FRANCESCO BRIOSCHI

Alla eccelsa figura di Francesco Brioschi la Scienza Italiana deve una imperitura riconoscenza. Se, nel nostro paese, non si era mai spenta la fiaccola animatrice della scienza dei numeri e dell’estensione, se, nella prima metà del secolo XIX, essa era tenuta accesa dalla scuola napoletana, da quella del Plana e del Genocchi in Torino, dal Bordoni e dal Piola in Pavia, dal Bellavitis a Padova, per tacere di altri, pure la produzione matematica italiana, alquanto segre- gata da quella degli altri paesi, e nel nostro poco o per niente coordinata, non si trovava in grado di gareggiare coi molti e nuovi risultati che una pleiade di studiosi francesi, tedeschi, inglesi, andava giornalmente dando alla luce. È merito incontestabile del Brioschi, immediatamente seguito da suoi valorosi discepoli fra i quali basta ricordare i grandi nomi di Cremona, di Beltrami, di Casorati, se, in un tempo relativamente breve, la situazione si è così cambiata a favore della matematica italiana, da renderla degna competitrice delle più rinomate scuole di oltr’Alpi.

Nato a Milano il 22 dicembre del 1824, Francesco Brioschi era già nel 1845 laureato a Pavia e abilitato all’esercizio della professione di ingegnere. Per quanto egregiamente disposto alle applicazioni tecniche, una sua naturale tendenza, incoraggiata dagli insegnamenti di Antonio Bordoni, la cui efficacia come maestro è rimasta leggendaria nella scuola pavese, e da quelli di Gabrio Piola, lo portava alla pura ricerca speculativa. Egli si fece conoscere ben presto nel campo della scienza pura, tanto che dopo alcuni anni durante i quali, per avere preso parte ai moti antiaustriaci di Milano, era stato obbligato a limitarsi all’insegnamento privato, veniva incaricato di una supplenza nella Università di Pavia, e due anni dopo otteneva la cattedra di meccanica razionale in quella stessa Università. I nomi, già ricordati, di suoi discepoli, i quali, insieme a l’amico suo Enrico Betti, tanto contribuirono a coadiuvarlo nel rinnovamento degli studi matematici presso di noi, mostrano chiaramente quanto alto fosse il valore del Suo insegnamento.

Egli aveva pubblicato, fino dal 1847, il Suo primo lavoro: Sul moto del calore nel globo della Terra, ma nel decennio che va dal 1850 al 1860, che è
quello del Suo insegnamento nell’Ateneo ticinese, egli si afferma come esimio matematico, occupandosi di svariati capitoli corrispondenti all’indirizzo caratteristico della analisi in quel periodo, e dando alla luce non meno di 107 Memorie e Note varie sulle 280 circa che costituiscono la totalità della Sua produzione scientifica. La Sua meravigliosa attività, in quel breve periodo, si rivolge a molteplici rami dei Capitoli allora più moderni dell’Algebra e dell’Analisi: integrazione di equazioni differenziali, criteri di integrabilità, svariate questioni sulle equazioni algebriche, sulla teoria dei determinanti, su quella degli invarianti e covarianti delle forme algebriche, studi relativi a problemi di interpolazione, ecc.; ma più ancora, ricerche nel campo più elevato della trasformazione delle funzioni ellittiche ed abeliane, oltre a studi di Geometria differenziale sulle geodetiche e le linee di curvatura delle superficie, e a questioni di Meccanica, come il moto di un punto materiale sopra una superficie. I lavori di questo fervido decennio contengono il germe della Sua produzione futura, e quasi tutti racchiudono idee geniali, sviluppi nuovi, e spesso laboriosi procedimenti ed ingegnosi artifizi. A quel tempo appartiene anche l’opera classica: *Teoria dei Determinanti e sue principali applicazioni*, pubblicata a Pavia nel 1854, in breve tradotta nelle principali lingue, e dove per la prima volta vengono esposti in forma didatticamente organica i principî e gli usi di quel importante Capitolo dell’Algebra, allora da poco scaturito dagli studi di Cauchy, di Jacobi, di Cayley, di Spottiswoode ed altri. Sono posteriori a quello del Briocchi gli altri trattati sui Determinanti, fra cui quello famoso del Baltzer (1857) e quello del Trudi (1862).

La fama acquistatasi dal Briocchi come scienziato fu così presto e così generalmente riconosciuta, che al fortunato costituirsi del Regno d’Italia, i dirigenti pensarono di giovarsi a pro dello Stato dell’ingegno, della coltura e della energia del giovane Maestro lombardo, e Quintino Sella Io volette chiamare in qualità di Segretario Generale al Ministero dell’Istruzione Pubblica, sotto i ministri De Sanctis e Matteucci. Fu deputato nel 1861; nel 1865, appena raggiunta l’età richiesta, entrò in Senato, e da allora, ebbe continuì, innumerevoli incarichi tanto tecnici quanto amministrativi. Così, per ricordarne alcuni dei principali, fu Presidente della Commissione d’inchiesta sulle condizioni economiche del Comune di Firenze dopo il trasferimento della Capitale; presiedette ai lunghi, difficili lavori dell’inchiesta ferroviaria, indì, insieme al Genala, preparò la legge delle Convenzioni ferroviarie; fu incaricato, insieme al Generale Ferrero, degli studi per la creazione del Catasto nazionale e della applicazione della legge relativa; fu Presidente della Commissione d’inchiesta sulla marina mercantile; fu membro della Commissione di vigilanza sugli Istituti di emissione, facendo di tante altre mansioni, fra cui quelle che per lunghi anni gli spettarono come membro della Giunta permanente di finanza nel Senato.

Ma l’eredità maggiore da lui lasciata è pur sempre, d’una parte, la Sua produzione matematica, dall’altra, il largo contributo da Lui recato all’incremento della istruzione pubblica in Italia. Si è già detto dell’opera Sua matematica
nel primo decennio della Sua operosità scientifica: nel seguito, e nonostante le molteplici sue cure in altri campi, questa operosità non venne meno e si tenne valida fino all’ultimo Suo giorno: nè i Suoi ammiratori potevano meglio onorarne la memoria che colla pubblicazione delle Sue opere complete; pubblicazione curata da valorosi matematici sotto la direzione di Valentino Cerruti, e che consta di cinque volumi in-4°, di ben 2300 pagine complessivamente. Fu soprendente in Lui la rara facoltà, di potere coltivare con tanto successo gli studi di pura scienza speculativa, in mezzo ad un intenso lavoro per la cosa pubblica, e, perché non dirlo? anche in mezzo a non lievi disappunti in relazione coll’intenso movimento di risveglio industriale a Milano, cui Egli prese parte, non senza incontrarvi difficoltà e dispiaceri; è meravigliosa questa possibilità di condurre di fronte feconde ricerche astratte e gravi mansioni tecniche od amministrative. A chi scrive, che si meravigliava un giorno con Lui di questa rara Sua prerogativa, Egli rispondeva sorridendo che il Suo cervello aveva come due compartimenti stagni, l’uno per le ricerche scientifiche, l’altro per gli affari, e che Egli poteva a volontà aprire l’uno chiudendo l’altro.

Non è qui il luogo di una minuta disamina dell’opera scientifica del Brioschi. Essa è già stata fatta magistralmente da un insignis Geometra tedesco, profondo conoscitore dell’opera del Nostro (1): Giova però ricordare, tralasciando i lavori di meccanica, di idrodinamica e di fisica matematica, come le Sue più essenziali ricerche si siano svolte principalmente in due campi: dapprima quello delle formazioni invarianti delle forme algebriche, su cui scrisse, oltre a lavori minori, una ampi monografia dal titolo: La teoria dei Covarianti e degli Invarianti nelle forme binarie e le sue applicazioni, comparsa nei primi volumi della nuova serie degli « Annali di matematica » da lui instaurata; in questo poderoso lavoro, Egli rese pratico e secondo di applicazioni per la costruzione delle forme invarianti un metodo accennato dall’Hermite, metodo che Egli perfezionò e al quale tornò poi di frequente, anche nei Suoi ultimi anni. Un secondo campo di ricerche, più elevato, dove maggiori sono le difficoltà, ed in cui sono più cospicui i risultati da Lui ottenuti, è quello della risoluzione delle equazioni algebriche in relazione alla teoria della trasformazione delle funzioni ellittiche ed iperellittiche; tanto che al Brioschi, insieme all’Hermite, al Kronecker e al Betti, si può ascrivere il merito della risoluzione, mediante le funzioni ellittiche, dell’equazione del quinto grado. Nella traduzione italiana dell’opera del Cayley da Lui pubblicata, il Nostro ha premessa una notevole prefazione ed ha aggiunto importanti e poderose appendici, nelle quali, riportando, riassumendo e completando Suoi precedenti lavori, pone in luce il contributo che Egli ha portato all’interessante problema testé accennato. Nei vari Capitoli del principale fra questi appendici (il terzo), Egli ricorda come la possibilità dell’abbassamento

SOCIETÀ DEI XL. Serie 3°. Tomo XXIII.
di grado dell’equazione modulare di sesto grado, per opera specialmente del-
l’Hermite, abbia condotto alla possibilità della risoluzione dell’equazione di
quinto grado; richiama, chiarisce e generalizza un risultato importante dovuto
al Kronecker in questo campo, ma da quell’Autore esposto con oscurità forse
voluta; mostra per primo come la risolvente di Malfatti dell’equazione di quinto
grado, studiata già dal Ruffini e dal Cayley, sia da ascriversi alle equazioni
modulari, rendendo così possibile la risoluzione della proposta; espone infine
uno studio nuovo ed importante delle equazioni di grado pari, da Lui dette
Jacobiane, cioè di quelle per cui vale la singolare proprietà che le radici qua-
drate delle loro radici sono legate da relazioni lineari in numero uguale alla metà
del grado dell’equazione, e mostra come fra queste equazioni, quella di sesto
grado possa riguardarsi come risolvente dell’equazione generale di quinto grado
da una parte, dall’altra come essa possa ricondursi ad equazione modulare, dando
cosi, per mezzo delle funzioni ellittiche, la soluzione dell’equazione più generale
del quinto grado. Non pago di questi successi, Egli studiò in seguito con frutto
le funzioni iperellittiche a due variabili, impossessandosi, con singolare facilità
di assimilazione, dei metodi allora nuovi di Weierstrass e di Klein, ed applicando,
in una Memoria pubblicata nel 1888 negli « Acta Mathematica » e dove sono
riassunti alcuni Suoi lavori anteriori, le funzioni thèta iperellittiche a due variabili
alla risoluzione dell’equazione di sesto grado. Egli stesso riassume le idee che lo
hanno condotto all’importante risultato: dapprima, mostra come data un’equa-
zione qualsiasi di sesto grado, \(u(x, y) = 0 \), si possa formare con funzioni
delle radici, certe quantità a sei valori per modo che i coefficienti dell’equazione
avente queste quantità come radici siano invarianti della forma \(u(x, y) \);
questa può quindi essere ridotta ad una forma normale; infine, mediante le
dieci funzioni thèta iperellittiche a due variabili, egli forma quantità a sei
valori; radici di un’equazione i cui coefficienti, di carattere invariantivo, pos-
sono essere ricondotti a coincidere con quelli dell’equazione di sesto grado data,
di cui si viene così ad ottenere la espressione delle soluzioni. Egli ha anche mo-
strato come, per la risoluzione della equazione di sesto grado, possano pure
gi ovarre gli sviluppi ipergeometrici.

Non è possibile qui insistere sul contenuto di altri lavori matematici, in cui
è sempre da ammirarsi l’agilità con cui il Nostro, spirito essenzialmente algo-
ritmico, sembra giuocarsi delle maggiori difficoltà di calcolo con una maestria ai
gioni nostri dimenticata. E se anche alcuno degli argomenti da Lui trattati può
parere ormai sorpassato, o passato di moda – poiché non è nuova l’osservazione
che quella dea capricciosa impera anche nel campo degli studi più severi – pure
il matematico non può sfogliare senza interesse i volumi delle Sue opere; non
può percorrere senza meraviglia l’indice cronologico delle 279 Sue pubblicazioni.
Né quei poderosi volumi esauriscono tutta la Sua produzione, poiché non vi
si comprendono numerosi lavori di indole tecnica, relazioni, pareri, discorsi prono-
nunciati in Senato, o all’Accademia dei Lincei, perizie, e via dicendo.
Le benemerenze del Brioschi verso la Scienza e verso la Scuola non si esauriscono colla ingente Sua produzione scientifica. A Lui, dapprima collaboratore assiduo della prima serie degli Annali di Matematica pura ed applicata, pubblicata in Roma dal Tortolini, si deve la seconda serie di quegli Annali, ben superiore alla prima per forma e per contenuto, e che nei ventisette volumi pubblicati sotto alla Sua immediata direzione, dal 1867 al 1897, prese posto fra i più autorizzati periodici del mondo matematico. A Lui si deve la fondazione dell'Instituto Tecnico Superiore di Milano, cui la voce pubblica giustamente attribui ben presto il nome di Politecnico; Istituto che ha portata una vera rivoluzione nel campo della ingegneria italiana, rialzandone la preparazione scientifica ed operando per la prima volta una divisione razionale per l'avviamento ai diversi rami delle pratiche applicazioni. «Dappertutto», scrive il Colombi, già Suo allievo, poi Suo collaboratore nella organizzazione del nuovo Istituto, infine Suo successore nella Direzione, «dappertutto, dalle Alpi all'ultimo lembo della Sicilia, s'incontrano gli antichi allievi del Politecnico; a migliaia essi si sono diffusi in tutto il paese, svegliando e dirigendo l'attività nazionale in tutte le sue forme». Ed il Brioschi stesso, il giorno in cui il Politecnico festeggiava il suo venticinquennario, poteva dire con legittimo orgoglio che «col dare ai suoi allievi, in quel momento della loro vita in cui le impressioni morali hanno il maggior peso, l'esempio di una concordia costante perché basata sulla stima reciproca e su un alto sentimento del dovere, aveva contribuito a formare degli uomini, e non soltanto degli Ingegneri».

Presidente per oltre quattordici anni della Reale Accademia dei Lincei, succedendo nel 1884 all'instauratore e primo Presidente di essa, Quintino Sella, ed essendo poi rieletto per tre quadrienni, il Brioschi volle, con l'usata Sua indomabile energia, che essa fosse in tutto degna del suo compito, quello di rappresentare nel più alto grado la Scienza Italiana. Ne curò la non facile amministrazione in tutti i particolari, dando con tutti i mezzi allora disponibili la più alta diffusione agli Atti e alle altre pubblicazioni dell'Accademia, e fra le varie iniziative a Lui dovute, è doveroso ricordarne una che onora l'Italia: la risoluzione di dare corso alla pubblicazione del Codice atlantico di Leonardo da Vinci.

Si è già accennato come fra le maggiori benemerenze del Brioschi siano da segnalare quelle che Egli si è acquistato nel riordinare, con serietà d'intenti e con opera paziente ed efficace, le condizioni del pubblico insegnamento. Egli fece parte per un trentennio del Consiglio Superiore della Pubblica Istruzione, e quale fosse la Sua autorità nell'Alto Consesso lo dicono le parole pronunciate sul Suo feretro dal Suo collega ed amico Senator Graziaio Ascoli: «Fosse Egli non fosse preposto ufficialmente a riunioni del Consiglio Superiore, chi veramente presiedeva e dirigeva era sempre Lui, e lo era perché in nessuna altra funzione poteva meglio spiccare quella facoltà geniale che ha formato la caratteristica preminente di Lui, la facoltà di cogliere con meravigliosa prontezza il giusto punto dove bisognasse partire per la risoluzione di un problema più
s'è mescolato di qualunque natura e pur fosse. A ogni difficoltà, che
immersiva, tenevano sempre alla Lui, talvolta, giorno, dirò, con una
sorprendente. Ed Eglì sorgerà, buono con una
apparente semplicità e pressoché
eppur indica, solo che sembrava policromato, e pronuncia
eppur indica, solo che sembrava policromato, e pronuncia
sull'uscita per tutti i casi e consistenza di due parole, assai di una sola por-
edetta due volte, quasi significativa: la
sull'uscita per tutti i casi e consistenza di due parole, assai di una sola por-
edetta due volte, quasi significativa: la
sull'uscita per tutti i casi e consistenza di due parole, assai di una sola por-
edetta due volte, quasi significativa: la

Salvatore Pincherle.