LAURA BADER (*)

Isomorfismo di H-anelli semplici e artiniani (**)

On simple Z-ternary algebras with minimum condition for one-sided ideals.

Summary. — By using the classifications given by F. Bartolozzi, G. Panella [1] and L. Propera [6], we find some characteristic conditions so that two simple artinian Hestenes ternary rings come to be isomorphic.

1. Introduzione

Successivamente, sono stati classificati gli H-anelli semplici e artiniani (a destra e a sinistra), provando che esauriscono (a meno di isomorfismi) le seguenti classi:

Classe A (F. Bartolozzi e G. Panella [1]): Siiano k un corpo, τ un suo antiautomorfismo involutorio, V e W k-spazi vettoriali (sinistri2), non

(*) Istituto Matematico «Renato Caccioppoli», via Mezzocannone 8, 80134 Napoli. L’autore appartiene al G.N.S.A.G.A. in qualità di borsista del C.N.R.

(**) Memoria presentata dal socio C. Miranda il 10 febbraio 1979.

(1) I numeri in [] si riferiscono alla bibliografia in fine della presente Nota.

(2) Se $G(+) \equiv$ gruppo abeliano e f, q sono elementi di $\text{End}(G)$, decidiamo di definire $f q$ con la posizione $x (f g) = (x f) g$ se $x \in G$ e di strutturare $G(+) \equiv k$-spazio vettoriale (sinistro) T fissando un antiomorfismo $k \rightarrow \text{End}(G)$ del corpo k all'anello End(G), che manda l’identità nell’identità. Con tali convenzioni, e indicando con ax l’elemento di G trasformato del suo elemento x con l’immagine in $\text{End}(G)$ di $a \in k$, ha senso la scrittura axp e p è applicazione k-lineare da T a un k-spazio vettoriale.
nulli e) finitamente generati, \(b : V \times V \rightarrow k \) e \(g : W \times W \rightarrow k \) forme sesquilineari (a destra, relative a \(\tau e \)) non degeneri che se non sono hermitiane risultano contemporaneamente alternanti. Appartiene alla classe A l’H-anello il cui gruppo additivo sostegno è \(R = \text{Hom}_k (V,W) \) e la cui operaione ternaria è definita dall’applicazione \(R \times R \times R \rightarrow R \) nella quale \((p, q, t) \rightarrow pq^* t \) se \(p, q, t \in R \), ove \(q^* \in \text{Hom}_k (W,V) \) (aggiunto a sinistra di \(q \) rispetto ad \(b \) e \(g \)) è individuato dalla pretesa \(b \langle v, wq^* \rangle = g \langle vq, w \rangle \) se \(v \in V \) e \(w \in W \). Scriviamo \(R = k (\tau, n, m, b, g) \), avendo posto \(n = \dim V \) e \(m = \dim W \).

Classe B (L. Profera [6]): Siano \(k \) un corpo, \(V \) e \(W \) \(k \)-spazi vettoriali (sinistri, non nulli e) finitamente generati. Appartiene alla classe B l’H-anello il cui gruppo additivo sostegno è \(R = \text{Hom}_k (V,W) \oplus \text{Hom}_k (W,V) \) e la cui operaione ternaria è definita dall’applicazione \(R \times R \times R \rightarrow R \) nella quale \(((p_1, p_2), (q_1, q_2), (t_1, t_2)) \rightarrow (t_1 q_1 p_1, t_2 q_2 p_2) \) se \(p_1, q_1, t_1 \in \text{Hom}_k (V,W) \) e \(p_2, q_2, t_2 \in \text{Hom}_k (W,V) \). Se \(\dim V = n \) e \(\dim W = m \) scriviamo \(R = k (n,m) \).

In questa Nota forniamo condizioni caratteristiche per l’isomorfismo di H-anelli semplici e artiniani; perciò, tenuto conto che un H-anello di classe A non è mai isomorfo ad un H-anello di classe B (\(^3\)), dimostriamo i seguenti teoremi.

Teorema 1. — Gli H-anelli di classe A, \(R = k (\tau, n, m, h, g) \) e \(R' = k' (\tau', n', m', h', g') \), sono isomorfi se, e solo se, \(n = n' \), \(m = m' \) ed esistono un isomorfismo \(\varphi : k \rightarrow k' \) dal corpo \(k \) sopra il corpo \(k' \), \(\mu : V' \rightarrow V \) e \(\rho : W' \rightarrow W \) applicazioni biettive semilineari rispetto a \(\varphi^{-1} \), \(a \in k' (a \neq 0) \), tali che \(h' (x,y) = h (x\mu, y\mu)^g \) a se \(x, y \in V' \) e \(g' (x,y) = g (x\rho, y\rho)^g \) a se \(x, y \in W' \).

Teorema 2. — Gli H-anelli di classe B, \(R = k (n, m) \) e \(R' = k' (n', m') \), sono isomorfi se, e solo se, \(n = n' \), \(m = m' \) e il corpo \(k \) è isomorfo oppure antiisomorfo all’albero \(k' \).

In relazione al teorema 1, si noti che se \(k = k' \) e se \(k \) è corpo commutativo privo di automorfismi non identici, l’isomorfismo di \(R \) con \(R' \) equivale alla pretesa che l’applicazione lineare \(\mu \) sia una similitudine dalla geometria (hermitiana o simplettica) \((V', h') \) alla geometria \((V, h) \) o che \(p \) risulti una similitudine dalla geometria \((W', g') \) alla geometria \((W, g) \); anzi, il fattore di similitudine è un medesimo elemento del corpo commutativo \(k \). Si noti anche che se \(b, g \) sono forme alternanti (e perciò \(k \) è corpo commutativo) e se \(k = k' \), il teorema 1 garantisce che l’H-anello \(R \), a meno di isomorfismi, risulta indipendente da \(b \) e \(g \); ossia in questo caso, \(R \) è definito da \(k, n, m \).

La Nota è suddivisa in due parti (nn. 2 e 3) dedicate alla dimostrazione dei teoremi che abbiamo enunciati.

\(^3\) Poiché il primo è privo di ideali bilateri effettivi ed il secondo ne possiede esattamente due, precisamente \(\text{Hom}_k (V,W) \) e \(\text{Hom}_k (W,V) \).
2. Dimostrazione del teorema 1

Stabiliamo, innanzitutto, i lemmi 1-6, conservando il simbolismo adottato nell’enunciato del teorema 1.

Lema 1. — Se D (risp. S) è ideale destro (risp. sinistro) minimale dell’H-anello R = k (τ, n, m, h, g) esistono d ∈ D e s ∈ S atti a fornire al sottogruppo k₁ = Ds*d del gruppo additivo sostegno di R una struttura di corpo k₁ (+, o) con l’operazione aob = as*b se a, b ∈ k₁. Il corpo k₁ è isomorfo al corpo k.

Dimostrazione (⁴). Per il lemma 5 di [1], è sufficiente dimostrare l’isomorfismo dei corpi k₁ e k. Notoriamente ([1]; lemma 1 e corollario 1) risulta D = {f ∈ R / Hf = (o)}, risp. S* = {q* / q ∈ R e Uq* = (o)}, con H iperpiano di V, risp. U iperpiano di W. (o) ⊅ k₁ = Ds*d comorta Ws* = <ν>, Vd = <w>, V = <v> ⊕ H per opportuni v ∈ V e w ∈ W; essendo d (in virtù del lemma citato all’inizio della dimostrazione) identità del corpo k₁ è vd = dw, us* = sv con δ ∈ k per i quali s δ = 1. Se a ∈ k₁, risulta Ha = (o), va = αw con α ∈ k definito da a e si individua l’applicazione k₁ → k, a → α se a ∈ k₁, che è, banalmente, un monomorfismo di corpi. È un isomorfismo, poiché se p ∈ D è definito con la presa Hp = (o) e wp = δxw essendo x ∈ k, è c = ps*d ∈ k₁, wc = δxsegue = δxw e c → δx = x in quel monomorfismo.

Lema 2. — Se esiste un isomorfismo χ dall’H-anello R = k (τ, n, m, h, g) su l’H-anello R’ = k’ (τ’, n’, m’, h’, g’) risulta n = n’, m = m’ ed i corpi k e k’ sono isomorfi.

Dimostrazione. E’ n = n’, risp. m = m’, poiché n, risp. m, rappresenta la lunghezza massima delle catene strettamente discendenti di ideali destri, risp. sinistri, dell’H-anello R ([1]; lemma 1) e χ è isomorfismo di H-anelli. Inoltre, il corpo k₁ = k₁ (+, o), isomorfo al corpo k ed oggetto del lemma 1, si costruisce a partire da D, S con D (risp. S) ideale destro (risp. sinistro) minimise di D e da d ∈ D, s ∈ S, ed ha sostegno k₁ = Ds*d; anzi ([1]; lemmi 3 e 5) s e d definiscono un corpo k₁ di tipo dovuto se, e solo se, xd*s = x e ds*y = y quando x ∈ S e y ∈ D. Poiché tutte le precedenti pretese sono invarianti sotto l’azione di χ, è individuato, stante il lemma 1, un corpo k₁ (+, o), k’ ⊆ R’, a partire da (D)χ, da (s)χ ∈ (S)χ e da (d)χ ∈ (D)χ, che è isomorfo al corpo k’; la restrizione di χ a k₁ è, ovviamente, un isomorfismo dal corpo k₁ al corpo k’.

Lema 3. — Se w* ∈ W, v* ∈ V si ponga H₁ = {v ∈ V / h (v, v*) = (o)}, D₁ = {f ∈ R / H₁f = (o)}, S₁ = {f ∈ R / Vf ⊆ <w*>}. Siano w*, w* ∈ W − {o} e v*, v* ∈ V − {o}: si ha g (w*, w*) = 0 se e solo se S₁S₁S₁ = (o), h (v*, v*) = 0.

(⁴) D (risp. S) è ideale destro (risp. sinistro) dell’H-anello R se è sottogruppo del gruppo additivo sostegno di R e se risulta DR*R ⊆ D (risp. RR*S ⊆ S).
se e solo se $D_i D_i^* D_i = (0)$. In conseguenza, se esiste un isomorfismo χ dall'\textit{H-anello $R = k (\tau, n, m, h, g)$ sopra l'\textit{H-anello $R' = k' (\tau', n', m', h', g')$, la forma sesquilineare h, risp. g, è alternante se e solo se la forma sesquilineare h', risp. g', è alternante.}

\textbf{Dimostrazione.} Il corollario 1 di [1] garantisce $S_\pi = \{ f^* / f \in S_\pi \} = \{ f^* / f \in R \text{ e } U_f f^* = (0) \}$, essendo U_f il sottospazio di W g-ortogonale a $\langle w^\delta \rangle$. $S_\pi S_\pi S_\pi S_\pi = (0)$ equivale a $V S_\pi S_\pi S_\pi = (0)$, ossia a $w^\delta S_\pi S_\pi = (0)$ che significa esattamente $w^\delta \in U_f$, cioè $g (w^\delta, w^\delta) = 0$. Analogamente, sempre per il corollario citato, $D_i D_i^* D_i = (0)$ equivale a $b (v', v') = 0$. Poiché quanto già stabilito trae la nozione di vettore di W isotropo rispetto ad b, risp. di W isotropo rispetto a g, in una condizione che è invariante sotto l'azione dell'isomorfismo χ, il lemma è compiutamente dimostrato.

\textbf{Lemma 4.} — Siano χ un isomorfismo dall'\textit{H-anello $R = k (\tau, n, m, h, g)$ sopra l'\textit{H-anello $R' = k' (\tau', n', m', h', g')$, $B (W) = \{ v^1, ..., v^m \}$ una base di V, $B (W') = \{ v'^1, ..., v'^n \}$ una base di W e si ponga $H_i = \langle v^i, ..., v^m \rangle$ (5), $D_i = \{ f \in R / \text{H.f} = (0) \}$, $S_i = \{ f \in R / \text{V.f} \subseteq \langle w^\delta \rangle \}$ se $i \in \{ 1, ..., m \}$. Risulta $D_i S_i D_i' = \{ f' \in R' / \text{H'.f'} = (0) \}$ con H_i opportuno iperpiano di V', $S_i \chi = S_i' = \{ f' \in R' / \text{V'.f'} \subseteq \langle w'^\delta \rangle \}$, con w'^δ opportuno vettore non nullo di W', $B (W') = \{ v'^1, ..., v'^n \}$ è base di W', $B (W') = \{ v^1, ..., v^m \}$ è base di W, $B (V') = \{ v'^1, ..., v'^n \}$ è base di V'. $w'^\delta \in H'_i$ se $v'_i \neq v^i \in H'_1 \cap ... \cap H'_i \cap ... \cap H'_n$. In tali condizioni $B (V')$ risp. $B (W')$, è base h'-ortogonale, risp. g'-ortogonale (oppure h'-simplettica, risp. g'-simplettica) se e solo se $B (V)$, risp. $B (W)$, è base h-ortogonale, risp. g-ortogonale (oppure h-simplettica, risp. g-simplettica) (6).

\textbf{Dimostrazione.} È $D_i' = \{ f' \in R' / \text{H'.f'} = (0) \}$ per il lemma 1 di [1], poiché D_i è ideale minimale di R e χ è isomorfismo di \textit{H}-anelli. $R = D_1 + ... + D_n$ (a livello di gruppo additivo) comporta $R' = D'_1 + ... + D'_n$, quindi $\bigcap_{i=1}^n H'_i = (0)$ ed essendo $n = n'$ per il lemma 2, esiste $v'^i \in \Pi'_1 \cap ... \cap \Pi'_i \cap ... \cap \Pi'_n$ con $v'^i \neq 0$. $B (V') = \{ v'^1, ..., v'^n \}$ è parte libera di V', anzi è una sua base (poiché $n = n'$). Analogamente, si prova che $B (W')$ è base di W'. Si supponga, ora, che $B (V)$ sia base h-ortogonale di V, quindi $b (v^i, v^i) = 0$ se $i \neq t (i, t = 1, ..., n)$ che significa, per il lemma 3, $D_i D_i^* D_i = (0)$. Tale condizione equivale a prenderdere che il prodotto, in R', degli elementi x', y', z' con $x', z' \in D'_1$ e $y' \in D'_i$ sia nullo ossia, sempre per il lemma 3, $b' (v'^i, v'^i) = 0$ che significa: $B (V')$ è base h'-ortogonale di V. Analogamente si discute il caso in cui $B (V)$ sia base b-simplettica di V, oppure $B (W)$ sia base g-ortogonale o g-simplettica di W.

(5) \bigcap indica cancellazione.

(6) $B (V)$ h-ortogonale signifca $b (v^i, v^i) = 0$ se $i \neq t (i, t = 1, ..., n)$, mentre $B (V)$ b-simplettica signifca $(n = 2s e) b (v^i, v^i) = 0$ se $(i, t) \neq (2p-1, 2p) (p = 1, ..., s)$; quindi non si preteende $b (v^{2s-p}, v^{2p}) = 1$.
Lemma 5. — Si consideri l’H-anello \(R = k (\tau, n, m, h, g) \), siano \(B (V) = \{v^1, \ldots, v^n\} \) una base di \(V, B (W) = \{w^1, \ldots, w^m\} \) una base di \(W \) e \(k_{n,m} \) indichi il gruppo additivo delle matrici ad elementi in \(k \) aventi \(n \) righe e \(m \) colonne. Se \(p \in R \) e \(v_p = \sum_{a=1}^{n} p_a v^a \) \((p_a \in k) \) si individua \(P = \| p_a \| \in k_{n,m} \) (i indice di riga, \(\alpha \) indice di colonna). L’applicazione \(\chi : R \to k_{n,m}, p \to P \), è isomorfismo additivo e risulta \((pq^a)^t \chi = PCQ^ST \) se \(p, q, t \in R \), essendo \(Q^a = \| q_a^a \| \in k_{m,n} \) (7), \(C = \| g (w^a, w^a) \| \in k_{m,m} \) e \(S^{-1} = \| h (v^a, v^a) \| \in k_{n,n} \).

Dimostrazione. Se \(w^a q^a = \sum_{s=1}^{n} x^a_s v^s \) \((x^a_s \in k) \), \(g (v^a, w^a) = h (v^a, w^a q^a) \) fornisce \(\sum_{s=1}^{n} q^a_s g (w^a, w^a) = \sum_{s=1}^{n} h (v^a, v^a) \) \((x^a_s)^* \). Poiché \(h \) è non degenerale, esiste \(s \in k_{n,n} \) tale che \(S^{-1} = \| h (v^a, v^a) \| \) e sì ha \(QC = S^{-1}X^* \) con \(X = \| x^a_s \| \in k_{m,n} \); se \(h \) e \(g \) sono hermitiane, risp. alternanti, \(C^* = C \) e \((S^{-1})^* = S^{-1} \) risp. \(C^* = -C \) e \((S^{-1})^* = -S^{-1} \) mentre l’eventuale « caso misto » fornisce ancora la prima coppia di eguaglianze poiché, allora, \(k \) è corpo commutativo di caratteristica due e \(v \) è l’automorfismo identico di \(k \). Ne deriva \(CQ^* = XS^{-1}, X = CQ^*S \). Da qui segue ovviamente il lemma.

Lemma 6. — Considerati gli H-anelli \(R = k (\tau, n, m, h, g) \) e \(R' = k' (\tau', n', m', h', g') \) si supponga \(n = n' \), \(m = m' \) ed esista un isomorfismo \(\Psi : k \to k' \) dal corpo \(k \) sopra il corpo \(k' \). Con \(\psi : V \to V', \pi : W \to W' \) applicazioni biettive semilineari rispetto a \(\Psi \) si ponga \(\tilde{h} (x, y) = h' (xV, yV)^{v^1} \) se \(x, y \in V \) e \(\tilde{g} (x, y) = g' (x\pi, y\pi)^{v^1} \) se \(x, y \in W \). È definito, così, l’H-anello di classe A \(R = k (\tilde{\tau}, n, m, h, g) \) che ha sostegno \(R = \text{Hom}_k (V, W) = R \) e per il quale \(x^a = (x^a)^{v^1} \) se \(x \in k \); gli H-anelli \(R' \) e \(R \) sono isomorfi.

Dimostrazione. Se \(p \in R' = \text{Hom}_k (V', W') \), \(\tilde{p} = \nu p \nu^{-1} \) è elemento di \(R = \text{Hom}_k (V, W) = R \) (si ricordi, \(\nu p = ((\nu \nu) p) \nu^{-1} \) se \(v \in V \)) e l’applicazione \(R' \to R, p \to \nu p \nu^{-1} \), è isomorfismo additivo da \(R' \) sopra \(R \). Per definizione, \(pq^a t \to \nu pq^a t \nu^{-1} \) se \(p, q, t \in R' \) e rimane da provare \(\nu pq^a t \nu^{-1} = (\nu p \nu^{-1}) (\nu t \nu^{-1}) \) (ove la soprakilometria indica aggiunzione rispetto a \(\tilde{g} \) e \(\tilde{h} \)) ossia \(q^a = \nu p^{-1} (\nu q^a \nu^{-1}) \). Essendo \(\tilde{g} (xVq^{-1}, y) = \tilde{h} (x, y) \) \((x V q^{-1}) \) se \(x \in V, y \in W \), con \(x' = xv \in V' \) e \(y' = y \pi \in W' \) si ha, per definizione di \(\tilde{h} \) e \(\tilde{g} \), \(g^* (x', y')^{v^1} = h^* (x', y')^{v^1} (\nu q^{-1}) \) \((v^{-1} \nu^{-1}) \), che è quanto si doveva dimostrare.

Stabiliti i lemmi 1-6, a conclusione del presente numero desumiamo da essi la

Dimostrazione del teorema 1. — Supponendo, innanzitutto, che gli H-anelli \(R \) e \(R' \) siano isomorfi, perverremo alle conclusioni che debbono discendere da

(7) Il prodotto tra matrici, ora e nel seguito, si esegue righe per colonne; se \(X \in k_{n,m} \), \(X^t \) indica la sua matrice trasposta.
tale ipotesi. Per il lemma 2, deve essere \(n = n', m = m' \) e i corpi \(k \) e \(k' \) devono essere isomorfi. Ne deriva, in virtù del lemma 6, tenuto conto della definizione delle forme sesquilineari \(h \) e \(g \) (hermitiane o alternanti) data nell’enunciato di quel lemma, che non è restrittivo supporre \(k = k', V = V', W = W' \) ossia, a livello insiemistico, \(R = \text{Hom}_k(V, W) = R' \). Siano \(B(V) = \{ v^1, \ldots, v^p \} \), risp. \(B(W) = \{ w^1, \ldots, w^q \} \), una base di \(V \), risp. \(W \), e si fissino le basi \(B'(V) = \{ v'^1, \ldots, v'^p \} \) di \(V \), risp. \(B'(W) = \{ w'^1, \ldots, w'^q \} \) di \(W \), tra quelle definite, nel senso del lemma 4, dal dato isomorfismo dall’H-anello \(R \) sopra l’H-anello \(R' \). Tenuto conto del lemma 5, con tali dati l’isomorfismo da \(R \) sopra \(R' \) definisce un’applicazione \(f : k_{n, m} \to k_{n, m'} \) che è un automorfismo additivo e nella quale

\[
(1) \quad (X SY \ast Z f) = (X f) \Gamma (Y f) \Sigma (Z f) \text{ se } X, Y, Z \in k_{n, m}
\]

avendo posto \(C = \| g(w^a, w^b) \|, \Gamma = \| g'(w'^a, w'^b) \| \in k_{m, n} \) e \(S^{-1} = \| h(v', v') \| \), \(\Sigma^{-1} = \| h'(v'^i, v'^i) \| \in k_{n, n} \) mentre la sopraforma indica trasformazione degli elementi della matrice \(Y f \) con \(\tau' \) e trasposizione della matrice così ottenuta. Dalla (1) perverremo alla tesi discutiamo le seguenti due possibilità.

Prima possibilità: \(h \) e \(g \) sono forme hermitiane e non sono alternanti. In tal caso, \(B(V) \), risp. \(B(W) \), si può supporre base \(b \)-ortogonale, risp. \(g \)-ortogonale, e, per il lemma 4, la medesima eventualità si presenta per \(B'(V) \) e \(B'(W) \). Ne deriva che tutti e soli gli elementi non nulli che compaiono in \(C, \Gamma, S^{-1}, \Sigma^{-1} \) sono quelli delle loro diagonali principali e possiamo porre \(C = \text{diag}(c_1, \ldots, c_m), \Gamma = \text{diag}(\gamma_1, \ldots, \gamma_m), S^{-1} = \text{diag}(s_{1-1}, \ldots, s_{n-1}), \Sigma^{-1} = \text{diag}(\sigma_{1-1}, \ldots, \sigma_{n-1}) \), con \(c_a, \gamma_a, s_t, \sigma_t \) elementi non nulli del corpo \(k (\alpha = 1, \ldots, m; i = 1, \ldots, n) \); gli elementi \(c_a, s_t \) sono fissati da \(\tau \), e \(\gamma_a, \sigma_t \) sono fissati da \(\tau' \). Con le notazioni del lemma 4, se \(p \in D_i \cap S_i \) è \(p \chi \in D_i \cap S_i \) e, stante il lemma 5, \(p \) individua la matrice \(P = xe^a_i \in k_{n, m} \) (con \(x \in k \) in riga \(i \), colonna \(\alpha \) e zero altrove) in relazione alle basi \(B(V) \), \(B(W) \), mentre \(p \chi \), sempre per quel lemma, si rappresenta, in relazione alle basi \(B'(V) \) e \(B'(W) \), con la matrice \((xe^a_i)E^a_i \in k_{m, n} \), essendo \(f_a : k \to k, x \to xe^a_i \) se \(x \in k \), un automorfismo additivo. Ossia nel senso della (1), risulta \((xe^a_i)E^a_i = (xe^a_i)E^a_i \) e con \(X = xe^a_i, Y = ye^b_i, Z = ze^c_i \in k_{n, m} (x, y, z \in k; i, j, \alpha, \beta, \gamma \in \{ 1, 2, \ldots, m \}; i, s, t \in \{ 1, 2, \ldots, n \} \), la (1) fornisce \((xcyx'z's)\gamma^a_i E^a_i = (xcyx'z's)\gamma^a_i E^a_i \) e la (2) con \(x = x^t = x^c_i = z = z^t = z^c_i = 1 \) si trova \(1 = F^a_i \gamma^a_i (F^a_i)^{-1} \). Poniendo \(1f_a = F^a_i, F^a_i \neq 0, e \) si individua l’automorfismo additivo \(\Phi^a : k \to k \) nel quale \(x\Phi^a_i = (xe^a_i)(F^a_i)^{-1} \) per la (2) con \(i = t \) e \(y = 1 \) fornisce \(x\Phi^a_i = x\Phi^a_i : \) l’automorfismo del corpo \(k \). In conseguenza, la (2) con \(i = t \) e \(y = 1 \) fornisce \(x\Phi^a_i = x\Phi^a_i : \) l’automorfismo del corpo \(k \) è indipendente da \(\alpha \) e si può porre \(\Phi^a_i = \Phi^a = \Phi^a_i = \Phi^a_i \) e la (2),
con \(i = r \), si scrive \((c_s \varphi^i) [(y^i) \varphi^i] (s_1 \varphi^i) = F^i_s \gamma_s (F^i_s)^\varphi (y \varphi^i)^\varphi \sigma_i\). Si può, pertanto, definire (si ponga \(y = 1 \)):

\[
(3) \quad a^i = (s_1 \varphi^i) \sigma_i^{-1} = (c_s^{-1} \varphi^i) F^i_s \gamma_s (F^i_s)^\varphi
\]

e, poiché \((s_1 \varphi^i) \sigma_i^{-1}\) non dipende da \(\alpha \), deve risultare

\[
(4) \quad (y^i) \varphi^i = a^i (y \varphi^i)^\varphi (a^i)^{-1} \text{ se } y \in k.
\]

A questo punto, si ponga \(\varphi^i = \varphi \), \(a^i = a \); la (3) fornisce, per \(i = 1 \), \((c_s \varphi) \sigma_i \equiv F^i_s \gamma_s (F^i_s)^\varphi \) che significa \(g (w^i, w^i)^\varphi \sigma_i = F^i_s \gamma_s (w^i, w^i)^\varphi \sigma_i \). Poiché \(B (W) \), risp. \(B^i (W) \), è base \(g \)-ortogonale, risp. \(g^i \)-ortogonale, si ha, in conseguenza, \(g (w^i, w^i)^\varphi \sigma_i = g' (F^i_s w^i, F^i_s w^i)^\varphi \sigma_i \), \(\alpha, \beta \in \{1, 2, \ldots, m\} \). Sia ora, \(\rho : W \to W \) l'applicazione (bietttiva) semilineare rispetto a \(\varphi^{-1} \) definita con la pretesa \(w^\rho = (F^i_s w^i) \rho (\alpha = 1, 2, \ldots, m) \); posto \(w^\rho = F^i_s w^i \) è, quindi,

\[
g (w^\rho, w^\rho)^\varphi \sigma_i = g' (w^\rho, w^\rho)^\varphi \sigma_i.
\]

La (4) si traduce in

\[
(5) \quad (y^i) \varphi^i = a^i (y \varphi^i)^\varphi (a^i)^{-1} \text{ se } y \in k.
\]

L'ultima relazione, moltiplicata a destra per \(y^i \) fornisce, per somma,

\[
x (x^i, y^i)^\varphi \sigma_i = g' (x^i, y^i)^\varphi \sigma_i \quad \text{se} \quad i = 1, \ldots, n,
\]

e si conclude che (4), per \(i = 1 \), garantisce \((y^i \varphi^i)^\varphi \sigma_i = a y^i \).

Per concludere, la (2) calcolata per \(i = 1, \alpha = \gamma, y = 1 \) fornisce \((c_s \varphi^i) (s_1 \varphi^i) (z \varphi^i) F^i_s = F^i_s \gamma_s (F^i_s)^\varphi \sigma_i (z \varphi^i) \sigma_i = F^i_s \gamma_s (F^i_s)^\varphi \sigma_i \). Per la (3), ciò significa \((F^i_s)^\varphi \sigma_i = (a^i)^{-1} (s_1^{-1} \varphi^i) \sigma_i = F^i_s \gamma_s (F^i_s)^\varphi \sigma_i \). Tutte le somme di ciò e della (3) si trova \(s_1^{-1} \equiv \left[(s_1^{-1} \varphi^i) \sigma_i \right] (c_s^{-1} \varphi^i) F^i_s \gamma_s (F^i_s)^\varphi \sigma_i \gamma_s (F^i_s)^\varphi \sigma_i \). E le somme con \(s_1^{-1} \equiv \left[(F^i_s (F^i_s)^{-1} \varphi^i) \sigma_i \right] (c_s^{-1} \varphi^i) F^i_s \gamma_s (F^i_s)^\varphi \sigma_i \gamma_s (F^i_s)^\varphi \sigma_i \) e la relazione cui siamo pervenuti garantisce \(b\' (v^i, v^i) = d^i b (v^i, v^i) d^i \) per \(i = 1, \ldots, n \). Da qui, se \(\mu : V \to V \) è l'applicazione (bietttiva) semilineare rispetto a \(\varphi^{-1} \) definita con la pretesa \(v^i \mu = v^i \mu \) \(i = 1, 2, \ldots, n \) si ricava, come in precedenza per \(g \) e \(g' \), \(b\' (x, y) = b (x \mu, y \mu) \) a quando \(x, y \in V \).

Seconda possibilità: \(h \) e \(g \) sono forme alternanti (quindi \(k \) è corpo commutativo e \(\tau, \tau' \) sono il suo automorfismo identico). In tal caso \(B (V) \), risp. \(B^i (W) \), si può sostituire base \(h \)-simplettica, risp. \(g \)-simplettica, e, per il lemma 4, la medesima eventualità si presenta per \(B' (V) \) e \(B^i (W) \); inoltre, moltiplicando per opportuni scalari i vettori di \(B (V) \) e \(B^i (W) \), si può richiedere \(h (v^i, v^i+1) = 1 \) e \(b' (v^i, v^i+1) = 1 \) se \(i \) è intero dispari. Se \(\varphi \) è un qualsiasi automorfismo di \(k \) e \(a \) è un qualsiasi elemento non nullo di \(k \), sia \(\mu : V \to V \) l'applicazione (bietttiva) semilineare rispetto a \(\varphi^{-1} \) definita ponendo \(v^i \mu = (a_i) \varphi v^i \) se \(i \) è dispari e \(v^i \mu = v^i \mu \) quando \(i \) è pari \((i = 1, 2, \ldots, n)\); risulta \(b' (v^i, v^i) = b (v^i, v^i) \mu \) a se \(i, j = 1, 2, \ldots, n \), da cui segue \(b' (x, y) = b (x \mu, y \mu) \mu \) a se \(x, y \in V \).
niera analoga si prova quanto dovuto relativamente alle forme g e g'. Da notare l'arbitrarità dell'automorfismo φ del corpo k e di a elemento non nullo di k.

Terza possibilità: b è forma hermitiana e g è forma alternante (o viceversa; in tal caso k è corpo commutativo di caratteristica due e τ, τ' sono l'automorfismo identico di k). Per quanto già provato si può pensare b hermitiana non alternante. Si supponga la base $B (V)$ b-ortogonale e la base $B (W)$ g-simplettica; per il lemma 4, $B' (V)$ è b'-ortogonale e $B' (W)$ è g'-simplettica. Ne segue che tutti e soli gli elementi non nulli che compaiono in S^{-1} e Σ^{-1} sono quelli delle diagonalì principali e possiamo porre $S^{-1} = \text{diag} (s_i^{-1}, ..., a_{n}^{-1})$ e $\Sigma^{-1} = \text{diag} (\sigma_{i}^{-1}, ..., \sigma_{n}^{-1})$. Ad ogni applicazione $p \in D_i \cap S_i$, risp. $p_{X_i} \in D_i X_i \cap S_i X_i, (\alpha = 1, 2)$ rimane associata, stante il lemma 5 ed analogamente a quanto precisato nella dimostrazione della prima possibilità, la matrice $P = x E_i, \text{ risp. } \bar{P} = (x f_i(a)) E_i$, e si individua l'automorfismo additivo $f_i : k \rightarrow k, x \rightarrow x f_i(a) \text{ se } x \in k$. Calcolando la (1) relativamente a $p \in D_i \cap S_i, q \in D_i \cap S_i, t \in D_i \cap S_i (i, j = 1, 2, ..., n)$, risulta, in analogia alla (5):

\[(xy_1 y_2) \psi_1 = (x \psi_1) \gamma (y \psi_2) F_1 y_2 \sigma_1 (z \psi_1) F_1\]

con $x, y, z \in k, c = g (w, w', w'')$, $\gamma = g' (w, w')$, $F_1 = f_1 x P = 0$ e $\varphi_i : k \rightarrow k, x \rightarrow (x f_i(a)) (F_1 a)^{-1}$ se $x \in k$; come in precedenza si prova che φ_i è automorfismo di k. Posto in (5) $y = c^{-1} g^{-1}, s_i^{-1}$, si ha $\varphi_i = \gamma [c^{-1} g^{-1}] F_2 \sigma_{i} (z \psi_i) F_1$, e, per $z = 1, 1 = \gamma [(c^{-1} g^{-1}) \psi_i] F_2 \sigma_{i} F_1$, dunque $\varphi_i = \psi_i$; con metodo simile, la (5) scritta con $z = c^{-1} g^{-1}, i = j$ dà $\varphi_i = \psi_i$: si potrà quindi porre, per $\alpha = 1, 2$ e $i = 1, 2, ..., n$, $\varphi_i = \varphi$. Analogamente alla (5), risulta $(xy_1 y_2) \psi_2 F_2 = (x \psi_1) F_1 \gamma (y \psi_2) F_2 \sigma_{i} F_2 F_1$, e, con $x = y = z = 1$, si ha $(c \varphi)(s \varphi) F_2 = F_1 \gamma F_2 \sigma_{i} F_2$; posto in (5) $x = y = z = 1$, si trova $(c \varphi)(s \varphi) = \gamma F_2 \sigma_{i} F_1$ e, confrontando con la precedente uguaglianza, si ricava $F_1 = F_1 \gamma F_2 \sigma_{i} F_2$ e si individua $T = F_1 (F_2)^{-1} = F_1 (F_2)^{-1}$. Se $a = (c^{-1} \varphi) \gamma T = \sigma_1^{-1} (s_1^{-1} \varphi)(c^{-1} \varphi) \gamma F_2 F_1 = (s_1^{-1} \varphi) (c^{-1} \varphi) \gamma T (F_2)^{-1} a (F_2)^{-1}$ o anche, esplicitando, $b' (F_2 v', F_2 v') = b' (v', v') a$, con $a, \gamma T$ e σ_1^{-1} tali che $b' (x, y) = b (x \mu, y \mu)^{a}$ se $x, y \in V$. Infine, poiché g e g' sono forme alternanti, le argomentazioni svolte nella dimostrazione della seconda possibilità, ripetute per l'automorfismo φ e lo scalare a ora definiti, consentono di concludere la dimostrazione della terza possibilità.

Per completare la dimostrazione del teorema occorre stabilire che se risulta $n = n', m = m'$ ed esistono un isomorfismo φ dal corpo k sopra il corpo k', $\mu : V' \rightarrow V$ e $p : W' \rightarrow W$ applicazioni biettive semi-lineari rispetto a $\varphi^{-1}, a \in k$ ($a \neq 0$) tali che $b' (x, y) = b (x \mu, y \mu)^{a}$ se $x, y \in V'$ e $g' (x, y) = g (x \mu, y \mu)^{a}$ se $x, y \in W'$, allora gli H-anelli di classe $A R = k (\tau, n, m, h, g)$ è $R' = k' (\tau', n', m', h', g')$ sono isomorfi. Poiché $\chi : R \rightarrow R', p \rightarrow \mu \rho^{-1}$ se $p \in R$, è isomorfismo additivo da R sopra R', è sufficiente provare che risulta, con $p, q, t \in R$, $\mu pq t \rho^{-1} = (\mu pq \rho^{-1}) (pq \rho^{-1}) (\mu pq \rho^{-1}) (\mu pq \rho^{-1})$ (la sopralineaatura significa aggiunzione rispetto ad b' e g'), ovvero $\rho^{-1} \mu pq \rho^{-1} = q\ast$. Per pro-
varlo, siano \(x \in V' e y \in W' \); da
\[
b'(x, y (\mu \rho^{-1})) = g' (x (\mu \rho^{-1}), y)
\]
segue
\[
b(x \mu, y (\mu \rho^{-1}) \rho) = g(x \mu, y \rho)
\]
e, posto \(v = x \mu \in V \) e \(w = y \rho \in W \), si ha
\[
b(v \mu \omega^{-1}, (\mu \rho^{-1}) \omega) = g(v \mu, w) = b(v, w) = b'(v, w)\]
che è quanto si doveva dimostrare.

3. Dimostrazione del teorema 2

I lemmi 7-9 precederanno la dimostrazione del teorema 2; faremo riferimento al simbolismo precisato nell’enunciato del teorema.

Lemma 7. — Siano \(D \) (risp. \(S \)) un ideale destro (risp. sinistro) minimale dell’H-anello \(R = k(n, m) \) contenuto in \(\text{Hom}_k(W, V) \) (risp. \(\text{Hom}_m(V, W) \)). Esistono \(d \in D \) e \(s \in S \) atti ad individuare il sottogruppo \(k_1 = Dsd \) del gruppo additivo sostegno di \(R \) e a fornirgli una struttura di corpo \(k_1 (+, 0) \) con l’operazione \(a \circ b = ab \) se \(a, b \in k_1 \). Il corpo \(k_1 \) è isomorfo al corpo \(k \).

Dimostrazione. Per il lemma 5 di [6] è sufficiente stabilire l’isomorfismo dei corpi \(k_1 \) e \(k \). Perciò si possono usare le argomentazioni della dimostrazione del lemma 1, tenuto conto che nel caso attuale risulta ([6]; dimostrazione del teorema 2) \(D = \{ (o, \rho) \in R / U_{\rho} = (o) \} \) con \(U_{\rho} \) primo di \(W \) e \(S = \{ (q, o) \in R / H_q = (o) \} \) con \(H_q \) iperprimo di \(V \).

Lemma 8. — Si consideri l’H-anello \(R = k(n, m) \); siano \(B(V) = \{ v^1, ..., v^n \} \) una base di \(V \), \(B(W) = \{ w^1, ..., w^m \} \) una base di \(W \) e \(k_{n,m} \) (risp. \(k_{m,n} \)) indichi il gruppo additivo delle matrici ad elementi in \(k \) aventi \(n \) righe ed \(m \) colonne (risp. \(m \) righe ed \(n \) colonne). Se \((p, q) \in R \) e \(v^p = \sum_{s=1}^{m} p^s v^s, w^q = \sum_{j=1}^{n} q^j v^j (p_{s}, q_{j} \in k) \) si individuano \(P = \| p^s \| \in k_{n,m} \) e \(Q = \| q^j \| \in k_{m,n} \) (l’indice superiore è di riga). Allora, se si pone \([(P, Q) (Q_1, Q_2) (T_1, T_2) \in (T, T_1, T_2)] \equiv (T, Q_1, Q_2, P_1, P_2, Q_1 T_2) \), attribuisce al gruppo \(k_{n,m} \oplus k_{m,n} \) una struttura di H-anello e \(\Theta : R \rightarrow k_{n,m} \oplus k_{m,n} \in (p, q) \rightarrow (P, Q) \) se \((p, q) \in R \), è isomorfismo di H-anelli.

Dimostrazione. Ovvia.

Lemma 9. — Considerati gli H-anelli \(R = k(n, m) \) e \(R^* = k^*(n*, m*) \), si supponga che \(k^* \) sia il corpo opposto di \(k \) (°) e che risulti \(n_\ast = n, m_\ast = m \). Gli H-anelli \(R \) e \(R^* \) sono isomorfi.

Dimostrazione. Tenuto conto del lemma 8, è sufficiente osservare che l’ap-

\(^{(4)}\) Si definisce opposto del corpo \(k(+, \cdot) \) il corpo \(k^*(\perp, T) \) con \(k^* = k \) (a livello insiemistico), \(a \perp b = a + b \) e \(a \perp b = ba \) se \(a, b \in k \); l’applicazione \(k^* \rightarrow k, a \rightarrow a \) se \(a \in k \), è anti-isomorfismo di corpi.
applicazione $\xi' : k_{n,m} \oplus k_{m,n} \rightarrow k_{n,m} \oplus k_{m,n}$, $(P, Q) \rightarrow (P, Q)$ se $(P, Q) \in k_{n,m} \oplus k_{m,n}$ è isomorfismo di H-anelli.

Stabili i lemmi 7-9, concludiamo il presente numero con la

Dimostrazione del teorema 2. — Si supponga, innanzitutto, che esista un isomorfismo χ da R sopra R'; allora $\text{Hom}_k(V, W) \chi$ è ideale bilatero effettivo di R' (7) e quindi coincide con $\text{Hom}_{k'}(V', W')$ oppure con $\text{Hom}_{k'}(W', V')$, in quanto questi sono i sostegni di tutti e soli gli ideali bilateral effettivi di R' ([61], teorema 2). Nel primo caso, cioè se $\text{Hom}_k(V, W) \chi = \text{Hom}_{k'}(V', W')$, è $n = n'$, risp. $m = m'$, poiché n, risp. m, rappresenta la lunghezza massima delle catene strettamente descendenze di ideali sinistri, risp. destri, di R contenuti in $\text{Hom}_k(V, W)$; inoltre, con considerazioni analoghe a quelle svolte nel lemma 2 e tenuto conto del lemma 7, si prova che esiste un isomorfismo dal corpo k sopra il corpo k'. Se invece risulta $\text{Hom}_k(V, W) \chi = \text{Hom}_{k'}(W', V')$ e se $R' = k_{n'}(n, m)$ ha, in riferimento a R, il significato preciso nell'enunciato del lemma 9, posto $\chi' = \xi \chi$ (l'isomorfismo $\xi : R' \rightarrow R$ si desuma dalla dimostrazione del lemma) si ha $\text{Hom}_{k'}(V, W) \chi' = \text{Hom}_{k'}(V', W')$; la precedente discussione ci assicura $n' = n = n$, $m' = m = m$ e che esiste un isomorfismo di k sopra k', e quindi un antisomorfismo di k sopra k'.

Viceversa, se $n = n'$, $m = m'$ ed esiste un isomorfismo φ di k sopra k', dette $\mu : V' \rightarrow V$ e $\rho : W' \rightarrow W$ due qualsiasi applicazioni biettive semilineari rispetto a φ^{-1}, l'applicazione $\chi : R' \rightarrow R'$, $(p, q) \rightarrow (\mu p \rho^{-1}, \rho q \mu^{-1})$ se $(p, q) \in R'$, è isomorfismo di H-anelli; se invece è $n = n'$, $m = m'$ ed i corpi k e k' sono antisomorfi, allora risulta $n = n = n'$, $m = m = m'$ ed esiste $\psi : k' \rightarrow k'$ isomorfismo di corpi. La precedente discussione ci assicura l'esistenza di un isomorfismo da R' sopra R' ed il lemma 9 completa la dimostrazione.

(7) Ossia, è ideale destro e sinistro di R' e $R' \left(\text{Hom}_k(V, W) \chi\right) R' \subseteq \text{Hom}_k(V, W) \chi$.

BIBLIOGRAFIA