On projective recurrent Finsler spaces of the first order

1. Introduction — In one of the recent papers B. B. Misra [1] has given a comparative study of various types of recurrent Finsler spaces. In the present paper the matter has been decomposed in three sections. The first one is introductory and the second, and third sections deal with W — recurrent and W^* — recurrent Finsler spaces with Cartan's first and second co-variant derivatives respectively.

We shall consider an n-dimensional Finsler space F_m [3] with homogeneous metric function $F(x, \dot{x})$ of degree one in x^i, \dot{x}^i which is defined by $g_{ij}(x, \dot{x}) = \frac{1}{2} \dot{x}^i \dot{x}^j F^2(x, \dot{x})$. The tensor $C_{i j k}(x, \dot{x})$ defined by $g_{ij}(x, \dot{x})$ satisfies the identity:

$$C_{i j k}(x, \dot{x}) \dot{x}^i = C_{j i k}(x, \dot{x}) \dot{x}^j = C_{i j k}(x, \dot{x}) \dot{x}^k = 0.$$

(1.1)

Cartan, ([3] ch. II-III) defined two types of covariant derivatives; for instance the two covariant derivatives for a mixed tensor $T^i_j(x, \dot{x})$ are given by

$$T^i_j|_k = \delta^i_k T^i_j + \delta^i_k \Gamma^m_{jk} T^m_j - T^m_j \Gamma^i_{jk}$$

and

$$T^i_j|_k = F \delta^i_k T^i_j + T^m_j A^m_{jk} - T^m_j A^m_{jk},$$

(1.2)

(1.3)

where

$$A^m_{jk} \overset{\text{def}}{=} F C^m_{jk}.$$

The commutation formulae are as follows:

$$2 T^i_j|_{[hk]} = K^m_{hjk} T^m_j - K^m_{jk} T^m_h - \delta^m_j T^m_k K^m_{hjk} \dot{x}^k,$$

(1.4)

$$2 T^i_j|_{[hk]} = F \delta^i_k T^i_j + F \delta^i_k T^i_h + S^m_{hjk} T^m_j - S^m_{jk} T^m_h,$$

(1.5)

$$\left(\delta^i_k T^i_j\right)_{[h]} - \left(\delta^i_k T^i_j\right)_{[k]} = \delta^i_k A^m_{jk} \gamma^m - \delta^i_k \Gamma^m_{jk} T^m_j + \delta^i_k \Gamma^m_{jk} T^m_k,$$

(1.6)

(*) Dept. of Mathematics, University of Gorakhpur, India.

(**) Memoria presentata dall'Accademia E. Bonaparte il 6-5-1974.

(*) The notations δ and δ denote the operators $\partial/\partial x^i$ and $\partial/\partial \dot{x}^i$ respectively.
and

\((\delta_b T^i_j)_k = -\lambda_b T^i_j|_k = -(F \cdot x^b \delta_h T^i_j + \lambda_b A^p_{mk} T^i_m - \lambda_b A^p_{mk} T^i_m + A^p_{mk} \delta_h T^i_j) \).

The projective curvature tensor is defined by

\[
\begin{align*}
(1.8) & \\
(a) & W^1_{1h} (x, x) = \lambda_b W^1_{hk} = \frac{2}{3} \lambda_h \lambda_b W^1_{k1} \\
(b) & W^1_{hk} (x, x) = \frac{2}{3} \lambda_h \lambda_k W^1_{k1} , \\
(c) & W^1_{hk} = -W^1_{kh} .
\end{align*}
\]

Here the square brackets denote the skew symmetric part with respect to the indices enclosed with in them. Noting that \(W^1_1 \) is homogeneous of degree two in its directional argument, we have the following identities

\[
(1.9) \quad \begin{align*}
(a) & W^1_{hk} x^h = W^1_k \\
(b) & W^1_{hk} x^k x^h = W^1_k , \\
(c) & W^1_{hk} x^k = W^1_{hk}.
\end{align*}
\]

\[
(1.10) \quad \begin{align*}
(a) & W^1_k x^k = 0 \\
(b) & \delta_h W^1_k x^h = -W^1_k , \\
(c) & \lambda_h W^1_k = 0 .
\end{align*}
\]

2. PROJECTIVE RECURRENT FINSLER SPACE WITH CARTAN'S FIRST CO-VARIANT DERIVATIVE

Definition (2.1): In an \(n \)-dimensional Finsler space \(F \), the projective curvature tensor is called \(W \) — recurrent \(F \) if it satisfies the relation

\[
(2.1) \quad W^1_{i12} = \lambda_i W^1_{kh} , \quad (\lambda_i \neq 0)
\]

Transvecting (2.1) by \(x^i \) and noting \((1.9b)\), we find

\[
(2.2) \quad W^1_{kh} = \lambda_i W^1_{kh} .
\]

Hence the tensor field \(W^1_{kh} \) is also recurrent in an \(W \) — recurrent \(F \). Again transvecting the equation (2.2) by \(x^h \) and using the equation (1.9a), we get

\[
(2.3) \quad W^1_{i1} = \lambda_i W^1_{ki} .
\]

So that \(W^1_k \) is also recurrent in \(W \) — recurrent \(F \).

Theorem (2.1): An \(W^1_k \) — recurrent \(F \) will be \(W \) — recurrent \(F \) if and only if the recurrence vector \(\lambda_i \) satisfies

\[
(2.4) \quad (\delta_i \lambda_i) W^1_{kh} = (\delta_i \Gamma^p_{ki}) W^1_{kh} - (\delta_m W^1_{kh}) A^m_{1i} \Gamma^p + 2 \delta_i \Gamma^p_{kj} W^1_{kj} .
\]
Proof: Let us suppose that a F, be W_{jk}^j — recurrent space.
Differentiating (2.2) with respect to \dot{x}^j and applying the commutation formula (1.6), we get

$$W_{lk}^i - \dot{\lambda}_l W_{lk}^i = (\delta_l \lambda_j) W_{kj}^i + \dot{\lambda}_m W_{lk}^i A_{ll}^{m} \Gamma^m$$

$$- \dot{\lambda}_l \Gamma_{jk}^{i} W_{lk}^i + \dot{\lambda}_i \Gamma_{lj}^{i} W_{lk}^i + \lambda_k \Gamma_{kl}^{i} W_{kl}^i$$

Hence for W — recurrent space the first member of the equation (2.5) vanishes and after rearranging the terms, it gives the theorem.

Theorem (2.2): In an W_{jk}^j — recurrent F the relation

$$\dot{\lambda}_l W_{lk}^i \dot{x}^l = \dot{\lambda}_i \Gamma_{lj}^{i} W_{lk}^i \dot{x}^l + 2 \dot{\lambda}_i \Gamma_{lj}^{i} W_{lk}^i W_{[lj]^i k}^j \dot{x}^i$$

holds good.

Proof: Transvecting (2.5) by \dot{x}^i and using (1.8c) and (1.9c), we get

$$W_{lk}^i - \dot{\lambda}_l W_{lk}^i = (\delta_l \lambda_j) W_{lk}^i \dot{x}^l - \dot{x}^l \delta_l \Gamma_{lj}^{i} W_{lk}^i$$

$$+ \dot{x}^l \dot{\lambda}_l \Gamma_{lj}^{i} W_{lk}^i + \dot{x}^l \delta_l \Gamma_{lj}^{i} W_{lk}^i$$

Using the relation (2.2) for W_{jk}^j — recurrent Finsler space, we get (2.6).

Theorem (2.3): The necessary and sufficient condition that an W_{jk}^j — recurrent F will be an W_{jk}^j — recurrent F is,

$$W_{lj}^{i} \delta_{h} \lambda_{h} A_{h}^{m} \Gamma^{m} - W_{lj}^{i} \delta_{h} \Gamma_{lj}^{i} A_{h}^{m} \Gamma^{m} + \dot{\lambda}_{h} \Gamma_{lj}^{i} W_{lk}^i = 0.$$

Proof: An W_{jk}^j — recurrent F is characterised by the relation (2.3). Differentiating (2.3) with respect to \dot{x}^h and applying the commutation formula (1.6), we get

$$\dot{\lambda}_h W_j^j - (\delta_h \lambda_j) W_j^j - \dot{\lambda}_i W_j^j = - \dot{\lambda}_i \Gamma_{lj}^{i} W_j^j$$

$$+ \dot{\lambda}_m W_j^j A_{lj}^{m} \Gamma^{m} + \dot{\lambda}_i \Gamma_{lj}^{i} W_j^i.$$

Interchanging the indices h and j in (2.9) and subtracting it from (2.9) and using the relation (1.8b), we get

$$W_{lj}^{i} - \lambda_{l} W_{lj}^{i} = \frac{2}{3} \{ W_{lj}^{i} \delta_{h} \lambda_{h} + \delta_{h} W_{lj}^{i} A_{lj}^{m} \Gamma^{m}$$

$$- W_{lj}^{i} \delta_{h} \Gamma_{lj}^{i} + W_{lj}^{i} \delta_{h} \Gamma_{lj}^{i} \Gamma_{lj}^{i} \}.$$

From equation (2.2) and (2.10) we obtain the result (2.8).

Theorem (2.4): In an W_{jk}^j — recurrent F the following relation is true:

$$\dot{x}^h W_j^j \delta_{h} \lambda_{h} - \dot{x}^h W_j^j \delta_{h} \Gamma_{lj}^{i} + W_m A_{lj}^{m} \Gamma^{m}$$

$$+ 2 W_j^j \delta_{h} \Gamma_{lj}^{i} \dot{x}^h = 0.$$
Proof: Multiplying (2.10) by \dot{x}^b and using (1.10a) and $A^i_{b1}\gamma^i x^b = 0$, we get (2.11) in view of W_j^i — recurrent F_n.

Theorem (2.5): The recurrence vector λ in W_j^i — recurrent F_n, satisfies the relation

$$2 \lambda_{[i\mid m]} W_j^i = W_j^p k_{p\mid m} - W_j^i K_j^i_{\mid lm} - \dot{\lambda}_r W_j^i K^r_{\mid im} \dot{x}^r.$$

Proof: Differentiating (2.3) co-variantly with respect to x^m, we get

$$W_j^i_{\mid lm} = (\lambda_{[i\mid m} + \lambda_r \lambda_m) W_j^i.$$

Interchanging the indices l and m in (2.13) and subtracting it from (2.13) and applying the commutation formula (1.4), we get the required result.

3. PROJECTIVE RECURRENT FINSLER SPACE WITH CARTAN'S SECOND CO-VARIANT DERIVATIVE

Definition (3.1): An n-dimensional Finsler space F_n is said to be an W^* — recurrent F_n if the Cartan's second co-variant derivative of the projective curvature tensor satisfies the relation:

$$W^i_{\mid i} = V_i W_{i\mid}^i, \quad (V_i \neq 0)$$

Transvecting the relation (3.1) by \dot{x}^i and \dot{x}^b, we get

$$W^i_{\mid i} = V_i W^i_{\mid i}, \quad \text{if } i \neq 1$$

and

$$W^i_{\mid i} = V_i W^i_{\mid i}, \quad \text{if } h \neq 1$$

Hence the tensor fields $W^i_{\mid i}$ and $W^i_{\mid h}$ are also recurrent in an W^* — recurrent F_n and known as W^*_i — recurrent and W^*_i — recurrent Finsler space respectively.

Theorem (3.1): An W^*_i — recurrent F_n will be an W^* — recurrent F_n if and only if it satisfies the relation:

$$(\ddot{\gamma}_i V_i) W^i_{\mid i} = F^i_{\mid i} W^i_{\mid i} + \dot{\gamma}_i A^i_{\mid m} W^m_{\mid i} - 2 \dot{\gamma}_i A^i_{\mid m} W^m_{\mid i} - 2 \dot{\gamma}_i A^i_{\mid m} W^m_{\mid i} + A^i_{\mid m} W^m_{\mid i}.$$

Proof: Differentiating (3.2) with respect to \dot{x}^i and applying the commutation formula (1.7), we get

$$W^i_{\mid i} = - V_i W^i_{\mid i} = (\ddot{\gamma}_i V_i) W^i_{\mid i} - (F^i_{\mid i} W^i_{\mid i} + \dot{\gamma}_i A^i_{\mid m} W^m_{\mid i}$$

$$- \dot{\gamma}_i A^i_{\mid m} W^m_{\mid i} - \ddot{\gamma}_i A^i_{\mid m} W^m_{\mid i} + A^i_{\mid m} \ddot{\gamma}_i W^i_{\mid i}).$$
For W^* — recurrent space we get the theorem from (3.5) by using the relation (3.1).

Theorem (3.2): In an W^*_{ik} — recurrent F_n the following condition holds good:

\[(\delta_{i} V_{i}) W_{hk} = F W_{ihk}^{i} + \delta_{i} A^{i}_{m1} W_{k}^{m} - 2 \delta_{i} A^{i}_{m1} W_{k}^{m} x^{i} \]

Proof: Multiplying (3.5) by x^{h} and using relations (1.9e) and (1.1) we get the result (3.6) in view of the equation (3.2).

Theorem (3.3): An W^*_{ik} — recurrent F_n becomes W^*_{jk} — recurrent F_n if it satisfies the following relation

\[W_{jk}^{i} \delta_{h} V_{i} = \delta_{i} W_{jk}^{i} \delta_{h} F + W_{jk}^{i} \delta_{h} A^{i}_{m1} = \delta_{i} A^{i}_{m1} W_{m}^{i} + \delta_{m} W_{jk}^{i} A^{i}_{m1} \]

Proof: An W^*_{ik} — recurrent F_n is characterised by (3.3).

Differentiating (3.3) with respect to x^{h} and applying the commutation formula (1.7), we get

\[(\delta_{h} W_{jk}^{i})_{i} = (\delta_{h} W_{jk}^{i})_{i} - (\delta_{h} V_{i}) W_{k}^{i} = \{} \delta_{i} F \delta_{i} W_{k}^{i} + \delta_{i} A^{i}_{m1} W_{k}^{m} - \delta_{h} A^{i}_{m1} W_{m}^{i} + \delta_{m} W_{k}^{i} A^{i}_{m1} \{ \]

Now interchanging the indices h and k in (3.8) and subtracting it from (3.8) and applying the relation (1.8b), we obtain

\[W_{hk}^{i} = \{} \frac{2}{3} \{ \delta_{i} W_{jk}^{i} \delta_{h} F + \delta_{h} A^{i}_{m1} W_{k}^{m} - \delta_{i} A^{i}_{m1} W_{m}^{i} + \delta_{m} W_{jk}^{i} A^{i}_{m1} \} \]

But for W^*_{ik} — recurrent F_n the left hand side of (3.9) vanishes and then we get (3.7).

Theorem (3.4): In an W^*_{ik} — recurrent Finsler space, we have

\[W_{k}^{i} x^{h} (\delta_{h} V_{i}) = F \delta_{i} W_{k}^{i} + F x^{h} W_{i}^{i} + W_{k}^{i} \delta_{h} A^{i}_{m1} x^{i} - 2 \delta_{i} A^{i}_{m1} W_{k}^{m} x^{i} + W_{k}^{m} A^{i}_{m1} \]

Proof: Multiplying (3.9) by x^{h} and using equations (1.10a), (1.10b) and (1.1) we get (3.10) in view of the equation (3.3).

Theorem (3.5): The recurrence vector of W^*_{ik} — recurrent F_n satisfies the relation

\[2 V_{i} W_{i}^{i} = F_{i} W_{i}^{i} + F_{i} W_{i}^{i} + S_{i} W_{i}^{i} - S_{i} W_{i}^{i} \]

Proof: Differentiating (3.3) co-variantly with respect to x^{m}, we get

\[W_{i}^{i} = (V_{i} W_{i}^{i} + V_{i} W_{i}^{i}) \]

Interchanging i and m in (3.12) and subtracting it from (3.12) and applying the commutation formula (1.5) we easily get the result (3.11).
REFERENCES

