Linkage coefficient and surface of given rectifiable boundary in 3-space (*)

The first part of the following exposition deals with the linkage coefficient of two disjoint, simple, closed, rectifiable curves C and z, in Euclidean 3-space. The second part has to do with the definition and some properties of a surface S, when its boundary is the curve C, given in advance. The basis of the latter is the linkage coefficient with C of testing curve (**) .

The linkage coefficient is defined directly as a function of curves, and will be denoted by \(v(x, C) \). It turns out to be symmetric in \(x \) and C, this being a property related to the setting in 3-space \(\mathbb{R}^3 (***) \).

We imagine an electric current of unit strength on the curve C. It may be represented almost everywhere on C as a vector in terms of the direction cosines at the point \(Q \) of C. It generates a magnetic field, and the change of its magnetic potential one or more times around the closed path \(x \) turns out to be an integral multiple of \(4\pi \). Thus this integer will yield a definition of \(v(x, C) \). The change of magnetic potential of an arc of \(x \) yields a definition of the change of solid angle as a point P travels along the arc. Sometimes it is convenient to take C as an arc as well as, or instead of, \(x \). In the terms of Physics we introduce sources and sinks. This combination of values of current and field we denote by I \((x, C)\). To employ the combination of electric and magnetic fields as a lead to a mathematical idea is an old and natural device (*) .

Our rectifiable curve in \(\mathbb{R}^3 \) offers most of the complications of a simple continuous curve : knots, etc., and the complications obtained by means of the condensation of singularities. In general the surfaces that we shall deal with in Part II, bounded by such curves, will not be simple, although it may happen that a curve with a knot will be the boundary of a surface, even a ruled surface, which does not intersect itself.

Occasionally we may consider the case where C consists of a finite number of disjoint closed curves, and S may or may not be made of disjoint pieces (**) .

(*) Memoria presentata dall'Accademico Mauro Picone.
(**) (**). References are to the bibliography.
(***) (**), p. 614.
(*) (†), p. 409 ff. (†) a, b.
(**) (**), (††).
LINKAGE COEFFICIENT OF TWO SIMPLE RECTIFIABLE CURVES

1. Properties of the vector \(H \)

Let \(\xi, \eta, \zeta \) be the coordinates of a generic point \(Q \) of a given simple closed curve \(C \), and \(\tau \) be the parameter of a homeomorphic representation of \(C \) onto a circumference (or onto an interval whose end points are identified). In order that \(\xi, \eta, \zeta \) may be taken as continuous functions of bounded variation in \(\tau \), it is necessary and sufficient that \(C \) be rectifiable (*).

It is convenient to take \(\tau \) so that \(\tau_2 - \tau_1 \geq \overline{Q_1Q_2} \) where \(\overline{Q_1Q_2} \) is a positive length along \(C \), and in particular, if nothing else is prescribed, to take \(\tau_2 - \tau_1 = \overline{Q_1Q_2} \). The derivatives \(d\xi/d\tau, d\eta/d\tau, d\zeta/d\tau \) will exist, and be in absolute value \(\leq 1 \), on a certain set \(E \) of measure equal to the length of \(C \); in fact, for any \(\Delta C \) of \(C \), \(\Delta \xi, \Delta \eta, \Delta \zeta \leq 1 \), etc. (**). For \(Q = (\xi, \eta, \zeta) \) in \(C \) and \(P = (x, y, z) \) in \(R^3 - C \), and \(r = QP \), the function \(r^{-1} \) and its derivatives of all orders are continuous in all six coordinates, uniformly if \(r \geq e > 0 \). The \(x, y, z \) axes are taken respectively the same as the \(\xi, \eta, \zeta \) axes. We have \(r^2 = (x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2 \), whence

\[
\frac{dr}{dx} = \frac{\Delta r}{\Delta x} = \frac{x - \xi}{r}, \quad \frac{dr}{d\xi} = \frac{x - \xi}{r^2}, \quad \frac{dr}{d\zeta} = \frac{-x - \xi}{r^3}.
\]

(1.1)

We imagine a unit electric current on \(C \), considered as the value along \(C \) of the vector of components \(\xi, \eta, \zeta \), and denote by \(H \) a vector \((L, M, N)\) to represent the intensity of the magnetic field at the point \(P = (x, y, z) \). The well known properties of the magnetic field suggest a corresponding mathematical definition of the components of \(H \) in terms of simple Stieltjes integrals, defined as limits of sums (*):

\[
L(P) = \int_{\tau_1}^{\tau_2} \frac{\Delta r^{-1}}{\Delta \xi} d\xi(\tau) - \frac{\Delta r^{-1}}{\Delta \eta} d\eta(\tau) - \frac{\Delta r^{-1}}{\Delta \zeta} d\zeta(\tau),
\]

(1.2)

\[
M(P) = \int_{\tau_1}^{\tau_2} \frac{\Delta r^{-1}}{\Delta \xi} d\eta(\tau) - \frac{\Delta r^{-1}}{\Delta \eta} d\xi(\tau),
\]

\[
N(P) = \int_{\tau_1}^{\tau_2} \frac{\Delta r^{-1}}{\Delta \xi} d\zeta(\tau) - \frac{\Delta r^{-1}}{\Delta \zeta} d\xi(\tau).
\]

On account of our choice of \(\tau \) so that \(|\Delta \xi|, |\Delta \eta|, |\Delta \zeta| \leq \Delta \tau \), it follows that all of the derivatives numbers (left inferior, left superior, etc.) of each of the functions \(\xi(\tau), \eta(\tau), \zeta(\tau) \) have numerical values \(\leq 1 \). At any point in \(E \) all four derivative numbers are equal. The boundedness of these numbers insures the absolute continuity of the corresponding functions.

(*) (§) and Appendix I. Theorems quoted from (§) will be denoted as B 1, B 2, etc.
If a function \(f(\tau) \) is absolutely continuous, that is to say, determines a function of point sets that is absolutely continuous, in an interval \((a, b)\), then each of the derivative numbers \(\Lambda(\tau) \) of \(f(\tau) \) is summable in \((a, b)\). For any interval \((\tau_1, \tau_2)\) (*),

\[
f(\tau_2) - f(\tau_1) = \int_{\tau_1}^{\tau_2} \Lambda(\tau) \, d\tau.
\]

It is important to note that by construction:

Each of the derivative numbers \(\Lambda \) is measurable Borel on the point set \(C \).

If \(P \) is a point \((x, y, z)\) in \(\mathbb{R}^2 \rightarrow C \), the derivatives of \(r^{-1} \) of arbitrary order are uniformly continuous in \(\xi, \eta, \zeta \) for \(Q = (\xi, \eta, \zeta) \) on \(C \). Hence for \(P \in C \), with regard to the nature of the derivatives of \(r^{-1} \), as is formulae (1.1), we have

\[
\frac{\partial L}{\partial x} = \int_{C} \left(\frac{\partial^2 r^{-1}}{\partial x \partial \xi} \frac{d\xi}{d\tau} - \frac{\partial^2 r^{-1}}{\partial x \partial \eta} \frac{d\eta}{d\tau} \right) d\tau - \int_{C} \frac{\partial^2 r^{-1}}{\partial x \partial \zeta} d\zeta(\tau) = 0
\]

and similarly for further differentiation. By direct calculation one finds (**):

\[
\text{div. } H = \frac{\partial L}{\partial x} + \frac{\partial M}{\partial y} + \frac{\partial N}{\partial z} = 0.
\]

Let \(Q \) be a point of \(E \), that is, a point where \(C \) has a unique tangent \(\frac{\vec{d}C}{d\tau} \), and let \(\vec{d}H \) be the infinitesimal contribution to \(H \) at \(Q \). Then

\[
\vec{d}H \perp \vec{d}C \quad \text{at } Q.
\]

In fact, at a point of \(E \),

\[
\frac{d\xi}{d\tau} = \zeta \text{ component of } \frac{\vec{d}C}{d\tau}
\]

\[
\frac{\partial r^{-1}}{\partial \xi} \frac{d\xi}{d\tau} - \frac{\partial r^{-1}}{\partial \eta} \frac{d\eta}{d\tau} = \zeta \text{ component of } \frac{\vec{d}H}{d\tau}
\]

whence (1.4) follows. In fact the scalar product of the two vectors vanishes.

If instead of a closed curve \(C \), the vector \(H \) involves only an arc \(Q_1Q_2 \) of \(C \), that is,

\[
L(P) = \int_{Q_1}^{Q_2} \left\{ \frac{\partial}{\partial \xi} \frac{\partial r^{-1}}{\partial \xi} d\eta(\tau) - \frac{\partial}{\partial \eta} \frac{\partial r^{-1}}{\partial \eta} d\zeta(\tau) \right\}
\]

with corresponding expressions for \(M(P) \) and \(N(P) \), for integration along \(C \), the relations (1.3) and (1.4), of course, are still valid.

(*) (**) pp. 76-80.

(***) \(H \) is itself not \(K \), where \(K \) is the vector

\[
K(P) = \int_{C} r^{-1} d\xi(\tau), \quad \int_{C} r^{-1} d\eta(\tau), \quad \int_{C} r^{-1} d\zeta(\tau)
\]

whence again (1.3) follows.
The x component of rot H is $\frac{\partial}{\partial y} \frac{\partial N}{\partial z} - \frac{\partial M}{\partial z}$, where, from (1.5) and the corresponding terms for y and z components which are obtained from (1.2), we have
\[
\frac{\partial N}{\partial y} - \frac{\partial M}{\partial z} = \int_0^r \left\{ \frac{\partial}{\partial y} \frac{1}{r^2} d\xi(\tau) - \frac{\partial}{\partial z} \frac{1}{r^2} d\eta(\tau) + \frac{\partial}{\partial z} \frac{1}{r^2} d\zeta(\tau) + \frac{\partial}{\partial x} \frac{1}{r^2} d\xi(\tau) \right\}.
\]
But \(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} = 0\). Therefore adding and subtracting inside the integral the term \(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\) we obtain
\[(1.6) \quad \frac{\partial}{\partial y} \frac{\partial N}{\partial z} - \frac{\partial}{\partial z} \frac{\partial M}{\partial z} = \frac{\partial}{\partial x} \int_0^r \left\{ \frac{\partial}{\partial x} \frac{1}{r^2} d\xi(\tau) + \frac{\partial}{\partial y} \frac{1}{r^2} d\eta(\tau) + \frac{\partial}{\partial z} \frac{1}{r^2} d\zeta(\tau) \right\}.
\]
We wish to prove that rot $H = 0$ if C is a closed curve and $P = (x, y, z)$ is not on C. We shall first establish a lemma of general character, with hypothesis slightly less restrictive than that which might be used for r^{-1}.

Lemma 1.1. Let $f(\xi, \eta, \zeta)$ and its first derivatives be continuous on spherical neighborhoods $0(Q, \delta)$, Q being a generic point of C for an interval $Q' \leq Q \leq Q''$ (*). It generates a tubular neighborhood $0(C, \delta)$ of C. Then, for integration along C, as measured by τ,
\[(1.7) \quad \int_{Q}^{Q'} \frac{\partial f}{\partial \xi} d\xi(\tau) + \frac{\partial f}{\partial \eta} d\eta(\tau) + \frac{\partial f}{\partial \zeta} d\zeta(\tau) = f(Q') - f(Q').
\]
Incidentally, $0(C, \delta)$ is thus defined as a simply covered set of points. We denote the left member of (1.7) as I, and write it in the form
\[
I = \sum_{i=1}^{n} \int_{\tau_i}^{\tau_{i+1}} \left\{ \frac{\partial f}{\partial \xi} d\xi(\tau) + \frac{\partial f}{\partial \eta} d\eta(\tau) + \frac{\partial f}{\partial \zeta} d\zeta(\tau) \right\}
\]
\[
\tau(Q') = \tau_1, \tau_1 < \tau_2 < \ldots < \tau_{n+1}, \tau_{n+1} = \tau(Q''), \tau_{n+1} - \tau_1 \leq \delta_1,
\]
where $\delta_1 \leq \delta$. We take δ small enough so that the following expressions remain in $0(C, \delta)$. Consider then the expression
\[
I' = \sum_{i=1}^{n} \frac{\partial f}{\partial \xi} \int_{\tau_i}^{\tau_{i+1}} d\xi(\tau) = \xi(\tau_{i+1}) - \xi(\tau_i)
\]
(*) The \leq sign denotes order on the curve, as a substitute for $\tau(Q') \leq \tau(Q'')$, etc.
by definition of the Stieltjes integral. We have

\[I' = \sum_{i=1}^{n} \left\{ \left(\frac{f}{\xi} \right)_{\xi_i} \left[\xi_i (\tau_{i+1}) - \xi_i (\tau_i) \right] \right. \\
+ \left. \left(\frac{1}{\gamma} \right)_{\gamma_i} \left[\gamma_i (\tau_{i+1}) - \gamma_i (\tau_i) \right] + \left(\frac{1}{\zeta} \right)_{\zeta_i} \left[\zeta_i (\tau_{i+1}) - \zeta_i (\tau_i) \right] \right\}. \]

As to \(I - I' \), a slight generalization of Theorem B 2 of (7) yield the following:

Given \(\varepsilon > 0 \), \(\delta_i > 0 \) may be chosen sufficiently small so that

\[I - I' \leq O^1 \xi T_\xi + O^1 \gamma T_\gamma + O^1 \zeta T_\zeta \leq \varepsilon, \]

in which \(T_\xi, T_\gamma, T_\zeta \) are the total variations of \(\xi, \gamma, \zeta \) respectively and \(O^1 \xi, O^1 \gamma, O^1 \zeta \) are the maximum values of the oscillations of the continuous functions \(\xi, \gamma, \zeta \) in the intervals \(\tau_i < \tau \leq \tau_{i+1} \) on \(C_i \). Thus \(I' \) may be interpreted as belonging to a polygonal arc \(C' \) inscribed in \(C \) with vertices \(Q_i = Q_i (\tau_i) \).

For \(P \) on the chord \(Q_i Q_{i+1} \) we take \(\tau \) as linear between \(\tau (Q_i) \) and \(\tau (Q_{i+1}) \).

On the other hand, the right hand member of (1.7) may written in the form

\[I' = f (Q') - f (Q) \]

\[= \sum_{i=1}^{n} \left\{ f (\xi_{i+1}, \gamma_i, \zeta_{i+1}) - f (\xi_i, \gamma_i, \zeta_i) \right\} \\
= \sum_{i=1}^{n} \left\{ f (\xi_{i+1}, \gamma_i, \zeta_{i+1}) - f (\gamma_i, \gamma_i, \zeta_i) \right\} + \left\{ f (\xi_{i+1}, \gamma_i, \zeta_i) - f (\xi_{i+1}, \gamma_{i+1}, \zeta_{i+1}) \right\} \\
- \left\{ f (\xi_{i+1}, \gamma_i, \zeta_i) \right\} + \left\{ f (\xi_{i+1}, \gamma_{i+1}, \zeta_{i+1}) - f (\xi_i, \gamma_i, \zeta_i) \right\} \]

where \(\xi_i \) means \(\xi (\tau_i) \), etc. Therefore

\[I' = \sum_{i=1}^{n} \left\{ \left(\frac{f}{\xi} \right)_{\xi_i} \xi_i, \gamma_i, \zeta_i (\xi_{i+1} - \xi_i) + \left(\frac{f}{\gamma} \right)_{\gamma_i} \xi_i, \gamma_i, \zeta_i (\gamma_{i+1} - \gamma_i) \\
+ \left(\frac{f}{\zeta} \right)_{\zeta_i} \xi_i, \gamma_i, \zeta_i (\zeta_{i+1} - \zeta_i) \right\} \]

where for example \(\xi_{i+1}, \gamma_i, \zeta_i \) refers to a point in a small neighborhood of \((\xi_i, \gamma_i, \zeta_i) \), and \(| \xi_{i+1} - \xi_i |, | \gamma_{i+1} - \gamma_i |, | \zeta_{i+1} - \zeta_i | \) are all \(\leq \Delta \tau \). Therefore given \(\varepsilon > 0 \), there is \(\delta > 0 \) so that from (1.8) and (1.10), again with reference to B 2 of (7) \(I' - I' \) \(\leq \varepsilon \). Therefore with \(\delta < \delta_i, \delta < \delta_i \), the difference between the two members of (1.7) may made arbitrarily small.

As application, substituting \(f (\xi, \gamma, \zeta) \) = \(r^{-1} \), (1.7) becomes

\[\int_{\tau_i}^{\tau_{i+1}} \frac{\partial r^{-1}}{\partial \xi} d \xi (\tau) + \frac{\partial r^{-1}}{\partial \gamma} d \gamma (\tau) + \frac{\partial r^{-1}}{\partial \zeta} d \zeta (\tau) = \frac{Q_i - Q_{i+1}}{P_i - P_{i+1}}, \]

QED.
whence
$$\frac{\partial N}{\partial y} - \frac{\partial M}{\partial z} = \frac{\partial}{\partial x} \{ Q_1 P^{-1} - Q_2 P^{-1} \}.$$

Therefore for rot \(H \) at the point \(P \) we have the vector value

$$(1.11) \quad \text{rot} \ H (P) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial z} \right) (Q_1 P^{-1} - Q_2 P^{-1})$$

for \(Q_1, Q_2 \) an arc of \(C \).

\(\text{rot} \ H (P) = 0 \) if \(Q_1, Q_2 \) is the closed curve \(C \).

2. The function \(I (x, C) = I (C, x) \).

Let \(x \) be a second simple rectifiable arc, of points \(P \), closed as a point set, which does not intersect \(C \). Thus there is a tubular neighborhood \((C, \tau) \) such that \(x \Omega \theta (C, \tau) = 0 \).

We define integrals \(\lambda, \mu, \nu \) analogous to \(L, M, N \). Let \(r = P P Q \), \(P = (x, y, z) \) on \(x \) and \(Q (x, y, z) \) on \(C \). For additional clarity when convenient we write \(c_b^a \) for integration along \(C \) and \(\int_r^a \) similarly for \(x \). Accordingly we define

$$\begin{align*}
\lambda (Q) &= \lambda (x, y, z) = \int_{P_1}^{P_2} \left(\frac{\partial r^{-1}}{\partial z} \frac{d y(t)}{d t} - \frac{\partial r^{-1}}{\partial y} \frac{d z(t)}{d t} \right) \\
\mu (Q) &= \mu (x, y, z) = \int_{P_1}^{P_2} \left(\frac{\partial r^{-1}}{\partial x} \frac{d z(t)}{d t} - \frac{\partial r^{-1}}{\partial z} \frac{d x(t)}{d t} \right) \\
\nu (Q) &= \nu (x, y, z) = \int_{P_1}^{P_2} \left(\frac{\partial r^{-1}}{\partial y} \frac{d x(t)}{d t} - \frac{\partial r^{-1}}{\partial x} \frac{d y(t)}{d t} \right).
\end{align*}$$

\text{THEOREM} I With the above notation, we have the identity

$$(2.2) \quad c_b^a \lambda d \xi (\tau) + \mu d \eta (\tau) + \nu d \zeta (\tau) = \int_{P_1}^{P_2} L d x(t) + M d y(t) + N d z(t),$$

\(x \) and \(C \) being assumed to be disjoint as point sets, except when one is being deformed across the other.

This is the explicit form of the \(I (C, x) \) of p. 2. The theorem states that \(I (C, x) = I (x, C) \).

The first integral of the left member consists of the terms

$$(I) \quad \int_{P_1}^{P_2} \lambda d y (t), \quad (II) \quad \int_{P_1}^{P_2} \mu d z (t), \quad (III) \quad \int_{P_1}^{P_2} \nu d x (t),$$

making use of (2.1). The rest of the left member is obtained by permuting these pairs cyclically. The right member has a similar structure with corresponding terms.
(I') and (II'), but not corresponding pair's. To (I) corresponds

\[(I') \quad - \sum_{j=0}^{n} \int_{\tau_{j}}^{\tau_{j+1}} d y (t) \int_{0}^{\tau_{j}} \frac{\xi (\tau)}{\tau} \int_{0}^{\tau_{j}} \frac{\xi (\tau)}{\tau} d \tau \]

since \(\frac{\partial}{\partial \zeta} \frac{\partial}{\partial z} = \frac{\partial}{\partial z} \frac{\partial}{\partial z} \). The theorem merely states that a change in the order of integration is legitimate. For convenience we take \(\tau \) and \(t \) as lengths along the respective arcs.

The expression (I) may be rewritten in the form

\[(I) \quad \sum_{j=0}^{n} \int_{\tau_{j}}^{\tau_{j+1}} \left\{ \sum_{i=0}^{m} \int_{\tau_{i}}^{\tau_{i+1}} \frac{\zeta - z}{r^3} d y (t) \right\} d \xi (\tau), \]

where \(Q_{i} = Q (\tau_{i}) \), \(Q_{i} = Q (\tau_{i+1}) \), \(P_{i} = P (\tau_{i}) \), \(P_{i} = P (t_{i+1}) \), and \(k \) and \(m \) are determined by choosing \(\delta > 0 \) and taking \((t_{i+1} - t_{i}) < \delta \), \((t_{j+1} - t_{j}) < \delta \).

Let \(T \) denote the length of the longer of the arcs \(x \) and \(C \), thus greater than or equal to the total variations of \(\xi (\tau) \) and \(y (t) \).

As in Theorem B.2 of (I) denote by \(\beta \), the maximum of the oscillations of \((\zeta - z)/r^3 \), \(r = Q P \), for \(Q \) in any of the arcs of \(C \) defined by a \((i_{i+1} - i_{i}) \leq \delta \) and \(P \) in any of the arcs given by a \((t_{j+1} - t_{j}) \leq \delta \). Let \(r_{i} \) denote the distance when \(P \) is restricted to \(P_{i} \), and \(r_{i} \) the distance between specific points \(Q_{i} \) and \(P_{i} \).

With reference to the expression above for (I), we wish to evaluate the difference

\[\int_{\tau_{i}}^{\tau_{i+1}} d \xi (\tau) \left\{ \int_{\tau_{i}}^{\tau_{i+1}} \frac{\zeta - z}{r^3} d y (t) \right\} - \int_{\tau_{i}}^{\tau_{i+1}} \frac{\zeta_{i} - z_{i}}{r_{i}^3} \left[y (t_{i+1}) - y (t_{i}) \right] d \xi (\tau), \]

where indeed the second part is merely

\[\frac{\zeta_{i} - z_{i}}{r_{i}^3} \left[y (t_{i+1}) - y (t_{i}) \right] \left[\xi (\tau_{i+1}) - \xi (\tau_{i}) \right]. \]

We have

\[\left| \frac{\zeta - z}{r^3} - \frac{\zeta_{i} - z_{i}}{r_{i}^3} \right| \leq \beta, \text{ with reference to integration on } \]

\[\left| \frac{\zeta - z_{i}}{r_{i}^3} - \frac{\zeta_{i} - z_{i}}{r_{i}^3} \right| \leq \beta, \text{ with reference to subsequent integration on } C \]

\[\left| \frac{\zeta - z}{r^3} - \frac{\zeta_{i} - z_{i}}{r_{i}^3} \right| \leq 2 \beta, \]

\[\int_{\tau_{i}}^{\tau_{i+1}} \frac{\zeta - z}{r^3} d y (t) - \frac{\zeta_{i} - z_{i}}{r_{i}^3} \left[y (t_{i+1}) - y (t_{i}) \right] \leq 2 \beta (t_{i+1} - t_{i}) \]

by integration of the \((\zeta - z)/r^3 - (\zeta_{i} - z_{i})/r_{i}^3 \) and noting that

\[\left| y (t_{i+1}) - y (t_{i}) \right| \leq t_{i+1} - t_{i}. \]
The integral in the left member, by Theorem B.3 of (4), is a continuous function of \(\tau \).

For the moment let \(F_j \) stand for the expression between absolute value signs above. We have

\[
\left| \sum_{j=0}^{m} F_j \right| \leq \sum_{j=0}^{m} |F_j| \leq 20 \delta \sum_{j=0}^{m} (t_{j+1} - t_j) \leq 20 \delta T^2.
\]

Therefore

\[
\left| \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} \left(\sum_{j=0}^{m} F_j \right) d\tau \right| \leq \sum_{j=0}^{m} \int_{t_j}^{t_{j+1}} 20 \delta T d\tau \leq 20 \delta T^2,
\]

\[
\left| (I) - \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} \left(y(t_{j+1}) - y(t_j) \right) (\xi(t_{j+1}) - \xi(t_j)) \right| \leq 20 \delta T^2.
\]

If we now analyze \((I') \) similarly, we find that it also differs from the same polynomial by \(\leq 20 \delta T^2 \). Hence

\[
| (I) - (I') | \leq 40 \delta T^2.
\]

But \(T \) is a constant and \(0 \rightarrow 0 \) with \(\delta \). Therefore \((I) = (I') \). In the same way we find that the change of order of integration is legitimate for every pair of corresponding terms in (2.2).

QED

We may write the identity (2.2) in a different form, and obtain a somewhat more general result, by making use of a second difference method of C. De la Vallée Poussin (*) .

Given a function \(f(\tau, t) \), its second difference is written as

\[
\Delta^2 f = f(\tau + h, t + k) - f(\tau, t + k) - f(\tau + h, t) + f(\tau, t), h > 0, k > 0.
\]

Denote by \(\omega \) the rectangle of lower left vertex \((\tau, t)\) and lengths of sides \(h, k \), parallel to the \(\tau, t \) axes, thus to define a function \(g(\omega) = \Delta^2 f \). Let \(\Omega \) be the union of a finite number of such non-overlapping rectangles \(\omega_i \) and write

\[
g(\Omega) = \sum g(\omega_i).
\]

It is additive on rectangles. Hence if \(\omega_i = \Sigma \omega_{i,j} \), the \(\omega_{i,j} \), being non-overlapping rectangles, then

\[
g(\omega_i) = \sum_j g(\omega_{i,j}), g(\Omega) = \sum g(\omega_{i,j}).
\]

If \(g(\Omega) \rightarrow 0 \) when \(\text{meas } \Omega \rightarrow 0 \), \(g(\Omega) \) is absolutely continuous on rectangles, and, as definition, \(f(\tau, t) \) is absolutely continuous on rectangles. In this way \(f(\tau, t) \)

(*) (*) Ch. V. pp. 80-82, with reference also to theorems of H. Lebesgue.
determines a unique function \(g(\omega) \) which is additive on measurable sets and absolutely continuous, coinciding with \(f(\tau, t) \) on rectangles.

In (2.3) at an arbitrary point \(P(\tau, t) \) let \(h \to 0 \) and \(k \to 0 \) in a regular manner, that is, so that there are two positive constants \(H \) and \(K \), independent of \(P \), such that

\[
0 < H < \frac{h}{k} < K, \; H < K.
\]

Returning to the function of point sets \(g(\omega) \), we define \(Dg(\omega) \) at a point \(P(\tau, t) \) as a two-dimensional derivative at the point (*)

\[
Dg = \lim_{h \to 0} \lim_{k \to 0} \frac{g(\omega)}{\text{meas } \omega} = \lim_{h \to k} \Delta^2 f
\]

\(h \) and \(k \) approaching 0 as above. It exist in the \(\tau, t \) plane except at a set of Borel measure zero, where to a certain extent it may be defined according to convenience for its application. As a consequence of the absolute continuity of \(g(\omega) \), we have

\[
\Delta^2 f(\tau, t) = g(\omega) = \int_0^{\omega} Dg \; dP, \; P = (\tau, t).
\]

The theory may be extended by introducing a general Stieltjes type integral, although in the case of our applications the derivative numbers are all bounded. We limit ourselves therefore to the hypothesis that \(g(\omega) \) is absolutely continuous.

Our task is to define an integral

\[
\Phi = \int_0^\infty \varphi(P) \; dg(\omega) = \int_0^\infty \varphi(\tau, t) \; d\Delta^2 f(\tau, t)
\]

where \(\varphi(\tau, t) \) is bounded and continuous in \(R \), \(R \) being the union of a finite number of given rectangles in the \(\tau, t \) space.

Since however \(g(\omega) \) is continuous to measurable sets \(\omega \), it may be written as difference of two positive set functions in (2.5); similarly also \(\Delta^2 f(\tau, t) \) may be considered as the difference of two positive functions. Hence it is sufficient to consider only positive set functions and also obviously only positive continuous functions \(\varphi(P) \). From this point, for the purposes of our applications, it is necessary to consider only rectangular subdivisions \(\omega \) of our \(\tau, t \) space.

We define

\[
\Sigma_i = \Sigma_1 \varphi(P) g(\omega), \; P_i \in \omega_i
\]

to be summed over \(R \); we define \(\Sigma_i \) similarly, taking \(P_i = P_i \), where \(\varphi(P_i) \) is an upper bound of \(\varphi(P) \) in \(\omega_i \), and secondly \(P_i \) as \(P_i' \), \(P_i'' \), being a point where \(\varphi(P_i') \) is similarly a lower bound in \(\omega_i \). Thus we obtain upper and lower sums.

In the definition of \(\Delta^2 f \) in (2.3), we write \(h = h_m = \tau_{m+1} - \tau_m, \; k = k_n = t_{n+1} - t_n \), to form \(\Delta \tau_m \) and \(\Delta t_n \) respectively requiring that they conform to fixed values of \(H \) and \(K \), as they are subdivided. As in the case of one dimension,

(*) Hence it is related to a mixed second partial derivative.
one finds that any upper sum is \geq every lower sum, and any lower sum is \leq every upper sum. At every stage the number of rectangles is finite. And as in the proof for one dimension, they frame a single value, and that value is defined as the Φ in (2.5) above (*).

The advantage of this method of treatment is that the integral is defined directly as a double integral in (τ, t). As an application we turn to the (I) or (I') of Theorem I, which are thus covered together. In (2.5) we put

$$(2.7) \quad \varphi(P) = \frac{br^{-1}}{\delta z} = \frac{z - y}{r^2} = -\frac{br^{-1}}{\delta z}, \quad f_j(\tau, t) = \xi_j(\tau) y_j(t),$$

from which, with a slight change of notation,

$$\Delta^2 f_{ij}(\tau, t) = \left\{ \frac{\xi(\tau_j + \Delta \tau_i) - \xi(\tau_j)}{\Delta \tau_i} \right\} \left\{ \frac{y(t_j + \Delta t_j) - y(t_j)}{\Delta t_j} \right\} \Delta \tau_i \Delta t_j$$

The function $\varphi(P)$ is bounded and continuous because $x \cap C = 0$, and $\Sigma \Delta^2 f_{ij}$ remains bounded because $|\Delta \xi| \leq \Delta \tau$, $|\Delta y| \leq \Delta t$ (**). Therefore

$$\Sigma_{ij} \frac{\xi_i - \xi_j}{r_{ij}^2} \frac{\Delta^2 f_{ij}}{\Delta \tau_i \Delta t_j} \rightarrow \int_{R} \left(\frac{z - y}{r^2} \frac{d z}{d \tau} \frac{d y}{d t} \right) d \tau d t$$

as a double integral. We can assume that where the derivatives are not defined uniquely, they are assigned the values of the lower (forward) derivative numbers, so that they are defined everywhere as functions of the first Baire category, integrable in the Borel sense, unique derivatives except on sets of measures 0 on C and x.

Similarly for (II) and (II') we find the value $-\int_{R} \left(\frac{z - y}{r^2} \frac{d z}{d \tau} \frac{d y}{d t} \right) d \tau d t$. Thus we obtain the following double integral over the region R:

Theorem II.

$$(2.8) \quad \int_{R} \int_{R} \left[\frac{d \xi}{d \tau} \frac{d y}{d t} (\xi - z) \frac{d \xi}{d \tau} \frac{d z}{d t} (\tau - y) \frac{d \xi}{d \tau} \frac{d x}{d t} (\xi - x) \frac{d \xi}{d \tau} \frac{d y}{d t} (\tau - y) \frac{d \xi}{d \tau} \frac{d x}{d t} (\tau - x) \right] d \tau d t = I(x, C) = I(C, x),$$

(*) Cf. Theorem B 1 in (I).

(**) For the meaning of $\Sigma \Delta^2 f_{ij}$ see (I) and (I') in Theorem I.
R being defined as in (2.5).

And to this we may apply the Fubini theorem to obtain the iterated integrals analogous to equation (2.2). For example

\begin{equation}
(2.9) \quad I (x, C) = I (C, x) = \int_x d \tau \int_x r \left[\left(\zeta - z \right) \frac{d y}{d t} - \left(\eta - y \right) \frac{d z}{d t} \right] d t + \int_x d \tau \int_x \left[r \left(\zeta - x \right) \frac{d x}{d t} \right] d t - \int_x d \tau \int_x \left[\left(\eta - x \right) \frac{d x}{d t} - \left(\zeta - x \right) \frac{d y}{d t} \right] d t .
\end{equation}

In terms of Stieltjes integrals we use later the right member of (2.2) in the form

\begin{equation}
(2.10) \quad I (x, C) = \int_x d x (t) \int_x \frac{d \tau}{d t} \int_x \frac{d \tau - 1}{d \tau} d \pi (\tau) - \frac{d \tau - 1}{d \tau} d \xi (\tau) + \\
\int_x d y (t) \int_x \frac{d \tau}{d t} \int_x \frac{d \tau - 1}{d \tau} d \xi (\tau) - \frac{d \tau - 1}{d \tau} d \xi (\tau) + \\
\int_x d z (t) \int_x \frac{d \tau}{d t} \int_x \frac{d \tau - 1}{d \tau} d \xi (\tau) - \frac{d \tau - 1}{d \tau} d \xi (\tau) .
\end{equation}

In particular we may take x and C as arcs, as well as closed curves.

Comment. Consider the case where in formula (2.10) we deal with arcs C1 and C2, taking t as measures along each arc. Denote by C the union of the two arcs. Given the arc x we have the formula

\begin{equation}
(2.11) \quad I (x, C) = I (x, C1 \cup C2) = I (x, C1) + I (x, C2) .
\end{equation}

Here, if x is given, I (x, C) is additive in C, and similarly, from (2.9), I (x, C) is additive in x if C is given.

In cases where an arc is repeated, it is retained as doubled in formula (2.11). If, however, we form I (x, C) mod 2, direction along the arc has no significance, and in the corresponding formula the doubled arcs disappears.

3. The linkage coefficient

It will be proved in the theorems of this section that if x and C are disjoint closed curves, the value of I (x, C)/4π is an integer, positive, negative or zero. This value is defined to be the linkage coefficient ν (x, C) of x and C. For the definition of the related concept of solid angle, see Art. 4.
We shall have use for the Theorem of Stokes. It is a statement that, with proper restrictions of regularity, the integral of the tangential component of a vector \((L, M, N)\) around a closed curve is equal to the integral of \(\text{rot} (L, M, N)\) over a one-sided surface of which the curve is the sole boundary.

![Fig. 1](image)

As a concrete calculation of an \(I(x, C)\) we take the following case:

Let \(C\) be the circumference \(\xi^2 + \eta^2 = a^2\) in the plane \(\zeta = 0\). Let \(x\) be the rectangle with vertices

\[
P_1 = (x_1, 0, -b), P_2 = (x_1, 0, b), P_3 = (x_3, 0, b), P_4 = (x_2, 0, -b)
\]

all in the plane \(y = 0\). We assume \(b > 0\), \(|x_1| < a\), \(a < |x_2|\). Sufficiently, we may take \(0 \leq x_1 < a\), \(a < x_3\). Also for convenience, we take \(\tau\) and \(t\) respectively as measure along \(C\) and measure along the segments of the rectangle \(x\). We prove the following:

Theorem A Under the above specifications, we have

\[
I(x, C) = 4 \pi.
\]

Since \(r\) denotes the distance from a point \((\xi, \eta, 0)\) on \(C\) to a point \((x, 0, z)\) on the boundary of the rectangle, it follows that \(r\) is bounded uniformly away from 0, and \(1/r\) is continuous on \(x\) and \(C\) with all its derivatives. We have trigonometrically,

\[
r^2 = \xi^2 + \eta^2, \quad \xi^2 = a^2 + x^2 - 2x \xi, \quad \xi = a \cos \phi.
\]
From (2.9) we may eliminate elements of η and C. Thus the pairs of integrals for $z = b$ and $z = -b$ reduce each to a single term from (2.9) (*):

\[
I_{P_1 P_2} = b \int_0^{2\pi} d\tau \int_0^{x_b} \left(r^2 \frac{d}{d\tau} \frac{d}{d\tau} \right) d\xi , \quad \text{for } z = b,
\]

\[
I_{P_3 P_4} = -b \int_0^{2\pi} d\tau \int_0^{x_b} \left(r^2 \frac{d}{d\tau} \frac{d}{d\tau} \right) d\xi , \quad \text{for } z = -b,
\]

where in both cases r^2 is given by (3.1). Therefore $I_{P_1 P_2}$ and $I_{P_3 P_4}$ cancel each other.

Before examining the contributions of the vertical sides of the figure, let us see what happens when $b \to \infty$. Consider a new rectangular boundary x' with vertices:

\[
P_1' = (x_1, 0, -b - b), \quad P_2' = (x_1, 0, b + b), \quad P_3' = (x_2, 0, b + b), \quad P_4' = (x_2, 0, -b - b)
\]

taking $b' > 0$. Since r does not vanish in the added rectangles or on their boundaries, the value of $I(x, C)$ [with reference to Stokes' theorem] is unchanged by their addition:

\[
I(x, C) = I(x, C)
\]

In this operation the sides $P_1 P_2$ and $P_3 P_4$ have disappeared, and $I_{P_1 P_2}$ and $I_{P_3 P_4}$ cancel, as in the original figure. Incidentally, as $b' \to \infty$, the contributions of $I_{P_1 P_2}$ and $I_{P_3 P_4}$ vanish separately, since each is of order r^{-2} as $r \to \infty$.

Accordingly the original rectangle may be considered variable, given by its vertices as b increases. Denote by x_1 and x_2 the boundaries, $P_1 P_2$ and $P_3 P_4$, and by $I(x_1, C)$ and $I(x_2, C)$ their contributions to $I(x, C)$. The value of the $I(x, C)$ of Theorem A is therefore

\[
I(x, C) = \lim_{b \to \infty} I(x_1, C) + \lim_{b \to \infty} I(x_2, C)
\]

We shall prove that the first term has the value 4π, and the second, the value zero.

From (3.1) (*),

\[
I(x, C) = 2 \int_0^{2\pi} d\tau \left[(\xi - x_1) \frac{d}{d\tau} - \frac{d}{d\tau} \frac{d}{d\tau} \right] \int_0^{x_b} (x^2 + z^2)^{-\frac{3}{2}} dz,
\]

(*) We have $\frac{d}{d\tau} \frac{d}{d\tau} = 0$, $z = b$ and $z = -b$.

(**) In order to write $I(x, C)$ explicitly, we eliminate from (2.9) the elements $y, \frac{d}{d\tau} y, \frac{d}{d\tau} z$ as well as $\zeta, \frac{d}{d\tau} \zeta$.

with the corresponding expression for $I_0(x_2, C)$, except that x_2 is directed downward. We denote the respective limits above as $I_\infty(x_1, C)$ and $I_\infty(x_2, C)$.

As indefinite integral, \[\int \left(z^2 + x^2 \right)^{-1/2} \, dq = \frac{z}{2x} \left(z^2 + x^2 \right)^{-1/2}, \]
whence
\[\int_{-\infty}^{\infty} \left(z^2 + x^2 \right)^{-1/2} \, dq = 2 \frac{z}{2x} \left(z^2 + x^2 \right)^{-1/2} \bigg|_0^b \text{ as } b \to \infty = \frac{2}{2x}. \]

The difference between \(\int_{-\infty}^{b} \) and \(\int_{-\infty}^{\infty} \) is \(\frac{2}{az} \left(1 + \frac{x^2}{b^2} \right)^{1/2} - \frac{2}{az} \left(1 + \frac{x^2}{b^2} \right)^{1/2} - 1 \), and this for large b, is of the order of \(\frac{2}{az} \left(1 - \frac{1}{2} \frac{x^2}{b^2} - 1 \right) \), thus uniformly, as $b \to \infty$, $< 1/b^2$.

Therefore we may substitute \(\int_{-\infty}^{\infty} \) in the interior integral and obtain the result:

\[
(3.3) \quad I_\infty(x_1, C) = \int_{-\infty}^{\infty} \left\{ (z - x) \left(\frac{d \tau}{d \tau} - \frac{d \xi}{d \tau} \right) \right\} \, d \tau \text{ and from (3.1),}
\]

\[
= \int_{-\infty}^{\infty} \frac{2}{a^2 + x^2} \cos \varphi \, d \varphi = 2 \pi + \frac{2}{a^2 - x^2} \int_{0}^{2\pi} \frac{d \varphi}{a^2 + x^2 - 2ax \cos \varphi}
\]

where $\tau = \varphi$, $d \tau = d \varphi$, $\tau = \sin \varphi$, $d \tau = \cos \varphi$, etc. The expression $-I_\infty(x_2, C)$ is given by the same formula substituting x_2 for x_1.

An indefinite integral is again available (*):

\[
\int \frac{d \varphi}{m + n \cos \varphi} = \frac{-1}{\sqrt{m^2 - n^2}} \arcsin \frac{n + m \cos \varphi}{m + n \cos \varphi}, \text{ if} |m| \geq |n|.
\]

For $I_\infty(x_1, C)$, $m = a^2 + x_1^2$, $n = -2ax_1$, $\sqrt{m^2 - n^2} = \sqrt{a^4 - 2a^2x_1^3 + x_1^4} = a^2 - x_1^2$ as the positive radical. Hence

\[
(3.4) \quad I_\infty(x_1, C) = 2\pi + \left(a^2 - x_1^2 \right) \left[\frac{-1}{a^2 - x_1^2} \arcsin \frac{-2ax_1 + (a^2 + x_1^3) \cos \varphi}{a^2 + x_1^3 - 2ax_1 \cos \varphi} \right]_{\varphi = 0}^{2\pi}
\]

The integrand in the last integral in (3.3) is positive, because $a^2 + x_1^3 > 2ax_1 \cos \varphi$. Hence the expression in brackets of (3.4) must be increasing continuously from $\varphi = 0$ to $\varphi = 2\pi$. In fact the angle

\[
= \arcsin \frac{-2ax_1 + (a^2 + x_1^3) \cos \varphi}{a^2 + x_1^3 - 2ax_1 \cos \varphi}
\]

(*) B. O. Peirce, Table of Integrals, Boston, 1910. Cf. formula 300, p. 41.
is decreasing continuously, say from \(\frac{\pi}{2} \) to \(-3\pi/2\); thus by \(2\pi \). Hence, from (3.4)
\[
I_\infty(x, C) = 2\pi + 2\pi = 4\pi.
\]

In order to obtain \(I(x, C) \) we make use of the relation
\[
-I(x, C) = 2I_0 x = 2\pi + (a^2 - x_3^2) \int_0^{x_2} \frac{d\varphi}{a^2 + x_3^2 - 2ax_2\cos\varphi}.
\]

In this case \(m^2 - n^2 = a^4 - 2a^2x_2^2 + x_2^4 \), but because \(|x_2| > a \) we have
\[
\sqrt{m^2 - n^2} = x_2^2 - a^2.
\]
Accordingly
\[
-I(x, C) = 2\pi + \frac{a^2 - x_2^2}{x_2^2 - a^2} 2\pi = 0.
\]

Therefore \(I(x, C) = 4\pi \).

QED

Comment to Theorem A. Evidently the rectangle \(x \) and the circumfererce \(C \) may be deformed in turn into other simple figures, so that \(I(x, C) \) remains equal to \(4\pi \), provided that each is deformed over an area in which the respective \(\text{rot} \ x = 0 \) and \(\text{rot} \ C = 0 \), — thus into orthogonal circles such that the circumference of each intersects the disc of the other in a single point, also when the circles are no longer orthogonal, and when they are deformed into similarly arranged triangles, etc.

THEOREM III. If \(C \) and \(x \) are simple disjoint polygonal cycles, each of a finite number of vertices, then \(I(x, C) /4\pi \) is an integer, positive, negative or zero.

By \(Q_1, Q_2, \ldots, Q_n, Q_{n+1} = Q_1 \), designate the vertices of \(C \) in order of \(\tau, \tau \) being measure along \(C \). Form the planes, as far as they are determined and distinct, which contain the following points:
\[
(Q_1, Q_2, Q_3), (Q_2, Q_3, Q_4), (Q_3, Q_4, Q_5), \ldots, (Q_{n-1}, Q_n), (Q_n, Q_{n+1}, Q_1)
\]

Let \(\tau > 0 \) be the maximum length of any segment \((Q_i, Q_{i+1}) \). It is assumed that \(\tau \) is sufficiently small so that some of the above planes exist. In particular, if \(Q_i, Q_k \) are vertices of \(C \) there must be some vertex \(Q_j \), \(k \neq i, k \neq j \), which forms a plane with them. Otherwise all the vertices of \(C \) would lie in one line.

Take \(Q_p \), a point not in any of the above planes. Then \(Q_p \) is not collinear with any pair of vertices of \(C \). For if \(Q_p \) is collinear with some \(Q_i, Q_j \) it must lie, as above, in some plane \((Q_p, Q_i, Q_j) \). For convenience we represent the triangles as corresponding plane surface elements \(\Lambda \) of which the closures \(\Lambda \) form a certain surface \(S \).

It is possible that nonadjacent triangles of \(S \) intersect. They can do so only in rays from \(Q_p \). Hence they may be split into subtriangles which do not have interior points in common but may have common edges belonging to nonadjacent triangles. There may be several pairs of such triangles with the same common edge.
We rename the subtriangles \(A'_{11}, A'_{12}, ..., \) in order of their edges in \(C \). For a triangle \(A \), it is substituted by the triangles \(A'_{11}, A'_{12}, ..., \) thus to have their triangular boundaries \(C'_{1} \) ordered conformally with \(C \). Finally, if we make the aspects of the plane areas \(A'_{1} \) conform to the order of their edges \(Q'_{1}, Q'_{1}\), we obtain what may be called the orientable surface \(S \). In fact, on account of all the rays having emanated from the point \(Q_{0} \), the aspect of \(A'_{1} \) is retained after a simple traversing of the entire circuit \(C \). (*)

Lemma to Theorem III. If the polygonal cycle \(x \) traverses one of the triangles \(A'_{1} = (Q_{0}, Q'_{p}, Q'_{1,1}) \), of boundary \(C'_{p} \) in a single point, say \(P \), and does not meet \(S \) otherwise, then

\[
\Gamma(x, C) = \pm 4\pi.
\]

We assume a sense along \(x \), for example that of the parameter \(t \). By \(P' \) we denote the point at which the ray \(Q_{0}P \) is prolonged to meet \(C \).

Let there be constructed a plane quadrilateral \(B_{q} \) with boundary cycle \(x_{q} \), of which one segment traverses \(S \) also at \(P' \), and in that segment coincides, but in the opposite sense, with a part or the whole, of a segment of \(x \). The rest of \(x_{q} \) completes the boundary of \(B_{q} \), so that \(B_{q} \) contains the point \(P' \) and is bounded above and below \(PP' \) by rays from \(Q_{0} \). Thus (**)

\[
\Gamma(x_{q}, C) = \mp 4\pi.
\]

By \(x' \) we denote the cycle

\[
x' = x + x_{q}.
\]

(*) Cf Comment to Theorem A.

(**) Cf Comment to Theorem II.
We note that by taking a point P' on x, distant from P, we may write

$$x' = x \{P' \to P\} + x'_{0} + x \{P \to P'\} = (x \{P' \to P\} + x'_{0}) + x \{P \to P'\}.$$

Hence x' does not cross S. The corresponding terms in $I(x', C)$ are additive in the above polygonal arcs (**).

It still remains to be proved that $I(x', C) = 0$. For this purpose, we construct a sphere G, of surface r, of center Q_{0} and of radius R large enough so that G contains the boundary $C = \Sigma C_{i}$ and the whole of the polygonal cycle x'. We project the vertices of x' radially outward until they lie in r, introducing, if necessary, additional vertices in the segments of x', so that the altered segments shall not intersect S. Note also that the construction will coalesce the segments that are radial from Q_{0}.

In accordance with this construction let $P_{1}, ..., P_{m}, (P_{m+1} = P_{1})$ be the reduced vertices on x', and $P'_{1}, ..., P'_{m}, (P'_{m+1} = P'_{1})$ the corresponding vertices on r. In this way we form successive quadrilaterals $B_{i}, B_{i+1}, ..., B_{j}, b_{j+1}, ..., b_{i+1}, b_{i}$, and vertices $(P_{i}, P'_{i}, P_{i+1}, P'_{i+1})$, $(P_{i+1}, P'_{i+1}, P_{i+2}, P'_{i+2})$, Thus P'_{i+1}, P_{i+1} of b_{i} cancels P_{i+1}, P'_{i+1} of b_{i+1}.

Denote by x'_{R} the resulting cycle with vertices in r. We have $I(x', C) = -I(x'_{R}, C) = 0$, by Stokes's Theorem, because rot $H = 0$ at all points of r.

We note that for large R, with reference to formula (1.1), we have $I(x'_{R}, C) \to 0$ of order one as $R \to \infty$. Hence finally $I(x', C) = 0$ and $I(x' \cdot C) = \pm 4 \pi$. QED

The validity of Theorem III follows immediately. Since x does not meet C, it must as a closed set 0 points remain at a finite distance from C, and therefore, being of finite length, may cut S only a finite number of times. Hence it may be replaced by a finite number of polygonal cycles x'_{k}. Therefore

$$I(x, C) = \Sigma I(x'_{k}, C),$$

which is a finite multiple of 4π. QED

Theorem IV Let C and x be given as simple closed rectifiable curves which are disjoint. Then $I(x, C)/4 \pi$ is an integer.

The proof of this theorem can be made most simply when $I(x, C)$ is expressed by means of Stieltjes integrals, as in Theorem I. There is also implied reference to Theorem A. The theorem is proved in two analogous parts. In the first we assume that x remains fixed as a polygonal cycle.

Let $0 (C, \varphi)$ be a tubular neighborhood of C, of radius φ, and C' an arbitrary closed polygonal cycle inscribed in C, φ being small enough so that $x \cap (C, \varphi) = 0$. Denote by $Q_{0}, Q_{2}, ..., Q_{m}, Q_{m+1} = Q_{i}$ the vertices of C', and by γ the maximum length among arcs Q_{i}, Q_{i+1} of C, thus greater than any segment Q_{i}, Q_{i+1} of C'. It may happen that C' can intersect itself. However C' may be ade a simple cycle by "infinitesimal" displacements of its vertices.
In an arc \(Q_i Q_{i+1} = C \) of \(C \) the parameter \(\tau \) is taken as measure along \(C \). In the corresponding segment \(Q_i Q_{i+1} = C' \) of \(C' \) we introduce a parameter \(\tau' \) as follows:

At any vertex \(Q_i, \tau_i' = \tau_i \). Between \(Q_i \) and \(Q_{i+1}, \tau' \) will be linear. Hence \(\Delta \tau' \geq \Delta \tau \geq |\Delta \xi| \), etc. As in Theorem 1 denote \(\theta' \xi \) the maximum total oscillation among subintervals of \(C \) or \(C' \) of lengths \(\leq \tau \) and by \(T \) the total length of \(C \), greater than that of any \(C' \). Also take \(T \) as great as the length of \(x \).

As in Theorem 1, consider a single term of \(I (x, C) \), for example

\[
\int_x \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau)
\]

and the corresponding term of \(C' \). We compare both of the interior integrals with the same finite sum. Thus

\[
\int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) \text{ differs from } \sum_{i=1}^{r} \frac{\xi - z}{r^3} [\eta (\tau_i+1) - \eta (\tau_i)] \text{ by } 0', T,
\]

where \(z \) is temporarily constant, and \(r_i = (x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2 \).

But

\[
\int_{C} \frac{\xi' - z}{r^3} \mathrm{d} \eta (\tau') \text{ differs from the same sum also by } \leq 0', T.
\]

Therefore

\[
\left| \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) - \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) \right| \leq 2 0', T.
\]

Finally, by performing the linear operation \(f_x \) \(\int_x \) \(\int_{C} \) we obtain

\[
\left| \int_x \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) - \int_x \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) \right| \leq \int_x \int_{C} \left| \int_x \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) - \int_x \int_{C} \frac{\xi - z}{r^3} \mathrm{d} \eta (\tau) \right| \leq 2 0', T^2.
\]

There are six such comparisons in relating \(I (x, C) \) with \(I (x, C') \). Therefore

\[
|I (x, C) - I (x, C')| \leq 12 0', T^2.
\]

But \(T \) is fixed and \(0', \) may be made arbitrarily small. Therefore given \(\varepsilon > 0 \), we can take \(\tau > 0 \) small enough so that

\[
\left| \frac{I (x, C)}{4 \pi} - \frac{I (x, C')}{4 \pi} \right| < \varepsilon.
\]
By theorem III, \(I(\pi, C') / 4 \pi \) is an integer. It follows that also \(I(\pi, C) / 4 \pi \) is an integer because we can choose a sequence \(\varepsilon_1, \varepsilon_2 \to 0 \). For the second part, the proof is similar: \(C \) is fixed and \(\pi \) becomes a rectifiable curve.

Corollary Given \(C \) and \(\pi \), closed, simple and rectifiable, the value of \(I(\pi, C) \) remains constant during deformations of \(\pi \) and of \(C \), unless \(C \) and \(\pi \) intersect.

As preparation for the next theorem, take \(\pi \) and \(C \) as disjoint simple cycles, and let \(Q \) be a point of the set \(E \) of \(C \) (that is, where all four derivative numbers exist and are equal). Construct a solid circular double cone \(K \) of axis the tangent to \(C \) at \(Q \) such that

- the arc \(C_0 \) of \(C \) that passes through \(Q \) remains within \(K \),
- the cone \(K \) lies in an \(\theta (C, \pi) \) which does not intersect \(\pi \).

Let \(\Gamma \) be a sphere of center \(Q \), closed as a point set, \(\Gamma \subset \theta (C, \pi) \). It may happen that there are arcs of \(C \) that intersect \(\Gamma \), but there is none that is \(C_0 \). Let then \(\{ \Gamma_i \} \) be a sequence of spheres, closed as point sets, of center \(Q \) and radii \(r_i \) (with \(r_{i+1} > r_i > 0 \)), and let \(C_i \) be an arc of \(C \) which intersects \(\Gamma_i \) but is not \(C_0 \). It follows that \(C_i \) intersects \(\Gamma_i \), and in an arc of length \(l_i \), which remains \(\geq \) some constant \(l_0 > 0 \).

If there is no last \(r_i \), the total length of the portions of \(C \) in \(\Gamma_i = \Sigma \left(C_i \cap \Gamma_i \right) \) would be infinite, in contradiction to the hypothesis that \(C \) is rectifiable. Therefore there is a \(\Gamma_0 \), which is a least \(\Gamma_i \), and the arc \(C_0 \) of \(C_0 \) in \(\Gamma_0 \) is unique.

Denote by \(D_0 \) a disc of \(\Gamma_0 \), which intersects \(K \) only in \(Q \). Denote its boundary as \(x_0 \). From Theorem A, Comment, \(I(x_0, C) = \pm 4 \pi \).

Theorem V These things being so \((\ast)\), take \(P_0 \) a point of \(x_0 \), \(P \) a point of the given \(\pi \) and construct an arc \(\gamma \) from \(P \) to \(P_0 \) or from \(P_0 \) to \(P \). Taking \(\gamma' = \gamma, \) and also \(\gamma'' \) to \(\gamma \) construct the cycle.

\[x' = x + \gamma' + x_0 - \gamma'' \]

Then \(I(\pi, C) - I(x, C) = \pm 4 \pi \) and \(v(\pi, C) - v(x, C) = \pm 1 \), depending on the sense of \(\gamma + x_0 \).

Theorem VI Gauss's Integral \((\ast\ast)\). Given two closed disjoint curves, named \(s_1 \), \(s_2 \) where \(s_1 = \left\{ f \left(z_1 \right) \right\} \), \(s_2 = \left\{ g \left(z_2 \right) \right\} \) and \(z_1 \) and \(z_2 \) are vectors from the origin, referring to positions on the respective curves, then

\[
(\ast\ast) \quad v \left(s_1, s_2 \right) = -\frac{1}{4 \pi} \int_{s_1} \int_{s_2} \frac{1}{\left| g - f \right|^2} \text{D} \left(g - f, d g, d f \right)
\]

\((\ast)\) Quae cum etsa sint.

\((\ast\ast)\) \((\ast\ast)\) The book "ALEXANDOFF UND HOFF" discusses the "Integral von Gauss" in lower case printing on page 497 in the supplementary portion of Chapter XII. The account is not intended to be complete, and for details refers the reader elsewhere.

Professor S. S. Chern kindly looked over my ms. and called my attention to this portion of \((\ast)\).

The desiderability of using the Alexander Duality Theorem in the incomplete \((\ast)\) had led me over some years to a study of \((\ast\ast)\).
(D standing for determinant) is the linkage coefficient of \(s_i \) and \(s_j \).

The "linkage coefficient" involves the "index of intersection".

In cartesian coordinates, \(f \) is the vector \((x, y, z)\) and \(g \) the vector \((\xi, \eta, \zeta)\) so that \(g - f = r \) — the vector \((x - \xi, y - \eta, z - \zeta)\). Thus \(|g - f| = r \).

The equation (H9) is the special case in \(\mathbb{R}^3 \) of (H8) in \(\mathbb{R}^n \). In (H8) the determinant is written:

\[
\mathbf{D} \left(g - f, \frac{\partial g}{\partial a_1}, \ldots, \frac{\partial g}{\partial b_n} \right) da_1, \ldots, db_n,
\]

in which the derivatives are written explicitly. Hence in (H9) it should be

\[
\mathbf{D} \left(g - f, \frac{df}{da}, \frac{df}{db} \right) da, db.
\]

We return however to an analog of (H9) except that we shall interpret the integral as Stieltjes integrals.

From the double integral (2.8) of Theorem II in which \(\mathbf{R} \) denotes the domain \((x, C)\), and from (2.10) we see that we can form the following equation, which is a generalization of (H9):

\[
(2.8') \quad \frac{I(x, C)}{4\pi} = \frac{I(C, x)}{4\pi} = \frac{1}{4\pi} \int_{(x, C)} \int_\tau \frac{1}{\sqrt{\lambda}} \begin{vmatrix}
 x - \xi & d\lambda & d\xi \ (\tau) \\
 y - \eta & d\lambda & d\eta (\tau) \\
 z - \zeta & d\lambda & d\zeta (\tau)
\end{vmatrix}.
\]

The value of (2.8') is \(\pm v (x, C) \), the linkage coefficient, if \(x \) and \(C \) are closed rectifiable curves.

As seen on our pages 3 and 4, the four derivative numbers with respect to \(t \) of \(x(t), y(t), z(t) \) each, are all numerically \(\leq 1 \), and for each function are equal on a set that includes a common set \(E_x \) of measure equal to that of \(x_\tau \). Similarly there exists a corresponding set \(E_\tau \). Therefore, for \(d x(t) \) and \(d \xi (\tau) \) may be substituted \((d x/d t) d t \) and \((d \xi/d \tau) d \tau \), etc., and the integrals interpreted as Lebesgue or Borel integrals.

The relation (2.8') is valid from Theorem II, for arcs as well as cycles, and therefore applies to the treatment of solid angle, that being a function of curve as well as cycle \(C \).

4. Solid angle

As mentioned in the Introduction, we consider the solid angle as a function of curves, suggested by the notion of magnetic potential.
DEFINITION 4.1. Let z be a simple rectifiable arc, x_{G_0} the portion of it from a point P_0 to a point P_1, and C a simple rectifiable cycle disjoint from z. With the notation of (2.2), Theorem I, the quantity

$$(4.1) \quad I (x_{G_0} , C) = \int_{P_1}^{P_0} L \, d \, x (t) + M \, d \, y (t) + N \, d \, z (t) = V \, (P_1) - V \, (P_0)$$

is defined to be the change in the solid angle subtended at P by C as P moves along z from P_0 to P_1.

If by extension P_0 is taken as a point at ∞, and $V \, (P_0)$ assigned the value 0, the value resulting from (4.1) is defined to be the solid angle subtended by C at P_1 as P moves along z from the chosen point at ∞ to P_1.

With reference to (4.1) we prove that the expression $I (x_{G_0} , C)$, where $x_{G_0} = - - x_{G_1}$, converges to a finite value as $P_0 \to + \infty$ along the z axis. We have

$$(4.2) \quad I (x_{G_0} , C) = \int_{z_1}^{z_2} N \, d \, z (t) , \quad x = y = 0 .$$

Let r be the distance from the point (ξ , η , ζ) on C to a point z on the z axis. We assume that the range of values of ζ is small in comparison with those of ξ and η, and represent by z_1 a point P on the positive z axis such that if $z > z_1$, $z - z_1$ is less than r and remains less than r as $z \to + \infty$. For a given point P on the z axis we represent by $r (z)$ the minimal value of r, for Q on C. Thus $z < r (z)$ for $z > z_1$.

From the definition (1.2) and the formula (1.1) we obtain the value

$$(4.3) \quad I (x_{G_0} , C) = \int_{z_1}^{z_2} \left\{ \int_{c} \frac{1}{r^3} \left(- \eta \frac{d \xi}{d \tau} + \xi \frac{d \eta}{d \tau} \right) \, d \tau \right\} \, d \tau ,$$

since $x = y = 0$. By definition of τ, $|d \xi/d \tau| \leq 1$, $|d \eta/d \tau| \leq 1$ and at every point on C

$$\left| - \eta \frac{d \xi}{d \tau} + \xi \frac{d \eta}{d \tau} \right| \leq |\eta| + |\xi| .$$

But $|\eta| + |\xi| < $ some constant k. Hence, since $r (z) > z - z_0$,

$$(4.4) \quad I (x_{G_0} , C) \leq k \int_{z_1}^{z_2} \left\{ \int_{c} \frac{d \tau}{[r (z)]^3} \right\} \, d \tau \leq k \, \text{meas} \, C \int_{z_1}^{z_2} \frac{1}{x^2} \, dz .$$

Hence

$$(4.5) \quad |I (x_{G_0} , C)| \to k \, x^2 \, \text{meas} \, C , \quad z_0 \to + \infty .$$

Lemma 4. Let C_0 be the boundary of a triangle A_0, and let x_0 be the entire z axis. Then, according as the z axis meets A_0 once or $A_0 + C_0$ not at all,

$$I (x_0 , C_0) = \pm 4 \pi \text{ or } 0 .$$
The proof is established by the method of Lemma 3.1 (and Comment). The choice of the \(+\) or \(\text{or} \) sign above depends on the orientation of \(x\) with respect to \(C\).

The analysis of Theorems III and IV shows how \(x\) may be replaced by another path from \(z = -\infty\) to \(z = +\infty\). Also one point \(P_0\) at \(\infty\) may be moved to another by adding an arc on the sphere at \(\infty\).

As the simplest example take

\[C \text{ as the circumference } \xi + \eta = a^2, \frac{\xi}{\eta} = 0 \]
\[x = z_{\text{int}} \text{ as the segment } x = 0, y = 0, z_{0} \leq z \leq z_{1}. \]

We have

\[I (x_{\text{int}}, C) = \int_{z_{0}}^{z_{1}} N d z(t) = \int_{z_{0}}^{z_{1}} d z(t) \left\{ \int_{C} \frac{\partial}{\partial \eta} d \xi(t) - \frac{\partial}{\partial \xi} d \eta(t) \right\}, \]

where, since we must use derivatives,

\[r^{2} = \xi^{2} + \eta^{2} + z^{2}, \]

\[\frac{\partial r^{-1}}{\partial \eta} = -\frac{\partial r^{-1}}{\partial x} = -\frac{\eta - y}{(a^2 + z^2)^{3/2}}, \frac{\partial r^{-1}}{\partial \xi} = \frac{-\xi}{(a^2 + z^2)^{3/2}}. \]

\[I (x_{\text{int}}, C) = \int_{z_{0}}^{z_{1}} d z(t) \int_{C} \frac{d \xi(t)}{(a^2 + z^2)^{3/2}} - \frac{d \eta(t)}{(a^2 + z^2)^{3/2}} \]
\[= \int_{z_{0}}^{z_{1}} d z(t) \frac{a^2 d \varphi(t)}{(a^2 + z^2)^{3/2}} = 2 \pi a^2 \int_{z_{0}}^{z_{1}} \frac{d z}{(a^2 + z^2)^{3/2}} \]
\[= 2 \pi a^2 \frac{z}{\sqrt{a^2 + z^2}} \bigg|_{z_{0}}^{z_{1}} = 2 \pi \left(\frac{z_{1}}{\sqrt{a^2 + z_{1}^2}} - \frac{z_{0}}{\sqrt{a^2 + z_{0}^2}} \right), \]

the indefinite integral being that of Art. 3.

If we let \(z_{0} \rightarrow -\infty\), we have

\[\lim_{z_{0} \rightarrow -\infty} I (x_{\text{int}}, C) = V (P_1) \]

(4.4) \[V (P_1) = 2 \pi \left(\frac{z_{1}}{\sqrt{a^2 + z_{1}^2}} + 1 \right). \]

Thus

\[V (-\infty) = 0, \quad V (0) = 2 \pi, \quad V (+\infty) = 4 \pi. \]

5. On the gradient of the solid angle

The following is a rough translation of a quotation from the book of Alexandroff and Hopf.

On the basis of potential-theoretic considerations not here to be discussed, the integral (9H) can be given another form, and therefore a different geo...
pretation. We assume that for any point P not on C the solid angle \(W(P) \) subtended by C at P is determined by the integral (to use the notation of this ms.)

\[\text{grad. } W = \int_C \frac{1}{r^3} \left[\mathbf{r} \times (d \xi(\tau), d \eta(\tau), d \zeta(\tau)) \right] \]

the \(\times \) meaning vector product and \(\text{grad} \) meaning vector gradient \(^*\). Here \(r \) is the vector \(x - \xi, y - \eta, z - \zeta \).

Our purpose is to prove (A) from our own *potential-theoretic considerations*. From (4.1) the gradient of the solid angle \(I(x_0, C) \) is the vector

\[\left(-L, -M, -N \right) = \text{grad } W = \left(\frac{\partial W}{\partial x}, \frac{\partial W}{\partial y}, \frac{\partial W}{\partial z} \right) = \]

\[\int_C \frac{1}{r^3} \left[(x - \xi) \frac{d \xi}{d \tau} - (y - \eta) \frac{d \eta}{d \tau} - (z - \zeta) \frac{d \zeta}{d \tau} \right] d \tau, \]

\[- \int_C \frac{1}{r^3} \left[(y - \eta) \frac{d \xi}{d \tau} - (x - \xi) \frac{d \eta}{d \tau} \right] d \tau. \]

But this can be expressed by using a vector product, viz.---

\[\text{grad } W = \int_C \frac{1}{r^3} \left[(x - \xi, y - \eta, z - \zeta) \times \left(\frac{d \xi}{d \tau}, \frac{d \eta}{d \tau}, \frac{d \zeta}{d \tau} \right) \right] d \tau \]

which confirms (A).

From this, if \(x \) is also a cycle, an integration of \(dW \) around \(x \) (\(x \) in the notation of \(^*\)) brings us back, as we have seen already, to \(1/4 \pi \) times an integral multiple of \(v(x_0, C) \) or to zero \(^**\).

\(^*\) (14) p. 497, with reference to Picard, Traité d'Analyse, 1926, Vol. I. As will be seen in Part II, it goes to \(^*\), 1916.

\(^**\) Compare (14) p. 498.
APPENDIX I

BIBLIOGRAPHY

APPENDIX II

ELEMENTARY PROPERTIES OF THE STIELTJES INTEGRAL

H. E. BRAY

Def. 1. Consider two functions $\varphi(x)$ and $\alpha(x)$ defined at every point of the interval $a \leq x \leq b$. Let (a, b) be divided by the n points $x_0 < x_1 < \ldots < x_n$ into $n + 1$ parts such that $x_{i+1} - x_i = \delta_i$, $i = 0, 1, 2, \ldots, n$, $[x_0 = a, x_{n+1} = b]$ and let the points ξ_i be chosen so that $x_i \leq \xi_i \leq x_{i+1}$. The quantity

$$\lim_{\delta \to 0} \delta \sum_{i=0}^{n} \varphi(\xi_i) \{ \alpha(x_{i+1}) - \alpha(x_i) \}$$

if it exists, is called the Stieltjes integral of $\varphi(x)$, with regard to $\alpha(x)$, between the limits a and b. It is designated by

$$\int_a^b \varphi(x) \, d\alpha(x).$$

Theorem 1. If $\alpha(x)$ is a function of bounded variation, $a \leq x \leq b$, and if $\varphi(x)$ is continuous at every point of (a, b), then

$$\int_a^b \varphi(x) \, d\alpha(x)$$

exists.

Theorem 2. If $z(s)$ is of bounded variation $a \leq s \leq b$ and if

$$\int_a^b \varphi \, d\alpha = \lim_{\delta \to 0} \delta \sum_{i=0}^{n} \varphi(\xi_i) \{ \alpha(s_{i+1}) - \alpha(s_i) \}$$

exists, then

$$\int_a^b \varphi \, d\alpha = \sum_{i=0}^{n} \varphi(\xi_i) \{ \alpha(s_{i+1}) - \alpha(s_i) \} \leq 0 \, T(b)$$

where $T(b)$ is the total variation of α in the interval (a, b), 0α is the greatest oscillation of $\varphi(s)$ in the $n + 1$ intervals (s_i, s_{i+1}) and $s_i \leq \xi_i \leq s_{i+1}$ (*).

(*) As an immediate corollary to Theorem 2, $\varphi(s)$ is continuous, $a \leq s \leq b$.

Def. 2. Consider a function \(z(x, s) \) which for every value of \(x, \ a \leq x \leq d \) is of bounded variation in \(s, \ a \leq s \leq b \). Let \(T(x, s) \) be the corresponding total variation function in \(s \), for a given value of \(x \). Evidently \(T(x, s) \leq T(x, b) \).

If \(T(x, b) \) is a bounded function of \(x \), i.e. if a positive constant \(K \) can be found such that

\[
T(x, b) < K, \quad a \leq x \leq d,
\]

then \(z(x, s) \) is said to be a function of uniformly bounded variation in \(s \) for all \(x \) in \((c, d) \).

Theorem 3. If \(\varphi(s) \) is continuous \(a \leq s \leq b \), and if \(z(x, s) \) is a function of uniformly bounded variation in \(s \) for all values of \(x, \ c \leq x \leq d \), and if at every point \(x \) in \((c, d) \) a set of values of \(s \) (not necessarily independent of \(x \)) dense in \((a, b) \) and including \(a \) and \(b \), can be found such that for each \(s \) in the set of values of \(s, z(x, s) \) is continuous in \(x \) then

\[
\Phi(x) = \int_a^b \varphi(s) \ d_x z(x, s)
\]

is continuous, \(a \leq x \leq d \).

Theorem 4. If \(\gamma(x) \) is a function of bounded variation, \(c \leq x \leq d \), and if \(z(x, s) \) is uniformly bounded variation in \(s \), \(a \leq s \leq b \), for every value of \(x, c \leq x \leq d \), and continuous in \(x \) for every value of \(s \), then

\[
\Phi'(s) = \int_a^b z(x, s) \ d_x \gamma(x)
\]

is a function of bounded variation, \(a \leq s \leq b \).

Theorem 5. If \(\varphi(s) \) is continuous, \(a \leq s \leq b \); if \(\gamma(x) \) is of bounded variation, \(c \leq x \leq d \); and if \(z(x, s) \) is continuous in \(x \) for all values of \(s \) in \((a, b) \) and of uniformly bounded variation in \(s \) for all values of \(x \) in \((c, d) \), then the integrals

\[
\int_c^d \left[\int_a^b \varphi(s) \ d_x z(x, s) \right] \ d_x \gamma(x), \quad \int_a^b \varphi(s) \ d_x z(x, s) \ d_x \gamma(x)
\]

exist and are equal.

Theorem 6. If \(\varphi(x) \) is continuous \(a \leq x \leq b \) and if \(z(x) \) is of bounded variation in the same interval, then the integral

\[
\int_a^b z(x) \ d_x \gamma(x)
\]

exist and is equal to

\[
z(x) \varphi(x) \bigg|_a^b - \int_a^b \varphi(x) \ d_x z(x).
\]
Part II (*)

SURFACES OF GIVEN RECTIFIABLE BOUNDARY

1. Surfaces of boundary C.

We state immediately the following definition, in spite of the necessity of explaining later a couple of its terms (set in quotation marks).

Definition I ()**. Let C be given as a simple closed rectifiable curve. The point set S, of closure S, is a surface of boundary C if S is compact and connected (that is, closed and bounded as a set of points, and not the sum of two or more such sets that are disjoint) and

(i) Outside a tubular neighborhood of C, written $\theta(C, \varepsilon)$, ε being arbitrarily small, S is contained in a finite number of "regular" surface elements \bar{A}, which have two-by-two in common at most an edge (a "regular arc), or else one or two vertices. Such elements are not prevented from reaching into $\theta(C, \varepsilon)$.

(ii) If x is a simple closed rectifiable curve for which $v(x, C)$ (***) is odd, i.e. $v(x, C) = 1, \mod. 2$, then x traverses S.

(iii) If any portion of S, open in S, is removed, then (ii) will no longer be satisfied.

A regular surface element \bar{A} in \mathbb{R}^2 is to be bounded as a point set. Hence by (i), S is bounded as a point set.

As in (**), for the definition and properties of such surface elements we follow the treatment given by the late Professor O. D. Kellogg, in his book on potential theory (****).

A regular surface element \bar{A} then is a bounded closed set of points, which for some orientation of Cartesian coordinates (x, y, z) admits a representation (a "standard" representation)

$$z = f(x, y)$$

in a support (x, y) plane, with $f(x, y)$ continuously differentiable (K. p. 105) But the continuity of derivatives is not necessary across boundaries.

When convenient we shall speak of \bar{A}, the set A minus its boundary, also as a regular surface element.

(*) References to Part I will be preceded by I., e.g., I. Theorem III.
(**) See (†), pp. 786-788; note the requirement in the introduction, p. 786.
(***) $v(x, C)$ stands for "linkage coefficient", as in Part I.
(****) (‡) pp. 97-112. A reference to (‡) is preceded by the letter K.
A portion \(S_0 \), open in \(\bar{S} \), is understood to contain a two dimensional portion of some \(\bar{A} \).

In the support plane the image of \(\bar{A} \) is defined as a simply connected region \(\bar{A}' \), which we shall see is to be bounded by a finite number of «regular» arcs, arranged in order, and such that the terminal point of the last arc is the initial point of the next following. A regular arc in space is of course similarly constructed.

A «regular» arc in the plane is a closed set of points, which for some orientation of the \(x, y \) axes admits a representation \(y = f(x) \), where \(f(x) \) is continuously differentiable (K p. 97).

A regular arc (ab) in space is a set of points which for some orientation of the axes admits a representation

\[
y = f(x), \quad z = \varphi(x), \quad a \leq x \leq b,
\]

where \(f(x) \) and \(\varphi(x) \) are continuously differentiable (K pp. 97-99).

A «regular» curve in the plane or in space is a set of points consisting of a finite number of regular arcs, arranged in order (K p. 99).

The following theorems are important for us.

Theorem K 3. The projection of a regular arc on a plane to which it is nowhere perpendicular consists of a finite number of regular arcs (K p. 99) (*).

Theorem K 6. The boundary of a regular surface element is a regular curve (K p. 106).

Theorem K 7. Any regular surface element «E» (for us, \(\bar{A} \)) can be subdivided into a finite number of regular surface elements \(e \), each with the property that if any system of coordinate axes be taken, in which the \(z \) axis does not make an angle of more than 70 degrees with any normal to \(e \), \(e \) admits a «standard» representation with this system of axes (K p. 108).

A corollary to this theorem would be that it can be applied to subdivisions of two regular surface elements \(\bar{A}_1, \bar{A}_2 \) that are adjacent along one regular arc.

Note 1. Sometimes it is convenient to consider surfaces to which are assigned more than one boundary (**). In these instances the same general definitions and requirements apply, except that the surfaces may be either or not connected.

Note 2. The surfaces which are dealt with in (*) are described on K p. 112, conditions a), b), c), d). A surface consists of a finite number of regular surface elements that are more strongly connected than seems necessary for us. The complex suggests a «pseudovarieta» (**). But Kellogg’s problem is fitting function to surface rather than to boundary.

(*) For example, the railing of a circular stairway.

(**) For example, the case where the boundaries are two parallel circles with centers on the \(x \) axis and equal radii.

(***) (b) p. 351 f.
2. Two basic theorems. We take τ as in Part I, at least as great as measure along C, usually equal to it for convenience, and t similarly for x. By E is denoted the set of points in C where all three derivatives $d\xi/d\tau$, $d\eta/d\tau$, $d\zeta/d\tau$ exist. This set is Borel measurable, of total measure equal to C, thus dense in C. Each of the derivatives is in absolute value ≤ 1. In fact all of the derivative numbers have this ≤ 1 property everywhere on C.

Lemma 2.1. Given Q_i a point of E, there exists a circular cycle x_i of radius arbitrarily small and center Q_i, such that $v(x_i, C) = 1$.

Therefore there exists the point P_i, P_i in $x_i \cap S$.

Denote by s the tangent line to C at Q_i by V a double circular cone of axis s, and by θ the angular magnitude of V about s. Let D_i be a circular disc with center Q_i, orthogonal to s. We take its radius small enough so that D_i intersects C only at Q_i. Denote its boundary by x_i.

Then $v(x_i, C) = \pm 1$. In fact if we take a point P_i on x_i and shrink x_i down to vanishing about P_i, $I(x_i, C)$ will become 0 as soon as x_i crosses C. See I. Theorem II equation (2.9). Since $r \neq 0$, the interior vector integral vanishes.

Therefore it must originally have had the value $\pm 4\pi$, and $v(x_i, C)$ the value $\pm 1(*)$.

It follows then from (ii) of Art. 1, Definition, that x_i must intersect S.

Berkeley (U.S.A.) - Department of Mathematics, University of California - June 1972.

(*) I. Theorem V.