx=5f* (11 (A))

o the map 7 s s,

E I)(Mm&&:)fmevcrymvm image square fie=f" (11 (D)
3 we r.m a,r- 3,

X Cbrmis ugoeci) foc cvety f: A B, x2S (), yeSub ()

i 3,{_["(;)!.:) = 3735
1) for every £, 3, = —pim}.

L6, From a spntactical point of view a subeegular eategory is dharsterizel
by the following « decirinsls daias for all f: A -+ B we lave order-preserving

B [A30x =,
& BN =3
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2. - FROBENIUS RECIFROCITY AND GALOIS CONNECTIONS

We introduce the subregular category Ce8/, which « simulates » the diteer
and inverse images of subobjecrs in subregulae categories.

2. Say @aSL¢ the caregory whose objects are (l-inf) semilanices and
‘whose mups aee sailaftive commerions (ot Frobenius connections (1)) namely

) ST T

where u. and 5* arc orderpreserving mappings such that:
s =1, ses,
W {AS) = 1A
The compasition is:
W= (1, )P ) = (W, ).

), 1eS, reT.

22. Now for re§ the principal ideal }(s) = brefinc) yidds o semi-

latioe connrerion (1) ¢y § (conversly a 1-posee 5 with this peoposty, for

all 765, is necessarly a semilaeice). Given a semilatice connection 42 4 -+ T

we get a factorization through w(5) = §(r.(1)} (tzivially a. ;.ncl(u.(u) w!mr
distinguished

2 (1) gives 4= fpundl) = wane (1)); thesefore we chovse
monos the semilattice connections # such that g, =1 (i.c., 4. is injective).

2.3, Prorasivion: Gisen S semilatiive riore are (natural) issmerpibirns of posets
Chemee of semilastice)s
5 = Sub () ~ CaSEr (5, 2)
where 2 1 the e poist (fosally) ardored set.
Proor: The map 4 &' Sob () givés the first iso by 2.2:

we get a semilatice connection 7,: § — 2 devermined by 73(1) =
Thus we have that Sub (f) = (}(s): 10 5) in CaBLr,

2.4. Puorosteion: CaSSr is o subregslar catugery; for every noeilittice con.
retios duve:

T, e

) W) = | () = wTHA) for &l 1ET,
£) 3.G00) = o)) = wlyle)) for il v 8.

(%) Galoia comnections saiviying Frokeniua reciprcciey (7.

e
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By, abreguler. caiegity € yilés o anlevgnior fiactsc Sub: € ox CASCI aiting
Sub (/) = (/-

Pacor: The tight-hand equalities in a) and i) are obvious. Taking the
lefi-hand oncs a3 definitions, it is easy 0 prave that the condicions 1.6 }-5)-¢)
bold. Lase, if e X then 3, = ma—, thus Sub () = {(m); given an inverse
image square (1.1 (A)) we have thar (f~1(5}) is the inversc mage of 4(3)
along Sub(f) in CaSLs, by a), hence Sub preserves inverse images; it also

prescrves direct images; :ffunmh:llr:ﬂ:n&uh([)lillﬂqa:ﬂve:np
B Caots and we condiude Wi (14 B).

2.5. Thete acc ndbregaler fongetfal funciors D3 CaSCs - Seh, A CaBLs 8L
sespecrively taking u to w, and wt; by (23) the functor Sub: CaBL/ — CaBts
s dmmerphic to the identity funcior,

2.6. Now eonsider an intersection-preserving functor F; € — 4) berween
subregular categorics. As Sub need not have a right (or left) adjoint even
if F is subtegular, we do not get a natural transformation Sub” = (Subf).
Thercfore in order to formalize Sub® (27) we introduce the duble aregory
CnSLt whose cells are the squares

L

whers b, & ace semilantice hanomorphisms and x, » are semilauice eonneetinns
such st the square Birammes (ie. Av, = u.b, hue o= v+ ).
Similarly to [3, 47] we have:

27, Puorosrrion: Subr:Sub e Sube 1€ — CnSLt i « harigantal fransfer-
mation of vertical functees> {or & CuSLt-wis fronsformatios) iff F is swbreglor.
Puoor: In fact we ger that for cvery f1 A = 8
Sob () 2% Sub (FA)
% in ]
Subs (B) oz Sub (F8)
bicommates iff F is subregulac.

- Disvaasirive, HITING AND CLOSULE CONNECTIONS

3.1, For sidygieel cstegorics, ic. vubregulae ones with stable finite sups,
we get the same sesults if we. substitate CaSC/ with, the category CaDs of
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disteibutive lastices and distributive conmecrivns, ie. semilattice connections whose
contravatiant mapping preserves fnite sups. A lastice D is distributive if
for cach #'& D, |(d) =D §s a distributive connection; hence we have that

D = Sub (D) = eDes (D, 3)
and Sub (D) is the lattice of the principal ideals of /3.

3.2, A further step will be provided by the category Ca¥e of Heyting
algebeas and. Heyting oanwtions (), e, semilattice comneetions (1., i) such
that - has & right adjoint 4,).

Let H be a Heyting algebra: for every ba H, (inclusion, —ib, b
4(B) + H is a Heyting connestion; conversely 4 lattice with this propert
necessarly a Heyting algebes. Now, given A we have in Catiept

2 = Sub (M) = exkeyi(H, 3)

thius Sab (#) Is the Heyting algebes of the principal ideals of A1
A eategory € i subFlepting if it is subsegulae with finite sops and for every
3 A B the £ bas a cight adjoin Y, so that we gec 8 dypendoctrisal situation:

s-h(.dl)f'-.._r Sub (B}
pr 2

/-4~ ¥, and Frobenius reciproeity hold.
Given 3 subHeyting category  we get a functor Sub: € —» Caleys (since
Sub (4) bas implication if A" has 4 right adjoint for all a & Sub (). OF
course the sutegery CoXept ir mbHigring itself, with
A (L) = o ()
GE) = b)),
VHB) = imtd) .

wheee # #5 2 Heyting connection from # w K, be H snd ke K; moreover
Sub is mibbieyting, . prescrves fisite sups, /3, 3, and ¥, for all map f of €.

3.3, For subbvalsmn categories, fie. sublogical onct with complements” of
subobjocts, we Intraduce the category CaBse of boolean algebeas and distri-
butive conncerions {or Heyting connections:

If (i, 0t} i & disribusive connoction then ay = wn

) A Feyting connection kerween Iocales i cxsetly s opest s {51 (7}




=
s right adjoine to #7) ; also in this e
B = Sub (8) = Callenls (B, 12)

~where i is 2 boolean algebea and £ is the four-point boolean algebra.

34, We refer the reader (o (2] fur the notions of closure and universal
closure operator.

Let €/841 be the categury whone objects ace dosmre ssilattives, L6, pairs
{8, where § is & semilattice and - a closute opeaitor 0n 5, and whose maps
are closre comestions, Le. ai (8, ) —= (T, %) semilattice connection such that

) =) forll 16 T Given  closure. scmilastice we can extend the first
: thetefore CIBLY ir ibregaler and it bas & wioersal clsare operater,

> CI8T i a closure functor.

- REGULAR MONGIDAL CATECORIES

o an be charicieined s syt g (€)
subregulic

Regular
mn_mn.mmmm e C
{see [8]-

42, Derixmmo: A monoidil category (€, 5, 1) will be sid to be reguler
smeasidel if it is subtegubr and ©: €xC—-C is subregular,

43, Thus the product of semilattice coanections § % 7, &% T"
axpem (K 0 X0 ) S S T T

defines 2 (non-caeesian) moneidal structure on CaBL, whose identity is the
one-point lattice, in such o way thar (€x8Cs, x, 1) i regular monoidal.

44, Recall that the eotcect notion of morphism
Fr (€@, 1) - ©,2, 1)
for monoidil categories requires the existence of cinonical atrows
raFr
FAG FB > F(AD By,
satisfying axioms: MFI, MF2, MF3 in [1].
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45, We say that a vestical funcior F: € - CaSLe, where (Ci, J) is a
monoidal category, Is borégantaily mossidol i there is ¢ FA FB— F(A B}
horizontal rransformation of vertical fusctors sach that far the unique seri-
lattice homomorphism 1 — F7 the axioms MF1, ME2, MF3 old (3,

4.6, Prowosrmion: If € s regular mesaidal thon Sub: @ = CoSLE ir prr-
Heally smbregstar avd Morizsntally monsidad,

Proor: Using 2.7, the subregularity of & yields  hotizontal teantforoma-
tion 18, Sub (A} Sub () » Sub (A B) mking (%,3) to x@): ta cam-
plete the proof we have to show that 15, verifies the axioms MP1, MF2, MF3
which is tedious, but obvious]

5. - Tue LARGE Sub Foscron

To stady the daivessaliiy of Sub conseractions v introdice some large
cxtegorics.

5., Say BREM the category of subregalar caregorics and subregalar func-
toss; vay REY the cacegary of regular mosoidal categories and. subregular
moaoidal functor,

5.2, Remark that given 2 semilattice homomorphism §.A.5' the isomor-
phistm of 2.3 yields 3 homormatphism 4: Sub (5) —» Sub (§") where (1)) =
= {{4#) for 1e.8; thus Sub: CnSLt -~ CoSLe is a double functor,

53, We inoduce the o fviommesises category BREFICoSLt. The
slets are the subrogular ventical functors of codomsin CnSLE Le. F: €
—+ CadEl i

The surphisms are the wisngles ()

where  is subsegular and o's F -+ Gfi@ — CSLt is & horfzontal transforma.
ton of vestical funcioss fi.e. of assigns to every object A of € & semilastice

14 Notiee dhat these which ll cnnzer
the comumamtivity ssaription it unssbigan.

- —
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4 s GfA so that for each x: A - 8 in © the square

FAY, ¢
" o

FB—» Gff

s bicommunative); we also reguire that, for each A, these 15 2 commutative
squise
Sub (F) —2s Sub (GEA)

(] £ g,
Sub (A) o Sub(fA4)
s Wy Flm) = G(w) for all a e Sub ().

Compoditiar: Given (€, F) 2220 (D, G) L2, (6, H) we define

(5 )elfi ) = fi )

where
o = vtgonly FA = HgfA, A object of €

We have o forgeul funcoor « domal » Dom: SREOCnSLt
..nszalmung Do (. ) o= £ e intead o find  left adjoint &0 Do,
5.5 Thus we define Sub: SRS — SREG{CnSLe tking a subregular
functor : € » D to the triangle
€22, CnSLt
o,
i
In fact it is 3 consequence of 2.4 and 2.7
5.6. Prososmiox: DomSab =1 and Sub ir /ji adjint ts Dom.
Proor: We make the counit fo be gey,= (e, Sub7):(C; Sub) = (€, F)

where SabF s obiained composing Sub” with the isa Sub F = F (2.3); the
natwealivy of ¢ it exactly the commutativiey of 5.3 (8).




——
5. Last, consides the cawgory RE9{CnSLe whose sijvts are vertically
subregular and horizontally monoidal (4.5) fanctos of codomain CoSLe fad
whose morpbicws ate « wlangles (5.3) (/) with £ in REQ. Composisior a5
in SRETJCnSLe.

S8, Provostrione:  There are fusciors
LG 2> AEG(CnSLe
awch that Dom Sub we 1 and Sub i Jft adjsint i Do,

Proor: wwms;m s defined; follawing 5.6 the couni gey, it
the composi

‘where the horizontal transformation g, is defined s the composite
Sub Fit ¢ Sub 8 2hee, Sub (FA x FB) 522, Sub (F(AD B)
fot cach A, B in €.

59. A similar global preseneation can b gives. for the results of 4. 3.
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