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The linkage coefficient s defined dircetly as
denoted by viz, C). It turns out to be symmet
related to the setting in 3-space R¥(***).

We imagine an eleetric current of unit strengih on the eurve
presented almost eceryuchere on O us & veolor in terms of the direction cosines at the
point Q of C. It gencrates a m nd the change of its magnetie poten
tial one or more tin around the closed path x turns out to be an in
ltiple of 4= Thus this integer will yield a definition of v (¢, €). The ¢
I of an are of « yields o definition of the change of solil angl
along the are. Sometimes it is o
ad of, . In the terms of Physics we introduce som
onihination of values of ourrent and field we denote by T (s ¢
the combination of eléctric and mag fields a8 a I
s an old and natural device (*

Our rectifisble curve in R* offers most of the eomplieations of a simple conti-
Juous curve : knots, efe., and the complications obtained by means of the conden
sation of singularities. In general the surfaces 11 shall deal with in Part T,
bounded by such eurves, will not b simple, although it may happen that & eurve
with & knot will be the houndary of 4 surface, even a ruled surface, which does not
interseet itself.

Occasionally we tnay consiler the case where O consists of  finite nnmber of
aint closed curves, and § may or may not be made of disjoint pieces (*4).
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APP!

NDIX IT

LEMENTARY PROPERTIES O

Consider two functions o (x) and = (x) defined at every point of the

Let (..A b) be divided by the n points x, < ¥, x, into
L —x = i=0, B B fr=b
and let the points & M-dv»«\: 50 that ¥, < § < x,

30N o ) {w(Xn) — 2 (%)}

Stieltjes integral of 5 (x), ichith regard to o (x), beticoen the

i it exists, ix called th

o o and b It is designated by

"",,-N dxfx).

v 1. M 2(x) s & funetion of hounded va x<h

every point of (8, b), then

and if 5 (x)

[Mp(x) da(x)

Theorem If & (s) it of bounded var

[(5dn =80 SoGaal— ()

J‘:w' a—39

atest osedl

where T (b) is the total v
Intion of (s) in the n 4 1 intervals (5




L (x, &) whith for every value of x, ¢<x <d

is of bounded
vartation function in % for 4 given v

T T (x, b) 5 o bounded funetion of %, Le. if o
such thnt

5= b, Let T(x.s be the cormesponding total
ue of x. Bvidently T (x, 5) < T(x, b).
nt KK can be found

T (s, K, e<x<d,

in & for all x

said o be @ function of nniformly bounded variitio

wd if a(x, 8) i& & fanction of uni
of 3, p=x =d,
& of 5 (not necessanly independent of x} ¢
I & in the set of

13l at every point
qwse in (8, ) o

sunded variation in s for

d) i set of val
can be found such that for

e 0f 8, 2 (X, &)

nelnding a an

outinnons in % then

@ ix) = [ d, 2,8

o,

funetic

T ;
of uniformly bownded variat
wis in X for every

x of bonnded var

¥ = [Fafx

inded vari

5.8 fu

Thearem 5, 10 5 (5} ik continuons, a = ¥
cox=d;and if a(x,s) is contitnous in X for all valn of wni-
5 in & for all values of x in (e, ), the

if v (x)is of bounded varistion,

oxist and are eqy

Thearem 6, I gix) is

val, then the int

ontinunons

tion in the samie in

" wix) bz

cxist and s equal to
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SURFACES OF GIVEX XDAKY

1. Surfaces of boundary €.
w casity of ex

plai

the following definition, in spite of the ne
g

wtate immediatel;

Inter w couple of its terme (set

e closed rectifiable eurve.  The
and connected

Dernmos L(*9), Let © he given s a
point set &, of closure 8, s a surface of hounds
at iz, closed and bounded as a sel of points, il 1ot the sum of two or more such

€ 8 i econipa

that are disjeint) and

(i) Outside a tubular neighborhood of €, written 0(C,p), p being arhiteari
swall, § is contained in A finite tumber of «regular s surface clements &, which
I two-by-two in common most an cdge (8« reg # arc), or else o or twe

b prevented from reaching into O (€, p).
I olosed retifiable curve for which v (x, C) (***) is odd, i
then » trayerses 8.

2 of 8,

es, Such elemen

) I i W sin

open in S, ik remosed, then (i) will no longer be si-

A regular surface ¢ A in B s o be bounded as a point set. Hence by

& is bounded ax o point sel.

As it (), for the definition sl propertics of such surface elements we follow
the treat ent given by the kite Professor 0. D. Kellogg, in his book on potential

theory (*#2).
A re
some otientation of Cartes

, which for
tion (4 + stan-

surface element A then is o bounded closed wt of pg
 coordinates (x, ¥, z) admits 3 represen

dond » ropresontat

)

¥) eontinuously differentiable (K. p. 105) But

i support (x, ¥) plane, with £(x,
the continnity of derivatives is BOL Teoesary across boundaries,
When convenient we shall speak of &, the set A minus its boundars, also 2

# regular surface clement




i understond to cantain a two dimensional portion

A portion £, apen in
of some

In the support plane the image of A is defined as a simply connected region
A%, which we shall see is to be bounded by a finite number of « e » arcs, arTan
wedd i onder, nnd such that the terminal point of th the initial point of
the next fallowing, A regular are in space is of course similarly constr

A o regulars aro in the plane is @ elosd set of points, which for sor
tation of the X, ¥ axes admits & represontation y — £(x), where £(x) is continuonsly
e (K p. 97).
v arc (ab) in spa
tation

atation of the

i & set of points which for same or

axes admits o repres

y=1(x) 1 =plxhasx<h

where £(x) anil 5 (x) ave continuously diferentiable (K pp. 87

puce iz & set of points consisting of & fi

nite numbe nged in onder (K p. 90).

The following thear

are
3 are important. for 15,

r on o plane io which it is nowhene
)

otion of

Thearem K 3. The pro
perpendientar consists of o finite mumb

¢ of regular arcs (K p.

ar s ment is & regular curve

Thearem K 6. The boundary of a 1
(K p. 100),

Thearem K 7. Any regular surface clement « E s (for s, A) con be subdivided
int & fir eh with the property that if
any system of coordinte axes bo taken, in which the 2 wxis does not make an an-
glo of more gress with ony normal to e, e 4diits & +stadard » represen
tation with this system of axes (K p. 108).

A eorallary to this theorem would be that it ean bo applied to subdivisions of
two regular surface clements Ay, A, 1 acent along one regular are.

Nete 1. Sometimes it v surfaces to Which are assigned
more than one boundary (**) 5 the same generl definitions and
s apply, exeopt that the surfaces may be cither or not connected.

2 The surfaces which 112, eon
e clements
for ws, The comples sug

revuiren
N




2, T'wo bawie theorems. We take 1 as in Part I,
€, usually equal to it for convenience
of poinis in © where all three d
Borel mensnrabl

sb a8 greal s meEasure
and t similarly for . By B
ivatives 45z, dy/ds d7d
of total measure equal to €, thus dense in C.
bsolute

or
s denoted the set
erist. This sl is
Tach of the deri-
due < 1. In fact all of the derivative numbers have this
1 property everywhere on €.

Lemma 1. Given Q; & point of

there exists o cirer
aebitrarily 5o

Il and center Q,, sueh that v iz, €) = 1.

eyele %, of radins

Thergfore there exists the point Py, Py in x, 0 S

Denote
and by 6 th
@, orthogon
it Q. Demot
hen v (x;, 0)
to vanishi

s the tangent line to C at @, by V a doubls ¢
angular magnitude of V about, 5.

. We take its radins sm

alar cone

of axis 5,

Lot Ty, be o ciren

r dise with cent
| enongh so that Dy interscets € only

act il we fake & point Py onx, and shrink x, down

o T oy, ) will become 0 as soon as », crosses 0. See T, Theore
0, the interior veetor integral vanishes

rinally had the value = &=, and v (u, C) the valne

Therefore it must
1)

It follows then from (i) of Art. 1, Defi

tion, that w, must interseet S

Berkaley (8.4} ~ Departn

it of Mathemntics, Univorsity of Califomia - June 1972

warens ¥




