Prefazione.

§ 1. Nel leggere l'Opera del Chasles relativa ai porismi di Euclide (*) io cercavai di dimostrare, e per quanto mi fosse possibile elementarmente, i singoli porismi in quella esibiti, prima di studiarne le dimostrazioni date dal Chasles medesimo. E per alcuno di tali porismi, m'imbattei in dimostrazioni più elementari o più semplici.

Attesa poi la qualità di queste proposizioni che Euclide chiamò Porismi, onde evitare di perdersi in tentativi nelle ricerche delle loro dimostrazioni, mi trovava parecchie volte obbligato a cercar prima di tutto di ridurre la questione del porisma a quella di un teorema ordinario, dopo che non mi restava che a dimostrare questo teorema. Quindi le mie dimostrazioni riuscivano parecchie volte costituite di due parti, delle quali la prima

(*) Les trois Livres de Porismes d'Euclide, rétablis pour la première fois, d'après la notice et les lemmes de Pappus, et conformément au sentiment de R. Simson sur la forme des énoncés de ces propositions; par M. Chasles, Paris 1860. — Avverto che tutte le volte che citerò il Chasles, intenderò di citare questa sua Opera.

Serie II. Tomo II.
era un'indagine che serviva a ridurre la questione del porisma a quella di un teorema ordinario, la seconda era la dimostrazione di questo teorema; mentre il Chasles nelle sue dimostrazioni (eccettuata quella del suo porisma undecimo) si è limitato alla seconda di queste parti, cioè alla dimostrazione del teorema.

Mi parve che, alla semplice dimostrazione del teorema, esibita come dimostrazione del porisma proposto, sia preferibile in massima il ragionamento costituito dalle due parti accennate. Ed avendo poi attentamente letta la Notizia di Pappo sui porismi di Euclide tradotta dal Commandino (*), mi parve che da certe espressioni di essa si possa inferire che lo stesso Euclide abbia generalmente esibito le dimostrazioni de' suoi porismi costituite appunto dalle due accennate parti.

Dietro tutto ciò ho fatto il progetto di pubblicare quelle tra le dimostrazioni trovate che presentassero qualche interesse, o rispetto all'indagine destinata a ridurre la questione del porisma a quella di un ordinario teorema, ovvero rispetto all'elementarismo o alla semplicità della dimostrazione di questo teorema. Tale è l'origine del presente mio lavoro.

§ 2. In seguito ho studiato di nuovo onde ottenere dimostrazioni, per quanto poteva semplici ed elementari, di alcuni altri porismi esibiti dal Chasles, al quale scopo ho anche talvolta cambiato l'ordine de' porismi, onde approfittare di alcuni di essi per le dimostrazioni di alcuni altri. Con ciò io ho aumentato il numero dei porismi da trattarsi in questo scritto, nel quale ne aggiunsi anche alcuni non perchè presentino interesse sotto gli indicati punti di vista, ma perchè ne ho uso per dimostrarne altri; ed avverto che ho anche trattato qualche porisma che non si trova nell'opera del Chasles, e ciò, o per facilitare le dimostrazioni di altri porismi, o per motivi che appariranno nel contesto. Ed apparirà pure nel contesto da che io sia stato indotto a trattare il Porisma XI del Chasles.

Di tutti questi porismi la maggior parte è trattata col metodo che stimo probabile essere stato usato da Euclide; vale a dire, le trattazioni che loro applico sono costituite ciascuna: 1.° Da una indagine che riduce la

questione del porisma a quella di un teorema ordinario, il quale si può appellare teorema corrispondente al porisma, 2.° Dalla dimostrazione di questo teorema.

In certi passi di alcune di tali indagini mi sono appoggiato a principj, del quali non può ammettersi che abbia fatto uso Euclide; ma ho poscia procurato di ridurre que’ passi a principj abbastanza elementari; che se talvolta non faccio questo, ciò è perché lo ho già fatto per passi analoghi di altre indagini.

Le dimostrazioni poi, che esibisco de’ teoremi corrispondenti ai porismi, hanno quasi tutte meno probabilità di quelle del Chasles di coincidere od almeno avvicinarsi a quelle che potrà aver dato Euclide, giacché mia principale mira era di appoggiarmi possibilmente alle cose più elementali della Geometria, e non ho mai fatto uso de’ lemmi che Pappo esibisce come occorrenti per le dimostrazioni de’ porismi di Euclide; mentre, all’opposto, il Chasles, che aveva per iscopo d’ indovinare i porismi di Euclide e di mostrare le ragioni di probabilità d’ aver indovinato, indagava de’ porismi per le dimostrazioni de’ quali potessero servire que’ lemmi, ed espose poccia per tali porismi le dimostrazioni appoggiate appunto a que’ lemmi.

Io feci molto uso del teorema che tre rette concorrenti in un punto, incontrando due rette tra loro parallele, formano su di esse de’ segmenti proporzionali; e si vedrà che questo teorema elementarissimo (il quale è in sostanza un caso particolare del seconndissimo teorema della uguaglianza dei rapporti anarmonici dei due sistemi di punti nei quali due trasversali incontrano quattro rette concorrenti in un punto) ha esso pure una certa secondità.

Quanto al linguaggio, o metodo di esporre i ragionamenti geometrici, per brevità e per commodo di chi legge, ho creduto di non attenermi scrupolosamente alla maniera degli antichi, ed ho approfittato varie volte dei segni algebrici.

§ 3. Io devo addurre le spiegazioni opportune rispetto al metodo che parmi più adattato in massima per la dimostrazione o trattazione di un porisma proposto, come pure rispetto alla probabilità, che, dietro certe espressioni di Pappo, mi sembra esservi, che Euclide abbia appunto adottato in generale questo metodo nel dimostrare i suoi porismi. Ma stimo opportuno parlarne in precedenza della forma propria degli enunciati di queste proposizioni, come farò in questo paragrafo e ne’ tre seguenti.
Nella Notizia, che Pappo dà dei porismi di Euclide nel libro VII. delle sue Collezioni Matematiche, si trovano, benchè in termini oscuri, gli enunciati completi di tre porismi de’ quali il secondo non è che una generalizzazione del primo, ed il primo ed il terzo, giusta le interpretazioni datene dal Simson, sono i seguenti:

« Avendosi quattro rette incontrantisi due a due, se tre dei punti d’incontro situati in una di esse, o due solamente nel caso del parallelismo, sono dati (cioè restano fissi), e due degli altri tre debbano conservarsi ciascuno su una retta data, il rimanente sarà situato anch’esso in una retta data di posizione. (*) ».

« Se da due punti dati si conducano due rette incontrantisi su di una retta data di posizione, delle quali una intercetti su di una retta data di posizione un segmento contatto a partire da un punto dato, l’altra formerà altresì su di un’altra retta un segmento avente col primo un rapporto dato. (***) ».

Da questi enunciati astratti si possono ricavare i due enunciati concreti che seguono:

« Essendo date due rette SA, SB (fig. 1) e tre punti P, Q, ρ posti in linea retta; se intorno ai punti P, Q girino due rette PA, QB in modo che i punti a, b, ne’ quali esse incontrano le rette SA, SB rispettivamente, riescano sempre in linea retta col punto ρ; io dico che si potrà trovare una retta R tale che il punto commune alle rette PA, QB sarà sempre situato in questa retta R. »

« Essendo date due rette SG, SE (fig. 2); un punto A nella SG; due punti P, Q, ed un rapporto λ; se intorno a questi due punti P, Q gireranno due rette PM, QM in modo che il loro incontro M si trovi sempre nella SE; io dico che si potrà trovare una retta R ed un punto a in questa retta tali che, indicato con m il punto in cui la PM incontra la SG, e con m’ quello in cui la QM incontra la R, riesca il rapporto dei due segmenti am, Am eguale sempre a λ. »

(*) Queste ultime parole: data di posizione; vogliono qui significare che si potrà trovare la posizione di questa retta, perché essa, dietro i dati della proposizione, è determinata.

(***) Questi due enunciati sono desunti dalla traduzione del testo di Pappo relativo ai porismi data dal Charles in pag. 14 e seg.
Questi esempi di porismi furono uno dei principali punti di partenza dai quali il Simson prese capo per giungere a formare e a stabilire il suo giudizio su questo genere di proposizioni, che egli definì nei termini seguenti:

« Porisma est propositio in qua proponitur demonstrare rem aliquam, vel plures, datas esse, cui, vel quibus, ut et cuilibet ex innumeris, non quidem datas, sed quae ad ea quae data sunt eadem habent rationem, convenire ostendendum est affectionem quandam comunem in Propositione descriptam. (*) ».

Qui è da avvertirsi che il Simson (attenendosi alla consuetudine degli antichi) chiama data una cosa, non solo quando lo è esplicitamente, ma anche quando lo è soltanto implicitamente, vale a dire, quando la cognizione completa della cosa non risulta immediatamente dalla ipotesi della proposizione, ma si può trarre come necessaria conseguenza, essendo date condizioni tali, a cui la cosa deve soddisfare, che il problema di trovarla effettivamente riesce un problema solubile e determinato. In quest'ultimo caso, io per chiarezza non dirò semplicemente data la cosa, ma sibbene implicitamente data, oppure reperibile.

Ciò posto il datas del Simson deve riportarsi detto nel secondo senso; e mi pare che la sua definizione possa interpretarsi come segue:

« Il porisma è una proposizione nella quale si propone di dimostrare che è reperibile, ovvero che sono reperibili, una o più cose tali, che, tra essa, o tra esse, e ciascuna delle innumerevoli cose aventi tutte una medesima relazione data con cose date, abbia luogo una relazione comune descritta nella proposizione. »

Questa definizione si applica perfettamente ai due porismi sopra enunciati. Imperocché nel primo si propone di dimostrare che è reperibile una retta R tale che, tra questa retta R e ciascuna delle posizioni del punto m (le quali tutte hanno colle cose date SA, SB, P, Q, ρ (fig. 1.) la relazione data consistente in ciò che le rette Pm, Qm incontrano le SA, SB rispettivamente in due punti a, b posti sempre in linea retta col punto ρ) abbia luogo la seguente relazione: che ciascuna di dette posizioni del punto

(*) Chasles, pag. 26.
m si trovi nella retta R. Dunque in questo primo porisma si propone di
dimostrare che è reperibile una cosa tale che, tra essa e ciascuna delle
innumerevoli cose aventi tutte una medesima relazione data con cose date,
abbia luogo una comune relazione indicata; ciò che è in accordo colla
definizione.

E nel secondo di quelli porismi si propone di dimostrare che sono reperibili
due cose tali che, tra esse e ciascuna delle innumerevoli cose aventi
tutte una medesima relazione data con cose date, abbia luogo una indicata
relazione comune. Ed infatti in quel porisma si propone di dimostrare che
sono reperibili una retta R ed un punto a in essa (fig. 2.), tali che, tra questa
retta e questo punto, e ciascuno degli innumerevoli stati del sistema delle
rette PM, QM (passanti rispettivamente nei punti dati P, Q e conconcenti
sulla retta data SE), abbia luogo la seguente relazione: che il segmento
am' formato dalla QM sulla R a partire dal punto a, abbia un rapporto
eguale al rapporto dato & col segmento che sulla retta data GS forma la
PM a partire dal punto dato A. (*)

§ 4. A tutto rigore però la esposta definizione non è senza difetto;

(*) Si ponev de doi veri porismi ai quali, a prima vista, non sembra applicabile la defini-
zione del Simson, ma in realtà lo sia, potendo, senza alterazione del significato, venir modificata
la loro enunciazione in modo che la corrispondenza loro con quella definizione riesca spiccata. Tali
sarebbero delle proposizioni nelle quali si asserrisse, o si proponesse da dimostrare, essere reperibile,
ovvero reperibili una o più cose tali, che una cosa variabile in un modo non compiutamente indi-
cato nella proposizione (ma indicato solo in guisa che per esser compiutamente conosciuto si richieda
la conoscenza delle cose suddette che si hanno a dimostrar reperibili) abbia in ogni suo stato una
proprietà indicata o compiutamente, ovvero soltanto in guisa che la sua indicazione sarà completa
quando si conosceranno le cose annunciate come reperibili.

Ecco un esempio:

"Essendo dato un circolo ed una lunghezza minore del suo diametro, dico che si potrà
trovare dentro di quel circolo un altro circolo tale che, se considereremo una corda del primo
circolo variabile in modo da riuscir sempre tangente al secondo, essa in ogni suo stato riuscirà
eguale alla lunghezza data."

In questa proposizione non è compiutamente indicato il modo con cui deve variare la cosa
variabile, ed è indicata compiutamente la proprietà ch'essa ha in ogni suo stato. Ecco un esempio
in cui non è compiutamente indicata né l'una né l'altra di queste due cose:

"Essendo date due rette tra loro perpendicolari, ed un punto fuori di esse, si potrà trovare
un'iperbola passante pel punto dato, ed una estensione superficiale tali che, se considereremo
una retta variabile di posizione in modo da conservarsi sempre tangente a quella iperbola, tale
MEMORIA DEL PROF. P. D. MARIANINI

poichè essa si applica a certe proposizioni, le quali, giusta il parere del Chasles, non devono riguardarsi come porismi. Ed infatti, se la cosa, ovvero una delle cose, che nella proposizione si propongono da dimostrar reperibili, sia una linea, e se di questa cosa null’altro sia specificato nella proposizione, se non se che essa è una linea, allora la proposizione, sebbene enunciata in forma di porisma, non deve riguardarsi come tale, ma deve piuttosto riferirsi alla classe de’ problemi (*). Sarebbe in questo caso la seguente proposizione:

« Essendo data di lunghezza e di posizione una retta, si potrà trovare una linea tale che tutti i triangoli isosceli aventi per base la retta data abbiano i loro vertici in quella linea. »

A questa proposizione si adatta la definizione del Simson (almeno giusta la interpretazione che ne ho data); essa però non è a rigore un vero porisma; essa è, per così dire, un problema enunciato in forma di porisma. E per farne un vero porisma converrebbe dire retta invece di linea.

Nelle questioni de’ porismi, come avvisa il Chasles, viene lasciata da ritro-

retta in ogni suo stato avrà la proprietà di racchiudere colle due rette date un triangolo avente la sua estensione superficiale eguale alla data ».

Qui si conoscerà compiutamente il modo, con cui varierà di posizione la retta tangente alla iperbole, solo quando si conoscerà questa iperbole; e si conoscerà compiutamente la proprietà di questa tangente solo quando si conoscerà quella estensione superficiale che è dichiarata reperibile.

Ora, per vedere che proposizioni di tal fatta corrispondono anch’esse alla definizione di cui si tratta, non si ha che a riflettere che nell’enunciarle si può, senza alterarne punto il significato, riferirsi ad un’altra cosa variabile, per la quale sia compiutamente conosciuto il modo di variare, cioè sieno conosciuti gli innumerevoli stati di cui è suscettibile.

Ecco opportunamente modificati li due enunciati addotti come esempi:

« Essendo dato un circolo ed una lunghezza minore del suo diametro, dico che si potrà trovare dentro quel circolo un altro circolo tale che, un punto variabile di posizione nella periferia del primo circolo avrà in ogni suo stato la proprietà che, conducendo da esso una corda la quale sia tangente al secondo circolo, questa corda riuscirà eguale alla lungezza data. »

« Essendo date due rette tra loro perpendicolari, ed un punto fuori di esse, si potrà trovare un’iperbole passante per questo punto, ed una estensione superficiale, tali che, considerando un punto variabile di posizione su di una delle due rette date, questo punto in ogni suo stato avrà colla iperbole e colla estensione superficiale suddetta la relazione seguente: che, se si condurrà da esso punto una tangente alla iperbole, questa retta insieme alle due rette date racchiuderà un triangolo avente la sua estensione superficiale eguale alla suddetta medesima ». (* Veggasi la prima delle tre parti del §. VI. dell’Opera del Chasles.)

(*)
versi soltanto la grandezza, o la posizione, od entrambe queste qualità, per una o più cose, limitate però di numero (*). Pertanto, ciascuna delle cose, che nei porismi si annunciano come reperibili, deve essere in essi parzialmente indicata, ed in modo che, per compierne la indicazione, o non resti da trovare che la sua grandezza, o la sua posizione, o l’una e l’altra di queste due qualità, o, tutto al più, non resti che da trovare la grandezza, o la posizione, o entrambe queste qualità, per una o più cose dalle quali quella dipenda.

Così nel porisma non potrà essere enunciata reperibile una cosa indicando soltanto che essa è una linea; giacché allora, a compierne la indicazione, non basterebbero delle determinazioni di posizione e di grandezza per un limitato numero di cose; ma dovrebbe anzi tutto scoprirsi la natura di questa linea, la quale questione si riferisce al genere di proposizioni appellate problemi. Potrà bensì nel porisma essere enunciata reperibile una cosa indicando che essa è una retta, ovvero che è un circolo, ovvero che è una linea del tal ordine, ecc., giacché in tali casi alla completa designazione della cosa non mancano che determinazioni di posizioni e di grandezze in numero limitato.

(*): A pag. 55 lin. 17 e seg., il Chasles dice: "Les Porismes sont des propositions où l’on a tout à la fois à démontrer une vérité énoncée et à trouver la qualité ou la manière d’être, comme la grandeur ou la position, de certaines choses mentionnées dans l’énoncé de cette vérité."

A pag. 42, linea 4 ascendendo: "Les Porismes peuvent aussi être considérés comme des théorèmes non complets. Car la determination des choses qu’on demande de trouver complètera le théorème, c’est-à-dire qu’on obtiendra une proposition dans laquelle toutes choses auront la détermination, de grandeur et de position, qui leur appartient. — Les Porismes ont encore avec les Données une autre analogie manifeste. C’est la forme de leurs énoncés, où il est toujours dit que telles choses sont données de grandeur ou de position."

A pag. 54, Egli definisce il porisma, come segue: "Les Porismes sont des théorèmes non complets, exprimant certaines relations entre des choses variables suivant une loi commune; relations indiquées dans l’énoncé du Porisme, mais qu’il faut compléter par la détermination, de grandeur ou de position, de certaines choses qui sont la conséquence de l’hypothèse, et qui seraient déterminées dans l’énoncé d’un théorème proprement dit ou théorème complet."

A pag. 55 lin. ultima. "La Géométrie moderne offre une foule d’exemples semblables de théorèmes non complets, qui sont de véritables Porismes selon la conception d’Euclide, si non en apparence à cause des différences de style, du moins par la nature même de la proposition où l’on a à démontrer l’existence d’une chose annoncée, et à trouver (sans invention) la manière d’être, telle que la grandeur ou la position, de cette chose."
Questa condizione generale, che deve verificarsi per ogni porisma, deve essere indicata nella definizione di questa sorta di proposizioni. Noi pertanto potremo dire:

«Il porisma è una proposizione nella quale (mentre una o più cose, delle quali in essa si tratta, vengono nella stessa indicate solo parzialmente ed in modo che per compierne la indicazione occorrano soltanto delle determinazioni di grandezze e di posizioni) si assicere che questa tal cosa, o queste tali cose, sono reperibili (che cioè si possono scoprire quelle grandezze e posizioni che occorrono per la compiuta loro determinazione) dietro una condizione, espressa nella proposizione, alla quale esse devono soddisfare; e questa condizione consiste in ciò che esse debbano avere una medesima relazione data con ciascuno degli innumerevoli stati di una cosa di data specie e variabile in un modo indicato.»

§ 5. Ma se facciamo la convenzione di dire parzialmente indicata una cosa per significare che essa è indicata in modo che per venire nella completa cognizione di essa non manchi se non se la cognizione di una grandezza o di una posizione, ovvero di un numero limitato di grandezze e posizioni; e ritenuto sempre che la frase si può trovare una cosa, come pure l'altra frase una cosa è implicitamente data, voglia significare che il problema di trovare questa cosa è solubile e determinato, noi potremo definire più brevemente il porisma come segue:

«Il porisma è una proposizione, nella quale si assicere che può o ponno trovarsi una o più cose, già parzialmente indicate nella proposizione, tali che uno qualunque degli innumerevoli stati di una cosa di data specie e variabile in un modo indicato abbia con essa o con esse una data relazione.»

E potremo anche definire il porisma in quest'altra maniera:

«Il porisma è una proposizione nella quale si assicere che una cosa di data specie, e variabile in un modo indicato, ha in ogni suo stato una data relazione con una o più cose, le quali nella proposizione vengono indicate parzialmente ed annunziate come implicitamente date.»

Di queste due definizioni, la prima corrisponde a quella del Simson, e la seconda corrisponde a quella data dal Chasles a pag. 54, e da me poco sopra riportata. (*)

(*) Noi abbiamo osservata la esatta corrispondenza tra i due porismi riportati al § 5 e la definizione del Simson. Egualmente esatta corrispondenza ha luogo tra quei porismi e le due defi-

Serie II. Tomo II.
§ 6. Queste due definizioni sono manifestamente equivalenti; ma dal-
l'una all'altra vi è differenza nell'ordine delle cose espresse; così che le
due definizioni si riferiscono a due maniere diverse nelle quali si ponno
enunciare i porismi. Si enuncia un porisma nella maniera cui si riferisce
la prima definizione quando si assicura che si possano trovare una o più
cose (parzialmente indicate), colle quali la tal cosa variabile nel tal modo
abbia sempre la tal relazione. E lo si enuncia nella maniera cui si riferisce
la seconda definizione, e ciò senza punto alterare il significato della pro-
posizione, quando si assicura che la tal cosa variabile nel tal modo ha
sempre la tal relazione con una o più cose, che s'indicano parzialmente
come sopra, e che si assicurano implicitamente date.

I due porismi riportati al § 3 si sono colà enunciati in concerto nella
prima di queste due maniere. Volendoli enunciare nella seconda, non oc-
corre alcun cambiamento nelle ipotesi, ma soltanto negli asserti. Ed ecco
come a tale oggetto si potranno formulare i loro due asserti:

nizioni qui esposte; anzi tra qualsivoglia proposizione esibita dal Chasles quale porisma, e le defi-
nizioni medesime. Questa corrispondenza non è mai difficile da scorgersi; tuttavia non sarà su-
perfìuo farli osservare almeno per un altro caso.

Assumiamo il seguente porisma del Chasles, che è il duodecimo di quelli che ho presi a
trattare:

« Essendo date due rette LM, XX' (fig. 19.1°), che si segano in un punto e; se allorno di due
punti P, Q dati fuori di tali rette si fanno girare due altre rette PM, QM in modo che s'incon-
trino sempre sulla LM, e le quali incontreranno la XX' in due punti m, m', io dico che si
potrà trovare un punto I su questa retta XX', ed una lunghezza µ tali che risca sempre

\[
\frac{\text{i.m. cm'}}{\text{em}} = \mu.
\]

Per iscorgere la corrispondenza di questo porisma colle esposte definizioni, basta riflettere
1°. Che il sistema de' due punti m, m' esistenti sulla XX', il qual sistema varia in modo che le
rette PM, QM concorrono sempre nella LM, può considerarsi come la cosa di data specie e
variabile in un modo indicato. Ho detto può considerarsi e non deve considerarsi, poiché pot-
trebbe anche considerarsi come la cosa variabile il punto M, ovvero il sistema delle due
rette PM, QM ecc. 2°. Che le cose parzialmente indicate sono in questo caso le due I e µ,
delle quali è detto che la prima è un punto della retta XX', ma non è detto quale punto sia di
questa retta, e che la seconda è una lunghezza, ma non è detto quale lunghezza sia. 3°. Che in
questo porisma si assicura che per opportuna posizione del punto I e per opportuno valore della lun-
ghessa µ riuscirà

\[
\frac{\text{i.m. cm'}}{\text{em}} = \mu,
\]

e che questa posizione del punto I e questo valore della lung-
ghessa µ sono implicitamente dati.
1.° « Io dico che il punto comune alle rette Pa, Qb, (fig. 1.°) si troverà sempre in una medesima retta implicitamente data. »

2.° « Io dico che col segmento Am (fig. 2.°), formato dalla retta Pm sulla SG a partire dal punto A, avrà sempre un rapporto eguale al rapporto dato λ, il segmento che la retta QM formerà su di una retta fissa R implicitamente data a partire da un punto di essa implicitamente dato. »

A queste due maniere, nelle quali si ponno enunciate i porismi, si riferiscono le seguenti parole di Pappo: « Horum autem (porismatum) species omnes neque theorematum sunt, neque problematum, sed medium quodammodo inter haec formam, ac naturam habent, ita ut eorum propositiones formari possint ut theorematum vel ut problematum (*). »

« Les diverses espèces de ces Porismes ne sont, ni des thèorèmes, ni des problèmes, mais sont, en quelque sorte, d’une forme intermédiaire; de façon qu’on peut les présenter comme des théorèmes ou comme des problèmes. (**) » Ed infatti, enunciando un porisma nella maniera corrispondente alla prima definizione, si pone innanzi la questione problematica di trovare quelle tali cose parzialmente indicate; ed enunciandolo nell’altra maniera, si mette invece innanzi la questione teoretica di dimostrare che quella tal cosa variabile nel tal modo ha sempre la tal relazione con quelle certe cose parzialmente indicate.

§ 7. Mi accingo ormai a parlare del metodo che sembrami più conveniente in massima per la trattazione di un porisma proposto.

Nel porisma si asserisce che una tal cosa variabile in un tal modo ha in ogni suo stato una designata relazione con certa cosa, o certe cose, le quali vengono indicate solo parzialmente, e si asserisce che tali cose sono implicitamente date. Se, nell’enunciato della proposizione, invece d’indicare solo parzialmente quella certa cosa o quelle certe cose, se ne darà la completa individuale loro indicazione, allora tale proposizione cessa di essere un porisma e si trasforma in un teorema ordinario.

Può darsi che il problema di individuare le cose suddette dietro i dati del porisma (sempre che questo porisma sia esatto) ammetta una sola

(*) Pappi Alexandrini Mathematicae Collectiones.....Bononiæ 1660 pag. 245 lin. 4 e seg.

(**) Chasles, pag. 48 lin. 3 e seg.
soluzione, e può darsi che ne ammetta due, tre, ecc. Nel primo caso, dal porisma si potrà ricavare un solo teorema; negli altri casi se ne potranno ricavare due, tre, ecc. i quali però, a motivo della loro affinità, si potranno enunciare insieme, formandone una sola proposizione, che potrà anch’essa appellarsi *teorema*. Pertanto ad ogni porisma corrisponde un teorema, il quale nasce dall’aggiungere all’enunciato del porisma la indicazione dell’unica, o delle due, o delle tre, ecc. individuazioni ammissibili di quelle cose che nel porisma stesso sono indicated parzialmente. E potremo anco dire, in altri termini. Ad ogni porisma corrisponde un teorema che nasce dal designare compiutamente quella proprietà della cosa variabile, che nel porisma vien designata solo incompiutamente. Questo teorema io lo chiamerò *il teorema corrispondente al porisma*.

Supponiamo ora che, per dimostrare un porisma proposto, venga esibito soltanto un ragionamento col quale si dimostri il teorema corrispondente a quel porisma. È manifesto che tale ragionamento non potrà riguardarsi, in massima, come una dimostrazione completa del porisma. Ed infatti nel porisma si asserisce che quelle tali cose (parzialmente indicate) sono implicitamente date: la quale asserzione, ond’esser dimostrata giusta, esige, non solo che si dimostri che, corrispondentemente a ciascuna delle tali individuazioni di quelle cose, ha luogo la relazione enunciata tra esse e la cosa variabile, ma ancora che si dimostri che questa stessa relazione non si verifica corrispondentemente a qualunque altra individuazione di quelle cose; giacché non sarà provato che quelle tali cose, parzialmente indicated, e che devono soddisfare alla condizione indicata nel porisma, sono implicitamente date, finché si lascierà campo a dubitare che quella condizione possa essere soddisfatta da innumerevoli individuazioni di quelle cose.

È ben vero che in parecchi casi la dimostrazione del teorema corrispondente ad un porisma proposto può riguardarsi come una completa dimostrazione del porisma e ciò perché dal dimostrato teorema risulta immediatamente anco ciò che rimarrebbe a dimostrarsi per compiere la dimostrazione del porisma. Ma questo dipende dalle condizioni speciali di certi porismi, e perciò non deve condurci a stabilire una massima generale.

Si rifletta altresì che l’affidarsi alla semplice dimostrazione di teoremi ordinari per concluderne la verità di porismi può occasionare de’ giudizii fallaci rispetto al numero delle individuazioni ammissibili delle cose che
nel porisma sono dichiarate reperibili. E qualora il porisma proposto fosse difettoso, in quanto che esso comportasse infinite individuazioni della cosa, o delle cose, annunciate in esso come implicitamente date, tale difetto potrebbe meno difficilmente sfuggire. (*)

Concludiamo da tutto ciò che la dimostrazione completa di un qual-sivoglia porisma consta essenzialmente di due parti, una destinata a provare il teorema che nasce dall’aggiungere nell’enunciato del porisma la indicazione esatta della individuazione, o delle individuazioni ammissibili delle cose annunciate nel porisma come implicitamente date; l’altra destinata a provare che niun’altra individuazione di tali cose è ammissibile, vale a dire che, per niun’altra individuazione di queste cose, ha luogo, tra esse e la cosa variabile, la relazione espressa nel porisma stesso. E che però, in certi casi, la seconda di queste parti è una spontanea ed evidente conseguenza della prima, e quindi può sotto intendersi.

§. 8. Si osservi ora che la seconda di queste due parti di dimostrazione, quella cioè nella quale si prova che soltanto la tale, o le tali individuazioni delle cose annunciate come reperibili soddisfano alla condizione indicata nel porisma, si potrà benissimo premettere alla prima, cioè alla dimostrazione del teorema corrispondente al porisma; giacché si potrà ammettere provvisoriamente la verità di questo teorema. E si rifletta inoltre che a quella parte di dimostrazione si potrà dare la forma di indagine.

Con ciò io intendo significare che si potrà trattare il porisma cominciando dalla indagine, od investigazione, delle individuazioni ammissibili per le cose annunciate reperibili; la quale indagine s’istituirà ammettendo la possibilità di soddisfare alla condizione del porisma con opportune indi-

(*) Il porisma XXXVII del Chasles è difettoso nel senso appunto di cui si tratta. Eccome l’enunciato (fig. 17.1):

”Quand deux droites tournent autour de deux points fixes P, Q en se coupant toujours sur une droite donnee LM, et que la premiere rencontre une droite donnee de position AX en un point m: on peut determine une autre droite fixe BY que la droite tournant autour du point Q rencontrera en un point m’, et qui soit telle, que le rapport des segments Au, Bu’, comptes a partir des points où les deux droites AX, BY coupent la base PQ, ait une valeur constante.”

Il Chasles nella trattazione di questo porisma esibisce la sola retta FB (paralella alla retta Qa, che unisce il punto Q col punto a, in cui la Pa parallela ad AX incontra la LM) come soddisfacente alla condizione del porisma mentre qualunque retta parallela a Qa vi soddisfa.
viduazioni di tali cose. Riusciti compiutamente in questa indagine, se ne dedurrà che sole le individuazioni da essa sortite per le cose dichiarate reperibili nell’enunciato potranno soddisfare alla condizione espressa nel porisma. In seguito di che, per compiere la trattazione del porisma, non si avrà che a dimostrare che, corrispondentemente a ciascuna di tali individuazioni delle dette cose, è in realtà soddisfatta quella condizione.

Questa maniera di procedere nella trattazione di un porisma proposto è consentanea allo spirito della questione, in quanto che nel porisma si propone di dimostrare che quelle tali cose, indicate parzialmente, e che devono soddisfare alla condizione espressa nel porisma stesso, sono implicitamente date; e, trattando la questione nella maniera di cui parliamo, noi, con una apposita indagine, veniamo appunto a ritrovare, dietro i dati del porisma, le dette cose; e così dimostriamo col fatto ch’esse realmente sono implicitamente date nel porisma, che, cioè, la questione di ritrovarle corrisponde ad un problema solubile e determinato.

Inoltre questa stessa maniera di trattare i porismi è quella secondo la quale, se non vuol correr pericolo di perdersi in tentativi, deve procedere colui al quale il porisma viene proposto (almeno quando non gli sia noto il teorema corrispondente); giacché egli non potrà accingersi a dimostrare un teorema se prima non ne abbia cognizione completa.

Io pertanto concluso che tale metodo di procedere è il più appropriato in massima per la trattazione di un porisma proposto.

Con questo per’ altro io non intendo già di disapprovare che da porismi, o, in generale, da proposizioni già dimostrate, si deducano direttamente degli altri porismi, senza seguire l’indicato metodo nel dimostrarli; ciò che anzi sarà conveniente anche per un porisma che venga proposto, segnatamente quando si scorga essere desso una spontanea conseguenza di altri porismi già trattati. Io pure, alcuni de’ porismi che sono per trattare, li dedurrò direttamente da altri già trattati, senza seguire per essi l’indicato metodo il quale consiste 1.° in una indagine destinata a ridurre la questione del porisma a quella di un teorema da dimostrare, 2.° nella dimostrazione di questo teorema.

Ammettendo pertanto che in certi casi possa essere conveniente allontanarsi da questo metodo, noi lo stimiamo tuttavia come il più appropriato in massima, e come quello da seguirsi, in generale, nella trattazione de’ porismi che vengano proposti.
§ 9. Ma il Chasles nella sua opera sui porismi non ha adottato questo metodo per le dimostrazioni; e si è limitato, in generale, a dare soltanto le dimostrazioni dei teoremi corrispondenti ai porismi.

Si può render ragione di questo procedere del Chasles ponendo mente alla natura del difficile suo lavoro diretto ad indovinare quali possano essere stati i 171 porismi trattati da Euclide, e ciò all’appoggio de’ concisi ed oscuri enunciati, col quali Pappo ha caratterizzati i diversi generi di porismi trattati da Euclide, e dei 37 lemmi che Pappo stesso ha registrati come occorrenti per le dimostrazioni di que’ porismi. Da ciò infatti si concepisce che il Chasles doveva essere principalmente occupato a formare dei porismi che corrispondessero a queglì enunciati; e per formar dei porismi basta prendere dei teoremi, e fare certi cambiamenti nei loro enunciati; onde egli (il Chasles) non si trovava mai nel caso di dover cercar la dimostrazione di un porisma che a lui fosse stato proposto. Ma, dovendo egli invece dimostrare dei porismi, ch’egli stesso aveva dedotti da dei teoremi, si è limitato ad esibire le dimostrazioni di questi teoremi quali dimostrazioni di que’ porismi, se non complete in ogni caso (§ 7.), almeno facilmente completabili. (*)

§ 10. Il Chasles opina che anche Euclide abbia detto i suoi porismi da dei teoremi (**); e su ciò non può cadere dubbio finché non vi sia dubbio che Euclide stesso sia l’autore di quelle proposizioni, e non altri, il quale le abbia a lui proposte. Ma, dietro certe espressioni di Pappo, io venni in opinione che Euclide nella trattazione dei suoi porismi non abbia fatto come il Chasles; ma li abbia invece trattati come sarebbe stato conveniente che li trattasse colui, al quale fossero stati proposti; li abbia cioè, almeno in generale, trattati col metodo di cui ho parlato al § 8.

Ed allo scopo di giustificare questa mia opinione, io riporto primiera-

(*) L’unico porisma, che il Chasles trattò facendo precedere alla dimostrazione del corrispondente teorema l’investigazione delle cose implicitamente date, è il suo porisma undecimo, che corrisponde a quell’unico porisma di Euclide, del quale Pappo ci ha trasmesso l’enunciato completo.

(**) A pag. 52 egli dice « Assurément Euclide n’a pas eu besoin de résoudre des problèmes pour former ses 171 Porismes; il lui a suffi de prendre des théorèmes et d’en changer la forme. » Può anche vedersi a questo proposito, la seconda parte del suo §. VI.
mento le traduzioni date dal Commandino e dal Chasles di una parte della Notizia di Pappo sui porismi di Euclide.

Traduzione del Commandino (*)

« Post ipsas autem tactiones sequuntur Euclidis porismata tribus voluminibus contenta; opus quidem artificioseissimum, ac perutile ad resolutionem obscuriorum problematum, ac eorum generum, quae haud comprehendunt eam, quae multitudinem praebet naturam. Nihil vero additum est iis, quae Euclides primum scripsit, praeter quam quod nonnulli inepti, qui ante nos fuerunt, secundas descriptiones paucis ipsorum addiderunt. Et cum unumquodque numerum demonstrationis praebinitum habeat, quemadmodum ostendimus, hi unam solummodo pro singulis porismatibus ex Euclide demonstrationem apponentes eam maxime obscurarunt. At vero haec subtilem, naturalemque in se habent contemplationem, et necessariam, et admodum universalem, et iis, qui haec valent perspicere, atque investigare, etiam suavem. Horum autem species omnes neque theorematum sunt, neque problematum, sed mediocrum quodammodo inter haec formam, ac naturam habent, ita ut eorum propositiones formari possint, ut theorematum vel ut problematum. quo factum est, ut ex multis Geometris alii quidem ea generis esse theorema, alii vero problema opinati sunt, dum ad solam tantum propositionis formam respicerent. Horum autem trium differentiam veteres vel melius cognovisse ex definitionibus perspicium est, dixerunt enim theorema esse, quod proponitur in ipsius propositi demonstrationem. Problema, quod affertur in constructionem propositi. Porisma vero, quod proponitur in porismum, hoc est in inventionem et investigationem propositi. Immutata autem est haec porismatis definitio a iunioribus, qui nequeunt omnia investigare, sed his elementis utuntur, et ostendunt solummodo quod hoc est, quod quaeritur, non autem illud ipsum investigant.

(*) Pappi Alexandrini Mathematicae Collectiones ecc. Bononiae 1660 pag. 244 e 245.
Traduzione del Chasles (*)

« Après les *Contacts* sont les Porismes d'Euclide, en trois livres, collection ingénieuse d'une foule de choses qui servent à la solution des problèmes les plus difficiles, et que la nature fournit avec une inépuisable variété.

« Il n'a rien été ajouté à cet ouvrage d'Euclide, si ce n'est que depuis quelques géomètres peu expérimentés ont donné de nouvelles rédactions de quelques-uns de ces Porismes. Bien que chacune de ces propositions soit susceptible d'un certain nombre de démonstrations, comme nous le faisons voir, Euclide n'en donne qu'une, qui est toujours la plus claire.

« Les Porismes renferment une doctrine subtile, mais naturelle et nécessaire, surtout très-générale et d'un étude très-agréable à ceux qui savent voir et trouver.

« Les diverses espèces de ces Porismes ne sont, ni des théorèmes, ni des problèmes, mais sont, en quelque sorte, d'une forme intermédiaire; de façon qu'on peut les presenter comme des théorèmes ou comme des problèmes.

« Il est résulté de là que, parmi beaucoup de géomètres, les uns les regardent comme des théorèmes, et d'autres comme des problèmes, n'ayant égard qu'à la forme des énoncés.

« Mais les définitions données par les Anciens prouvent qu'ils ont mieux compris les différences qui existent entre ces trois genres de propositions. Ils disaient, en effet, que:

« Le Théorème est une proposition où l'on demande de démontrer ce qui est proposé.

« Le Problème est une proposition où l'on demande de construire ce qui est proposé.

« Le Porisme est une proposition où l'on demande de trouver ce qui est proposé.

(*) Pag. 16 e seg.

Serie II. Tomo II.
«Cette définition des Porismes a été changée par des géomètres modernes qui, ne pouvant pas tout trouver, mais conservant les éléments de cette doctrine, se contentèrent de prouver que la chose cherchée existe, sans la déterminer. »

Da queste due traduzioni io desumerei la seguente italiana:

« Dopo i contatti vengono i porismi di Euclide contenuti in tre libri; opera veramente ingegnissima, ed utilissima per la risoluzione dei problemi i più difficili,

......

« Nulla poi fu aggiunto a que’ porismi che primariamente scrisse Euclide; se non che alcuni geometri inetti, i quali furono prima di noi, aggiunsero delle nuove trattazioni di pochi di que’ porismi. E mentre ciascun porisma ha un numero prescritto di dimostrazioni, come noi facciamo vedere, costoro, applicando ai singoli porismi una sola di tali dimostrazioni tratta da Euclide, la oscurarono oltremodo.

« Ma questi porismi racchiudono in se una sottile e naturale teorica, necessaria e molto generale; la quale, per coloro che in tal genere di cose sanno vedere ed investigare, è anche dilettevole.

« Questi porismi poi, a qualunque specie appartengano, non sono né teoremi né problemi; ma sono in certo modo di forma e natura intermedia a quelle due sorta di proposizioni; così che si ponno enunciare tanto in forma di teoremi come in forma di problemi.

« Da ciò ne venne che parecchi geometri, facendo attenzione alla sola forma dell’enunciato, opinarono essere i porismi, quanto al genere, teoremi, e parecchi altri opinarono esser essi de’ problemi.

Ma, che gli antichi molto meglio abbiano conosciuto le differenze di questi tre generi di proposizioni, chiaro appare dalle definizioni che ne diedero. Imperocché dissero:

« Il teorema è una proposizione che richiede dimostrazione di alcun che proposto.

« Il problema è una proposizione che richiede costruzione di alcun che proposto.

« Il porisma è una proposizione che richiede ritrovamento ed investigazione di alcun che proposto.

« Ma questa definizione di porisma fu cangiata da geometri posteriori,
i quali, non capaci di tutto investigare, si servono tuttavia degli elementi di questa dottrina, e mostrano soltanto che ciò è quello che si cerca, ma non ne fanno la investigazione.

§ 11. Considero quel periodo che dal Commandino è tradotto nei termini seguenti:

« Et cum unumquodque numerum demonstrationis praefinitum habeat, quemadmodum ostendimus, hi unam solummodo pro singulis porismatibus ex Euclide demonstrationem apponentes eam maxime obscurarunt. »

E che il Chasles traduce come segue:

« Bien que chacune des ces propositions soit susceptible d’un certain nombre de démonstrations, comme nous le faisons voir, Euclide n’en donne que une, qui est toujours la plus claire. »

Qui manifestamente non vi è accordo tra le due tradizioni, dal che si può inferire che il testo originale in questo luogo sia oscuro.

Il Chasles, a pag. 111 e 112, parla per incidenza di questo periodo, e dà qualche spiegazione sul significato ch’egli vi attribuisce. Ecco le parole del Chasles:

« On reconnaîtra que ces omissions (si accenna a que’ porismi che Euclide ha ommesso perché casi particolari o conseguenze immediate di altri, o per altre ragioni) et les motifs qui nous paraissent le justifier, se pouvaient prévoir d’après certains passages de Pappus, notamment celui dans lequel il dit qu’Euclide ne donne jamais qu’une démonstration des choses que renferme son ouvrage; ce qui veut dire qu’Euclide ne donne jamais deux fois la même démonstration. Car c’est dans ce sens que nous devons entendre ce passage: Bien que chacune de ces propositions soit susceptible d’un certain nombre de démonstrations, comme nous le faisons voir, Euclide n’en donne qu’une, qui est toujours la plus claire.

« Pappus dit, comme nous le faisons voir, parce que dans plusieurs Lemmes il donne les figures qui se rapportent à des cas d’une même proposition dont les différences ne dépendent que des positions relatives des diverses parties de la figure. C’est ce qu’Euclide ne faisait pas.

« Il est à croire que les propositions que ces géomètres peu expérimenter, dont parle Pappus, ont ajoutées à celles d’Euclide, étaient du nombre de ces cas particuliers omis à dessein par l’auteur des Porismes, comme susceptibles de la même démonstration qu’une proposition déjà démontrée. »
Io osserverò che, se le dimostrazioni in numero determinato di cui è suscettibile ciascuno di quei porismi, e delle quali parla Pappo, sono, come sembra pensare il Chasles, una medesima dimostrazione applicata ai diversi casi, che può presentare la figura dipendentemente dalle diversità nelle reciproche posizioni delle sue parti; ancorché per applicarla a questi diversi casi si richiegano delle modificazioni, esse dimostrazioni avranno certamente tutte presso a poco la medesima brevità ed eleganza, e potranno essere esposte con eguale chiarezza; nè parmi facilmente spiegabile come Pappo possa aver detto che quella scelta da Euclide è sempre la più chiara. Dietro questo riflesso, ho stimato che la traduzione del Chasles sia una interpretazione; e, siccome molto probabilmente quella del Commandino è letterale, io ho cercato d’interpretarla in modo da presentare più verosimilmente il senso del periodo di Pappo.

Quindi è che, per la traduzione italiana di questo periodo, mi sono appoggiato alla traduzione latina del Commandino. Mi parve che le parole « hi unam solum modo pro singulis porismatibus ex Euclide demonstratio- nem apponentes eam maxime obscurarunt » richieggano che l’autore abbia già detto che nell’opera di Euclide, ogni porisma ha più d’una dimostrazione. Quindi ho supposto che, invece della parola demonstrationis, s’abbia a leggere demonstrationum; in appoggio di che sta anche la traduzione del Chasles. Con questo solo cambiamento il significato letterale del periodo è appunto quello che ho espresso nella traduzione italiana, cioè il seguente: E mentre ciascuno (porisma) ha un prescritto numero di dimostrazioni, come noi facciam vedere, costoro apponendo ai singoli porismi una sola dimostrazione tratta da Euclide la oscurarono moltissimo; del qual periodo io cercai una interpretazione, che mi sembrasse verosimile.

a) Conveniva in primo luogo interpretare in qual senso Pappo intenda che ogni porisma abbia un numero prescritto di dimostrazioni.

Forse il Chasles opina che Pappo intenda di parlare dei parecchi ragioniamenti che potevano occorrere per la dimostrazione di un porisma, secondo la diversa posizione reciproca delle parti della figura relativa al porisma stesso. Ma io non poteva ammettere questa interpretazione, perché Pappo, giusta il Commandino, al quale io mi attengo, dice che, avendo que’ geometri inesperti applicata una sola dimostrazione, la oscurarono sommamente; ed invece ciascuno di que’ tali ragionamenti è chiaro per sé stesso, e
non riceve spiegamento alcuno dagli altri. Oltre di che, volendo ammettere tale interpretazione, sarebbe a ritenersi che que' geometri avessero scelto il ragionamento relativo ad uno dei casi generali rispetto alla disposizione delle parti della figura (non essendo presumibile che fossero così inetti da esibire quale dimostrazione del porisma un ragionamento riguardante un caso affatto speciale); e noi sappiamo che dal ragionamento riguardante uno dei casi generali si ponno, per lo più, assai facilmente desumere quelli che occorrono per gli altri casi generali; onde Pappo non avrebbe, mi sembra, avuto motivo sufficiente per tanto biasimarli.

Non può poi cadere sospetto che Pappo intenda parlare delle diverse maniere di ragionamenti e di artifizi colle quali si può dimostrare il porisma; giacchè egli dice che il numero di quelle dimostrazioni di cui parla è prescritto; ed invece il numero di quelle diverse maniere, in generale, non è nemmeno conosciuto.

Pertanto io ho stimato che queste dimostrazioni prescritte di numero per ciascun porisma, delle quali parla Pappo, altro non sieno che i distinti ragionamenti che occorrono per dare la completa prova, e nella forma più conveniente, di quanto si assersse nel porisma.

b) I quali ragionamenti sono almeno due principali e ben distinti relativi alla duplice asserzione del porisma. Giaccchè, come noi già abbiamo notato,

1.° A dimostrare comunque un porisma, non basta provare che una tale, ovvero alcune tali individuazioni delle cose, che in esso sono indicate parzialmente, soddisfano alla condizione in esso espressa; ma conviene altresì mostrare che, come è asserito nel porisma stesso, queste individuazioni sono reperibili, cioè implicitamente date; vale a dire, conviene mostrare come, dietro i dati della proporzione, si possano scoprire tutte quelle individuazioni di tali cose che sono compatibili colla condizione alla quale devono soddisfare; le quali individuazioni, se il porisma è in tutto esatto, dovrebbono essere o una sola, o in numero limitato; giaccchè, se il loro numero non avesse limiti, quelle tali cose non potrebbero rettamente annihilarsi come implicitamente date.

2.° Colui pertanto, che vuol dimostrare un porisma propostogli, deve prima di tutto, ammessa la possibilità di individuare (in guisa che soddisfacciano alla condizione espressa nel porisma) quelle cose che in esso
sono indicate solo parzialmente; deve, dico, ammessa questa possibilità, investigare quale o quali individuazioni siano ammissibili per le dette cose; dietro il riuscimento della quale investigazione, egli verrà ad aver trovato e dimostrato che solo la tale, o solo le tali individuazioni di quelle cose sono ammissibili, ponno cioè soddisfare alla condizione espressa nel porisma. Dopo di che egli non avrà che a dimostrare se tali individuazioni siano realmente ammissibili, se cioè ciascuna di esse soddisfaccia alla condizione del porisma. Per riuscire poi in quest’ultima dimostrazione sarà qualche volta opportuno procedere prima per risoluzione od analisi, poi per composizione, cioè sintesi. — In poche parole: Colui, che vuol dimostrare un porisma propostogli, deve prima di tutto, mediante opportuna indagine, ridurre la questione a quella di un teorema; e poi deve dimostrare questo teorema, o per composizione soltanto, ovvero per risoluzione e composizione, secondo l’opportunità.

Raccogliamo da ciò che i ragionamenti che occorrono per la completa dimostrazione di un porisma sono almeno due, ben distinti; cioè
1.° La investigazione od indagine avente per iscopo di ridurre la questione a quella di un teorema ordinario da dimostrare.
2.° La dimostrazione di questo teorema.

Per la qual dimostrazione, senza dubbio, Pappo ritiene, in certi casi, opportuni i due ragionamenti, uno per risoluzione, l’altro per composizione: giacchè
1.° La risoluzione, od analisi geometrica, in varj casi spiega il modo ed insegna l’arte con cui si perviene a trovare la vera e diretta dimostrazione del teorema, che è costituita dal ragionamento per composizione. E lo scopo della materia de’ porismi (come in generale quello della Matiera dagli antichi abbracciata sotto il titolo di Luogo risoluto) non è tanto quello di convincere lo studioso delle verità geometriche ivi enunciate, quanto quello di addestrarlo a trovare e a dimostrare in materia di geometria, come risulta delle parole colle quali Pappo comincia il libro settimo delle sue Collezioni Matematiche.

2.° Lo stesso Geometra Alessandrino applica a parecchj de’ lemmi da lui esposti come occorrenti pe’ porismi, ed a parecchj altri teoremi da lui trattati, i due ragionamenti procedenti uno per risoluzione, l’altro per composizione.
Dietro tutto ciò, a me sembra verosimile che Pappo, allorché dice che ciascun porisma ha un prescritto numero di dimostrazioni, voglia appunto accennare che, per la completa e più conveniente trattazione di un porisma, si richiedono o que’due, o que’tre ragionamenti secondo i casi.

Non dee, infine, parere strano che tali ragionamenti sieno da Pappo chiamati dimostrazioni; giacché ciascuno di essi è realmente una dimostrazione di alcun che spettante al porisma. Anche lo stesso primo ragionamento, cioè l’indagine col risultato a cui conduce, costituisce una dimostrazione di alcun che spettante al porisma, cioè dell’essere realmente reperibili ed implicitamente date quelle cose, che come tali sono annunziate nel porisma.

c) Ma è duopo prendere in considerazione anche le parole « come noi facciam vedere » colle quali Pappo ci avverte che nel suo scritto, egli stesso fa vedere come ogni porisma richieda un prescritto numero di dimostrazioni.

Ora, come può essere in accordo con questa asserzione di Pappo il significato che noi abbiamo attribuito alle parole: numerum praeemittum demonstrationum? Dov’è ch’egli fa vedere che ad ogni porisma si conviene una trattazione consistente in quei due ovvero in quei tre ragionamenti?

Io risponderei che lo fa vedere riportando, come egli fa poco oltre, quale tipo de’porismi di Euclide, l’enunciato completo di uno di essi, dal quale si può rilevare essere la forma di queste proposizioni tale che, per la trattazione loro, si richiede prima una indagine, poi la dimostrazione di un teorema; la qual dimostrazione, giusta la massima adottata nella materia del luogo risoluto, massima, che Pappo stesso accenna al principio del suo libro settimo (†), dovrà, ogni volta che sia conveniente, procedere per risoluzione e composizione.

A ciò deve aggiungersi che Pappo indica chiaramente che i porismi esigono non solo che si dimostri un teorema, ma ancora che s’istituisca una indagine (la quale per l’ordine naturale delle cose dovrà precedere la dimostrazione del detto teorema), 1.º allorché riporta e loda la defi-

(†) Quae quidem (reu) per resolutionem et compositionem procedit. (Ediz. di Bologna sopracitata, pag. 240.)
nizione data dagli antichi, nella quale definizione è chiaramente indicato
che il porisma esige ritrovamento ed indagine di qualche cosa; 2\(^{\circ}\) quando,
poco oltre, a biasimo de' geometri che vennero dopo, dice che essi non
potono ogn\' cosa investigare..... e mostrano soltanto che ciò è quello che si
cerca, ma non ne fanno la investigazione.

d) Ci restano a considerare le rimanenti parole del periodo, che sono
le seguenti: costoro apponendo ai singoli porismi una sola dimostrazione
tratta da Euclide, la oscurarono moltissimo.

Noi riterremo che l'unicà dimostrazione, della quale si accontentarono
codesti geometri, [sia stata la dimostrazione del teorema procedente per
composizione. Imperocché 1\(^{\circ}\) È affatto inverosimile ch' essi apponessero
qualche dimostrazione del porisma la sola investigazione delle cose annun-
ciate reperibili. 2\(^{\circ}\) Pappo stesso, parlando ancora di que' geometri, dice
più innanzi le seguenti parole riportate testo in italiano: « qui nequeant
omnia investigare..... et ostendiant solummodo quod hoc est, quod quaeritur,
non autem illud ipsum investigant »; colte quali parole egli ci avverte ch'essi
ottomettono la detta investigazione, perché non hanno attitudine ad investi-
gare tutto ciò che si richiede in un porisma, e quindi non possono nè
meno apprezzare la importanza di tale investigazione, nè lo spirito che
l'ha dettata. 3\(^{\circ}\) È inverosimile che abbiano apposto, quale dimostrazione
del porisma, la risoluzione relativa al teorema, la quale altro non è che
un ragionamento inverso avente per iscopo di trovare un ragionamento
diretto comprovante il teorema.

Riterremo dunque che l'unicà dimostrazione apposta da quei geometri
inesperti sia la dimostrazione per composizione del teorema corrispondente
al porisma. (*)

Resta a vedersi in quale senso Pappo possa aver detto che « costoro

(*) Poco dopo del periodo di cui si tratta, Pappo dice che, in grazia delle due forme di
cui sono suscettibili gli enunciati dei porismi, parecchi geometri li riguardarono come teoremi,
e parecchi altri come problemi. Può darsi benissimo che queste parole di Pappo si riferiscano
anche a que' medesimi geometri, che aggiunsero delle nuove trattazioni di pochi de' porismi di
Euclide. Ciò può conciliarsi coll' avere questi geometri apposta, come lo ritengo, qual trattazione
del porisma, la sola dimostrazione per composizione del teorema ad esso corrispondente. Impero-
ché noi possiamo ammettere che alcuni di questi geometri abbiano trattato solo de' porismi,
ne' quali non si richiede costruzione alcuna per la materiale determinazione delle cose enunciate
come implicitamente date; ed abbiano applicata, quale trattazione di ciascuno di essi, la sola
apponendo questa sola dimostrazione, tratta da Euclide, la oscurarono moltissimo. »

Non mi par probabile ch’egli voglia dire con ciò ch’essi hanno trasvisata quella dimostrazione data da Euclide, e guastata, e così resa difficile ad intendersi; giacché non è verosimile che que’geometri fossero a tal punto inetti anche nella geometria elementare, mentre poi il discorso di Pappo si riconosce diretto a biasimare que’geometri principalmente perché si sono mostrati inetti per le investigazioni, cioè per quella parte della trattazione de’porismi, per la quale essa si distingue dalla trattazione delle altre materie geometriche.

Io inclinerei piuttosto a credere che Pappo voglia dire che que’geometri hanno oscurato la detta dimostrazione del teorema per ciò appunto che l’hanno applicata sola qual dimostrazione del porisma.

Ed il motivo di questa mia opinione sta in ciò che questa dimostrazione, oltre che da sola è, in generale, una dimostrazione imperfetta del porisma (come abbiamo osservato ai §§. 7 e 8), considerata anche soltanto quale dimostrazione della possibilità di individuare le cose parzialmente indicate in modo che soddisfacciano alla condizione espressa nel porisma, lascia a desiderare qualche cosa, non già quanto al rigore logico, ma quanto alla sua origine; imperocché lo studioso resterà benis da essa convinto della detta possibilità, ma non rileverà con quali artificii l’autore di questa dimostrazione sia arrivato a redigerla, e segnatamente, con quali sia arrivato a fissare la sua mente sulla tale, o sulle tali, individuazioni delle cose parzialmente indicate. Lo studioso pertanto, al quale venga presentata questa sola dimostrazione, è tenuto all’oscuro rispetto ai detti artificii, ed a ciò si riferiscono, a mio avviso, le parole di Pappo « la oscurarono moltissimo. »

dimostrazione per composizione del teorema che gli corrisponde, mostrando così di riguardare il porisma come un teorema; e che gli altri invece abbiano scelto di que’porismi, ne’ quali la materiale determinazione delle cose annunciate reperibili richieda una costruzione, ed abbiano trattato ciascuno di questi porismi esponendo la detta costruzione, e dimostrando poi, per composizione, che le cose ottenute con quella costruzione soddisfano alla condizione espressa nel porisma; la qual maniera di trattazione è propria de’problem. Se così fu, è manifesto che, anche questi ultimi geometri, hanno in sostanza applicata, qual trattazione del porisma, la sola dimostrazione per composizione del teorema ad esso corrispondente, ed hanno ommessa la investigazione delle cose parzialmente indicate nell’enunciato.

Serie II. Tomo II.
Da tutto ciò io sono condotto ad opinare che il periodo di Pappo, di cui si tratta, abbia il seguente significato:

«Mentre per la completa e più conveniente trattazione di ciascun porismà si richiede un prescritto numero di dimostrazioni, cioè di ragionamenti comprovanti ciascuno alcun che relativo al porisma (giacché si richiede una indagine con cui venga ridotta la questione del porisma alla quistione di un teorema, poi si richiede la dimostrazione di questo teorema, la quale in parecchi casi sarà opportuno che proceda per risoluzione e composizione) mentre, dico, così stanno le cose, que’ geometri inetì (che dopo Euclide presero a trattare alcuni pochi de’ suoi porismi) apponendo a ciascuno di questi la sola dimostrazione sintetica del teorema, tratta da Euclide, come costituente la completa trattazione del porisma, la offuscarono oltre modo, sia perché era presentata quale dimostrazione completa del porisma, mentre non lo è, sia perché, essendo ommesse le precedenti dimostrazioni, il lettore era lasciato all’ oscurò circa l’ arte di rinvenirla. »

Tale è il significato che parmi debba attribuirsi al prefato periodo di Pappo, e ne trago quindi argomento in favore della opinione che Euclide abbia trattati i suoi porismi esponendo prima l’indagine che riduce la questione a quella di un teorema ordinario, poscia la dimostrazione di questo teorema.

§ 12. Ma anco indipendentemente dal discusso periodo, la definizione di porisma data dagli antichi, e le parole con cui Pappo, dopo di averla riportata, biasima il modo seguito da que’ tali geometri più recenti nel trattare i porismi, ci offrono chiaro argomento dell’ aver Euclide trattati i suoi porismi cominciando dalla investigazione delle cose implicitamente date.

A questo proposito non sarà superfluo far attenzione all’intendimento degli antichi nel dare quelle tre definizioni di teorema, di problema e di porisma, e giustificare la terza in tutto ciò che può essere giustificata. Osservo perciò

1° Che essi con quelle tre definizioni non hanno già voluto descriverà la forma propria degli enunciati di quelle tre sorta di proposizioni, ma invece hanno voluto soltanto indicare ciò che si richiede per le loro trattazioni. Ond’è che, quanto al teorema, non dissero già: è una proposizione nella quale si enuncia una verità non evidente per se stessa; ma invece dissero: è una proposizione che richiede dimostrazione di alcun che proposto.
2.° Che, quanto al problema, dicendo essi semplicemente che è una proposizione che richiede costruzione di alcun che proposto, hanno tacito della dimostrazione che occorre per la completa sua trattazione. E, senza dubbio, così hanno fatto, perché questo tacito bisogno della dimostrazione doveva necessariamente sottintendersi. Ed infatti, dopo che colui, il quale tratta un problema, ha esibita una costruzione, ed ha asserito che questa costruzione somministra ciò che è proposto, egli naturalmente si trova in debito di dimostrare il suo asserito. E da ciò siamo condotti a pensare che, anche nella definizione di porisma, potranno que’ geometri aver tacito qualche cosa che si richieda per la sua trattazione, e ciò per ragione analoga a quella per la quale, rispetto al problema, hanno tacito della dimostrazione che si richiede per la completa sua trattazione.

Ora, quanto al porisma, dissero: è una proposizione che richiede ritrovamento ed investigazione di alcun che proposto. (*) Lo che vuol significare

(*) Il Chasles, il quale traduce tale definizione in questi termini « Le Porisme est une proposition où l’on demande de trouver ce qui est proposé », vi appone la seguente Nota: (pag. 15).

« Nous exprimerons les termes παράμος et παρίζα dont Pappus fait usage par le mot trouver, parce que ce mot, que nous aurons à employer fort souvent, est consacré presque exclusivement dans les recherches mathématiques, quelles que puissent être les nuances qui aient lieu dans la nature des questions. Toutefois les expressions acquérir, se procurer rendraient mieux ici l’intention précise de Pappus. En effet, il ne s’agit pas dans les Porismes de trouver une chose absolument inconnue comme dans les problèmes en général: ce qu’il s’agit de trouver, c’est une partie seulement d’une chose connue et désignée dans l’énoncé, mais incomplètement; c’est, par exemple, la grandeur ou la position de cette chose. Question, comme on voit, qui présente une nuance avec le problème proprement dit. Voilà dans quel sens nous nous serrons ici du mot trouver. On verra plus loin…. »

Io opino che que’ geometri antichi nel formulare le riportate definizioni non abbiano menomamente avuto in isco a segnalare tra il porisma ed il problema la differenza della quale parla il Chasles in questa Nota. Sembra che egli opini che quei geometri abbiano voluto significare che, mentre nei problemi si tratta, in generale, di trovare una cosa assolutamente sconosciuta, nei porismi invece si tratti di trovare completamente una cosa che è già designata e conosciuta incompiutamente. Ma è egli vero che vi sia questa differenza caratteristica tra il porisma ed il teorema?

Ciò che vi è di vero a questo riguardo si è soltanto che, nel problema locale, rispetto alla cosa che si cerca, è esplicitamente dato che essa è un luogo, e nulla più; mentre nel porisma locale è dato che essa è una retta, ovvero che è una periferia circolare, ovvero che è una parabola, ecc. Onde la differenza accennata dal Chasles sussiste, almeno in certo senso, rispetto ai problemi e porismi locali: Ed è probabilmente, dietro le sue considerazioni sulle differenze tra il teorema locale, il luogo (cioè porisma locale) ed il problema locale, esposte a pag. 52
che il porisma richiede per sua trattazione il ritrovamento, mediante indagine, di alcun che soddisfacente ad una data condizione. Ritenuto pertanto ciò che dietro gli studi del Simson e del Chasles dobbiamo ritenere rispetto alla forma degli enunciati de’ porismi, e di cui abbiamo parlato nei §§ 3, 4 e 5, noi vediamo che que’ geometri collo loro definizione di porisma mostrano chiaramente di ritenere che per la completa e più conveniente trattazione di una proposizione di tal fatta si richieda la investigazione ed il ritrovamento delle individuazioni ammissibili (cioè soddisfacenti alla condizione espressa nell’enunciato) di quella cosa o di quelle cose, che nell’enunciato stesso vengono parzialmente indicate e dichiarate reperibili. Siccome poi questa investigazione non può farsi (in maniera naturale) se non che ammettendo la possibilità di trovar cose appartenenti alle specie abbracciate

e seg. della sua Opera, che egli sarà stato portato a supporre che quella differenza sussista tra i problemi e i porismi di qualsunque genere; ciò che è falso. Ed infatti, qual’è mai quel problema nel quale la cosa cercata sia, prima che il problema venga risolto, compiutamente conosciuta? nel quale ciò non sia detto almeno che quella cosa che si cerca è un punto, od una retta, od un rapporto, ecc.? Ma v’ha di più: Non può nemmeno dirsi che nell’enunciato del problema la cosa da trovarsi sia indicata più incompiutamente che in quello del porisma; giacché possiamo darsi numerosi esempi di problemi e porismi tali che le cose da trovarsi siano indicate negli uni e negli altri in maniere egualmente incomplete; ed anche tali che le cose da trovarsi siano indicate in modo più incompiuto nei porismi che nei problemi. Ecco un esempio del secondo acciòente.

Problema. — Da un punto dato condurre una retta che divida in parti equivalenti un triangolo dato.

Porisma. (56° del Chasles). — Se intorno di un punto P (fig. 16ª) si fa girare una retta PR incontrante due rette date SA, SA’ in due punti a, a’, e da un punto P dato nella retta PS si conducano le due rette PA, PA’; si potrà trovare una retta L tale che il segmento intercetto su di essa dalle rette PA, PA’ abbia sempre una lunghezza data μ. —

Rispetto alla cosa da trovarsi, nel problema è indicato esplicitamente ch’essa è una retta e che passa per un tal punto, mentre nel porisma è indicato soltanto ch’essa è una retta.

A me sembra che la differenza, che gli antichi hanno voluto segnalare tra porisma e problema, stia in ciò che, mentre il problema è proposizione talmente concepita che per sua trattazione richiede una costruzione che somministrano alcune che proposto, il porisma invece richiede una investigazione dietro la quale si venga in cognizione di alcun che proposto. E, se non mi inganno, da tali loro definizioni apparisce che essi riguardavano come compiutamente trattato un problema quando, come negli Elementi, fosse esibita una costruzione, e dimostrato ch’essa somministra effettivamente la cosa proposta (non ritenendo essi necessaria, per la completa trattazione del problema, la esposizione dell’analisi geometrica concreta al ritrovamento di quella costru-
nelle suddette parziali indicazioni e soddisfacenti a quella tal condizione, è manifesto che, quando tale investigazione avrà condotto a delle individuazioni di quelle cose, sarà certo bensì che solamente queste individuazioni potranno soddisfare alla condizione del porisma; non già che esse realmente la soddisfacciano. Ognuno quindi concepisce che, compiuta questa indagine, si dovrà dimostrare che realmente le individuazioni da essa sorte soddisfanno alla detta condizione. Il dire adunque che il porisma richiede la investigazione delle cose in esso annunziate reperibili importa, come sottinteso, che esso richieda anche la indicata dimostrazione; ed è da ritenersi che, appunto per questo, que' geometri antichi non abbiano fatto cenno di tale dimostrazione; a somiglianza di ciò che fecero nella definizione di problema, come abbiamo in precedenza osservato.

Ciò sia detto per ispiegare l'intendimento ch'ebbero gli antichi nel

zione); e che, invece, non riguardavano come compiutamente o convenientemente trattato un porisma, qualora venisse omessa la investigazione delle cose dichiarate reperibili nel suo enunciato. Non lo avranno riguardato come compiutamente dimostrato, quando sarà stata esibita semplicemente una costruzione ed un ragionamento comprovante che le cose ottenute con quella costruzione soddisfassero alla condizione del porisma. E non lo avranno riguardato come convenientemente trattato quando, dopo la detta costruzione e il detto ragionamento, ne sarà stato aggiunto un altro (non avente forma di indagine) comprovante che cose diverse da quelle somministrate dalla esibita costruzione non possono soddisfare alla detta condizione.

Al qual proposito è da osservarsi che, rispetto al porisma, la costruzione è cosa affatto accidentale, giacché nel porisma la cosa proposta da trovarsi, o da dimostrarsi reperibile, può essere già segnata nella figura, e non richiedere quindi costruzione alcuna, ma soltanto scopri
tenimento. Valga ad esempio il porisma 100° del Chasles, che io ho trattato in vigesimo inewo.

In questa nota farò cenno anche di un'altra mia opinione. Dalle parole con cui il Commodo traduce la definizione di porisma degli antichi, «Porisma est quod proponatur in porismismm, hoc est in inventione et investigationem propositi », io sono condotto a pensare che Euclide possa aver dato il nome di porismi a quelle sue proposizioni in quanto che questa parola porisma venisse, in certo modo, ad indicare che la proposizione richiede ritrovamento di alcun che per mezzo di investigazione. Siccome poi la parola porismo può anche significare apro la via, vi è luogo anco a pensare che quel nome sia stato dato da Euclide a quelle proposizioni, o perché esse aprono la via allo studioso per le risoluzioni dei problemi, o perché, secondo le viste di quel grande geometra, dovevano aprir la strada a molte altre scoperte nella geometria. E che realmente l'insieme di queste proposizioni di Euclide fosse tale da aprir la strada a grandi progressi nella geometria è stato messo in piena luce dall'Opera del Chasles, il quale, superando molte e gravissime difficoltà, è riuscito a ritrovare un complesso di proposizioni, le quali cogli oscuri cenni dell'Opera di Euclide dati da Pappo hanno tali corrispondenze da escludere il dubbio ch'egli non abbia restituite le perdute proposizioni di Euclide.
dare quelle tre definizioni, e per giustificare la terza in tutto che lo può essere. (*)

Quello che noi qui vogliamo dedurre da questa terza definizione, e che ci sembra poterlo fare con fondamento dietro le esposte considerazioni, è che que' geometri ritenevano che per la completa e più naturale trattazione di un porisma si richieda prima di tutto la investigazione indicata. E siccome dobbiamo ritenere ch'essi abbiano formulata la loro definizione dietro considerazioni sulle trattazioni de' porismi esibite da Euclide, è anco a ritenersi che Euclide stesso nel trattare i suoi porismi cominciasse appunto da quella investigazione.

Ciò poi è in modo evidente confermato dalle parole con cui Pappo biasima il modo seguito dai geometri più recenti nel trattare i porismi: « qui nequenunt omnia investigare;... et ostendunt solummodo quod hoc est, quod quaeritur, non autem illud ipsum investigant » « qui, ne puvvant pas tout trouver... se contenterent de prouver que la chose cherchée existe, sans la déterminer. » Con queste parole egli ci avverte chiaramente che questi geometri dimostrano soltanto il teorema corrispondente al porisma, non premettendo la indagine che si richiede per ridurre alla questione del teorema la questione del porisma. E ci avverte ancora che così fanno poiché nequenunt omnia investigare; colle quali parole Pappo, a mio avviso, e come ho altra volta accennato, vuol significare che que' geometri essendo inetti ad investigare tutto ciò che richiedesi nel porisma, sono anche incapaci di apprezzare lo scopo di quella investigazione, e l'intendimento con cui Euclide l'ha dettata.

§. 13. Prima di accingermi alla esposizione de' porismi, devo ancora dire qualche cosa relativamente al modo in cui li ho in generale trattati. Le indagini delle cose implicitamente date sono fatte all'appoggio di considerazioni relative ad alcuni speciali stati opportunamente scelti della cosa variabile. Ma potrebbero farsi (sebbene con maggior difficoltà, generalmente parlando) anche considerando la cosa variabile in generale; e di ciò io do pure qualche esempio. (**)

(*) È evidente che le proposizioni della forma dei porismi di Euclide non sono le sole che esigono una trattazione della forma indicata nella definizione degli antichi.
(**) Veggansi le indagini de' porismi 45°, 42° (quarta maniera), 43°.
E a questo proposito non voglio tacere che io sono in forse se si possa ammettere che Euclide abbia istituite almeno alcune delle sue indagini appoggiandosi, come io feci, a considerazioni relative ad alcuni stati speciali opportunamente scelti della cosa variabile; o se si abbia a ritenere ch’egli si sia sempre appoggiato a considerazioni sulla variabile in generale. E questo mio dubbio nasce dal vedere che Pappo non diede mai alcun esempio di indagini in quel primo modo eseguite, sebbene ne abbia avuto occasione nelle ultime quattro proposizioni del libro settimo delle sue Collezioni Matematiche, le quali quattro proposizioni sono porismi di quella classe che gli antichi chiamarono luoghi.

§. 14. Quanto alla dimostrazione de’teoremi corrispondenti ai diversi porismi, io mi sono limitato alla sola dimostrazione per composizione, e ciò in vista specialmente della brevità.

§. 15. In alcuni porismi le cose implicitamente date sono così facili ad investigarsi, sono anzi tanto immediate ed evidenti conseguenze delle ipotesi, che essi porismi ponno riguardarsi come teoremi ordinari. Io però mi feci, alle volte, di limitare la investigazione in modo da ridurre la questione del porisma proposto a quella di un altro porisma, il quale però sia della classe di quelli che ho testé accennati; e questo nuovo porisma lo dimostro per composizione riguardandolo come il teorema corrispondente al porisma proposto.

Mi accingo ormai alla trattazione dei porismi.
Porismo 1.° (2.° del Chasles). Sieno dati due punti P, Q (fig. 3, 4, e 5) e due rette SA, SB non parallele alla retta che passa pei punti P, Q. Abbasi una retta ab la quale si nuova conservandosi sempre parallela alla PQ; e dai punti a, b, ne' quali essa incontra le SA, SB, sieno condotte le rette aP, bQ. Io dico che il punto m comune a queste due rette si trova sempre in una medesima retta, la cui posizione è implicitamente data.

Dimostrazione. Quando la retta, che si muove conservandosi parallela alla PQ, passa pel punto S, allora i punti a, b cadono entrambi in S, e perciò anche il punto m, comune alle Pa, Qb, cade in S. Se dunque è vero che il punto m si trova sempre in una medesima retta, questa passerà pel punto S, anzi sarà quella retta che passa per S e per un'altra posizione, comunque scelta, del punto m. Da ciò si deduce che, per giungere a dimostrare il porisma, noi potremo prendere di mira di provare che il punto m si trova sempre nella retta che unisce il punto S con un'altra posizione del punto m, o, ciò che vale lo stesso, che la Sm è una retta fissa. E se in ciò riusciremo, il porisma sarà dimostrato.

Chiamati A, B i punti in cui la PQ incontra le SA, SB, consideriamo da prima il caso speciale (fig. 4) in cui AQ eguali AB, ed il punto P rispetto al punto Q sia dalla stessa banda che il punto A rispetto al punto B. A motivo de' triangoli simili e di PQ = AB, noi avremo

\[
\frac{ma}{mP} = \frac{ab}{PQ} = \frac{ab}{AB} = \frac{Sa}{SA}
\]

e per conseguenza la retta Sm è parallela alla PQ; onde, essendo S un punto fisso, essa è una retta fissa. Nel caso poi che non si verifichi la circostanza testè considerata, noi avremo che la retta Sm (fig. 3 e 5) non sarà parallela alla PQ, giacchè il punto m, in cui la Pa incontra la Qb,
sara' diverso da quel punto in cui la Qb stessa sarebbe incontrata dalla Pa se il punto P fosse situato rispetto al punto Q come lo si è supposto precedentemente. Chiamati poi R, r gl' incontri della Sm colle ab, PQ, e riflettendo che le parallele ab, AB sono tagliate in parti proporzionali tanto dalle tre rette aA, bB, rR concorrenti in S, come dalle tre aP, bQ, rR concorrenti in m, noi avremo

$$\frac{AB}{BR} = \frac{a}{b} = \frac{PQ}{QR}.$$

Dunque R è un punto fisso; e perciò la Sm è una retta fissa. E così il porisma è dimostrato.

Porisma 2.° (9.° del Chasles). « Essendo date due rette SA, SB, (fig. 6.°) e tre punti P, Q, ρ situati in una terza retta parallela alla SB, intorno al punto ρ si faccia girare una retta ρ a b, e dai punti a, b, nei quali essa incontra le SA, SB, si conducano le aP, bQ. Dico che il punto m comune a queste due rette si trova sempre in una medesima retta, la cui posizione è implicitamente data. »

Dimostrazione. Quando la retta, che si fa girare intorno al punto ρ, cade in ρS, allora il punto m cade in S; onde, se è vero il porisma, la retta, in cui si trova sempre il punto m, dovrà passare per S. Per giungere dunque a dimostrare il porisma, potremo prendere di mira di provare che la retta che passa pel punto S e pel punto mobile m è una retta fissa.

Si chiamino A, R i punti in cui le SA, Sm incontrano la PQ, e c quello in cui la Pa incontra la SB. Le parallele SB, ρP sono tagliate in parti proporzionali, e dalle tre rette passanti pel punto m, e dalle tre passanti pel punto a; per cui avremo

$$\frac{PR}{RQ} = \frac{c}{a} = \frac{PA}{AP}.$$

Per conseguenza R è un punto fisso, e quindi Sm è una retta fissa. E con ciò il porisma è dimostrato.

Porisma 3.° (8.° del Chasles). « Sieno dati due punti ρ, Q, (fig. 7.°) e due rette SA, SB. Si faccia girare intorno al punto ρ una retta passante per questo punto, e dai punti a, b, in cui essa incontra le SA, SB, si conducano la aP parallela alla ρQ, e la bQ. Noi avremo che il punto m co-

Serie II. Tomo II.
mune a queste due rette si trova sempre in una medesima retta implicitamente data.

Dimostrazione. Se è vero il porisma, la retta in cui si trova sempre il punto m dovrà passare per S, che è la posizione che prende m quando la retta girante intorno al punto P passa per S. E pertanto si potrà prendere di mira di dimostrare che Sm è una retta fissa.

Sieno denominati A, B, R i punti in cui la ρQ è incontrata dalle SA, SB, Sm, e con c il punto in cui la aP incontra la SB. Essendo le due rette parallele ρB, aP tagliate dalle tre rette concorrenti in S, ed anco dalle tre concorrenti in m, noi avremo

$$\frac{AR}{AB} = \frac{am}{ac} = \frac{\rho Q}{\rho B}.$$

Dunque AR è costante; e perciò Sm è una retta fissa. Dunque ecc.

Osservazione. In questa dimostrazione, che è la prima delle due esibite dal Chasles, si suppone che le due rette SA, SB, non siano parallele alla ρQ. Se lo fosse la prima, allora il porisma sussiste evidentemente, e non v è bisogno di dimostrazione speciale. Pel caso poi che la seconda SB sia parallela alla ρQ, noi potremo dimostrare che Sm è una retta fissa osservando che, per i triangoli simili, e per essere le rette SA, bP tagliate in parti proporzionali delle tre parallele SB, am, ρQ, avremo

$$\frac{am}{AR} = \frac{Sa}{SA} = \frac{ba}{bP} = \frac{am}{\rho Q},$$

onde $AR = \rho Q$, e perciò R sarà un punto fisso. Onde ecc.

Altra dimostrazione. Si chiami a una posizione particolare del punto a, diversa da S, e b, m' le corrispondenti posizioni dei punti b, m. Poiché S, m' sono due posizioni del punto m, dovrà questo punto m, se è vero il porisma, trovarsi sempre sulla Sm'.

Per dimostrare poi che realmente il punto m è sempre sulla Sm' basta osservare che, chiamato r il punto in cui la aP incontra la Sm', le due rette ρa, Qr, a motivo della dimostrazione del porisma 1.°, s'incontreranno in un punto della $SB'B$, e per conseguenza nel punto b; onde le rette Qb, Qr coincidono, e perciò coincidono i due punti m, r; ed il punto m è nella Sm'.

Questa dimostrazione vale anco pel caso che la SB sia parallela alla ρQ.
Osservazione. Alcune considerazioni, che esporrò tra poco, mi hanno condotto a far dipendere da questo porisma il decimo primo del Chasles, come segue:

Il rapporto \(\frac{mn'}{aa'} \) sarà uguale al rapporto costante \(\frac{Sm'}{Sa'} \). Dunque la retta \(Qb \) taglia nella SR, a partire dal punto fisso \(m' \), un segmento, che ha un rapporto costante (eguale ad \(\frac{Sm'}{Sa'} \)) col segmento che la \(\rho b \) taglia della SA a partire dal punto \(a' \). Ne viene di conseguenza che, se sarà condotta una retta parallela alla SR, non passante pel punto \(Q \), la \(Qb \) taglierà da questa retta, a partire dal punto in cui essa è incontrata dalla \(Qb' \), un segmento che avrà un rapporto costante col segmento \(aa' \). E facilmente si vede che si potrà determinare quale distanza debba avere dal punto \(Q \) la detta retta parallela alla SR; acciocché il detto rapporto riesca uguale ad un rapporto dato. È poi facilmente dimostrabile, ed anche evidente, che innanzitutto, diversa dalle due che verrebbe così determinate, può avere la proprietà che la \(Qb \) tagli da essa, a partire da un punto fisso, un segmento avente costantemente col segmento \(aa' \) un rapporto eguale al dato. E così dal precedente porisma abbiamo dedotto naturalmente il decimo primo del Chasles, del quale passo ad esporre l'enunciato, ed una dimostrazione completa, appoggiata al precedente porisma e posta sotto la solita forma.

Porisma 4.º (11.º del Chasles) (fig. 8.º). « Se intorno a due punti dati \(P, Q \) ruotano due rette \(PM, QM \) in modo che il loro incontro scorra su di una retta \(LM \) data di posizione; intercettando la prima \(PM \) su di una retta \(AX \), pure data di posizione, a partire da un punto dato \(A \), un segmento \(Am \); si potrà trovare un'altra retta \(A'X' \) e su questa un punto \(A' \), tali che il segmento \(A'm' \) fatto sulla \(A'X' \) dalla seconda retta girante \(QM \) stia sempre al segmento \(Am \) in un rapporto dato \(\lambda \). »

Dimostrazione. Ammessa primieramente la verità del porisma, noi ci proponiamo di trovare la posizione della retta \(A'X' \) e del punto \(A' \).

Sia condotta la \(QA' \); e dal punto \(S \), comune alle \(AX, LM \) (1), sia condotta \(Sc \) parallela ad \(A'X' \).

(1) Il caso particolare di \(AX \) parallela ad \(LM \) dovrebbe considerarsi a parte; ma siccome questo (come pure altri casi speciali) non offre difficoltà, così io considero soltanto il caso generale.
Quando M cade in S, allora le PM, QM cadono in PS, QS; e perciò quest'ultima taglia dalla \(\lambda \), a partire dal punto \(\lambda' \), un segmento, che avrà col segmento AS un rapporto \(\lambda \); onde QS non è parallela alla \(\lambda \). Pertanto la SE, che è parallela alla \(\lambda \), non passa pel punto Q, e perciò incontrerà le QA', Qm', in due punti distinti \(\alpha \), \(\mu \). Ed avremo

\[
\frac{\alpha \mu}{AM} = \frac{a \mu}{A'm'} = \frac{\lambda m'}{AM} = \frac{Qa}{QA'}; \lambda = \text{costante.}
\]

Per conseguenza, quando AM è zero, dovrà esser zero anche \(a \mu \); vale a dire, quando m cade in A, allora \(\mu \) deve cadere in \(\alpha \). Perciò, condotta PA, che incontrerà LM in un punto \(\alpha \), e guidata QA, questa passerà per \(\alpha \), e coinciderà perciò colla \(QA' \). E così è trovata la direzione della \(QA' \).

Ora, quando m cade in S, vi cade anche \(\mu \); e quando m cade in G, punto d'incontro delle AX, PQ, allora \(\mu \) si trova in e punto comune alle PQ, SE. Onde, siccome \(\frac{\alpha \mu}{AM} \) è costante, noi avremo

\[
\frac{AS}{AS} = \frac{AS}{AG};
\]

Dunque \(AA \) è parallela a PQ, e perciò riesce nota la posizione del punto \(\alpha \), e conseguentemente quella della retta \(SAa \).

Abbiamo, in fine,

\[
\frac{QA'}{Qa} = \frac{\lambda m'}{AM} = \frac{\lambda m'}{AM} = \frac{\lambda m'}{AM} = \frac{\lambda AS}{\alpha S};
\]

e perciò è conosciuta la lunghezza \(QA' \), e quindi due posizioni che potrà avere il punto \(\lambda' \), e due che potrà avere la retta \(\lambda \).

Da tutto ciò ne risulta che, conducendo la QA, posizione della QM corrispondente alla posizione PA della PM; guidando poi dal punto A la parallela alla PQ, che incontrerà QA in un punto \(\alpha \), congiungendo SAa; e prendendo sulla QA, dall'una o dall'altra banda del punto Q, una porzione QA' tale che riesca \(\frac{QA'}{Qa} = \lambda \cdot \frac{AS}{SA} \); e, finalmente, conducendo dal punto \(\lambda' \), la retta \(\lambda \) parallela alla \(\alpha S \); noi avremo che, se una retta ed
un punto in essa esistente soddisfaranno la condizione del porisma, questa retta e questo punto coincideranno con una delle due posizioni che, dietro tale costruzione, ponno avere la retta AX' ed il punto A'.

Riteniamo ora che la retta AX' ed il punto A' siano ottenuti mediante la indicata costruzione. E dimostriamo che realmente le rette giranti PM, QM formano i segmenti Am, $A'm'$ tali che riesce sempre $\frac{A'm'}{Am} = \lambda$.

Dal porisma precedente (che è l’ottavo del Chasles) noi abbiamo che, se dal punto m si conduce la parallela alla PQ, la quale incontrerà la PM in un punto μ, questo punto μ si troverà sempre nella S_α. E pertanto avremo

$$\frac{A'm'}{Am} = \frac{A'm'}{a\mu} \cdot \frac{a\mu}{Am} = \frac{QA'}{Q\alpha} \cdot \frac{aS}{AS}.$$

Ma, per la costruzione, si ha

$$\frac{QA'}{Q\alpha} = \lambda \cdot \frac{AS}{aS};$$

dunque $\frac{A'm'}{Am} = \lambda$. Dunque ecc.

Osservazione. Ecco le considerazioni, che mi hanno condotto a far dipendere questo porisma dal precedente.

Il Simson opinò che questo porisma sia stato il primo del primo libro di Euclide (1); e ciò all’appoggio del seguente passo di Pappo Alessandrino (2).

«…… quorum (porismatum) unumquodque non juxta positionum differentias distinguere opporret, sed juxta differentias accidentium et quae- sitorum. Et positiones quidem omnes inter se differunt, cum specialissimae sint. accidentium vero et quaeeritorum unumquodque unum, et idem existens

(1) Chasles. Les trois livres de Porismes d’Euclide ecc. pag. 65 e 66.
multis positionibus differentibus contingit, ec quod genere sint eadem. Itaque in primo libro haec genera quaesitorum statuere opportet. in principio quidem septimi, diagramma hoc. Si à duobus datis punctis ad rectam lineam positione datam rectae lineae inflectantur, abscondat autem una à recta linea positione data ad datum in ipsa punctum, abscondet, et altera proportionem habens datam (1). In ijs autem, quae sequuntur. Quod hoc punctum tangit positione datum rectam lineam. Quod proportio hujus ad hanc data est. Quod proportio hujus ad aptomen. Quod haec positione data est.....

Ecco poi la traduzione data dal Chasles di questo brano (2).

« Ce n'est pas par les différences des hypothèses qu'il faut distinguer les Porismes, mais par les différences des résultats ou des choses cherchées. Les hypothèses, en effet, sont toutes différentes et constituent des spécialités; mais des résultats ou des choses cherchées, chacun se trouve être identique ou unique dans beaucoup d'hypothèses différentes (3).

« Voici donc comment il faut classer les choses cherchées dans les propositions du I. Livre. La figure est au commencement du VII.» . . . (4).

I. « Si de deux points donnés on mène deux droites se coupant sur une droite donnée de position, dont l'une intercepte sur une droite donnée de position un segment compté à partir d'un point donné, l'autre formera aussi sur un autre droite un segment ayant avec le premier une raison donnée.

« Et dans les autres:

II. Que tel point est situé sur une droite donnée de position.

(1) Il porisma del quale si tratta è appunto questo, che il Pappo ci ha trasmesso con tale conciso enunciatuto, che fu interpretato dal Simson.
(2) Opera citata. Pag. 17 e 18.
(3) Nota del Chasles. C'est-a-dire que dans beaucoup de questions différentes on arrive à une même conclusion, par exemple, que le lieu d'un certain point est une ligne droite déterminée de position ; que certaine droite passe toujours par un point déterminé de position ; qu'un certain rectangle dont les côtés sont variables, a une surface donnée de grandeur ; etc. C'est ainsi que l'a entendu R. Simson. » (Multa sunt porismata quae diversas hypotheses habent, sed quae omnia concluunt punctum aliquod tangere rectam positione datum; vel rectam aliquam vergere ad punctum datum, etc. » (R. Simson, p. 549).
(4) Nota del Chasles. Ici se trouve une lacune dans les manuscrits.
III. Que le rapport de telle droite à telle autre droite est donné.
IV. Que le rapport de telle droite à telle abscisse est donné.
V. Que telle droite est donnée de position.

Il Simson pertanto opinò che quell’enunciato succinto, ma completo posto dal Pappo per caratterizzare il primo de’ quindici generi ne’ quali egli ha distinti i porismi del primo libro di Euclide, sia l’enunciato del primo di questi porismi. Ma è da ritenersi col Chasles che tale opinione sia erronea, e che il primo porisma di Euclide sia il seguente:

« Allorché due rette SA, SB sono tagliate da una terza AB (fig. 9.ª), se si prendano su questa due punti P, Q situati rispettivamente dalla medesima parte del punti A, B, ed un terzo punto ρ situato fuori del segmento PQ e determinato dalla relazione \(\frac{\rho P}{PA} = \frac{\rho Q}{QB} \), ed in seguito si faccia girare attorno di questo punto una trasversale che incontri le due rette date SA, SB in due punti a, b, e si conducano le rette Pa, Qb che si taglieranno in un punto m: questo punto si troverà sempre su di una retta, la cui posizione è implicitamente data.»

Ecco le ragioni alle quali il Chasles si appoggia:

Pappo Alessandrino dà bensì quel conciso enunciato per caratterizzare il primo de’ quindici generi, ch’egli distingue nel primo libro d’Euclide; ma non dice che questo primo genere comprenda il primo porisma. D’altra parte, nella notizia ch’egli dà de’ porismi di Euclide, e poco prima del passo che ho riportato, dice che Euclide ha posto al principio del primo libro (ad principium primi libri) dieci proposizioni che ponno abbracciarsi tutte sotto il seguente enunciato (il quale forma la così detta proposizione delle quattro rette):

«Essendo data quattro rette tagliantisi due a due, se tre dei punti d’intersezione situati su una di esse, o due solamente, nel caso del parallelismo, sono dati (cioè restano fissi), e degli altri tre due sieno assoggettati a restare ciascuno su di una retta data, il rimanente sarà situato pure su di una retta data di posizione. (1) »

(1) Il testo offre una piccola lacuna.
(1) Le parole sarà situato su di una retta data di posizione, voglion significare che
Ed il porisma, che secondo il Chasles è il primo di Euclide, e del quale ho testé riportato l'enunciato, è appunto un caso particolare di questa proposizione. Quel porisma poi discende così spontaneamente dal primo dei lemmi che Pappo nel libro VII.° delle sue Collezioni Matematiche dà come occorrenti per le dimostrazioni de' porismi di Euclide (2), che si può dire (usando l'espressione del Chasles) ch'esso lemma ne è l'espressione immediata. E Pappo dichiara che quel primo lemma serve pel primo porisma di Euclide (3). Pertanto la opinione del Chasles su questo primo porisma non ammette dubbio.

Pappo dichiara altresì che il secondo dei lemmi suddetti serve pel secondo porisma di Euclide; onde il Chasles ha potuto con eguale sicurezza ristabilire questo secondo porisma, che è pur esso un caso particolare della proposizione delle quattro rette. Ma per niun altro di que' lemmi fu fatta dal Pappo un'analoga dichiarazione. Tuttavia dai cinque lemmi di Pappo che seguono ai primi due, il Chasles dedusse altri cinque casi particolari della proposizione delle quattro rette, de' quali fece i suoi porismi 3°, 4°, 5°, 6°, e 7°. E con altri tre casi, scelti dietro sagaci considerazioni, forma li successivi tre porismi per compiere i dieci casi di quella proposizione, de' quali fa cenno il Geometra Alessandrino. Così il Chasles ci conduce a ritenere che i suoi primi dieci porismi siano i dieci casi particolari della proposizione delle quattro rette, i quali trovansi al principio del primo libro di Euclide: ma resta campo a sospettare che gli ultimi otto di questi non fossero ordinatamente i porismi terzo, quarto, ecc., fino al decimo; ma fossero soltanto tra i primi porismi del primo libro di Euclide. Giacchè per decidere su questo proposito noi non potremmo che appoggiarci al seguente passo, non abbastanza chiaro ed esplicito, del Pappo: « propter eam quod et ipse Euclides non multa de unaquaque posuerit specie, sed causa ostendendae multae copiae, in qua paucia ad principium primi

quell' punto sarà situato sempre su di una medesima retta fissa, la posizione della quale è implicitamente data, cioè reperibile direttamente esplcitamente data.

(2) Eccò l'enunciato di questo primo lemma (fig. 9.): « Sia descritta la figura $\rho BQoPA$, e sia $\rho^P_{\rho^Q_{PA}}$, e si congiunga Sm. Dico che Sm è parallela alla ρB. »

(5) Pappi Alexandrini Mathematicae Collectiones... Bononiæ 1660. pag. 534.
libri posuit. consimilia ab uberrima illa specie locorum, ut numero decem.
quare cum has una propositione comprehendi posse intelligeremus, ita de-
scriptisimus. (Segue l’enunciato della proposizione delle quattro rette) ».
Mi par dunque che resti campo a sospettare che Euclide possa aver inter-
rotta, dopo il secondo, la serie di que’dieci casi particolari, esponendo, per
esempio, immediatamente dopo di alcununo di essi, qualche porisma d’altra
specie od anche d’altro genere, per la cui dimostrazione egli trasse pro-
fitto da quel caso particolare. E può anche darsi che l’ordine dato dal
Chasles a que’dieci poriismi non sia quello col quale essi (indipendent-
mente da quelli che vi si trovassero frapposti) si succedevano nell’opera
di Euclide; poiché dalle ragioni addotte dal Chasles risulterebbe soltanto
che assai probabilmente que’ sette, che discendono dai primi sette lemmi
del Pappo, si succedevano con quell’ordine, ma nulla osta che alcununo
dei tre rimanenti fosse da Euclide collocato dopo il secondo e prima del-
l’ultimo di quei sette medesimi. Così, per esempio, nulla osta, per quanto
io veggo, che il Porisma ottavo del Chasles (da me considerato in terzo
luogo, pag. 33) fosse il sesto in Euclide.

Riflettendo poi sul passo di Pappo poco sopra riportato (pag. 37 e 38), mi
venne sospetto che quelle parole « In principio quidem septimi diagramma
hoc. » alle quali segue l’enunciato completo di un porisma, abbiano il se-
guente significato: E prima di tutto la descrizione (o l’enunciato) del set-
timo (porisma) è questa (che segue). Sospettai quindi che il Porisma, che
dopo quelle parole viene enunciato, sia il settimo porisma di Euclide, e
non il decimoprimo. Allo scopo di convalidare questo sospetto ho cercato
di vedere se Euclide possa aver avuto qualche motivo, od almeno qualche
occazione opportuna, di interporre questo porisma fra i dieci casi della pro-
posizione delle quattro rette, e di collocarlo al settimo posto. Ho cercato
percio se si potesse dedurllo da uno, dei dieci casi sudetti, il quale possa
aver costituito il porisma 5.° di Euclide; ciò che mi riuscì nel modo sopra
esteso.

Porisma 5.° (4.° del Chasles) (fig. 10.°). « Essendo date due rette SA, SB,
e tre punti ρ, P, Q situati in una medesima retta che taglia le due pre-
cedenti in due punti distinti A, B; se intorno al punto ρ si fa girare una
trasversale, che incontrerà le SA, SB in due punti variabili a, b, e siano
guide le Pa, Qb; dico che m, punto comune a queste due rette,

Serie II. Tomo II.
si trova sempre in una medesima retta, la cui posizione è *implicitamente*
data."

Dim. Il punto S è una posizione particolare del punto m, e perciò potremo prender di mira di dimostrare che Sm è una retta fissa.

Se conduciamo dal punto a la ac parallela a Pp, e congiungiamo S con c punto in cui essa incontra la Qb; noi abbiamo dal porisma 3.° che la retta ScC è una retta fissa. Siccome pertanto le Pa, Qc uniscono i punti P, Q ci punti a, c, nei quali le due rette fisse SA, SC sono incontrate da una retta mobile parallela alla PQ, noi avremo, dal porisma 1.°, che anco Sm è una retta fissa. Dunque ecc.

Porisma 6.° (21.° del Chasles) (fig. 11.°). « Se un quadrilatero abme si deforma in modo che i suoi lati opposti ac, bm concorrono sempre in un punto dato P, e gli altri due ab, cm concorrono sempre in un altro punto dato Q; ed inoltre i suoi tre vertici a, b, c scorrono rispettivamente su tre rette date SA, SB, SC concorrenti in un punto S fuori della PQ; io dico che anche il quarto vertice scorrerà su di una retta, la cui posizione è *implicitamente* data."

Dim. Essendo S una posizione del punto m, basterà dimostrare che Sm è una retta fissa.

Preso nella PQ un punto fisso qualunque ρ, si conduca la ρa, che taglierà in due punti d, e, le Pm, Qm; e si guidino pel punto S le rette SdD, SeE. Considerando il triangolo abd, del quale i tre lati passano pei tre punti P, Q, ρ posti in linea retta, ed i cui vertici a, b scorrono sulle due rette SA, SB, noi concluderemo dal porisma precedente che SdD è una retta fissa. Per analoga ragione è una retta fissa anco la SeE. Dunque i vertici d, e del triangolo dem scorrono su due rette fisse SD, SE, mentre i suoi lati passano pei tre punti P, Q, ρ posti in linea retta; e quindi, pel porisma precedente medesimo, è una retta fissa anco la Sm. Dunque ecc.

Porisma 7.° (24.° del Chasles) (fig. 12.°). « Essendo dato un angolo ASB e due punti P, Q in linea retta col suo vertice; se attorno di un altro punto dato ρ, il quale non si trovi sulla PQ, si fa girare una retta bpa che incontrerà i due lati dell’angolo in due punti a, b, e si conducano le due rette Pa, Qb; io dico che m punto comune a queste due rette, si troverà sempre in una medesima retta, la cui posizione è implicitamente data."

Dim. Quando la retta bpa coincide colla ρQ, allora il punto m cade in
D punto in cui la SA è incontrata dalla ρQ. Quando la bpa cade in ρP, allora il punto m coincide col punto C in cui la ρP incontra SB. Si tratta pertanto di dimostrare che m è sempre nella retta CD. Ciò risulta dai lemmi XII e XIII del Pappo, uno riguardante il caso di ba parallela a PQ, l’altro riguardante il caso generale di ba non parallela a PQ. E questi due lemmi vengono dal Pappo stesso dimostrati coll’appoggio di altri suoi lemmi, i quali corrispondono al teorema generale che quando due rette sono tagliate da tre concorrenti in un punto, il rapporto anarmonico dei quattro punti, in cui la prima di quelle due è tagliata dalla seconda e dalle tre altre, è uguale al rapporto anarmonico dei quattro punti, nei quali la seconda è tagliata dalla prima e dalle tre altre medesime. Io qui dimostrerò che il punto m è nella retta CD, in maniera più elementare, come segue.

Si conducano Pb; Qa; e pei punti C, D si guidino le rette hCilor, opDq parallele alla PQ.

Quando ba è parallela a PQ, noi abbiamo le due rette hi, ba parallele, e tagliate da tre rette concorrenti nel punto P; d’onde la proporzione

\[
\frac{hC}{C}\frac{bP}{\rho a} = \frac{oD}{Dq} = \frac{bP}{\rho a}. \quad \text{Quindi avremo}
\]

\[
\frac{hC}{C} = \frac{oD}{Dq}.
\]

Questa proporzione sussiste anche quando ba non è parallela a PQ. Indichiamo infatti con g, f i punti nei quali la retta ab incontrerà le rette hn, PQ. Essendo le parallele gn, fQ tagliate dalle tre rette bf, bp, bQ concorrenti in b, dalle tre ρf, ρP, ρQ concorrenti in ρ, e dalle tre af, aP, aQ concorrenti in a, noi avremo che ciascuno dei tre rapporti

\[
\frac{gh}{gl}, \frac{gC}{gr}, \frac{gi}{gn}
\]

sarà uguale al rapporto \(fP/fQ \), onde quei tre rapporti sono tra loro uguali.

Pertanto la \(hC \), differenza tra gli antecedenti dei due primi, e la Ci, differenza tra gli antecedenti del secondo e del terzo, staranno tra loro come le differenze dei rispettivi conseguenti; avremo cioè

\[
\frac{hC}{Ci} = \frac{tr}{rn}.
\]
Ma, essendo le parallele \(oq, ln \) tagliate dalle tre rette \(Qb, Qp, Qa \), avremo

\[
\frac{oD}{Dq} = \frac{lr}{rn}
\]

Dunque, anche quando \(ba \) non è parallela a \(bq \), avrà luogo la proporzione

\[
(a) \ldots \frac{hC}{Cl} = \frac{oD}{Dq}.
\]

Ora le \(h, PQ \), essendo parallele, sono tagliate proporzionalmente dalle rette concorrenti in \(b \); e similmente, le \(pq, PQ \) sono tagliate in parti proporzionali delle rette concorrenti in \(a \); onde avremo le due proposizioni

\[
\frac{Cl}{hC} = \frac{SO}{PS'} \cdot \frac{Dq}{pD} = \frac{SO}{PS'}, \quad \text{dalle quali ne segue} \quad \frac{Cl}{hC} = \frac{Dq}{pD}.
\]

Moltiplicando i rapporti della \((a)\) pei corrispondenti di questa ultima, si deduce

\[
\frac{Cl}{Cl} = \frac{oD}{pD}.
\]

La quale mostra appunto che il punto \(m \), comune alle \(lo, ip \), è nella retta che passa per i punti \(C, D \).

Osservazione 1.a La stessa dimostrazione, con poche modificazioni, si applica al porisma che risulta sostituendo, nel porisma testè dimostrato, alla condizione che la retta \(ba \) debba passare sempre per un punto dato \(P \), la condizione ch'essa debba essere parallela ad una retta data. Il quale nuovo porisma nella geometria moderna altro non sarebbe che un caso particolare di quello. Ma nel caso che la \(ba \) debba essere parallela alla \(PQ \), occorre una dimostrazione speciale. Eccola:

Finché il punto \(m \), comune alle \(aP, bQ \) (fig. 13.1), non è nella \(PQ \), la retta \(ba \), che è sempre parallela alla \(PQ \), non coincide con questa retta; e per conseguenza il punto \(m \) stesso non è nè sulla \(SA \) nè sulla \(SB \). Dunque, se è vero che \(m \) descrive una retta, questa non potrà incontrare nè la \(SA \) nè la \(SB \) in un punto non esistente nella \(PQ \); e dovrà perciò passare per S. Si tratta dunque di dimostrare che \(Sm \) è una retta fissa.

Se \(Sm \) è una retta fissa, essa formerà sulla \(ba \), che è sempre parallela a \(PQ \), due segmenti \(bn, na \) il cui rapporto sarà costante. E viceversa, se dimostreremo che questo rapporto è costante, potremo concludere che \(Sm \) ha una posizione fissa.

Le parallele \(ba, PQ \) sono tagliate dalle tre rette \(Pa, Sn, Qb \) concorrenti in \(m \). Dunque \(\frac{bn}{na} = \frac{QS}{SP} = \text{costante} \). Dunque ecc.
Osservazione 2.° Quel porisma, che risulta dal sostituire nel precedente porisma 7.° (fig. 12.°), alla condizione che il punto \(\rho \) non sia nella \(PQ \), la condizione che \(\rho \) si trovi appunto in quella retta (fig. 14.°), si può dimostrare come segue.

Primieramente, con un ragionamento analogo a quello fatto pel porisma dimostrato nella osservazione precedente, si potrà convincersi che se \(m \) descrive una retta, questa passerà per \(S \), onde dovrà provarsi che \(Sm \) è una retta fissa.

Si conduca per \(a \) la parallela a \(PQ \), che incontrerà le \(Sm, Qb, Sb \) in tre punti \(g, f, e \). La \(Sm \) è una retta fissa se è costante il rapporto \(\frac{ag}{ae} \), ossia il prodotto \(\frac{ag}{af} \cdot \frac{af}{ae} \). Ora, essendo le parallele \(ae, PQ \) tagliate dalle tre rette \(aP, gS, fQ \) concorrenti in \(m \), e dalle tre \(ap, fQ, eS \) concorrenti in \(b \), noi abbiamo

\[
\frac{ag}{af} = \frac{PS}{PQ} = \text{costante}; \quad \frac{af}{ae} = \frac{PQ}{\rho S} = \text{costante}.
\]

Onde anche quel prodotto è costante. Dunque ecc.

Porisma 8.° (25.° del Chasles). « Attorno di due punti fissi \(A, B \) (fig. 15.°) si fanno girare due rette \(AM, BM \) in modo che il loro punto di concorso \(M \) si trovi sempre su di una retta fissa \(LM \). Queste rette incontrano un'altra retta fissa \(DX \) in due punti \(a, b \); e da due punti \(P, Q \), dati sulla retta \(LM \), sono condotte le rette \(Pa, Qb \), che s'incontrano in un punto \(m \). Dico che questo punto si trova sempre su di una medesima retta, la cui posizione è implicitamente data.

Dim. La verità di questo porisma è una facile conseguenza dei porismi 5.° e 7.° (4.° e 24.° del Chasles). Condotta infatti dal punto \(M \) la retta \(MF \) al punto \(F \) comune alle \(PA, QB \), e indicati con \(h, k \) i punti ne' quali essa incontra le \(Qm, Pm \), noi avremo, dal porisma 5.°, che, siccome i tre lati del triangolo \(bMH \) passano pei tre punti \(Q, B, F \) posti in linea retta, e i due vertici \(b, M \) scorrono sulle due rette fisse \(QP, DX \), anche il terzo vertice \(h \) scorrerà su di una retta fissa \(Dh \), passante per \(D \) punto comune alle \(QP, DX \). Similmente, considerando il modo con cui si deforma il triangolo \(MAK \), si conchiude che \(k \) si trova sempre su di una retta fissa \(Dk \). Considerando poscia il triangolo \(mhk \), che si deforma in modo che i suoi
lati passano sempre per punti F, P, Q rispettivamente, e i vertici h, k, termini del lato che passa per F, scorrono sui lati di un angolo avente il vertice D in linea retta coi punti P, Q, avremo che il terzo vertice m (porisma 7.°) scorrerà in una linea retta fg.

Osservazione. Se le rette PA, QB fossero parallele, la dimostrazione si può ottenere nello stesso modo; ma, invece che ai porismi 5.° e 7.°, conviene appoggiarsi rispettivamente al porisma 3.° ed a quello accennato nella prima delle due osservazioni poste dopo del porisma 7.°

Porisma 9.° (36.° del Chasles). Se intorno di un punto ρ (fig. 16.°) si fa girare una retta ρR incontrante due rette date SA, SA' in due punti a, a', e da un punto P dato sulla retta ρS si conducano le due rette Pa, Pa'; si potrà trovare una retta L tale che il segmento su di essa intercetto dalle rette Pa Pa' abbia sempre una lunghezza data μ. »

Dim. Finché le due rette Pa, Pa' incontrano la retta L, il segmento aa' che in essa intercettano deve essere uguale a μ, e perciò esse non ponno coincidere. Ma, quando la retta ρa′ cade in ρS, allora i punti a, a' cadono entrambi in S, e perciò le Pa, Pa' coincidono nella PS. Dunque allora le Pa, Pa' non ponno incontrare la retta L; la quale, pertanto, dovrà essere parallela alla PS.

Se dunque il porisma è vero, per trovare la retta di cui si tratta, basterà condurre una retta LR parallela alla PS, e tale che il suo tratto compreso tra due speciali posizioni corrispondenti delle Pa, Pa' sia eguale a μ.

Supponiamo che ciò sia fatto, e dimostriamo che il segmento aa', intercetto su questa retta LR dalle due Pa, Pa', è sempre uguale a μ.

Essendo le due rette parallele ρS, LR tagliate dalle tre rette ρR, Pa, SA concorrenti in a, ed anco dalle tre ρR, Pa', SA' concorrenti in a' noi avremo

$$\frac{RA}{RA'} = \frac{RP}{RS} = \frac{RA' - Ra'}{RA - Ra'} = \frac{aa'}{AA'} \quad (*)$$

(*) Non volendo far uso della convenzione dei segni, ciò vale solo nel caso in cui R sia nel prolungamento di AA' dalla banda di A'. E converrà considerare anco il caso in cui R sia nel l'altro prolungamento, e quello di R nel segmento AA'. Nel primo di questi avremo

$$\frac{RA}{RA'} = \frac{RP}{RS} = \frac{Ra' - Ra}{RA - Ra} = \frac{aa'}{AA'};$$

e nel secondo,

$$\frac{AR}{AR} = \frac{RP}{RS} = \frac{Ra' + Ra'}{AR + RA'} = \frac{aa'}{AA'}$$

Dunque in ogni caso sarà

$$\frac{RP}{RS} = \frac{aa'}{AA'}.$$
Memoria del Prof. P. D. Marianini

E siccome \(\rho P, \rho S, AA' \) sono costanti, anco \(aa' \) sarà costante. Ma \(aa' \), in un caso, è uguale a \(\mu' \); dunque sempre sarà uguale a \(\mu' \). G. D. D.

Si ponno trovare due rette parallele alla PS, ciascuna delle quali abbia il suo tratto, compreso tra due particolari posizioni corrispondenti delle \(Pa, Pa' \), uguale a \(\mu' \); e perciò in due modi si può soddisfare al porisma.

Porisma 10.° (37.° del Chasles). « Se intorno a due punti \(P, Q \) della base di un triangolo FAE (fig. 17.°) girano due rette \(PM, QM \) concorrendo sempre nel lato \(EF \); intercettando la prima di queste sull’altro lato \(AF \), a partire dalla base \(AE \), un segmento \(Am \), io dico che si potrà condurre pel punto \(F \) una retta \(FB \) tale che l’altra retta girante \(QM \) intercetterà su di essa, a partire dalla \(AE \), un segmento \(Bm' \) avente un rapporto costante col segmento \(Am \). ”

Dim. Se la retta \(FB \) soddisfa alle condizioni del porisma, siccome quando \(M \) cade in \(F \) i due segmenti \(Am, Bm' \) divengono \(AF, BF \), così avremo

\[
\frac{Am}{Bm'} = \frac{AF}{BF},
\]

e perciò la \(mm' \) sarà parallela alla \(AB \). Se pertanto condurremo \(P\alpha \) parallela ad \(AF \) e congiungeremo \(Q \) con \(\alpha \), avremo, per le parallele,

\[
\frac{MF}{M\alpha} = \frac{Mm}{MP} = \frac{Mm'}{MQ'},
\]

e perciò la \(Fm'B \) sarà parallela alla \(Q\alpha \).

Viceversa, se, dopo di aver condotta \(P\alpha \) parallela ad \(AF \) e congiunti i punti \(Q, \alpha \), noi condurremo pel punto \(F \) la \(FB \) parallela a \(Q\alpha \), la quale sarà incontrata dalla \(QM \) in un punto \(m' \), noi avremo per le parallele

\[
\frac{Mm}{MP} = \frac{MF}{M\alpha} = \frac{Mm'}{MQ'};
\]

onde \(mm' \) sarà parallela alla \(PQ \); e per conseguenza, \(\frac{Am}{Bm'} = \frac{AF}{BF} \) costante.

Dunque la retta \(FB \) così determinata soddisfa la condizione del porisma, ed, in vista del primo ragionamento fatto, essa è l’unica retta che la soddisfa.

Porisma 11.° (44.° del Chasles). « Siano date di posizione tre rette \(SA, SB, SC \) (fig. 18.°) passanti per un medesimo punto \(S \), ed una quarta che le incontri in tre punti \(A, B, C \). Si chiami \(M \) un punto variabile di posizione nella retta \(SC \); \(a \), il punto comune alle \(BM, SA \); \(b \) il punto in cui
la SB è incontrata dalla parallela a BA condotta per M; e il punto comune alle SC, δA. Io dico che la retta ac passa costantemente per un medesimo punto fisso.

Dim. Quando il punto M cade in C, allora b cade in B, e quindi c in C; ed inoltre, il punto a cade in A. Dunque allora la retta ac coincide colla AC. Se pertanto il porisma è vero, chiamato U il punto in cui la ca incontra la CA, noi avremo che questo punto sarà fisso; e viceversa, se dimostriamo che U è un punto fisso, avremo dimostrato il porisma.

Si chiamino h, l i punti in cui la Mb incontra le rette ac, AS. Essendo le due rette parallele lM, CA tagliate dalle tre BM, Uh, Al passanti per un medesimo punto a, avremo

\[\frac{BU}{BA} = \frac{Mh}{Ml} = \frac{Mh}{Mb} \cdot \frac{Mb}{Ml} \]

Essendo le due medesime rette parallele tagliate anco dalle tre rette MC, hU, bA, che passano per e, e dalle tre MC, bB, lA, che passano per S, sarà

\[\frac{Mb}{Mh} = \frac{CU}{CA} \quad \frac{Mb}{Ml} = \frac{CB}{CA} \]

E perciò

\[\frac{BU}{BA} = \frac{CU}{CA} \cdot \frac{CB}{CA} \]

d'onde si deduce

\[\frac{BU}{CU} = \frac{BA \cdot CB}{CA^2} = \text{costante.} \]

Dunque il punto U, in cui la retta ac incontra la AC, è un punto fisso. Dunque ecc.

Porisma 12.° (55.° del Chasles). « Essendo date due rette LM, XX' (fig. 19.°), che si segano in un punto e; se attorno di due punti P, Q dati fuori di tali rette si fanno girare due altre rette PM, QM in modo che s' incontrino sempre sulla LM, e le quali incontreranno la XX' in due punti m, m'; io dico che si potrà trovare un punto I su questa retta XX', ed una lunghezza μ tali che riesca sempre \(\frac{Im \cdot em'}{em} = μ. \)

Dim. Ammettiamo primieramente che il porisma sia vero, ed indaghiamo quale debba essere la posizione del punto I, e quale la lunghezza μ.
Quando il punto \(m \) coincide con \(I \), ossia quando \(l m = o \), noi avremo \(e m \) diverso da zero, altrimenti il punto \(I \) sarebbe in \(e \), e perciò la equazione enunciata diverrebbe \(e m' = \mu \), onde \(e m' \) sarebbe costante; il che è assurdo. Segue da ciò che quando il punto \(m \) cade in \(I \), allora la QM deve essere parallela alla XX', giacché, altrimenti, il primo membro della equazione enunciata, per tale posizione di \(m \), sarebbe zero, e, poiché è uguale ad una costante, esso sarebbe zero anche per qualunque altra posizione di \(m \), il che è impossibile. Dunque se condurremo dal punto Q la parallela alla XX', che incontrerà la LM in un punto S, e poi guideremo la SP, noi avremo che il punto I del porisma non potrà essere che il punto in cui questa retta SP incontra la XX'.

E qui siamo avvertiti che, se la SP fosse parallela alla XX', o (ciò che vale lo stesso) se lo fosse la PQ, il punto I dovrebbe soddisfare alla condizione impossibile di trovarsi su due rette parallele, onde il porisma non avrebbe luogo. Dobbiamo dunque ritenere che si tratti del caso di PQ non parallela alla XX'.

Per trovare ora quale debba essere la lunghezza \(\mu \), consideriamo che quando la retta PM coincide colla PQ, vi coincide anco la QM, onde i punti \(m \), \(m' \) coincidono nel punto \(f \); in cui la PQ incontra la XX', e la equazione dell'enunciato diviene \(l f = \mu \). Dunque la lunghezza \(\mu \) deve essere uguale ad \(l f \).

Resta a vedersi se, essendo condotte la QS parallela ad XX', la SPI, e la QPf, abbia realmente luogo la equazione \(\frac{l m \cdot e m'}{e m} = l f \).

Si chiami \(h \) l'incontro delle QS, MP. Essendo le parallele XX', HQ tagliate dalle MH, MS, MQ concorrenti in M, e dalle /Q, IS, ih concorrenti in P, noi avremo

\[
\frac{e m'}{e m} = \frac{S Q}{S h} = \frac{l f}{l m}; \text{ d'onde } \frac{l m \cdot e m'}{e m} = l f. \text{ Dunque ecc.}
\]

Porisma 13.° (73.° del Chasles). « Se intorno a due punti fissi P, Q (fig. 20.a) si fanno girare due rette in modo che il loro punto comune M scorra su di una retta data Ekh'L; incontrando queste due rette mobili due rette fisse hAX, Bk'Y parallele alla PQ in due punti \(m \), \(m' \) rispettivamente; ed essendo dato un punto A sulla AX ed un punto O fuori di questa retta; io dico che si potrà trovare un punto A' sulla BY, ed un punto O' su di

Serie II. Tom. II.
un'altra retta data CZ non parallela alla PQ, tali che il triangolo avente il vertice in O' e per base il segmento A'm' sia sempre equivalente al triangolo avente il vertice in O e per base il segmento Am.

Dimostrazione. Ammesso che il porisma sia vero, noi avremmo che quando m cade in A, per cui il triangolo AmO sarà nullo, anche il triangolo A'm'O' sarà nullo, e perciò il punto m' cadrà in A'. Onde A' dovrà essere quel punto in cui cade m' quando m cade in A; e per ottenere questo punto A', basterà condurre la PA', che in generale incontrerà EL in un punto a, e guidare poi la QA, che segherà la BY nel punto richiesto A'.

Siccome poi i triangoli AmO, A'm'O' devono riuscire sempre tra loro equivalenti, se si condurrà la Pk', la quale incontrerà le AX in un punto k, che sarà la posizione del punto m quando m' è in k', noi avremmo che i triangoli Ako, A'k'O' saranno equivalenti; e perciò la distanza di O' dalla BY sarà quarta proporzionale dopo le k'A', kA e la distanza di O dalla AX. Pertanto il punto O' sarà necessariamente l'uno o l'altro dei due punti della CZ, ciascuno de' quali ha la sua distanza dalla BY eguale alla quarta proporzionale suddetta, ed entrambi si potranno trovare con facile costruzione.

Resta a dimostrarsi che, trovati i punti A', O', ne' modi indicati, saranno realmente equivalenti i triangoli AmO, A'm'O'.

Chiamati a, μ i punti in cui le Pa, Pm incontrano la BY, ed E l'incontro delle EL, PQ; a motivo delle parallele PQ, BY tagliate dalle tre rette concorrenti in a, e dalle tre concorrenti in M, noi avremmo

\[
\frac{k'\alpha}{k'A'} = \frac{EP}{EQ}; \quad \frac{k'\mu}{k'm'} = \frac{k'\mu - k'\alpha}{k'm' - k'A'} = \frac{a\mu}{k'm'}
\]

e perciò, alternando,

\[
\frac{k'\alpha}{a\mu} = \frac{k'A'}{k'm'}
\]

Ma abbiamo

\[
\frac{k'\alpha}{a\mu} = \frac{kA}{Am}; \quad \frac{k'A'}{k'm'} = \frac{k'A'}{Am} = \frac{kA}{Am} = \frac{k'A'}{k'm'}
\]

Ora il primo dei due rapporti \(\frac{kA}{Am}\) uguaglia \(\frac{k'A'}{Am}\) uguaglia triang. kAO uguaglia triang. AmO; ed il secondo uguaglia \(\frac{k'A'O'}{Am}\) uguaglia triang. A'm'O'.
Dunque
\[
\frac{\text{triang. } kAO}{\text{triang. } k'A'O'} = \frac{\text{triang. } AmO}{\text{triang. } A'm'O'}
\]

Ma i due triangoli \(kAO, k'A'O'\), atteso il modo con cui è determinato il punto \(O'\), sono equivalenti. Dunque lo sono anche i due \(AmO, A'm'O'\): e così il porisma è dimostrato.

Porisma 14. (76.° del Chasles). « Essendo date due rette \(SL, SL'\) (fig. 21.°) ed un punto \(P\) fuori di esse, se attorno di questo punto si fa girare una trasversale \(Pmm'\) che incontrerà le due rette in due punti \(m, m'\): si potranno trovare due punti \(A, B'\) su queste due rette, ed uno spazio \(v\), tali che il rettangolo dei due segmenti \(Am, B'm'\) sia sempre equivalente a questo spazio \(v\).»

Dim. Ammesso che il porisma sia vero, cerchiamo primieramente di determinare i punti \(A, B'\), e lo spazio \(\mu\).

Quando la trasversale passa per \(A\), per cui \(Am\) è zero, non potrà \(B'm'\) essere finito, altrimenti il rettangolo \(Am \cdot B'm'\) sarebbe zero per questa posizione della trasversale, e quindi anche per ogni altra, ciò che è impossibile. Dunque la \(PA\) deve essere parallela alla \(SL\). Per simile ragione deve la \(PB'\) essere parallela alla \(SL\). E così i punti \(A, B'\) sono determinati. Siccome poi, quando la trasversale passa per \(S\), i punti \(m, m'\) coincidono in \(S\), ed il rettangolo \(Am \cdot B'm'\) diviene \(AS \cdot B'S\); così lo spazio \(v\) sarà di necessità equivalente al rettangolo \(AS \cdot B'S\), cioè al rettangolo \(PA \cdot PB'\).

Dobbiamo ora dimostrare che, essendo condotte le \(PA, PB'\) parallele alle \(SL, SL'\) rispettivamente, sarà sempre \(Am \cdot B'm' = PA \cdot PB'\).

I triangoli simili \(mAP, PB'm'\) danno
\[
\frac{Am}{PA} = \frac{PB'}{B'm'}, \quad \text{d'onde } Am \cdot B'm' = PA \cdot PB'.
\]

E così il Porisma è dimostrato.

Porisma 15. (83.° del Chasles). « Se attorno di due punti fissi \(P, Q\) (fig. 22.°) si fanno girare due rette \(PM, QM\) in modo che concorrano sempre in una retta \(LF\) data di posizione; incontrando queste un'altra retta data \(AX\) in due punti \(m, m'\); ed essendo \(E, F\) i punti in cui la \(AX\) è incontrata dalle \(PQ, LF\); si potrà trovare una lunghezza \(\mu\) tale che risulti sempre \(\frac{Em \cdot Fm'}{mm'} = \mu\)."
Dim. Se il porisma è vero, per trovare la lunghezza μ basterà, corrispondentemente ad una posizione (comunque scelta) del punto M, prendere la quarta proporzionale dopo le tre rette mm', Fm', Em. Ora, se si conduce dal punto Q la parallela alla AX, la quale incontrerà le rette PM, LF in due punti h, K, noi avremo il rapporto delle mm', Fm' eguale a quello delle hQ, KQ; onde per trovare la μ basterà prendere la quarta proporzionale dopo le hQ, KQ, Em. Si conduca la PK, la quale incontrerà in un punto I la retta AX; ed, a motivo delle parallele PK, EI tagliate in parti proporzionali dalle tre rette PI, Fm, PE, noi avremo nel segmento EI la quarta proporzionale di cui si tratta. Se dunque il porisma è vero, la lunghezza richiesta μ sarà la EI.

Resta a dimostrarsi che, qualunque sia la posizione del punto M', avrà sempre luogo la equazione

$$\frac{Em \cdot Fm'}{mm'} = EI.$$

A tale oggetto basta osservare che la lunghezza della quarta proporzionale trovata non dipende dalla posizione che si è scelta del punto M, ma soltanto dalle posizioni reciproche delle cose date LF, AX, P, Q. Onde la stessa EI è la quarta proporzionale dopo i segmenti mm', Fm', Em corrispondentemente a qualunque posizione del punto M. Dunque ecc.

Porisma 16.° (94.° del Chasles). «Essendo dato un parallelogrammo $ABCD$ (fig. 23.°), se dai termini A, B di uno de’ suoi lati si conducano due rette ad un punto M variabile di posizione sul lato opposto DC, le quali incontreranno la retta EF, che congiunge i punti di mezzo di questi lati, in due punti m, m'; si potrà trovare un punto I su questa retta EF, ed uno spazio v, tali che il rettangolo $Im \cdot Im'$ sia sempre uguale a quello spazio. »

Dim. Se ciò è vero, noi avremo che quando m' cade nel punto I, allora la AM dovrà essere parallela alla EF (altrimenti il rettangolo $Im \cdot Im'$ sarebbe zero in questo caso; e, siccome è costante, sarebbe sempre zero, ciò che è impossibile); allora dunque la AM cade in AD, e la BM in BD. Dunque il punto I è necessariamente quel punto in cui la diagonale BD incontra la retta EF; il quale è il punto di mezzo della EF, e pel quale passa anco l’altra diagonale AC.

[Note: The text is from a mathematical treatise discussing properties of parallelograms and proportional segments. The text is in Italian, and despite the formatting issues, the content is clear and understandable.]
Osservando poi che quando M è in F, anche i punti m, m' sono in F, per cui il rettangolo $Im \cdot Im'$ diviene IF^2, noi concludiamo che lo spazio v uguagliar deve IF^2.

Dobbiamo pertanto prendere di mira di dimostrare che, essendo I il punto di mezzo della EF, sarà realmente $Im \cdot Im' = IF^2$; nel che riuscendo, la questione sarà esaurita.

Chiamati k, k i punti in cui le AM, BM incontrano le BC, AD; ed osservando che le parallele EF, BC sono tagliate dalle tre rette Ah, AC, AB concorrenti in un punto A; che le parallele BC, AD sono pure tagliate dalle tre rette Ah, DC, kB concorrenti in un punto M; e che le parallele AD, EF sono anch'esse tagliate da tre rette AB, DB, kB passanti per un punto B; noi avremo

$$\frac{Im}{IE} = \frac{Ch}{CB} = \frac{DA}{Dk} = \frac{IE}{Im'},$$

onde sarà $Im \cdot Im' = IF^2 = IF^2$. C. D. D.

Porisma 17.° ($96.°$ del Chasles). « Se attorno a due punti fissi P, Q (fig. 24.°) si fanno girare due rette PM, QM in modo che si incontrino sempre in una retta data di posizione LF; incontrando queste un'altra retta data AX in due punti m, m', si potranno trovare due punti I, J' su quest'ultima retta, ed uno spazio v, tali che riesca sempre $Im \cdot J'm' = v$. »

Dim. Ammesso vero il porisma, noi avremo (a motivo della equazione $Im \cdot J'm' = v$) che, quando m coincide con I, allora non esisterà m', che è l'incontro della QM colla AX, vale a dire la QM sarà parallela alla AX; altrimenti, per tale posizione del punto m, quella equazione avrebbe il primo membro nullo, onde v sarebbe zero; percì, anche per ogni altra posizione di m sarebbe nullo il detto primo membro; onde, ogni qualvolta m non coincide con I dovrebbe m' coincidere con J', ciò che è assurdo. Similmente provasi che, quando m' coincide con I, deve la PM riuscire parallela alla AX. Si conducano dunque dai punti P, Q le PD, QC parallele alla AX, che incontreranno la FL in due punti D, C; poi si guidino le PC, DQ, ed i punti in cui queste incontrano la AX saranno i punti I, J' del porisma. Il quale pertanto non avrà luogo ove la retta PQ riesca parallela alla AX. Supporremo PQ non parallela ad AX; e chiameremo E l'incontro di queste due rette. Quando m cade in E, vi cade anco m', e siccome la equazione
del porisma deve essere soddisfatta anche in questo caso, così avremo necessariamente \(v = 1 \cdot E \cdot J' E \).

Conviene pertanto prendere di mira di dimostrare che, essendo i punti \(I, J \) determinati nel modo suindicato, si avrà sempre \(\text{Im} \cdot J'm' = 1 \cdot E \cdot J'E \). E, se in ciò riusciremo, noi avremo completamente esaurita la proposta questione, poiché non solo avremo dimostrato che si possono trovare, ed avremo effettivamente trovati, due punti \(I, J' \) ed uno spazio \(v \) tali che riuscirà sempre \(\text{Im} \cdot J'm' = v \); ma, in grazia del ragionamento precedente, resterà ancora dimostrato che due punti ed uno spazio, che non siano quelli da noi trovati, non potranno soddisfare a quella condizione.

Chiamati pertanto \(h \) e \(k \) i punti, in cui le \(PM, QM \) incontrano le \(QC, DP \), consideriamo le parallele \(AX, CQ \) tagliate nei punti \(I, m', E \), la prima, e nei punti \(C, h, Q \), la seconda, da tre rette concorrenti in \(P \). Avremo

\[
\text{Im} \frac{C h}{1 E} = \frac{C h}{C Q}
\]

E per ragioni analoghe avremo

\[
\frac{C h}{C Q} = \frac{D P}{D k}, \quad \text{e} \quad \frac{D P}{D k} = \frac{J' E}{J'm'}.
\]

Da queste tre proporzioni si deduce la seguente

\[
\text{Im} \frac{1 E}{J'm'} = \frac{J'E}{J'm'};
\]

e quindi la equazione

\[
\text{Im} \cdot J'm' = 1 \cdot E \cdot J'E. \quad C. \ D. \ D.
\]

Porisma 18.° (97.° del Chasles). "Se attorno di due punti fissi \(P, Q \) (fig. 25), girino due rette \(PM, QM \) in modo che la seconda formi sempre colla prima un angolo di una data grandezza ed in un dato senso di rotazione; incontrando esse in due punti \(m, m' \) due rette \(X, X' \) date di posizione, si potranno trovare due punti \(I, J' \), su queste rette, ed uno spazio \(v \) tali che riesca sempre \(\text{Im} \cdot J'm' = v \)."

Posto vero il porisma, la equazione \(\text{Im} \cdot J'm' = v \) esige che, quando il punto \(m \) cade in \(I \), allora il punto \(m' \) non esista, cioè la retta \(QM \) sia parallela alla \(X' \). Se dunque condurremmo \(QI \) parallela alla \(X' \), e poi condur-
remo quella retta P_i, colla quale coincide la $P M$ quando la $Q M$ cade in Q_i, noi avremo che il punto I del porisma altro non potrà essere se non quel punto in cui la retta X è incontrata dalla P_i. Analogamente si trova che, conducendo P_j parallela alla retta X, e guidando poi Q_j retta in cui cade la $Q M$ quando $P M$ coincide colla P_j, noi avremo che il punto J' del porisma altro non potrà essere se non il punto in cui la Q_j incontra la retta X'. Qui si vede che, se P_i fosse parallela alla retta X (per cui anche Q_j sarebbe parallela alla X'), allora il porisma non avrebbe luogo. Ma ri-
teniamo che ciò non sia; vale a dire che le rette X ed X' non siano rispettivamente parallele a due posizioni corrispondenti delle $P M$, $Q M$.

E cerchiamo quale debba essere lo spazio v. Due qualunque posizioni corrispondenti dei punti m, m' ponno darci il valore di v: ma, onde scegliere opportune, osserviamo che, essendo uguali tra loro gli angoli j, i, M, P_i, Q_j, sono in una periferia circolare; onde è che gli angoli MP_i, MQ_j sono rispettivamente uguali agli angoli MQ_i, MP_i. Pertanto, quando $P M$ divide in parti uguali l'angolo jP_i, allora $Q M$ divide in parti uguali jQ_i. Allora dunque sarà $Im = P_i$, e $Jm' = Q_j$. Scegliendo pertanto queste posizioni de' punti m, m', noi deduciamo che il valore di v dovrà essere $P_i : Q_j$.

Ora pertanto noi ci proponiamo di dimostrare che il rettangolo $Im : Jm'$ è sempre uguale al rettangolo $P_i : Q_j$.

L'angolo P_{Im} è uguale all'angolo iP_j perché le rette P_i, m_I sono par-

allele; questo secondo angolo uguaglia l'angolo iQ_j perché i punti i, P, Q, i sono in una periferia circolare; e l'angolo iQ_j è uguale all'angolo $m'J'Q$ perché Q_i è parallela a Jm'. Dunque l'angolo P_{Im} uguaglia $m'J'Q$.

L'angolo $m'P_i$ uguaglia MQ_i perché i punti i, P, Q, M sono in una pe-

riferia circolare; e l'angolo MQ_i uguaglia $Qm'J'$ per le parallele; dunque l'angolo $m'P_i$ uguaglia l'angolo $Qm'J'$.

Dunque i due triangoli PmI, $m'QJ'$ sono simili, e avrà luogo la proporzione $Im : P_i = Q_j : Jm'$; dalla quale si deduce appunto $Im : Jm' = P_i : Q_j$.

Porisma 19.\(^{a}\) (90.\(^{a}\) del Chasles). Se da un punto M variabile di posizione su di una retta data $E L$ (fig. 26.\(^{a}\)) si conduca la retta Mm perpen-
dicolare ad un'altra retta data $A X$, e la retta $M P$ passante per un punto dato P; incontrando questa una terza retta data $B E Y$ in un punto m', io dico che si ponno trovare sulle due rette $A X$, $B Y$ due punti I, J' tali che
il rettangolo \(Im'\) riesce sempre uguale ad un medesimo spazio, implicitamente dato.

Dim. Ammesso vero il porisma, quando \(m\) cade in \(I\), allora \(m'\) non potrà esistere, vale a dire, \(PM\) dovrà riuscire parallela a \(BY\). Il punto \(i\) pertanto si determinerà guidando da \(P\) la parallela alla \(BY\), e dal punto \(i\), in cui essa incontra la \(EL\), abbassando la \(iI\) perpendicolare alla \(AX\). Così pure, quando \(m'\) cade in \(J\), allora \(m\) non potrà esistere, e perciò nemmeno \(M\), onde \(J'\) si determinerà guidando dal punto \(P\) una retta \(PJ'\) parallela alla \(EL\). Condotta poi da \(E\) la \(EE'\) perpendicolare alla \(AX\), noi avremo che \(e, E\) saranno due posizioni corrispondenti dei punti \(m, m'\); e perciò lo spazio, cui deve esser sempre eguale il rettangolo \(Im'\) sarà uguale ad \(Ie'\).

Ci resta da dimostrare che realmente \(Im'\) uguaglià sempre \(le'\). \(JE'\).

Dai triangoli simili \(m'JP, PiM\) abbiamo

\[
\frac{J'm'}{Pi} = \frac{PJ'}{iM}, \text{ ossia } \frac{J'm'}{JE'} = \frac{iE}{iM}.
\]

Ora, essendo tra loro parallele le rette \(i, Ee, Mm\), avremo

\[
\frac{iE}{iM} = \frac{le'}{Im'}; \text{ onde } \frac{J'm'}{JE'} = \frac{le'}{Im'};
\]

dalla quale si deduce appunto \(Im' = le'\). \(JE'\).

Porisma 20.° (100.° del Chasles). « Essendo dato un triangolo ABC (fig. 27.°), ed una retta DE parallela alla sua base AB; se attorno di un punto \(P\) siatuto su questa retta, si faccia girare una trasversale \(Pa\), la quale incontrerà i lati \(CB, CA\) in due punti \(a, b\), e si conducano le rette \(\Lambda a, Bb\), che incontreranno DE in due punti \(m, m'\); il rettangolo \(Pm\). \(Pm'\) sarà sempre uguale ad un medesimo spazio implicitamente dato.»

Dim. Siccome \(D, E\) sono due posizioni corrispondenti dei punti \(m, m'\); così, se il porisma è vero, dovrà sempre essere \(Pm\). \(Pm' = PD\). \(PE\). Ed è questo che passo a dimostrare.

Chiamato \(F\) l'incontro delle \(Pa, AB\), e considerando che le due rette parallele \(PE, FB\) sono tagliate dalle tre rette \(BF, BA, \alpha B\) concorrenti in \(b\), e dalle tre \(\alpha F, \alpha A, \alpha B\) concorrenti in \(a\), noi avremo

\[
\frac{PD}{Pm} = \frac{FA}{FB} = \frac{Pm'}{PE};
\]

dove \(Pm\). \(Pm' = PD\). \(PE\); e così il porisma è dimostrato.
Porisma. 21.° (*) « Quando due rette PM, QM (fig. 28.°) girano intorno di due punti fissi P, Q in modo che una passi sempre pel punto in cui l'altra incontra una retta data L; incontrando quelle due rette altre due rette AX, BY, date di posizione, in due punti m, m', rispettivamente, si potranno trovare due punti I, J' su queste due ultime rette, ed uno spazio v, tali che riesca sempre Im . J'm' = v. »

Dim. Vero che sia il porisma, avremo che, quando m è in I, non potrà esistere m', cioè l'incontro delle due rette BY, QM; e quando m' è in J', non potrà esistere m. Onde, guidate le Pj, Qi rispettivamente parallele alle AX, BY, e che incontreranno la L, in due punti j, i, e condotte poi le Pi, Qj, i punti in cui queste segheranno rispettivamente le AX, BY, saranno i punti I, J' del porisma. Siccome poi, quando M non esiste entrambe le PM, QM sono parallele alla retta L, così avremo che, condotte Pa, Qa' parallele a questa retta, i punti a, ed a' saranno due posizioni corrispondenti dei punti m, m', onde l'area costante, cui deve esser sempre uguale il rettangolo Im . J'm', sarà necessariamente uguale ad la. J'a'.

Questa prima parte di dimostrazione potrà anco esporsi come segue:

Vero che sia il porisma, avremo che, quando t si accosta inde

finitamente al punto I, dovrà m' allontanarsi indefinitamente da J', a motivo della uguaglianza Im . J'm' = v; e per conseguenza la QM dovrà accostarsi indefinitamente alla Qi parallela a BY. Dunque allora il punto m si accosta indefinitamente anco al punto in cui la Pi incontra la AX; e per conseguenza il punto I del porisma non può essere che questo punto d'incontro. Analogamente provasi che il punto J' non può essere che il punto in cui la BY è incontrata dalla retta che congiunge il punto Q col punto j in cui la retta L è incontrata dalla Pj parallela ad AX. Siccome poi, quando M si allontana indefinitamente dal punto i, le rette PM, QM si accostano indefinitamente alle Pa, Qa' parallele alla L, ed i punti m, m' ai punti a, a'; così allora il rettangolo Im . J'm' converge verso il rettangolo la. J'a'; ma, giusta il porisma, Im . J'm' è costante; dunque dovrà esser Im . J'm' = la . J'a'.

Accingiamoci ormai a dimostrare che realmente si verifica questa uguaglianza.

(*) Questo porisma, ed il seguente, non si trovano nell'opera del Castel.}

Serie II. Tomo II. 8
Pei punti m, m' si conducano le CmD, EmF parallele alla retta L. Considerando successivamente che i triangoli IA, mD sono simili; che le tre rette Pj, PM, Pi formano de' segmenti proporzionali sulle due parallele ji, CD, che lo stesso fanno le tre Qi, QM, Qi sulle due ji, EF; e, finalmente, che sono simili i triangoli $J'm'J, J'a'Q'$; noi dedurremo

$$\frac{la}{lm} = \frac{aP}{mD} = \frac{mC}{mD} = \frac{Mj}{Mi} = \frac{m'E}{m'E} = \frac{a'Q}{a'Q} = \frac{J'm'}{J'a'}.$$

D'onde viene che $m'.J'm' = ia, J'a'$; e con ciò il porisma è dimostrato.

Porisma 22.° «Essendo date due rette IX, JY (fig. 29.) e due punti I, J' in esse; ed essendo m, m' due punti esistenti l'uno sull'una l'altra sull'altra delle due date rette, e variabili di posizione in modo che riesca sempre il rettangolo $lm'.J'm'$ equivalente ad uno spazio dato ν, e che, ogniqualvolta il punto m è da quella banda di I dalla quale è il punto X, il punto m' sia da quella banda di J' dalla quale è il punto Y, ed ogniqualvolta m è dell'altra banda del punto I, anche m' sia dall'altra banda del punto J'; indicati con A, K due punti fissi sulla IX, con α' un punto fisso sulla JY, con α una lunghezza costante e con λ un rapporto costante, io dico che, date due delle quattro cose A, α, λ (le quali però non sieno i due punti A, A'), si potranno determinare le due rimanenti, ed il punto K in modo che riesca sempre (1) $\frac{Km}{\alpha} = \frac{A'm'}{\alpha'} = \lambda$.»

Dim. Se ciò è vero, quando m cade in A, per cui $Am = 0$, sarà $Km, A'm' = 0$, e perciò, o $Km = 0, od A'm' = 0$. Ma non può esser $Km = 0$, giacché, se lo fosse, K ed A sarebbero un medesimo punto, e perciò la equazione del porisma altro non sarebbe che la $\frac{A'm'}{\alpha} = \lambda$, onde $A'm'$ sarebbe costante, ciò che è contro la ipotesi. Dunque, quando m cade in A, sarà $A'm' = 0$, vale a dire, il punto m' cadrà in A' . Dunque A ed A' devono essere due posizioni corrispondenti dei due punti m, m'. E qui si può concludere che, se sarà dato A nel punto I, ovvero A' nel punto J', non avrà luogo il porisma. Noi perciò, continuando l'indagine delle cose implicitamente date, riterremo che non si tratti nè dell'uno nè dell'altro di questi due casi.

Quando m s'accosta indefinitamente al punto K, il segmento Km con-
verge verso zero, Am verso AK (che, come vedemmo, non può esser zero); onde a motivo della equazione (1), Am' dovrà crescere indefinitamente, e lo stesso accadrà di Jm'; quindi (a motivo della equazione data Im . Jm' = \eta) dovrà Im convergere verso zero, ed m accostarsi indefinitamente ad I. Abbiamo pertanto che il punto m, quando si accosta indebitamente al punto K, si accosta parimente al punto I; il che esige che il punto K coincida col punto I.

Allo scostarsi poi indefinitamente del punto m dal punto I sulla retta IX, la frazione \(\frac{Km}{Am} \), che è uguale ad \(\frac{KA}{Am} \), converge l'unita, ed il punto m' s'accosta indefinitamente al punto J'; dunque allora il primo membro della (1) converge verso \(\frac{\lambda J'}{\alpha} \); onde avremo \(\frac{\lambda J'}{\alpha} = \lambda \).

Dovendo pertanto \(1. \) essere A ed A' posizioni corrispondenti dei punti m, m'; \(2. \) K coincidere con I; \(3. \) \(\frac{\lambda J'}{\alpha} \) essere uguale a \(\lambda \); egli è manifestato che, dati che sieno A ed \(\alpha \), ovvero A' ed \(\alpha \), ovvero A e \(\lambda \), ovvero A' e \(\lambda \), ovvero \(\alpha \) e \(\lambda \), si saprà risolvere il problema di determinare le due rimanenti di queste quattro cose, ed il punto \(K \) in modo che sia soddisfatta la (1); e le condizioni di tale problema in una sola maniera potranno venir soddisfatte, se tra i dati vi sarà uno dei punti A, A'; ed in due modi se le cose date saranno \(\alpha \), e \(\lambda \), giacché allora il punto A', dovendo esser tale da rendere \(\frac{\lambda J'}{\alpha} = \lambda \), potrà esser preso dall'una o dall'altra banda del punto J'. Ma tutto ciò è dimostrato appoggiandosi alla ipotesi che le condizioni di questo tal problema possano realmente venir soddisfatte. E per dimostrare il porisma, dobbiamo ancora provare che, essendo determinate nel modo sopra esposto le cose da trovarsi (per cui K sarà in I; A ed A' saranno posizioni corrispondenti di m, m'; e sarà \(\frac{\lambda J'}{\alpha} = \lambda \)), avrà luogo la equazione

\[
\frac{Km \cdot \lambda m'}{Am \cdot \alpha} = \lambda.
\]

Dobbiamo cioè dimostrare che sussiste la equazione

\[
\frac{Im \cdot \lambda m'}{Am \cdot \alpha} = \frac{\lambda J'}{\alpha}.
\]
vale a dire la \(\text{Im} \cdot \Delta m' = \Delta m \cdot \Delta J' \), qualora \(A \) ed \(A' \) siano posizioni corrispondenti di \(m \) ed \(m' \).

Ora, combinando i membri della equazione identica \(\text{Im} \cdot \Delta J' = \text{Im} \cdot \Delta J' \) con membri della \(\text{Im} \cdot Jm' = IA \cdot J'A' \) per via di somma, e per via di sottrazione a seconda della disposizione dei punti (nel caso rappresentato nella figura conviene sottrarre la prima dalla seconda), si desume appunto la equazione \(\text{Im} \cdot \Delta m' = \Delta m \cdot \Delta J' \). Dunque ecc.

Osservazione 1. Se si adotta la convenzione dei segni, allora l'enunciato del porisma riesce più semplice, giacché allora il legame tra i punti \(m \), \(m' \) viene completamente stabilito dalla sola condizione \(\text{Im} \cdot Jm' = \nu \). Ma allora, le \(\alpha \), \(\lambda \) essendo date non solo di grandezza, ma anche di segno, qualunque siano le due date, il porisma potrà in una sola maniera venire soddisfatto. L'ultima equazione della dimostrazione si otterrà poi, in ogni caso, sommando le due precedenti.

Osservazione 2. La prima parte della data dimostrazione, almeno per ciò che riguarda la determinazione del punto \(K \), e della relazione \(\frac{\Delta J'}{\alpha} = \lambda \), si appoggia a principi dei quali è affatto improbabile che abbia fatto uso Euclide nelle analoghe indagini. Ecco quelle due indagini sotto altra forma meno lontana dai metodi che può aver usato Euclide.

La equazione (1) esige che quando il punto \(m \) cade in \(K \), allora il punto \(m' \) non esista sulla \(JY \) a distanza finita, altrimenti quella equazione diverrebbe \(\frac{0 \cdot \Delta m'}{AK \cdot \alpha} = \lambda \); cioè essendo \(\Delta m' \) finita, ed \(AK \) diversa da zero, perché, come si è veduto, \(A \) e \(K \) sono necessariamente due punti distinti) quella equazione diverrebbe \(0 = \lambda \); ciò che è impossibile. Ma, a motivo della equazione data \(\text{Im} \cdot Jm' = \nu \) il punto \(m' \) in un solo caso non esiste; ciò è quando \(m \) cade in \(I \). Dunque quando \(m \) cade in \(K \), allora lo stesso punto \(m \) cade in \(I \). Ne segue che il punto \(K \) deve necessariamente coincidere col punto \(I \).

E la equazione del porisma diviene

\[
\text{Im} \cdot \Delta m' = \lambda ; \text{ossia (2)} \ldots \text{Im} \cdot \Delta m' = \alpha \cdot \lambda \cdot \Delta m.
\]

Ora, essendo \(A \) ed \(A' \) posizioni corrispondenti dei punti \(m \), \(m' \), sarà \(IA \cdot J'A' = \nu \), e perciò

\[
(3) \ldots \text{Im} \cdot J'm' = IA \cdot J'A'.
\]
Ritenuto che il punto m' sia nel prolungamento di $J'A'$ dalla banda di A', per cui il punto m sarà tra i punti I ed A (come è anche rappresentato nella figura), sottraendo i membri della equazione (2) dai membri della (3), avremo

$$\text{Im} \cdot J'A' = IA \cdot J'A' - a \cdot \overline{\alpha} \cdot Am,$$

$$\text{Im} \cdot J'A' + a \cdot \overline{\alpha} \cdot Am = IA \cdot J'A'.
$$

E questa ultima equazione mostra che quando il punto m coincide col punto I, allora dovrà essere

$$\frac{A'm'}{\alpha} = \overline{\lambda};$$

come si è trovato di sopra per altra via.

Porisma 23.° (52.° del Chasles). « Quando due rette PM, QM (fig. 30.°) ruotino intorno di due punti dati P, Q incontrandosi sempre su di una retta data LM, ed incontrando rispettivamente due altre rette AX, $A'X'$ in due punti m, m'; il punto A essendo dato sulla prima di queste due rette, ed una lunghezza a essendo pure data: si può trovare un secondo punto I sulla AX, un punto A' sulla $A'X'$, ed un rapporto $\overline{\lambda}$ tali che sussista sempre la equazione

$$\frac{\text{Im} \cdot A'm'}{Am \cdot \alpha} = \overline{\lambda}.$$

Questo porisma, è una conseguenza immediata dei due precedenti.

Avvertenza. Il porisma 138.° del Chasles non differisce da questo se non per le cose lasciate da trovarsi; ed è anch'esso una conseguenza dei due medesimi porismi 21.° e 22.°

Porisma 24.° (53.° del Chasles). « Se da un punto M variabile di posizione su di una retta data LEM (fig. 31.°) si conduca ad un punto dato P una retta MP, che incontrerà AX, altra retta data, in un punto m; e dal medesimo punto M si abbassi Mm' perpendicolare su di una terza retta data $A'X'$; essendo A' un punto dato su questa retta, ed a una lunghezza data; si potranno determinare due punti A, I sulla AX, ed un rapporto $\overline{\lambda}$, in modo che riesca sempre soddisfatta la equazione

$$\frac{\text{Im} \cdot A'm'}{Am \cdot \alpha} = \overline{\lambda}.$$

Questo è un corollario dei porismi 19.° e 22.°
Osservazione. In questa proporzione si può porre (lasciando il resto come sta) il punto A come dato, e il punto A' da trovarsi. Il nuovo porisma che ne risulta è ugualmente un corollario dei due 19.° e 22.°

Porisma 25. (54.° del Chasles). « Essendo date due rette SA, SA' (fig. 32.°), un punto ρ fuori di esse, una lunghezza α, ed un rapporto λ; se intorno al punto ρ si fa girare una trasversale ρmm' che incontrerà le due rette date in due punti m, m', si potranno determinare due punti A, I sulla AS ed un punto A' sulla A'S in modo che riece sempre

\[
\frac{lm \cdot A'm'}{Am \cdot a} = \lambda. \]

Questa è una conseguenza immediata dei porismi 14.° e 22.°; e pel punto I si troverà una sola posizione; ma i punti A, A' in due modi potranno esser determinati e soddisfare alla equazione del porisma, sempre che però non si adotti la convenzione de' segni.

Averenza. Il porisma 139.° del Chasles è una immediata conseguenza dei due porismi da me esposti in 18.° ed in 22.° luogo. Di questi due porismi è pure una conseguenza immediata il porisma 189.° del Chasles; il quale porisma è, nella sostanza, un caso particolare del porisma 139.° suddetto.

Porisma 26.° (107.° del Chasles). « Siano date due rette SL, SL' (fig. 33.°) due punti A, A' in esse, ed un rapporto λ. Siano a, a' due punti variabili di posizione su queste due rette in modo, che rieca sempre \(\frac{Aa}{A'a} = \lambda\), e che, quando a è da una data banda del punto A, allora a' sia da una data banda del punto A', e, quando a è dall'altra banda di A, allora a' sia dall'altra banda di A'. Sia condotta la retta aa' e sia preso in essa un punto m che la divida in un rapporto dato μ, così che abbiai \(\frac{ma}{ma'} = \mu\).

Dico che il punto m si trova sempre in una certa retta, la cui posizione è implicitamente data. »

Dim. Si prenda S' posizione in cui si trova a' quando a è in S.

Potrebbe S' coincidere con S; ma, per questo caso, la dimostrazione del porisma è assai facile; onde noi considereremo soltanto il caso più generale che S' sia distinto da S.
Si divida la SS' nel punto c' in modo che riesca \(\frac{c'S}{c'S} = \mu \); e c' sarà una posizione particolare del punto m. E, per dimostrare il porisma, basterà dimostrare che la retta c'm è fissa.

Dal punto a si conduca c'a' parallela a questa retta c'm; ed avremo:

\[
\frac{c'a}{c'a'} = \frac{ma}{ma'} = \frac{\mu}{c'S/c'S'}
\]

e perciò:

\[
\frac{c'S}{c'a'} = \frac{c'S'}{c'a'}
\]

Ma, indicando con e il punto in cui la mc' incontra la SL, siccome a'a' è parallela a cc', avremo \(\frac{c'S}{c'a'} = \frac{cS}{c'a} \); dunque \(\frac{cS}{c'a'} = \frac{c'S'}{c'a'} \); e, per conseguenza, attenendosi alla disposizione dei punti c, a, s, che è rappresentata nella figura, avremo:

\[
\frac{cS}{c'a'} = \frac{ca}{c'a'} = \frac{cS - ca}{c'S - c'a'} = \frac{aS}{a'S'} = \lambda.
\]

Pertanto il punto c è fisso, e la retta mc' è pure fissa. Dunque ecc.

Porisma. 27.° (110.° del Chasles). « Sia dato un angolo fisso BQB' (fig. 34.°); e, intorno ad un punto dato P, si faccia girare un angolo MPM eguale al dato. Riteniamo che, come è nella figura, le rette PM', QB' deviino dalle PM, QB non solo egualmente, ma anche nel medesimo senso di rotazione. I lati dell'angolo mobile incontreranno i lati corrispondenti dell'angolo fisso in due punti m, m'. Sia aPa' una posizione particolare data dell'angolo mobile, ed A, A' le corrispondenti posizioni dei punti m, m'. Indicando con \(\mu \) il punto comune alle rette mm', AA'; dico che il rapporto \(\frac{\mu m}{\mu m'} \) è costante. »

Dim. Sia qPq' la posizione che ha l'angolo mobile quando il suo lato PM passa per Q; e sia Q' l'incontro della retta Pq' colla QA'. I tre punti Q, Q', A' costituiranno rispettivamente tre posizioni corrispondenti dei tre punti m, m', \(\mu \); e perciò, se il porisma è vero, dovrà essere:

\[
\frac{\mu m}{\mu m'} = \frac{A'Q}{A'Q'}. \]

E, se dimostriremo che questa equazioneussiste, il porisma sarà dimostrato.
Essendo tra loro uguali e nel medesimo senso di rotazione gli angoli MPM', BQB', avremo che i quattro punti m, m', P, Q sono in una periferia circolare. Ed, attenendoci alla disposizione rappresentata dalla figura, avremo l'angolo $Pm\mu$ uguale all'angolo PQm', e l'angolo $Pm'\mu$ uguale all'angolo PQm. Essendo poi l'angolo $PA'\mu$ una posizione particolare dell'angolo $Pm'\mu$, sarà anch'esso uguale all'angolo PQm; onde gli angoli $Pm'\mu, PA'\mu$ sono uguali, e perciò i punti P, m', A', μ sono in una medesima periferia circolare. Pertanto, se si condurrà la retta $P\mu$, gli angoli $Pm', PA'\mu$ saranno uguali. Ne segue che il triangolo μPm è simile al triangolo ΔPQ, giacché abbiamo dimostrato che gli angoli m, μ del primo sono uguali agli angoli Q, A' del secondo. Essendo poi gli angoli mPm', Pm' rispettivamente uguali agli angoli QPQ', PQQ', anche la somma di quelli sarà uguale alla somma di questi, cioè l'angolo $Pm'\mu$ all'angolo $PQ'A'$. Ma abbiamo veduto che l'angolo $Pm'\mu$ uguaglia il $PA'Q'$; dunque il triangolo $\mu Pm'$ è simile al triangolo $\Delta PQ'$. Per le similitudini dimostrate, avremo

$$\frac{\mu m}{\mu Q} = \frac{\mu P}{\mu P} = \frac{\mu m'}{\mu Q},$$

e quindi

$$\frac{\mu m}{\mu m'} = \frac{\mu Q}{\mu Q}.$$

Dunque ecc.

Porisma 23. (113.° del Chasles). « Essendo date due rette SA, SA' (fig. 35.°), e due punti P, P' in linea retta con S; se intorno a questi due punti si fanno girare due rette parallele $Pm, P'm'$, le quali incontreranno rispettivamente le due rette SA, SA' in due punti m, m'; la retta $m'm'$ passerà sempre per un medesimo punto implicitamente dato. »

Dim. Nell'atto in cui le due rette giranti sono parallele alla SA', il punto m', in cui la Pm' incontra la SA', non esiste; onde che non esiste nemmeno l'incontro della mm' colla SA', vale a dire, che la retta mm' è anch'essa parallela alla SA', e perciò coincide colla Pm. Se pertanto condurremno pel punto P la PO parallela alla SA', avremo in essa una posizione particolare della mm'. Dunque se il porisma è vero, chiamato O il punto in cui la mm' incontra la PO, avremo che O sarà un punto fisso. E, viceversa, se dimostreremo che il punto O, in cui la mm' incontra la PO, è un punto fisso, noi avremo dimostrato il porisma.

Sia condotta la PO; e si chiamino α, β i punti in cui le $Pm, P'm'$ incontrano rispettivamente le SA', SA.
Essendo le parallele \(P\alpha, P'm' \) tagliate dalle tre rette \(SP, Sm, Sa \) concorrenti nel punto \(S \), avremo

\[
\frac{Pm}{m\alpha} = \frac{P'\beta}{\beta m'}
\]

Ma, essendo \(PO \) parallela ad \(m'\alpha \), abbiamo

\[
\frac{Pm}{m\alpha} = \frac{Om}{mm'}
\]

Dunque

\[
\frac{P'\beta}{\beta m'} = \frac{Om}{mm'}
\]

Pertanto la retta \(P'O \) è parallela alla \(SA' \). Dunque essa è una retta fissa; e perciò il punto \(O \) è un punto fisso.

Porisma 29.° (114.° del Chasles.) « Se intorno al punto \(D \), piede della perpendicolare calata dal vertice \(C \) sulla base \(AB \) di un triangolo dato \(ABC \) (fig. 36.°), si fanno girare due rette \(Da, Db \) in modo che i due angoli \(aDC, CDc \) riescano sempre tra loro eguali; essendo \(a, b \) i punti in cui queste due rette incontrano rispettivamente i lati \(AC, BC \), io dico che la retta \(ab \) passerà sempre per un medesimo punto implicitamente dato. »

Dim. La \(AB \) è manifestamente una posizione particolare della retta \(ab \). Dunque, se il porisma è vero, il punto fisso, pel quale passa sempre la \(ab \), dovrà trovarsi nella \(AB \); onde la \(ab \) incontrerà la \(AB \) in un punto fisso.

Dobbiamo dunque cercar di dimostrare che il punto \(\rho \), in cui la \(ab \) incontra la \(AB \), è un punto fisso.

Dal punto \(a \) si conduca la parallela alla \(AB \), che incontrerà le \(CD, Db, CB \) in tre punti \(d, \alpha', \beta \).

Poiché la retta \(aa' \) riesce perpendicolare alla \(CD \), la quale divide in due parti eguali l'angolo \(a\alpha \), noi avremo \(ad' \) uguale a \(da' \). Quindi, considerando che le due rette parallele \(\rho B, a\beta \) sono tagliate in parti proporzionali tanto dalle tre rette \(\rho B, Db, Bb \), quanto dalle tre \(AC, DC, BC \), noi dedurremo

\[
\frac{\rho D}{\rho B} = \frac{aa'}{a\beta} = \frac{2ad}{2\alpha} = \frac{2AD}{AB}.
\]

Dunque \(\rho \) è un punto fisso.

Serie II. Tom. II.
Porisma. 30.° (117.° del Chasles). « Essendo date tre rette SA, SB, SC (fig. 37.°) passanti per un medesimo punto; se attorno di due punti dati P, Q si fanno girare due rette Pm, Qm in modo che concorrano sempre sulla SC; incontrano queste due rette le due SA, SB rispettivamente in due punti a, b, la retta ab passerà sempre per un medesimo punto implicitamente dato. »

Dim. Si chiamino A, C, B i punti in cui le SA, SC, SB sono incontrate dalla retta PQ. Nell’atto in cui il punto m è in C, i due punti a, b si troveranno in A, B rispettivamente; onde AB è una posizione particolare della ab. E, se il porisma è vero, il punto fisso, pel quale passa sempre la ab, dovrà trovarsi nella AB; e perciò la ab dovrà incontrare la AB sempre in un medesimo punto. Dobbiamo adunque cercar di dimostrare che il punto in cui la ab incontra la AB (il quale io chiamo ρ) è un punto fisso.

Dal punto a si conduce la parallela a PQ, la quale incontrerà le SC, bQ, SB in tre punti c, e, β; e si conduce la Se, la quale incontrerà la PQ in un punto E.

Le parallele AB, ab sono tagliate in parti proporzionali tanto dalle tre rette SA, SC, SE, quanto dalle tre Pma, Cme, Qme, onde

\[
\frac{AC}{CE} = \frac{ac}{ce} = \frac{PC}{CQ}\]

dal che si deduce che E è un punto fisso. Le stesse due rette parallele sono anco tagliate in parti proporzionali dalle tre rette ρb, Qb, Bb, come pure dalle tre AS, ES, BS; e perciò

\[
\frac{ρQ}{QB} = \frac{ae}{eβ} = \frac{AE}{EB}\]

e segue da ciò che anche ρ è un punto fisso.

Porisma 31.° (119.° del Chasles). « Se intorno ad un punto dato Q (fig. 38.°) si fanno girare due rette Qa, Qa' in modo che i punti a, a', in cui esse incontrano rispettivamente i lati SA, SA' di un angolo dato ASA', sieno sempre in linea retta con un altro punto dato P; incontrando queste due rette in due punti m, m' una retta data CD parallela ad SQ, si potrà su questa retta CD trovare un punto E tale che il rapporto \(\frac{Em}{Em'}\) sia costante. »
Dim. Ammesso che il porisma sia vero, noi avremo che quando \(m \) cade nel punto incognito \(E \); anche \(m' \) dovrà necessariamente cadere nello stesso punto \(E \). È d'altronde manifesto che, quando il punto \(m \) cade nel punto in cui la \(CD \) è incontrata della \(PQ \), allora anche il punto \(m' \) cade nello stesso punto; e che in tali altri casi questi due punti \(m, m' \) coincidono in un medesimo punto della \(CD \), a distanza finita. Dunque il punto \(E \) dell'enunciato del porisma altro non può essere se non l'incontro delle rette \(CD, PQ \).

Ritenuto, pertanto, che \(E \) rappresenti questo punto d'incontro, accingiamoci a dimostrare che \(\frac{Em}{Em'} \) è costante.

Si conduca per il punto \(P \), la \(n'Pn' \) parallela alle \(CD, QS \), e si chiami \(\alpha \) il punto comune alle \(Paa, QS \).

Le tre rette passanti pel punto \(a \) formano dei segmenti proporzionali nelle due rette parallele \(n'n', QS \); e lo stesso fanno le tre rette passanti pel punto \(a' \). Avremo perciò

\[
\frac{Pn}{Ph} = \frac{\alpha Q}{\alpha S} = \frac{Pn'}{Ph} ; \text{ e quindi } \frac{Pn}{Pn'} = \frac{Ph}{Ph} .
\]

Le tre rette \(QE, Qm, Qm' \) formano dei segmenti proporzionali nelle due parallele \(CD, Pn' \); onde avremo

\[
\frac{Pn}{Pn'} = \frac{Em}{Em'} .
\]

Quindi

\[
\frac{Em}{Em'} = \frac{Ph}{Ph} = \text{costante}.
\]

Porisma 32.° (120.° del Chasles). « Se da un punto \(M \), variabile di posizione in una retta data \(LG \) (fig. 39.°) si condurrà ad un punto dato \(P \) una retta, la quale incontrerà \(AX \), altra retta data, in un punto \(m \); e se dal medesimo punto \(M \) si condurrà \(Mm' \) perpendicolare ad \(AX \); essendo dato un punto \(A \) sulla \(AX \), ed essendo data ancora una lunghezza \(\alpha \), si potranno trovare due punti \(I \) e \(A' \) sulla \(AX \), ed un rapporto \(\lambda \) tali che avrà sempre luogo la equazione

\[
\frac{Im \cdot A'm'}{\lambda m \cdot \alpha} = \lambda .
\]

Dim. Il punto \(I \) non potrà coincidere col punto \(A \), altrimenti la equa-
zione del porisma indicherebbe che $A'm'$ è costante, ciò che è assurdo se la retta LG è obliqua alle AX, come appunto noi supporremo (*).

Quando m cade in l, il punto m' non può esistere; giacché, se esistesse, la equazione del porisma dervrebbe $\lambda = 0$, e perciò il rapporto $\frac{Im'.A'm'}{Am'.\alpha}$ sarebbe sempre zero, ciò che è assurdo; ma, quando non esiste m', non può esistere nemmeno M, onde allora la Pm è parallela alla GL. Pertanto il punto I altro non potrà essere se non il punto in cui la retta AX è incontrata dalla parallela ad LG condotta dal punto P.

E qui, avuto riguardo a ciò che abbiamo dimostrato prima, che cioè i punti I ed A non possano coincidere, si conclude che nel caso in cui il punto dato A fosse il punto d’incontro della AX colla parallela alla GL condotta da P, il porisma non ha luogo. Noi pertanto supporremo che non si tratti di questo caso.

Quando il punto m' è in A', allora, a motivo della equazione del porisma, ed essendo A ed I due punti distinti, il punto m' dovrà necessariamente cadere in A'. Se dunque condurremo la PA', che incontrerà la GL in un punto a, e da questo punto abasseremo la perpendicolare sulla AX, il punto A' del porisma altro non potrà essere se non il piede di questa perpendicolare.

Ora, che abbiamo trovate le posizioni che devono avere i punti I ed A', noi dimostreremo che il rapporto $\frac{Im'.A'm'}{Am'.\alpha}$ è costante, o, cioè che vale lo stesso, che è costante la quarta proporzionale dopo le rette Am, Im, $A'm'$; e con ciò il porisma sarà dimostrato.

Conducasi dal punto M' la parallela alla AX, che incontrerà le Pa', PL in due punti h, k; dal punto P' la parallela alla stessa AX, che incontrerà GL in un punto j'; e da questo punto la $j'A'$ perpendicolare alla AX.

Per ragioni facili a vedersi, avremo

$$\frac{Am}{Im} = \frac{AM}{kM} = \frac{aM}{Fj} = \frac{Am'}{aj} = \frac{A'm'}{A'j'}.$$

Ma $A'j'$ è di lunghezza costante, dunque ecc.

(*) Nel caso di LG perpendicolare ad AX, la proposizione è evidentemente vera, ma non ha alcuna importanza.
Osservazione. Questo porisma è un caso particolare del porisma accennato nella osservazione fatta dopo il porisma 24.°, ed è precisamente il caso in cui le due rette X ed X' (fig. 31.°) di quel porisma coincidono.

Porisma 33.° (122.° del Chasles) « Se si fa girare un angolo MOM' intorno al suo vertice O (fig. 40.°), incontrando i suoi lati OM, OM' in due punti m, m' una retta data di posizione, e nella quale sia dato un punto A, si potranno trovare due altri punti I ed A' su questa retta, ed una lunghezza μ, tali che riesca sempre

\[
\frac{Im \cdot A'm'}{Am} = \mu
\]

Dimostrazione. Per dimostrare questo porisma noi approfitteremo del porisma 22.°, in vista del quale la questione si riduce a dimostrare che sulla retta data XY si ponno trovare due punti I, J' tali che l’area del rettangolo $Im \cdot J'm'$ sia costante.

Ammesso, momentaneamente, che sulla XY possano trovarsi due punti I, J' soddisfacenti a tale condizione, è manifesto che, quando m cadrà in I, allora non esisterà m', vale a dire la OM' sarà parallela ad XY. Dunque, per trovare il punto I, basterà condurre dal punto O una retta OI che faccia colla parallela ad XY condotta dallo stesso punto O un angolo G'OJ' eguale all’angolo MOM' e nello stesso senso di rotazione. Per analoga ragione, onde trovare il punto J', basterà condurre dal punto O una retta OJ', la quale faccia colla GOG' un'angolo GOJ' eguale all’angolo MOM' e nello stesso senso di rotazione.

Ritenuto ora che i punti I, J' siano in tal guisa determinati, noi avremo che realmente l’area del rettangolo $Im \cdot J'm'$ sarà costante. Infatti i due triangoli $ImO, J'O'm'$ sono simili perché i tre lati del primo sono rispettivamente inclinati ai tre lati del secondo di angoli eguali e nello stesso senso di rotazione; onde si avrà

\[
\frac{Im}{J'O} = \frac{IO}{J'm'}, \quad \text{e quindi} \quad Im \cdot J'm' = IO \cdot J'O = \text{costante}.
\]

Porisma 34.° (*) « Essendo date due rette IX, J'Y (fig. 41.°) e due punti

(*) Questo porisma non si trova nell’opera del Chasles.
I, J' in esse; ed essendo m, m' due punti variabili di posizione nelle medesime rette in modo, che il rettangolo \(\text{Im} \cdot J'm' \) riesca sempre equivalente ad uno spazio dato \(v \), è che, ogniqualvolta il punto m è da quella banda del punto I dalla quale è X, il punto m' sia da quella banda del punto J' dalla quale è Y, ed, ogniqualvolta m è dall'altra banda del punto I, anche m' sia dall'altra banda del punto J'; io dico che, se saranno dati altri due punti A, B nella IX, se ne potranno trovare altri due nella J'Y tali che il rapporto \(\frac{mA \cdot m'B'}{m'A' \cdot m'B} \) riesca costante.

\[\text{Dim.} \] Quando m cade in A, il punto m' esiste a distanza finita giacché deve riuscire \(\text{IA} \cdot J'm' = v \). Dunque, quando m cade in A, il primo termine \(mA \cdot m'B' \) del rapporto è zero; e perciò sarà zero anche il secondo; laonde sarà zero uno almeno de' suoi fattori \(m'A', mB' \). Ma, quando m è in A, il secondo di questi fattori non è zero, dunque lo sarà il primo; vale a dire il punto m' cadrà in A'. Dunque il punto A' sarà necessariamente quel punto in cui cade m' quando m è in A. Similmente si trova che B' è di necessità quel punto in cui cade m' quando m è in B. Se pertanto il porisma è vero, si potrà in un solo modo soddisfare alle sue condizioni.

Riteniamo che A' e B' siano le posizioni di m' corrispondenti rispettivamente alle posizioni A, B del punto m. A motivo del porisma 22.° noi avremo che, scelta una lunghezza invariabile \(\alpha \), i due rapporti

\[\frac{\text{Im} \cdot A'm'}{Am' \cdot \alpha} \quad \frac{\text{Im} \cdot B'm'}{Bm' \cdot \alpha} \]

saranno costanti. Dunque sarà costante anche il secondo di questi rapporti diviso pel primo; avremo cioè

\[\frac{Am \cdot B'm'}{A'm' \cdot Bm} = \text{costante}. \]

Dunque ecc.

Porisma 35.° (124.° del Chasles). « Se, essendo date due rette SA, SA' (fig. 42.°), si farà girare intorno ad un punto dato \(\rho \) una retta \(\rho m' \), che incontrerà le due date in due punti m, m', io dico che, dato un punto A sulla prima delle due rette date, si potrà determinare un punto A' sulla seconda in modo che il rapporto \(\frac{Sm \cdot A'm'}{Sm' \cdot Am} \) riesca costante. »
Dim. Questo porisma è una conseguenza del 14.° e del precedente. Infatti, a motivo del porisma 14.° si potranno trovare due punti I, J′ sulle rette SA, SA′ rispettivamente, tali che il rettangolo \(lm′. J′m′ \) sia di area costante; ed avremo poi che \(m′ \) cambierà o non cambierà bandì rispetto al punto J′ secondo che \(m \) la cambierà o no rispetto al punto I. Quindi, siccome S′ è la posizione di \(m \), corrispondente alla posizione S di \(m′ \), noi, in conseguenza del precedente porisma, sempre che il punto dato A non sia in I, avremo che potrà trovarsi sulla SA′ un punto A′ (e questo non potrà essere che il punto in cui la \(\rho A \) incontra la SA′) tale che il rapporto \(\frac{Sm′. A′m′}{Sm. Am′} \) abbia sempre un medesimo valore.

Porisma 36.° (125.° del Chasles). « Essendo date tre rette LM, GX, G′X′, e due punti P, Q fuori di esse (fig. 43.°), se intorno a questi due punti si facciano girare due rette PM, QM in modo che concorran in sempre nella retta LM, le quali incontreranno le due rette date GX, G′X′ in due punti m, m′ rispettivamente, io dico che, dati due punti A, B nella GX, se ne potranno trovare due A′, B′ nella G′X′, ed un rapporto \(\lambda \), tali che riesca sempre

\[
\frac{mA′ \cdot m′B′}{m′A′ \cdot mB} = \lambda.
\]

Questo porisma è una spontanea conseguenza dei porismi 21.° e 34.°

Porisma 37.° (129.° del Chasles). « Essendo date due rette CL, C′L′ (fig. 44.°), due punti P, Q rispettivamente fuori di esse, ed una periferia circolare PQ′b passante per questi due punti; se attorno ai punti P, Q si fanno girare due rette PM, QM in modo che concorran sempre sulla periferia data, le quali incontreranno le rette date in due punti m, m′ rispettivamente, io dico che, essendo dati due punti A, B sulla LC, si potranno trovare due punti A′, B′ sulla L′C′ tali che il rapporto

\[
\frac{Am \cdot B′m′}{A′m′ \cdot Bm} \] riesca costante. » (*)

Questo porisma discende spontaneamente dai porismi 18.° e 34.°

(*) I porismi 126.°, 127.°, e 128.° del Chasles sono casi particolari di questo.
Porisma 38.* (143.* del Chasles). « Se da un punto O preso sul diametro AB di un semicerchio AmB (fig. 45.*) e 46.*) si conduce una retta ad un punto m variabile di posizione sulla periferia, e da questo punto m si conduca la mp perpendicolare al diametro AB; io dico che si potrà trovare un punto D su questo diametro, ed una lunghezza μ, tali che riuscirà sempre Om^2 = μ . Dp. »

Dim. Nel caso in cui il punto dato O sia uno dei punti A, B, la verità del porisma è manifesta. E quando il punto dato sia il centro C del semicercolo, è manifesto che il porisma non può aver luogo. Considereremo pertanto il caso in cui il punto O sia in uno dei prolungamenti del diametro (fig. 45.*), ed il caso in cui O sia tra i punti A, B, ma non in C (fig. 46.*).

E, cominciando dal primo di questi due casi (fig. 45.*), osserveremo primieramente che, se il porisma è vero, siccome Om non è mai zero, così, a motivo della equazione del porisma, non sarà mai zero nemmeno Dp. Ed inoltre, a motivo della stessa equazione, il segmento Dp dovrà crescere quando cresce Om. Dunque il punto D dovrà essere in quel prolungamento di AB nel quale si trova il punto O; il quale prolungamento, nella figura, è dalla banda del punto B.

Ora la equaglianza Om^2 = μ . Dp sussisterà anche quando m è in A, ed anche quando m è in B. Avremo perciò O[A^2 = μ . DA, O[B^2 = μ . DB.

E, per conseguenza, O[A^2 - O[B^2 = μ . BA.

Ma O[A^2 - O[B^2 = (OA + OB) . BA = 2 . OC . BA.

Dunque sarà μ . BA = 2 . OC . BA, e perciò μ = 2 . OC.

E la equazione del porisma sarà Om^2 = 2 . OC . Dp.

Sia condotta la tangente Oh, e dal punto di contatto h la ho' perpendicolare ad AB. La equazione del porisma sussisterà quando m è in h; onde avremo O[h^2 = 2 . OC . DO', ossia OO' . OC = 2 . OC . DO'.

Dunque OO' = 2 . DO'; e perciò D sarà necessariamente il punto di mezzo del segmento OO'.

Ora, non ammettendo più la verità del porisma, dimostriamo che, ove D sia il punto di mezzo di OO', sarà effettivamente Om^2 = 2 . OC . Dp.
Condotti infatti i raggi \(\mathcal{C}m, \mathcal{C}h \), noi avremo

\[
\overline{Om}^2 = \overline{OC}^2 + \overline{Cm}^2 - 2 \cdot \overline{OC} \cdot \overline{pC} = \overline{OC}^2 + \overline{Ck}^2 - 2 \cdot \overline{OC} \cdot \overline{pC} = \overline{OC}^2 + \overline{OC} \cdot 2 \cdot \overline{DC} - 2 \cdot \overline{pC} = 2 \cdot \overline{OC} \cdot \overline{Dp}.
\]

E sarà pure

\[
\overline{Om}^2 = \overline{OC}^2 + \overline{Cm}^2 - 2 \cdot \overline{OC} \cdot \overline{Cp} = \overline{OC}^2 + \overline{OC} \cdot 2 \cdot \overline{OC} \cdot \overline{Cp} = \overline{OC} \cdot (2 \cdot \overline{DC} + 2 \cdot \overline{Cp'}) = 2 \cdot \overline{OC} \cdot \overline{Dp'}. \text{ Dunque ecc.}
\]

Mi accingo al secondo caso. Supponiamo \(O \) tra \(B \) e \(C \) (fig. 46.a).

Ammesso vero il porisma, cioè che possa trovarsi una lunghezza \(\mu \), ed un punto \(D \) sulla \(AB \), tali che riesca sempre

\[
\overline{Om}^2 = \mu \cdot \overline{Dp},
\]

noi avremo che, siccome \(Om \) non è mai zero, non lo potrà essere nemmeno \(\overline{Dp} \); e questo segmento \(\overline{Dp} \) dovrà crescere quando cresce \(Om \), cioè quando \(p \) procede da \(B \) verso \(A \). Pertanto il punto \(D \) deve esser fuori del segmento \(BA \), e dalla banda del punto \(B \).

Per le due posizioni \(A, B \) del punto \(m \), la equazione del porisma diviene rispettivamente

\[
\overline{OA}^2 = \mu \cdot \overline{DA}, \quad \overline{OB}^2 = \mu \cdot \overline{DB}.
\]

Da queste si deduce

\[
\overline{OA}^2 - \overline{OB}^2 = \mu \cdot \overline{BA} \cdot \overline{Ma}
\]

\[
\overline{OA}^2 - \overline{OB}^2 = (OA - BO) \cdot \overline{BA} = (BA - 2 \cdot BO) \cdot \overline{BA} = (2 \cdot BC - 2 \cdot BO) \cdot \overline{BA} = 2 \cdot \overline{OC} \cdot \overline{BA}.
\]

Dunque \(\mu \cdot \overline{BA} = 2 \cdot \overline{OC} \cdot \overline{BA} \), ed inoltre \(\mu = 2 \cdot \overline{OC} \).

E la equazione del porisma diviene

\[
\overline{Om}^2 = 2 \cdot \overline{OC} \cdot \overline{Dp}.
\]

Condotta \(Oh \) perpendicolare ad \(AB \), tale equazione sussisterà anche quando \(m \) è in \(h \); onde avremo

\[
\overline{Oh}^2 = 2 \cdot \overline{OC} \cdot \overline{DO}.
\]

Ma, se conduciamo \(hO' \) tangente in \(h \), noi abbiamo

\[
\overline{Oh}^2 = O'O \cdot \overline{OC}; \text{ onde sarà}
\]

\[
2 \cdot \overline{OC} \cdot \overline{DO} = O'O \cdot \overline{OC}, \text{ e perciò } 2 \cdot \overline{DO} = O'O; \text{ per cui } D \text{ sarà necessariamente il punto di mezzo del segmento } O'O.
\]

\textit{Serie II. Tom. II.}
Resta a dimostrarsi che, se D è il punto di mezzo del segmento $O'O$, sarà realmente $Om^2 = 2 \cdot OC \cdot Dp$, per qualunque posizione del punto m.

Noi avremo

$$Om^2 = OC^2 + Cm^2 = 2 \cdot OC \cdot pC = OC \cdot OC \cdot O'C - 2 \cdot OC \cdot pC = OC \cdot (OC + O'C - 2 \cdot pC) = OC \cdot (2 \cdot DC - 2 \cdot pC) = 2 \cdot OC \cdot Dp.$$

E così pure

$$Om^2 = OC^2 + Cm^2 = 2 \cdot OC \cdot Cp' = OC^2 + OC \cdot O'C + 2 \cdot OC \cdot Cp' = OC \cdot (2 \cdot DC + 2 \cdot Cp') = 2 \cdot OC \cdot Dp'. $$Dunque ecc.

Osservazione. Il punto D è tale che la tangente al semicircolo condotta da questo punto risuca uguale a DO.

Per dimostrarlo osserviamo primamente che, se ciò è vero nel caso della figura 45.ª, noi avremo che, nel caso della figura 46.ª, la tangente condotta da D sarà uguale a DO', e perciò anche a DO. Basterà dunque provare per primo caso (fig. 45.ª).

Noi avremo

$$OB \cdot OA = OA^2 = OO' \cdot OC = 2 \cdot OD \cdot OC.$$

Sottraendo dall'una e dall'altra banda il rettangolo $OA \cdot OD$, avremo

$$DB \cdot OA = OB \cdot OD;$$

e sottraendo anche il rettangolo $DB \cdot OD$, si ottiene

$$DB \cdot DA = OD^2;$$

onde ecc.

Osservazioni relative al porisma 144.º del Chasles. Ecco l'enunciato di tale porisma:

«Essendo date due semicerconferenze delle quali i centri C, C' e le basi AB, $A'B'$ (fig. 47.ª) sono su di una medesima retta, se da ciascun punto m dell'una si conduce una tangente all'altra e una perpendicolare mp sulla retta dei centri C, C': si potrà trovare su questa retta un punto O, tale, che il quadrato della tangente starà al segmento Op in un rapporto dato.»

Qui è da osservarsi che se le due semicerconferenze sono una da una banda, l'altra dall'altra della CC'; e se inoltre le due basi AB, $A'B'$ hanno una parte comune, ovvero la AB sia tutta compresa nella $A'B'$; vi saranno delle posizioni del punto m, dalle quali si potranno harsi condurre delle tangenti a quella mezza circonferenza, avente per diametro AB, che non è
descritta, ma non a quella che è descritta. Invece, se le due semicirconferenze sono dalla stessa banda della CC', da qualunque punto dell'una, dal quale si possa condurre retta tangente alla intiera circonfenenza di cui fa parte l'altra, si potrà condurre almeno una tangente a quest'altra semicirconferenza. Pertanto non sarà inopportuno aggiungere nell'enunciato la condizione che le due semicirconferenze siano della stessa banda della retta che unisce i loro centri.

Nella dimostrazione poi, che il Chasles dà di tale porisma, si ammette che, preso nella CC' un punto O tale che riesca $OA \cdot OB = OA' \cdot OB'$, e condotta la mO, questa incontri la circonferenza avente per diametro AB in due punti α, β. Ma, se le due basi B'A', B'A' siano l'una totalmente fuori dell'altra, e sia B'A'> BA, esisteranno delle posizioni del punto m, per le quali gli incontri della mO alla periferia avente per diametro AB saranno immaginari. Ciò è facile a dimostrarsi. Pertanto la dimostrazione del Chasles non può ammettersi, come generale, nella geometria degli antichi.

Pretesse queste osservazioni, mi accingo al seguente porisma, il quale corrisponde appunto al 144.º del Chasles.

Porisma 39.º (144.º del Chasles). « Essendo date due semicirconferenze aventi le loro basi AB, A'B' nella retta che unisce i loro centri C, C', ed esistenti dalla stessa banda di questa retta (fig. 48º, 49º, 50º); se da un punto m, variabile di posizione sulla prima, si conduca una tangente mt all'altra semicirconferenza, e la perpendicolare mp sulla CC', io dico che si potrà trovare un punto O su questa retta, ed una lunghezza μ, tali che riesca sempre $\frac{mt}{Op} = \mu$. »

Acciocché dal punto m si possa condurre una tangente alla semicirconferenza B'A', è necessario che questo punto non sia dentro del semicerchio cui quella appartiene; onde il porisma non può aver luogo quando la semicirconferenza B'mA' è tutta dentro del detto semicerchio. Non può poi aver luogo il porisma nemmeno quando le due semicirconferenze sono concentriche, ancorché la B'mA' abbracci l'altra, giacché in tal caso la mt riesce di lunghezza costante; mentre la Op riesce di lunghezza variabile, dovunque sia situato il punto O, a distanza finita, sulla CC'. Pertanto nei ragionamenti seguenti noi riterremo che non si tratti di questi casi, e che, nel caso in cui le due semicirconferenze si segano, il punto m non entri mai nel semicerchio B'A'.
Ammesso primieramente come vero il porisma, riflettiamo che quando il punto \(p \) si muove nel verso \(CC' \), la tangente \(mt \) cresce, e perciò deve crescere anco la \(Op \) a motivo della equazione del porisma. Onde il punto \(O \), rispetto alle posizioni che può prendere il punto \(p \), deve essere dalla stessa banda di \(C \) rispetto a \(C' \).

Ciò posto si trovi quel punto \(D \) della retta \(B'A' \), pel quale riesce

\[
\overline{mC'} = 2 \cdot CC' \cdot Dp,
\]

il qual punto sarà nel prolungamento del diametro \(B'A' \) nel verso \(CC' \) (porisma precedente); onde sarà anch'esso, rispetto al punto \(p \), dalla stessa banda di \(C \) rispetto a \(C' \). E, siccome dalla equazione dell'attuale porisma si deduce

\[
\overline{ml} = \mu \cdot Op,
\]

avremo anche

\[
\overline{mC'} - \overline{ml} = 2 \cdot CC' \cdot Dp - \mu \cdot Op, \quad \text{o ssia}
\]

\[
(1) \ldots \overline{CA'} = 2 \cdot CC' \cdot Dp - \mu \cdot Op.
\]

Appoggiandoci a questa equaglianza si può trovare la posizione del punto \(O \) e la lunghezza \(\mu \), come segue.

Non volendo addottare la convenzione de' segni, osserviamo primieramente che da tale equaglianza si può dedurre che dei due punti \(O \), \(D \) (i quali, come si è veduto devono essere entrambi rispetto al punto \(p \) da quella banda dalla quale il punto \(C \) si trova rispetto al punto \(C' \) non può essere il primo più del secondo lontano dal punto \(p \). Ed infatti, se lo fosse, sarebbe \(Op = OD + Dp \); onde la (1) d’iverebbe

\[
\overline{CA'} = (2 \cdot CC' - \mu) \cdot Dp - \mu \cdot OD.
\]

E, siccome il primo membro di questa non varia quando varia la posizione del punto \(p \), non dovrebbe variare nemmeno il secondo; onde dovrebbe essere \((2 \cdot CC' - \mu) \cdot Dp = 0 \); mentre, d’altra parte, l’equazione stessa esige che il rettangolo \((2 \cdot CC' - \mu) \cdot Dp \) non sia zero, poiché essa indica che tale rettangolo supera il quadrato di \(CA \) del rettangolo \(\mu \cdot OD \). Dunque il punto \(O \) non è più lontano dal punto \(p \) di quello che lo sia il punto \(D \).

Sarà pertanto \(Dp = OD + Op \); onde la (1) diviene

\[
\overline{CA'} = 2 \cdot CC' \cdot DO + (2 \cdot CC' - \mu) \cdot Op.
\]
Ora, al variare la posizione del punto p, il primo membro di questa equazione non varia; dunque non varierà nemmeno il secondo; e perciò sarà necessariamente

$$\mu = 2 \cdot CC'$$

e per conseguenza

(2) ... $\overline{CA}^2 = 2 CC'. DO$.

È pertanto trovata la lunghezza μ, ed anche la posizione del punto O.

Resta a dimostrarsi che, essendo preso nella CC' quel punto D pel quale riesce

(3) ... $mC^2 = 2 \cdot CC'. Dp$

(portisima precedente); e poscia essendo preso da quella banda di D dalla quale è il centro C', il punto O tale che riesca soddisfatta la (2); e ritenuto $\mu = 2 \cdot CC'$; avrà realmente luogo la equazione del porisma.

A tal uopo basta osservare che, sussistendo le eguaglianze (2), (3), sussisterà anco la seguente

$$mC^2 - \overline{CA}^2 = 2 \cdot CC'. Dp - 2 \cdot CC'. DO;$$

vale a dire

$$mC^2 = 2 \cdot CC'. Op.$$ Dunque ecc.

Osservazione. Il punto O così determinato è tale che riescono tra loro eguali i rettangoli $OA OB$, $OA' OB'$.

Infatti, essendo l' ultima equazione vera anche quando m è in B', noi avremo

$$AB'. BB' = 2 \cdot CC'. OB'.$$

$$AB'. OB' = AB'. OB';$$

e la differenza tra i primi membri sarà uguale alla differenza fra i secondi; cioè sarà

$$AB'. OB' = BA'. OB'.$$

È poi

$$OB'. OB = OB . OB';$$

ed eguagliando le differenze tra i membri corrispondenti di queste due equazioni, avremo

$$OA . OB = OA'. OB'.$$

Dunque ecc.

Porisma 40.° (145.° del Chasles) « Sia dato un triangolo ABC (fig. 51.°), ed una retta EDF parallela alla sua base AB ed incontrante le due rette AC, BC in due punti E, D. Essendo m un punto variabile di posizione nella retta EF, sieno condotte le rette Cm, Bm, le quali incontreranno rispettivamente le AB, AC in due punti n, n'; e sia guidata la mn',
la quale incontrerà la EF in un punto \(m\). Dico che si potrà trovare una lunghezza \(\mu\) tale che riesca sempre

\[Em' = \mu \cdot Em' \]

Dim. Se ciò è vero, questa eguaglianza avrà luogo anche quando il punto \(m\) è in D. Ma allora \(n\) ed \(n'\) cadono rispettivamente in B ed in C; e perciò \(m'\) cade in D. Sarà dunque

\[ED' = \mu \cdot ED, \quad \text{e perciò} \quad \mu = ED. \]

Dobbiamo pertanto dimostrare \(Em^2 = ED \cdot Em'\).

A motivo delle parallele AB, EF tagliate dalle tre rette concorrenti in C, e dalle tre concorrenti in \(n'\), noi avremo

\[\frac{ED}{Em} = \frac{AB}{An} = \frac{Em}{E'n'}; \]

d'onde si trae l'uguaglianza \(Em^2 = ED \cdot Em'\), che dovevasi dimostrare.

Porisma 41.° (146.° del Chasles) « Sia dato il triangolo ABC e la retta AD (fig. 52.°); e sia condotta CD parallela ad AB. Da un punto \(M\) variabile di posizione nella CA sia condotta la MB, che incontrerà la AD in un punto \(n'\), e la \(Mn\) parallela ad AB, che incontrerà CB in un punto \(n\). E sieno condotte le \(An, n'n\), le quali incontreranno la CD in due punti \(m, m'\). Dico che si potrà trovare una lunghezza \(\mu\) tale che riesca sempre

\[Cm^2 = \mu \cdot Cm'. \]

Dim. Quando \(n\) è nel punto comune alle BC, AD, allora manifestamente i punti \(m, m'\) sono entrambi in D; onde allora la equazione del porisma si riduce alla

\[CD^2 = \mu \cdot CD. \]

Se dunque il porisma è vero, dovrà essere \(\mu = CD\). E resta a dimostrarsi che la equazione del porisma è realmente vera quando \(\mu = CD\); vale a dire che \(\frac{CD}{Cm} = \frac{Cm}{Cm'}\).

Chiamato s il punto comune alle AB, \(nn'\), e t quello comune alle \(Mn, AD\); se riflettiamo che le parallele CD, Mn sono tagliate in parti proporzionali dalle tre rette CA, DA, mA; che le parallele Mn, AB lo sono dalle tre \(Mn'B\),
Memoria del Prof. P. D. Marianini

m'A, m's; e finalmente che le parallele AB, CD sono tagliate in parti proporzionali dalle BnC, Anm, smm', noi deduciamo

\[
\frac{CD}{CM} = \frac{MT}{MN} = \frac{BA}{BS} = \frac{CM}{CM'} \; \text{come doveasi dimostrare.}
\]

Porisma 42.° (201.° del Chasles) « Essendo data una periferia circolare (fig. 53.°) due punti A, B in essa, ed una retta incontrante questa periferia in due altri punti e, f; se intorno ai due punti A, B si fanno girare due rette AM, BM concorrenti sempre nella periferia data, le quali incontreranno la retta data in due punti m, m': io dico che si potrà trovare una lunghezza µ tale che riesca sempre

\[
\frac{eM}{mM} = \frac{fM}{m'M} = \mu. \]

Dim. Ammessa la possibilità di una lunghezza µ soddisfacente a questa condizione, è manifesto che per trovarla basterà prendere una posizione particolare qualunque del punto M, e le corrispondenti dei punti m, m', e prender poi la quarta proporzionale dopo mm', fm', em. Ma cerchiamo di determinare µ in guisa che la costruzione ne riesca più semplice, e che riesca più semplice anche quel teorema, al quale si riduce il porisma in conseguenza di tale determinazione.

1.° Maniera. Si conduca dal punto B la corda Bi parallela alla fe. Quando il punto M si accosta indefinitamente al punto i, allora la retta AM si accosta indefinitamente alla retta che unisce A con i, ovvero alla tangente in A (nel caso che i punti i, A coincidano), e perciò il punto m si accosta indefinitamente al punto in cui detta retta incontra la ef, punto che chiamo i. Allora inoltre il punto m' si allontana indefinitamente; onde il rapporto \(\frac{fm'}{mm'} \) converge verso l'unità; e perciò (in vista della equazione del porisma) il segmento em converge verso µ. Ma allora il segmento em converge verso el (giacchè m s'accosta indefinitamente al punto i); dunque sarà \(\mu = \varepsilon i \).

Al medesimo risultato si può giungere anche come segue.

2.° Maniera. Chiamati n, n' i punti in cui le rette MA, Mf incontrano la Bi parallela alla fe, avremo \(\frac{fm'}{mm} = \frac{Bn'}{Bn} \); onde la equazione del porisma
si può cambiare nella
\[\frac{em \cdot Bn'}{Bn} = \mu \].

Ora, quando \(M \) cade in \(i \), allora le \(Mn' \), \(MA \) cadono nelle \(i' \), \(i'A \), e perciò i punti \(n', n \) cadono nel punto \(i \). Allora pertanto la equazione diviene \(em = \mu \). Ma allora \(em \) diviene \(e1 \); dunque \(\mu = e1 \).

Osservazione. Nel caso in cui il punto \(B \) sia equidistante dai punti \(e \), \(f \), allora il punto \(i \) sarà in \(B \); ed avremo che, quando il punto \(M \) è in \(i \), sarà \(Bn = Bn' = 0 \); onde non potrà dedursi \(\mu = e1 \), come si è detto nel caso generale. Si potrà tuttavia in questa seconda maniera trovare la lunghezza \(\mu \), anche nel caso di cui si tratta, permutando nella indagine i punti \(A, B \) tra loro, e così pure (per conseguenza) gli \(m, m' \) tra loro, e gli \(e, f \) tra loro. Ma se anche il punto \(A \) sarà equidistante dagli \(e, f \), vale a dire, se i due punti \(A, B \) saranno i termini del diametro perpendicolare alla \(ef \), allora questa seconda maniera non si presta.

3.a Maniera. Condotta \(Bi \) parallela alla \(ef \), poi la \(Ai \), che incontrerà la \(ef \) in un punto \(l \), indi la \(Bk \) e dai punti \(m, f \) le parallele alla \(MB \), che incontreranno la \(Bi \) in due punti \(\beta, \alpha \), noi avremo \(\frac{fm'}{mm'} = \frac{B\alpha}{B\beta} \), e la equazione del porisma diviene

\[(a) \quad \frac{me \cdot B\alpha}{B\beta} = \mu \].

Ora, quando \(M \) cade in \(i \), i punti \(m, \alpha, \beta \) cadono tutti tre nel punto \(l \), onde la equazione ultima diviene \(e1 = \mu \).

Osservazione. Questa ultima maniera ha un difetto, il quale consiste nel l'ammettere che il rapporto \(\frac{fm'}{mm'} \) (il quale esiste ed è uguale a \(\frac{B\alpha}{B\beta} \) per tutte quelle posizioni del punto \(M \), per le quali le \(AM, BM \) incontrano la \(ef \)) sia uguale al rapporto \(\frac{B\alpha}{B\beta} \) anche quando il punto \(M \) è in \(i \), nella quale circostanza, siccome \(Bi \) non incontra \(ef \), il punto \(m' \) non esiste, e perciò (esattamente parlando) non esiste nemmeno il rapporto \(\frac{fm'}{mm'} \). (*)

(*) Quando i geometri dicono che il rapporto delle distanze di due punti fissi da un terzo situato a distanza infinita è uguale ad uno, altro non intendono di esprimere se non che il rapporto delle distanze di quei due punti da un terzo converge verso l'unità quando questo terzo si allontana indefinitamente.
Memoria del Prof. P. D. Mariani

Per correggere questo difetto è duopo osservare che, quando M si accosta indefinitamente ad i, allora i segmenti em, Be, Bγ convergono rispettivamente verso i limiti el, Bt, Bi, onde il limite del primo membro della (a) è necessariamente el; e, dovendo uguagliare il limite del secondo, si deduce eI = μ.

Un difetto analogo si riscontra anco nella seconda maniera; e pertanto, volendo evitare di appoggiarsi ai principi dei limiti, si potrà ragionare in una delle due maniere seguenti.

4.° Maniera. Dalla equazione del porisma si deduce

\[
\frac{em}{m'm'} = \frac{\mu}{m'm'} = \frac{em + \mu}{m'm' + m'm'};
\]

vale a dire, attenendoci alla figura,

\[
\frac{em}{m'm'} = \frac{em + \mu}{m'm'},
\]

onde sarà

\[
em \cdot m'm' = (em + \mu) \cdot m'm'.
\]

Pertanto, se intendiamo preso nella retta ef a partire dal punto e, e dalla banda opposta al punto m, il segmento el uguale a μ, noi avremo em \cdot m'm' = Im \cdot m'M. Ma em \cdot m'm' = Am \cdot m'M; dunque sarà Im \cdot m'M = Am \cdot m'M; e perciò i quattro punti I, A, m', M sono in una medesima periferia circolare. Se pertanto condurremo la IA, avremo l'angolo IAM uguale all'angolo Im'M. E, chiamato i l'altro punto in cui la IA incontra la periferia data, e condotta la corda Bi, avremo ancora, per proprietà del cerchio, l'angolo IAM uguale all'angolo iBM; onde saranno tra loro uguali gli angoli Im'M, iBM, e perciò la corda Bi sarà parallela alla ef. Si potrà pertanto costruire il punto i, quindi la retta iAI; e ciò fatto si sarà ottenuta nel segmento el la lunghezza μ richiesta.

Maniera. 5.° Rappresentiamo con h, h' (fig. 54.°) due posizioni corrispondenti dei due punti m, m', e tali che riesca eh = hh'. A motivo della equazione del porisma, avremo

\[
\frac{eh \cdot h'}{hh'} = \frac{\mu}{h}.
\]

e perciò fh' = μ. Ora, per proprietà del cerchio, noi abbiamo eh \cdot h' = Ah \cdot HH; ed, essendo eh = hh', avremo anco hh' \cdot h' = Ah \cdot HH. E, se

Serie II. Tom. II.

11
prenderemo sulla ef il tratto $hh' = fh$ (per cui sarà $el = fh' = \mu$), noi avremo
\[lh \cdot hh' = Ah \cdot HH; \]
e perciò i quattro punti I, A', H, H sono in una periferia circolare. Se pertanto conduciamo la retta IA, e chiamiamo i l’altro suo incontro colla periferia, e conduciamo la corda Bi, noi avremo tra loro uguali gli angoli $lh\text{'}H, IAH$, come fatti alla periferia di un cerchio ed insistenti sul medesimo arco; e l’angolo IAH sarà uguale all’angolo iBH perché il quadrilatero $AHBi$ è inscritto nel cerchio dato; onde l’angolo $H'H$ sarà uguale ad iBH; e quindi la iB sarà parallela alla fe. È dunque conosciuta la Bi, e perciò anche la iA ed il punto I, la cui distanza da e uguaglia la lunghezza richiesta μ.

Ora finalmente mi accingo a dimostrare che, essendo l (fig. 53.°) il punto comune alla ef ed alla retta che passa per A e pel punto i in cui la parallela alla ef condotta da B incontra di nuovo la periferia, sarà effettivamente
\[\frac{em \cdot fm'}{mn} = el. \]

Nel caso rappresentato nella figura, noi abbiamo l’angolo IAM uguale all’angolo iBM (per una proprietà del cerchio), e quest’angolo uguale ad $lm'M$, per le parallele; onde l’angolo IAM sarà uguale all’angolo $lm'M$, e perciò i quattro punti l, A, m', M sono in una periferia circolare. Ed anche in qualunque altro caso si può dimostrare in modo affine che questi quattro punti godono di una tale proprietà. Avremo pertanto
\[ml \cdot mm' = Am \cdot mm' = em \cdot mf. \]

Ora, se il punto m è fuori del segmento le (come nella figura), si prendano le differenze che i due rettangoli equivalenti $ml \cdot mm', em \cdot mf'$ hanno dal rettangolo $em \cdot mm'$; e, se invece il punto m è nel segmento le, si aggiunga a ciascuno di quell’ due rettangoli il rettangolo $em \cdot mm'$. Si otterranno i due rettangoli $el \cdot mm', em \cdot fm'$; e questi saranno tra loro equivalenti. Dal che si deduce appunto
\[\frac{em \cdot fm'}{mm'} = el. \]

Avvertenza. Tale porisma, che è il 201.° del Chasles, lo ho esposto in
questo luogo, per facilitare, rispetto al porisma che segue, la investigazione delle cose da trovarsi onde ridurlo ad un teorema ordinario.

Porisma. 43.° (147.° del Chasles). « Sia data una circonferenza; due punti P, Q in essa (fig. 55.°); una retta EF incontrante la circonferenza data in due altri punti E, F; ed un rapporto \(\lambda \). Se attorno dei due punti P, Q girano due rette PM, QM in modo che il loro incontro M si trovi sempre nella circonferenza data, le quali incontreranno la EF in due punti \(m, m' \); io dico che si potranno trovare due punti A, B nella EF, ed una lunghezza \(\mu \), tali che, ogniqualvolta \(m \) sia fuori del segmento AB, abbia luogo la equazione

\[
\frac{(Am + Bm) \cdot \lambda \cdot Fm'}{mm'} = \frac{\mu}{\mu'}.
\]

Dim. Condotta Qf parallela alla FE, e poi la retta iPI, noi avremo, pel teorema precedente,

\[
\frac{Fm'}{mm} = \frac{El}{Em}.
\]

onde, se il porisma è vero, sussisterà la equazione che si ottiene sostituendo nella sua il rapporto \(\frac{El}{Em} \) al rapporto \(\frac{Fm'}{mm} \); sarà cioè

\[
\frac{(Am + Bm) \cdot \lambda \cdot El}{Em} = \frac{\mu}{\mu'}.
\]

E, chiamato H il punto di mezzo del segmento AB, avremo

\[
\frac{2 \cdot Hm \cdot \lambda \cdot El}{Em} = \mu, \quad \text{o, ossia} \quad \frac{Hm}{Em} = \frac{\mu}{2 \cdot \lambda \cdot El}.
\]

Il rapporto \(\frac{Hm}{Em} \) deve dunque essere costante; e ciò richiede che il punto H sia lo stesso del punto E; onde avremo Hm = Em, e per conseguenza \(\mu = 2 \cdot \lambda \cdot El \).

Pertanto, acciocché sia soddisfatta la condizione del porisma, è necessario che A, B siano equidistanti da E, e che \(\mu \) uguagli \(2 \lambda \cdot El \).

Ora noi ci proponiamo di dimostrare che, essendo A e B equidistanti da E, e \(\mu = 2 \lambda \cdot El \), sussisterà la equazione del porisma purchè \(m \) sia fuori del segmento AB.

Pel teorema precedente noi avremo \(\frac{Em \cdot Fm'}{mm'} = El \); e perciò

\[
\frac{2 \cdot Em \cdot \lambda \cdot Fm'}{mm'} = 2 \lambda \cdot El.
\]
Ma \(2\text{Em} = \text{Am} + \text{Bm} \), \(2A \cdot \text{Ei} = \mu \); dunque sarà \(\frac{(\text{Am} + \text{Bm}) \cdot \lambda}{\text{mm}} \cdot \text{Fm} = \mu \); come ci siamo proposto di dimostrare.

Osservazione 1.° La condizione del porisma può dunque essere soddisfatta qualunque sia la posizione del punto A sulla EF, bastando che B sia dalla l’altra banda del punto E, e distante da questo punto quanto lo è A, e che \(\mu \) uguagli \(2A \cdot \text{Ei} \).

Pertanto il problema da sciogliersi onde ridurre la proposizione trattata ad un teorema ordinario, è un problema indeterminato, almeno rispetto alla posizione di uno de’ punti A, B. Onde le cose che in quella proposizione non sono esplicitamente date, ma lasciate da ricercarsi, non posso dirsi tutte _implicitamente date_. Perciò tale proposizione non potrebbe a rigore, e giusta l’avviso del Simpson, appellarsi _porisma_. Per ridurre questa proposizione ad un vero porisma converrebbe, o togliere uno dei punti A, B dalle cose da trovarsi e porlo tra le esplicitamente date, ovvero lasciare come sta la ipotesi, ed all’asserto sostituirvi il seguente: « dico che nella EF si potranno trovare due punti A, B tali che, ogni qualvolta \(m \) sia fuori del segmento AB, abbia luogo la equazione

\[
\frac{(\text{Am} + \text{Bm}) \cdot \lambda}{\text{mm}} \cdot \text{Fm} = \text{AB}.\]

Porisma 44.° (166.° del Chasles). « Essendo presi due punti D, E su di un diametro BA di un cerchio (fig. 56.°) in modo che sia

\[
\frac{\text{BD}}{\text{DA}} = \frac{\text{BE}}{\text{AE}},
\]

le rette condotte da questi due punti ad un punto qualunque M della periferia staranno tra loro in un rapporto costante. »

Dim. Siccome A è un punto della circonferenza, questo rapporto costante dovrà essere uguale a \(\frac{\text{DA}}{\text{AE}} \). Dobbiamo adunque dimostrare che \(\frac{\text{DM}}{\text{ME}} = \frac{\text{DA}}{\text{AE}} \).

Conducansi le MA, MB; poi dal punto D la parallela alla AM, la quale incontrerà le BM, EM in due punti G, H; e dal medesimo punto D la parallela alla BM, che incontrerà la ME in un punto K. A motivo delle parallele, noi avremo
Memoria del Prof. P. D. Marianini

(1) \[\frac{HM}{ME} = \frac{DA}{AE} \] ed \[\frac{MK}{ME} = \frac{BD}{BE} \].

Ma, alternando la proporzione data, si ottiene \[\frac{DA}{AE} = \frac{BD}{BE} \]; dunque

\[\frac{HM}{ME} = \frac{MK}{ME} = \frac{DA}{AE} \]
e perciò \(HM = MK\). Quindi a motivo delle parallele \(MG, KD\), sarà anco \(HG = GD\). Ma la \(GM\), che è perpendicolare alla \(MA\), lo è anco alla sua parallela \(HD\).

Dunque \(HM = DM\). E perciò la (1) diviene \[\frac{DM}{ME} = \frac{DA}{AE} \]. C. D. D.

Porisma 45.° (167.° del Chasles). « Essendo dato un cerchio, un suo diametro \(AB\) (fig. 57.°) ed un rapporto \(\lambda\), diverso dall’unità; si potranno trovare su questo diametro due punti \(E, D\) tali che, per qualsivoglia punto \(M\) della circonferenza, risulta \[\frac{ME}{MD} = \lambda \]. »

Dim. Ammesso vero il porisma, siccome \(A, B\) sono due punti della periferia, dovrà riuscire

\[\lambda = \frac{AE}{AD} \cdot \frac{BE}{BD} \]

E da ciò potremo dedurre quali posizioni aver debbano i punti \(D, E\).

E primieramente deduciamo che, se \(AD\) è minore di \(BD\), dovrà essere anco \(AE < BE\); vale a dire che, se il punto \(D\) è più vicino al punto \(A\) che al punto \(B\), dovrà esserlo anche il punto \(E\). E, per simile ragione, se il punto \(D\) sarà invece più vicino al punto \(B\) che al punto \(A\), lo dovrà essere anche il punto \(E\). Ciò significa che questi due punti devono essere dalla stessa banda del centro \(C\).

In secondo luogo deduciamo

\[\frac{AE + BE}{2} : \frac{AD + BD}{2} = \frac{CE}{CB}, \quad e, \quad \lambda = \frac{BE - AE}{2} : \frac{BD - AD}{2} = \frac{CB}{CD} \]

Onde per determinare i punti \(E, D\) dovremo prendere sulla retta \(BA\), a partire dal centro, e dalla stessa banda di questo punto, i segmenti \(CE, CD\) tali che il primo stia al raggio nel rapporto \(\lambda\), ed il raggio stia al secondo nel rapporto stesso.

Resta a dimostrarsi che, essendo i punti \(D, E\) per tal modo determinati, avremo effettivamente \[\frac{ME}{MD} = \lambda \].
Dall’ essere \(\lambda = \frac{CE}{CB} \cdot \frac{CB}{CD} \) si deduce \(\lambda = \frac{CE}{CB} \cdot \frac{CB}{CD} = \frac{BE}{BD} \), ed anco
\[
\lambda = \frac{CE - CB}{CB - CD} = \frac{AE}{AD}.
\]
Onde sarà \(\frac{BD}{AD} = \frac{BE}{AE} \). E quindi, pel teorema del porisma precedente, noi avremo:
\[
\frac{ME}{MD} = \frac{AE}{AD} = \lambda.
\]

Altra dimostrazione. Ammessa primieramente la verità del porisma, noi avremo \(\lambda = \frac{ME}{MD} = \frac{AE}{AD} = \frac{BE}{BD} \) onde, se conduciamo le rette MA, MB, esse saranno quelle che dividono in parti eguali gli angoli compresi dalle rette MD, ME. Ciò richiede che una di queste due ultime rette passi entro l’angolo BMA, e l’altra non vi passi; cioè che uno dei due punti D, E sia tra B ed A, e l’altro sia fuori del segmento BA. Inoltre, l’essere \(\frac{AE}{AD} = \frac{BE}{BD} \) porta di conseguenza che i punti E, D esser debbano dalla stessa banda del centro. Consideriamoli dalla banda di A, e supponiamo (come è rappresentato nella figura) il punto D nel segmento BA, ed il punto E fuori (*).

Saranno uguali gli angoli DMA, AME. Ma essendo condotto il raggio CM, riescono eguali anche gli angoli MAD, CMA. Ed aggiungendo questi a quelli rispettivamente noi deduciamo DMA + MAD, cioè l’angolo MDC, eguale all’angolo CME. Dunque i due triangoli MCD, ECM sono simili. Dunque saranno i loro lati proporzionali, cioè
\[
\frac{CE}{CM} = \frac{CM}{CD} = \frac{ME}{MD} = \lambda.
\]

Dunque i punti E, D si determinano prendendo nella BA, dalla stessa banda di C, le porzioni CE, CD tali che la prima stia al raggio, ed il raggio stia alla seconda, nel rapporto dato.

Supponiamo ora determinati in questo modo i punti E, D e dimostriamo che sarà \(\frac{ME}{MD} = \lambda \).

(*) Con ciò noi supponiamo BE > BD, è perciò \(\lambda > 1 \); la qual cosa non limita punto la generalità della proposizione.
Essendo \(\frac{CE}{CM} = \frac{CM}{CD} \), per costruzione, saranno simili i due triangoli CDM, CME. Quindi la proporzione \(\frac{ME}{MD} = \frac{CE}{CM} \).

Ma \(\frac{CE}{CM} = \lambda \); dunque \(\frac{ME}{MD} = \lambda \).

Porisma 46.° (168.° del Chasles). « Quando due rette DD', EE' perpendicolari ad un diametro AB di un cerchio (fig. 58.°) tagliano questo diametro ed il suo prolungamento in due punti D, E in modo che sia

\[
\frac{BD}{DA} = \frac{BE}{AE},
\]

se si considera una tangente \(me \) di posizione variabile, la quale incontrerà le rette DD', EE' in due punti \(d, e \), io dico che le distanze di questi due punti dal centro C hanno un rapporto costante. »

Dim. Se il porisma è vero, noi avremo che, quando \(Cd \) cresce, crescerà anche \(Ce \), e, quando quella decresce, decrescerà anche questa; e, per conseguenza, quando \(Cd \) avrà la minor lunghezza possibile, dovrà anco la \(Ce \) avere la minor lunghezza possibile. Ma la minor lunghezza possibile della \(CD \) è la \(CH \) (essendo \(H \) uno dei due punti in cui la \(DD' \) taglia la circonferenza), e la minor lunghezza possibile della \(Ce \) è la \(CE \). Dunque, quando il punto di contatto \(m \) è in \(H \), dovrà la retta tangente passare per \(E \). Pertanto, dovendo essere costante il rapporto \(\frac{Cd}{Ce} \), dovrà anco essere

\[
\frac{Cd}{CH} = \frac{Cm}{CE} = \frac{Ce}{CE}
\]

Poffiggiamoci pertanto di dimostrare che effettivamente sussisterà la proporzione

\[
\frac{Cd}{Ce} = \frac{Cm}{CE}.
\]

Essendo, pel dato, \(\frac{BD}{DA} = \frac{BE}{AE} \), avremo anco

\[
\frac{BD - DA}{2} : \frac{BD + DA}{2} = \frac{BE - AE}{2} : \frac{BE + AE}{2}.
\]
cioè \[\frac{CD}{CM} = \frac{CM}{CE} \] (*). Da questa proporzione si deduce che i triangoli \(CDm, CmE\) sono simili, e che sono tra loro uguali gli angoli \(CDm, CmE\). Ora, essendo retti gli angoli \(Cmd, Cdd\), i quattro punti \(C, m, d, D\) sono in una periferia circolare; e, per simile ragione, sono in una periferia circolare anco i punti \(C, m, e, E\). Pertanto l’angolo \(CDm\) uguaglia il \(Cdm\), e l’angolo \(CmE\) uguaglia il \(CeE\) (**); ed, essendo tra loro uguali i due \(CDm, CmE\), lo saranno anco gli altri due \(Cdm, CeE\). Siccome poi nei triangoli \(Cmd, CeE\) sono uguali tra loro anche gli angoli \(m, E\), perché sono retti, questi triangoli saranno simili; onde avremo la proporzione

\[\frac{Cd}{Ce} = \frac{Cm}{Ce}, \quad C, \quad D, \quad D. \]

Osservazione. Giunti alla proporzione \(\frac{CD}{CM} = \frac{CM}{CE}\), si potrebbe riflettere che, a motivo di tale proporzione, ed essendo nei due quadrilateri \(CDdm\), \(CmE\) gli angoli \(C, D, d, m\) del primo rispettivamente uguali agli angoli \(C, m, e, E\) del secondo, tali quadrilateri saranno simili; e, per conseguenza, le loro diagonali omologhe \(Cd, Ce\) saranno tra loro come i lati omologhi \(Cm, Ce\), come si deve dimostrare. Ma è da osservarsi che, quando il punto \(m\) è tra le rette \(DD', EE'\), allora le quattro rette terminate \(CD, Dd, dm, mC\), e le quattro \(Cm, me, eE, EC\), non formano più due quadrilateri nel senso degli antichi.

Porisma. 47. (171.° del Chasles). « Sieno dati un circolo \(o\) \(Pp\) (fig. 89.**) due rette \(o'o', o'e'\) ad esso tangenti, un punto \(P\) nella sua periferia ed una lunghezza \(a\). Sia \(M\) un punto variabile di posizione nella periferia del circolo dato, e sia condotta la retta tangente in questo punto, la quale incontrerà le due tangenti date in due punti \(m, m'\); e sieno condotte

(*) Qui si può osservare che sarà anche \(\frac{CD}{CH} = \frac{CH}{CE}\); onde saranno simili i triangoli \(CDH\), \(CIE\), e l’angolo \(CIE\) sarà uguale a \(CDH\), e perciò, retto. Onde la \(HE\) è tangente in \(H\), e perciò la tangente in \(H\) passa realmente per \(E\).

(**) Ciò nel caso della figura. Ma quando il punto \(m\) trovasi tra le rette \(DD', EE'\), allora gli angoli \(CDm, CmE\) sono supplementi degli angoli \(Cdm, CeE\); ed, essendo quegli tra loro uguali, si potrà del pari concludere che lo sono anche questi.
le rette Pm, Pm'. Lo dico che si potrà trovare una retta OO'' tale che il segmento $\mu\mu'$ di questa retta intercetto tra le due Pm, Pm' rischia sempre eguale alla lunghezza data α.

Dim. Ammettiamo primieramente che la proposizione sia vera e cerchiamo di determinare la posizione della retta OO''.

Quando il punto M è in P, allora i punti m, m' cadono rispettivamente nei punti A, A', ne' quali la tangente in P incontra le due tangenti dette $\omega\omega'$, $\omega''\omega'$; e perciò le due rette Pm, Pm' coincidono nella AA'. Pertanto, se la retta OO'' incontrasse la AA', noi avremmo che, corrispondentemente alla posizione P del punto M, il segmento della OO'' intercetto dalle Pm, Pm' sarebbe nullo; ciò che è impossibile perché tale segmento è sempre uguale ad α. Dunque la retta OO'' deve essere parallela alla AA'.

Osserviamo ora che, quando il punto m è in α, allora m' è in α', e perciò le rette Pm, Pm' cadono rispettivamente nelle $P\omega$, $P\omega'$; e pertanto il segmento OO'' della retta OO'', intercetto tra queste due rette $P\alpha$, $P\alpha'$, sarà uguale ad α. Così pure, quando m' è in α'', allora m è in α''; onde il segmento $O'O''$ della OO'' compreso tra le $P\omega$, $P\omega''$ sarà anch'esso esatto uguale ad α (*). Per conseguenza il segmento OO'' sarà uguale a 2α.

Qui è da osservarsi che, se distante dalla AA' quanto lo è OO'', ma dall'altra banda, venga condotta una retta parallela alla AA' stessa, i segmenti formati in questa retta dalle rette passanti pel punto P saranno rispettivamente uguali a quelli formati dalle rette stesse sulla OO''. Onde

(*) Può ripetersi ineriosimile che Euclide abbia considerati i punti α, α' come posizioni corrispondenti dei punti m, m', e ciò perché, quando la tangente nn' coincide colla $\omega\omega'$, censano queste due rette di avere di comune un unico punto. E lo stesso dicasi rispetto ai punti α', α''. Qui pertanto lo dimostro in altria maniera che ciascuno dei segmenti OO'', $O'O''$ è uguale ad α se il porisma è vero.

Se osservi che il punto μ' è sempre dalla stessa banda rispetto al punto μ, e che OO'' è maggiore di α, giacché il segmento $\mu\mu'$, che è uguale ad α, è compreso nel segmento OO'' tutte le volte che il punto di contatto della nn' è nell'arco opposto all'arco $\omega\omega'$. S'intenda preso nella OO'' a partire dal punto O e nel verso $\mu\mu'$, un segmento OH' eguale ad α; e l'estremo H' di questo segmento dovrà cadere in O'. E infatti, se non vi cade, noi avremmo che, quando la tangente mn' fosse posta in modo che μ' coincidesse con H', allora il punto μ cadrebbe in un punto H necessariamente diverso da O; inoltre questi due punti H, O sarebbero dalla stessa banda rispetto al punto H', e sarebbe $\mu$$\mu'$ = α = OH', ciò che è assurdo. Dunque H' cadrà in O', e sarà $OO'' = \alpha$. In egual modo si può dimostrare $O'O'' = \alpha$.

Serie II. Tomo II.
anche quest'altra retta parallela AA' soddisfarà alla condizione del porisma, e anch'essa avrà il suo segmento compreso tra le P_0, P_0'' eguale a 2α.

Da tutto ciò si conclude che, se il porisma è vero, due saranno le rette soddisfacenti alla sua condizione, e queste si otterranno conducendo le due rette parallele alla AA' e distanti da questa retta tanto che i loro segmenti compresi tra le P_0, P_0'' siano eguali a 2α.

Riteniamo ora che la retta OO'' sia condotta parallela alla AA' e distante da essa in modo che il suo segmento OO'' compreso tra le P_0, P_0'' sia uguale a 2α; e dimostriamo che realmente il segmento $\mu\nu''$ di questa retta compreso tra le P_m, P_m' è sempre uguale ad α.

Si conduca PM, la quale incontrerà OO'' in un punto N; poi si conducano le due rette parallele alla AA' e passanti per i punti m, m', e si chiamino g, h i punti in cui la prima interseca le P_0, P_m, ed h', g' quelli in cui la seconda interseca le P_M, P_m''.

Essendo eguali tra loro gli angoli $\angle AP_0$, $\angle PA$, per proprietà del circolo, ed essendo tali angoli eguali rispettivamente ai due $m\alpha$, αm, anche questi due saranno tra loro uguali; e perciò $gm=ma$. Similmente essendo tra loro uguali gli angoli mMh, MPA', e questo ultimo eguale all'angolo Mhm, sarà $mMh=Mhm$, e perciò $mh=mM$. Ma $m\alpha=mM$; dunque $gm=mh$.

Per simili ragioni sarà $h'm'=m'g'$. Ora, dall'essere $gm=mh$ ne segue $Q\mu=q\mu N$; e dall'essere $h'm'=m'g'$ ne viene $N\nu'=l\nu' O''$. Pertanto sarà $N\nu'=lNO'$; e per conseguenza $\mu\nu''=OO''=\alpha$. C. D. D.

Porisma 48.° (176.° del Chasles). « Un angolo DNE (fig. 60.°) di grandezza data si muove in modo che il suo lato ND passi sempre per un punto dato D, ed il suo vertice N scorra sulla periferia di un circolo dato. La retta in cui si trova l'altro lato di quest'angolo incontrerà la periferia in un secondo punto che chiamiamo I. Da questo punto sia condotta una retta IG la quale faccia colla IN un angolo ING eguale al DNE, e nel medesimo senso di rotazione. Dico che questa retta IG passa sempre per un medesimo punto. »

Dim. 1.° Per brevità, in questa prima dimostrazione, considereremo soltanto il caso in cui l'angolo DNE sia acuto ed il punto I, in cui la retta NE incontra di nuovo la periferia, si trovi sempre sul lato NE dell'angolo, e non mai nel suo prolungamento al di là del vertice N.
Ammesso vero il porisma, rappresentiamo con F il punto pel quale passa costantemente la retta IG. Sia condotta dal centro O la OM perpendicolare alla corda NI. Riuscirà NM = MI, ed, essendo eguali gli angoli DNI, NIG, la retta MO passerà pel punto R comune alle rette DN, IF, e saranno tra loro eguali gli angoli NRM, MRI, e ciascuno di essi sarà complemento dell’angolo DNE, per cui que’ due angoli avranno grandezza costante. E, siccome le rette RN, RM, comprendenti il primo di questi angoli, passano sempre per punti fissi D, O, così il vertice R si troverà sempre in una medesima periferia circolare passante pel punti D, O; e, similmente, poiché le rette RM, RI, comprendenti il secondo, passano sempre per punti fissi O, F, lo stesso punto R si troverà sempre in una periferia passante pel punti O, F. Dunque i quattro punti O, D, F, R sono in una medesima periferia circolare. Dunque l’angolo DOF uguaglia DFR, ossia il doppio di DNE; onde è conosciuta la direzione della retta OF. Inoltre sarà OD = OF perché queste due rette sono le corde del circolo ORFD che corrispondono ai due angoli eguali MRN, MRI fatti alla periferia del circolo stesso. È dunque conosciuta anco la lunghezza della retta OF, e quindi la posizione del punto F.

Supponiamo ora condotta dal punto O la retta OF, la quale faccia colla retta OD un angolo DOF uguale al doppio dell’angolo DNE e nello stesso senso di rotazione; e su questa retta sia preso il segmento OF eguale ad OD; e proponiamoci di dimostrare che la retta IG passa pel punto F.

Sia condotta la retta FD, e pel punto O la OM perpendicolare alla NI, la quale passerà per R punto comune alle DN, IG. Nel triangolo ODF, essendo i lati OD, OF uguali, avremo che l’angolo OFD sarà complemento della metà dell’angolo DOF, sarà cioè complemento dell’angolo DNE. Ma anche l’angolo MRN è complemento dell’angolo DNE, dunque gli angoli OFD, MRN sono tra loro eguali, e perciò i punti O, R, F, D sono nella periferia di un circolo. Ora, siccome gli angoli eguali ORN, ORI hanno il loro vertice R nella periferia di questo circolo, ed il loro lato comune che passa pel punto O di essa periferia, dovranno a tali due angoli corrispondere nel circolo ORFD due corde eguali ed aventi un termine comune in O. Ma al primo di questi angoli corrisponde la corda OD; e la corda OF è uguale alla OD, nè può darsi altra corda in questo circolo, la quale abbia un termine in O e sia eguale alla OD; dunque all’altro angolo ORI dovrà necessariamente corrispondere la corda OF. Dunque la retta IR passa pel punto F. C. D. D.
Dim. 2.° Si denotino con P, L gli altri due punti ne' quali le rette ND, IG (fig. 61.°) incontrano la periferia; e sieno condotti i raggi NO, OI, OP, OL. La deviazione della retta Ol dalla OP sarà doppia di quella della NE dalla ND, e nel medesimo senso. Così pure la deviazione della OL dalla ON sarà doppia e nello stesso senso di quella della IG dalla IN, cioè di quella della NE dalla ND. Se pertanto tutta la figura ruoterà intorno al centro O nel senso di rotazione NDE per un angolo doppio dell'angolo di grandezza data DNE, noi avremo che, dopo tal rotazione, i raggi OP, ON cadranno rispettivamente in OL, OL, e la retta PN in LL. Ora, siccome prima della rotazione la retta NP passa sempre per il punto D, dopo la rotazione essa retta passerà sempre per quel punto nel quale va a trovarsi il punto D dopo la rotazione. Dunque anche la retta IL (prima della rotazione) passa sempre per questo tal punto, nel quale va a trovarsi D dopo la rotazione, ed il quale si determinerà col fare al centro i due angoli DOH, HOF eguali e nello stesso senso di rotazione dell'angolo DNE, e col prendere sul lato OF il punto F distante dal centro O quanto lo è il punto D.

Porisma 49.° (181.° del Chasles). « Sieno dati un circolo, due punti P, Q (fig. 62.°) nella sua periferia, e due rette SA, SA' concorrenti in un punto di questa. Se intorno ai due punti P, Q gireranno due rette PM, QM in maniera che il loro punto M percorra la periferia data, le quali rette incontreranno rispettivamente le rette date SA, SA' in due punti m, m'; io dico che la retta che unisce questi due punti m, m' passerà sempre per un medesimo punto. »

Dimostrazione 1.° Ammettiamo che il porisma sia vero, e rappresentiamo con H il punto pel quale passa sempre la retta mm'. Si conduca la retta HI parallela alla SA', la quale incontrerà la SA in un punto i; si guidi PI che incontrerà la periferia in un secondo punto i'; e si conduca Qi. Questa retta Qi sarà parallela alla SA', giacchè, se la incontrasse in un punto l', la retta lli' a motivo del porisma, passerebbe per H, per cui la retta HI, che è parallela alla SA', incontrerebbe questa retta nel punto l', ciò che è assurdo.

Analogamente si prova che, condotta HJ' parallela alla SA e che incontrerà SA' in un punto J', guidata QJ' che incontrerà la periferia in un secondo punto j', e condotta Pj', questa retta Pj' sarà parallela alla SA.
Memoria del Prof. P. D. Martanini

Pertanto, onde trovare il punto \(H \) basterà condurre dai punti \(Q, P \) le corde \(Q_i, P_j \) rispettivamente parallele alle rette \(S_A' \), \(S_A \); guidare le \(P_i, Q_j \), e condurre dai punti \(I, J' \), nei quali queste due rette incontrano rispettivamente le \(S_A, S_A' \), due rette rispettivamente parallele alle \(S_A', S_A \); il punto comune alle due ultime rette condotte sarà il punto pel quale passa sempre la retta \(mm' \).

Qui si osservi che, se \(P_i \) riuscirà parallela ad \(S_A \) (ciò che avviene nel solo caso in cui li due archi \(P_a, Q_b \) intercetti fra i punti dati \(P, Q \) e le rette \(S_A, S_A' \) sieno tra loro uguali e nello stesso senso di rotazione) allora tale costruzione non potrà compiersi, e ciò indica che in tal caso il porisma non ha luogo. (*)

Ritenuto ora che non si tratti di questo caso particolare, accingiamoci a dimostrare che, essendo il punto \(H \) determinato mediante la costruzione indicata, la retta \(mm' \) passerà sempre pel punto \(H \).

Dalla dimostrazione del porisma 18.\(^a \) risulta \(Im \cdot J'm' = IP \cdot J'Q \). Ora, quando \(M \) è in \(S \), allora anche i punti \(m, m' \) cadono entrambi in \(S \), e perciò sarà \(IS \cdot J'S = IP \cdot J'Q \).

Dunque \(Im \cdot J'm' = IS \cdot J'S \),

e quindi \(Im : J'm' = Sl : J'm' \),

cioè \(Im : J'H = J'H : J'm' \);

e ciò prova che i punti \(m, H, m' \) sono in linea retta. Dunque ecc.

Dimostrazione 2.\(^a \) Si conducano le rette \(aQ, Pb \) (fig. 64.\(^a \)). Queste rette sono le posizioni della \(mm' \) corrispondente rispettivamente alle posizioni \(a, b \) del punto \(M \). Dunque, ove la retta \(mm' \) passi sempre per un medesimo punto, questo punto dovrà essere comune a queste due rette. Da ciò si conclude che, se queste due rette \(aQ, Pb \) riusciranno parallele (ciò che avviene unicamente quando gli archi \(P_a, Q_b \) sieno uguali e nello stesso senso di rotazione), allora il porisma non avrà luogo; e che, se negli altri

(*) In questo caso la retta \(mm' \) sarà sempre parallela alla \(aQ \) (fig. 65.\(^a \)). Ed infatti saranno uguali gli angoli \(mMm' \), \(MSm' \) perché fatti alla periferia ed insistenti sugli archi uguali \(PQ, ab' \). Dunque i quattro punti \(M, S, m', m \) sono in una periferia circolare. Perciò, condotta \(MS \), avremo l'angolo \(Mm'm \) uguale all'angolo \(MSm \); ma questo uguagli l'\(MQa \), perché i punti \(M, S, Q, a \) sono nella periferia del circolo dato; dunque l'angolo \(mM'm \) uguaglia l'angolo \(MQa \), e per conseguenza la \(mm' \) è parallela alla \(aQ \).
casi il porisma ha luogo, il punto pel quale passerà sempre la mm' sarà il punto d'incontro delle rette aQ, Pb', il quale denoto con H.
Cerchiamo ora di dimostrare che realmente, quando le rette aQ, Pb' non sono parallele, la mm' passa pel loro incontro H.
Si conducano dal punto m' le $m'p$, $m'q$ parallele rispettivamente alle MP, SA, e si uniscano i punti p, q ne' quali esse incontrano rispettivamente le rette Pb', aQ. Si guidino poi le corde Pa, Qb'.
Essendo la retta $m'p$ parallela alla MP, avremo l'angolo $m'pb'$ eguale all'MPb'; ma questo ugualgia l'angolo MQb'; dunque l'angolo $m'pb'$ ugualgia l'$m'Qb'$, e perciò il punto p è nella periferia circolare che passa per tre punti m', b', Q. Così pure, essendo $m'q$ parallela ad SA, sarà l'angolo $m'Qb'$ eguale all' SaQ; ma questo è uguale all'angolo $Qb'N'$ per proprietà del circolo; dunque l'angolo $m'Qb'$ uguagli il $Qb'N'$, e perciò anche il punto q è nella periferia che passa per tre punti m', b', Q. Dunque i cinque punti p, q, Q, b', m' sono in una medesima periferia circolare, e perciò l'angolo qpP' uguagli il $qm'b'$. Ma questo è uguale all' asb' per le parallele, e l'angolo asb' è uguale all'angolo apb'; dunque gli angoli qpP', apb' sono eguali, e perciò la retta pq è parallela alla Pa. Pertanto i due triangoli $pm'q$, Pma sono simili tra loro, e lo sono pure i due pqH, PaH; per cui avremo $mq:ma=pq:Pa=qH:ah$; e perciò la retta mm' passa pel punto H.

Dimostrazione 3.(fig. 65.) Dopo di aver trovato, come sopra, che, se il porisma è vero, il punto pel quale passa sempre la retta mm' deve essere il punto comune alle Pb', Qa, si potrà dimostrare che la mm' passa realmente per questo punto, come segue.
Si conduce da S la corda SD parallela alla retta mm'; indi si guidi la PD che incontrerà la mm' in un punto G; e si conducano le rette aP, aG.
Essendo l'angolo mGP eguale all'angolo SDP, per le parallele, e questo eguale all'angolo $Sb'P$ per proprietà del circolo, sarà l'angolo mGP eguale all'angolo $m'b'P$; e perciò i quattro punti P, G, m', b' sono in una medesima periferia circolare.
Ora l'angolo SDP è anche uguale all'angolo SaP, e quindi a quest'angolo è uguale anche l'angolo mGP. Perciò sono in una periferia circolare i quattro punti m, G, a, P. Dunque l'angolo mGa è supplemento dell'angolo mPa. Ma di questo medesimo angolo è supplemento anche l'ango-
lo MQq; laonde l'angolo mGa uguaglia l'MQa; e per conseguenza i quattro punti G, m', Q, a sono in una periferia circolare.

Considerando ora il circolo dato, quello che passa pei punti P, G, m', b' e quello che passa pei punti a, G, m', Q, ed appoggiandoci al teorema che, se tre circoli si regano due a due, la corda comune al primo ed al secondo, quella comune al primo ed al terzo, e quella comuna al secondo ed al terzo concorrano in un medesimo punto, si conchiude che le tre rette Pb', aQ, Gm', concorrano in un punto, vale a dire che la retta m' passa pel punto comune alle due Pb', aQ.

Osservazione. Siccome i punti dati P, Q ponno essere due punti qualunque della periferia, e le rette SA, SA' due rette qualunque concorrenti in un punto di essa; ne viene che l'esagono aSb/PMQa può essere un esagono qualunque inscritto nel circolo. Ora i punti m, m', H, sono i punti comuni ai suoi lati primo e quarto, secondo e quinto, terzo e sesto. Pertanto dall'esposto porismo discende come corollario il noto teorema che « i tre punti, ne' quali tre lati successivi di un esagono inscritto in un circolo incontrano rispettivamente i lati ad essi opposti, sono in linea retta ». Una dimostrazione elegantissima di questo teorema si trova nella *Geodesia del Bordoni* 3.° ediz. Pavia 1859, pag. 47.

Porisma 50. (200.° del Chasles). Essendo dato un circolo, una retta AX che lo che tocchia in un punto A (fig. 66.°), e due punti P, Q nella sua periferia; se intorno a questi due punti ruotano due rette PM, QM in modo che il loro incontro M scorra su questa periferia, e le quali incontreranno la AX in due punti m, m', io dico che si potrà trovare una lunghezza costante μ tale che riesca sempre

\[
\frac{Am \cdot Am'}{mm'} = \mu.
\]

Dim. Sulla retta AX, a partire dal punto A e da quella banda della retta AQ dalla quale si trova il punto P, supponiamo presa una lunghezza Ah' eguale alla lunghezza da trovarsi μ. Siano condotte le rette Qh', Ph', le quali incontreranno la periferia in due punti H, i, e siano anche guidate le rette Qi, PH, delle quali l'ultima incontrerà il segmento Ah' in un punto h.
I punti h, h' saranno due posizioni corrispondenti dei punti m, m'; onde dovrà riuscire
\[\frac{Ah \cdot Ah'}{hh'} = \mu = Ah', \]e perciò anche $hh'^a = Ah'^a = hP \cdot HH$.
Ciò importa la somiglianza dei due triangoli $hHh', hh'P$, e quindi l'uguaglianza degli angoli $hh'H, h'Ph$. Ma quest'ultimo angolo è uguale all'angolo iQH; dovranno adunque essere uguali gli angoli $hh'H, iQH$; e quindi la retta Qi parallela alla AX.
Risulta da ciò che, se il porismo è vero, per ottenere la lunghezza μ, basterà condurre da Q la corda Qi parallela alla tangente AX, e guidare la retta Pi la quale, incontrando la AX in un punto h', determinerà nel segmento Ah' la lunghezza richiesta.
Riteniamo ora che il segmento Ah' sia ottenuto mediante questa costruzione, e dimostriamo che sarà
\[\frac{Am \cdot Am'}{mm'} = Ah'. \]
Per proprietà delle parallele avremo l'angolo $mm'M$ eguale all'angolo $m'Qi$, e questo, per proprietà del circolo, uguale all'angolo MPi; perciò l'angolo $mm'M$ eguaglia l'angolo iPM, e quindi i quattro punti P, M, m', h' sono in una periferia circolare. Dunque sarà
\[mh' \cdot mm' = mM \cdot mP = Am'. \]
Ora, se il punto m è fuori del segmento Ah' (come nella figura) si prendano le differenze che gli spazi equivalenti $mh' \cdot mm', Am'$ hanno dal rettangolo $Am \cdot mm'$, e se il punto m cade nel segmento Ah', si aggiunga invece questo rettangolo a ciascuno di que' due spazi. Si otterranno i due rettangoli $Ah' \cdot mm', Am \cdot Am'$; e questi saranno tra loro equivalenti. Dal che si deduce appunto
\[\frac{Am \cdot Am'}{mm'} = Ah'. \]

Osservazione. Questo porismo è un caso particolare del 42.° (201.° del Chasles).
Porisma 51.° (207.° del Chasles). «Essendo dato un triangolo ABC (fig. 67.°), se si condurranno due rette parallele MN, M'N' le quali formino, l'una coi lati CA, CB, l'altra coi prolungamenti di questi lati al di là del vertice C, i triangoli MCN, M'CN' equivalenti al triangolo dato, queste incontreranno la base AB in due punti m, m', i quali saranno diversi per le diverse direzioni delle parallele MN, M'N'. Dico che il rettangolo delle distanze di questi punti da un punto D reperibile nella AB è costante.»

Dim. I punti M, M' saranno egualmente distanti dal punto C; e così pure i punti N, N'; e quanto più piccole saranno le distanze CM, CM', tanto più grandi saranno le CN, CN', e viceversa. Si potrà pertanto ammettere che i due punti M, M' possano coincidere nel punto C; e che allora le rette MN, M'N' coincidano entrambe colla CB; e quindi i punti m, m' col punto B. Se dunque è reperibile un punto D nella AB tale che il rettangolo DM, DM' sia costante, dovrà riuscire DM·DM' = DB². Similmente si trova che dovrà anco riuscire DM·DM' = DA²; onde anco DB² = DA². E pertanto D altro non potrà essere se non il punto di mezzo della BA.

Ora ci proponiamo di dimostrare che, essendo D il punto di mezzo della base AB, sarà il rettangolo DM·DM' equivalente al quadrato di DB.

Si conducano le rette AN, BM, AN', BM', CD, CM'; e, chiamato i il punto comune alle MB, CD, si guidi la m; e pel punto D si conduca la parallela alla MB, che incontrerà le CA, CB in due punti p, q.

Essendo equivalenti i triangoli CBA, CNM, Io sono anco i due MBA, MBN; e percio le rette MB, AN sono parallele tra loro; e la pq è parallela anco alla AN. Saranno percio simili i triangoli MNB, M'BA, e quindi avremo

\[\frac{Mm}{mN} = \frac{MB}{AN} \]

E saranno anco simili tra loro i triangoli BMA, DpA, e così pure i triangoli ABN, Dpq; onde BM sarà il doppio di pD, ed AN il doppio di Dq.

Pertanto sarà \(\frac{Mm}{mN} = \frac{pD}{Dq} \).

Ma, a motivo delle parallele pq, MB, tagliate dalle tre rette CA, CD, CB concorrenti nel punto C, avremo \(\frac{Mi}{iB} = \frac{pD}{Dq} \); dunque \(\frac{Mm}{mN} = \frac{Mi}{iB} \); e perciò la retta \(m \) è parallela alla CB.

Ora, essendo equivalenti i due triangoli ACB, N'M'C, Io saranno anco i due N'BA, N'M'A, e perciò la retta MB è parallela alla retta NA, onde saranno tra loro simili i triangoli \(m'BM' \), \(m'AN' \), e così pure i trian-
goli \(M'BC, ANC\); quindi avremo \(m'B : m'A = BM' : AN' = M'C : CA = CM : CA\).

Pertanto la retta \(MB\) è parallela alle \(Cm'\).

Essendo la \(im\) parallela alla \(CB\), e la \(iB\) alla \(Cm'\), noi avremo:

\[Dm : DB : = Di : DC = DB : Dm',\]

e quindi:

\[Dm : Dm' = DB'^2.\]

Porisma 52°. (198° del Chasles): « Essendo \(A\beta\) (fig. 68.) un rombo circonscritto ad un circolo, ed \(mm'\) una retta che si muove conservandosi sempre tangente al detto circolo, e la quale incontrerà le rette \(A1, A'J\) in due punti \(m, m'\); io dico che il rettangolo \(lm \cdot J'm\) sarà di grandezza costante. »

\[Dim.\] Si conduca la diagonale \(J'\), la quale dividerà in parti eguali l'angolo \(A1B\), e perciò passerà pel centro del circolo, che indicheremo con \(C\); e si guidi la tangente \(hh'\) parallela alla detta diagonale. I punti \(h, h'\), nei quali questa tangente incontra le rette \(A1, A'J\), saranno posizioni corrispondenti dei punti \(m, m'\); onde, se il porisma è vero, dovrà essere \(lm \cdot J'm = lh \cdot J'h'\). Se ora conduciamo la retta \(Ch\), questa dividerà in parti eguali l'angolo \(hh'\); ma gli angoli \(h'h'C\), \(ICA\) sono tra loro uguali, per le parallele; dunque sono tra loro uguali anche i due \(1h'\), \(ICA\); e perciò sarà \(1h = IC\) e sarà del pari \(J'h' = J'C\). Dunque, se è vero il porisma, sarà necessariamente \(lm \cdot J'm = IC \cdot J'C\).

Viceversa poi, se questa equazione è vera, sarà vero il porisma. Proporremoci pertanto di dimostrarla.

A tal scopo basterà dimostrare la proporzione

\[lm : IC = J'C : J'm;\]

la quale siccome l'angolo \(mIC\) uguaglia l'angolo \(CJ'm\) per proprietà del rombo, sussiste se l'angolo \(1CM\) uguaglia l'angolo \(J'm'C\), giacché allora i due triangoli \(mIC, C1m'\) saranno simili e somministreranno quella proporzione. Basterà dunque dimostrare che gli angoli \(1CM, J'm'C\) sono eguali, ossia che la somma dell'angolo \(1CM\) con due \(Cm\), \(mIC\) uguaglia la somma dell'angolo \(J'm'C\) con due medesimi \(Cm\), \(mIC\). Ma la prima di queste due somme uguaglia due retti, dunque basterà dimostrare che anche la seconda è due retti. Ora i tre angoli \(J'm'C, Cm\), \(mIC\) di questa seconda somma sono rispettivamente eguali ai tre angoli \(Cm'm, m'mC, CJ'm',\) dunque essa sarà eguale a due retti se, colla somma di questi ultimi tre angoli, formerà quattro retti. Ma li forma realmente, giacché forma la somma degli angoli del quadrilatero \(mIJ'm;\) dunque ecc. ecc.
Memoria del Prof. P. D. Marianini

Porisma 53.* (208.* del Chasles). Sia dato un circolo, due rette EF, HG ad esso tangenti (fig. 69.*), ed un punto P fuori di queste rette. Se da un punto M variabile di posizione sulla EF si conduce l’altra tangente Ml al circolo, la quale incontrerà la HG in un punto m, e la retta MP, la quale incontrerà la HG in un altro punto m'; io dico che si potranno trovare due punti l, J sulla HG, ed uno spazio v, tali che riesca sempre \(\text{Im. } J'm'' = v \).

Dim. Supponiamo primieramente che le tangenti date EF, HG non siano parallele tra loro.

Per indagare quali posizioni debbano avere i punti l, J', e quale grandezza lo spazio v, osserviamo che, quando il punto m sarà in l, allora il punto m', cioè l’incontro della MP colla HG, non esisterà; altrimenti la equazione del porisma divenrebbe \(0 = v \), e perciò sarebbe sempre \(\text{Im. } J'm'' = 0 \), ciò che è assurdo. Dunque, quando il punto m è in l, allora la PM è parallela alla HG. Si conduca pertanto dal punto P la Pi parallela alla HG; e, se questa incontrerà la EF nel punto di contatto E, allora il punto I sarà necessariamente il punto d’incontro delle EF, GH; e se la PI incontrerà la EF in un altro punto i, allora, condotta da i quella tangente al circolo la quale non coincide colla iE, il punto I sarà necessariamente quel punto in cui tale tangente incontra la retta HG. Ma qualora il punto dato P fosse nella tangente jk parallela alla HG, la retta Pi cadrà nella stessa tangente kj, il punto i in j, e la tangente condotta dal punto i e diversa dalla iE, sarà la jk, onde il punto I dovrà esistere simultaneamente nella HG e nella jk, ciò che non può aver luogo perché queste rette sono parallele.

Dunque, se il punto dato P è nella jk, il porisma non ha luogo. E, se il punto P non è nella jk, ammesso che allora la condizione del porisma possa venir soddisfatta, il punto I si otterrà conducendo dal punto P la parallela ad HG, che incontrerà la EF in un punto i, e guidando da questo punto i una tangente al circolo, la quale ove il punto i non coincida con E sia diversa dalla EF. Il punto, in cui questa tangente incontrerà la retta HG, sarà il punto richiesto I.

Con analoghe considerazioni si dimostra che, ove il punto P non sia nella kj, se la condizione del porisma può venir soddisfatta, il punto J' si otterrà conducendo la tangente kj parallela alla HG, la quale incontrerà
la EF in un punto j e guidando la retta jP, la quale incontrerà la HG in un punto che sarà il punto richiesto J'.

Ora, per determinare lo spazio v, potremo condurre la tangente $\omega\omega$ parallela alla EF, e dal punto P la retta $P\omega'$ parallela anch'essa alla EF. Quando il punto m è in ω, allora la mt è in $\omega\omega$, e l'incontro della mt colla EF non ha luogo; dunque non dovrà aver luogo nemmeno l'incontro della Pm' colla stessa EF, e quindi la Pm' dovrà trovarsi in $P\omega'$, ed il punto m' in ω'. Dunque i punti ω, ω' ponno riguardarsi come posizioni corrispondenti dei punti m, m'; e perciò dovrà essere $v = 1\omega \cdot J'\omega'$.

Ritenuto ora che i punti I, J', ω, ω' siano ottenuti colle costruzioni indicate, noi ci proponiamo di dimostrare che sarà

$$Im \cdot J'm' = 1\omega \cdot J'\omega'.$$

Si chiamino k, μ i punti nei quali le rette $P\omega', PM$ incontrano la tangente jk. Siccome le due tangenti $\omega\omega, kj$ sono rispettivamente parallele alle FE, HG, queste quattro rette determinano un rombo circoscritto al circolo; onde, pel porisma precedente, il rettangolo $jM \cdot \omega m$ sarà costante e perciò equivalente al rettangolo $ji \cdot \omega 1$; onde avremo

$$Mj: fi = 1\omega : \omega m;$$

e quindi

$$Mj : Mi = 1\omega : Im.$$

Ora

$$Mj : Mi = \mu j : Pi = \mu j : kj = J'm' : J'\omega'.$$

Dunque

$$1\omega : Im = J'm' : J'\omega';$$

e per conseguenza

$$Im \cdot J'm' = 1\omega \cdot J'\omega'. \quad C. \ D. \ D.$$

Considero ora il caso in cui le due tangenti date EF, HG sono parallele tra loro (fig. 70.°).

Quando m è in I, allora, a motivo della equazione del porisma, l'incontro m' non deve esistere, e perciò la retta Mm' deve riuscire parallela alla HG, ed anco alla EF; e per conseguenza, anche la retta Mm dovrà riuscire parallela alla EF. Ma l'unica posizione a distanza finita del punto m, alla quale corrisponda la mt parallela alla EF, è il punto H; dunque, se il porisma è vero, il punto I dovrà essere in H.

Quando m' è in I', allora non deve esistere m che è l'incontro della Mt colla HG; dunque il punto M deve allora trovarsi in E. Dunque il punto J' del porisma deve necessariamente essere l'incontro della EP colla HG.
Memoria del Prof. P. D. Marianini

Chiamato C il centro del circolo, s'intendano condotte le rette CH, CE, CM, Ca. Essendo l'angolo Hmt supplemento dell'angolo hME, per le parallele, la metà HmC sarà complemento della metà CME. Ma anche l'angolo ECM è complemento di CME; dunque gli angoli HmC, ECM sono uguali. Pertanto sono simili i due triangoli rettangoli CHM, MEC; dal che si deduce il rettangolo $Hm.EM$ equivalente al rettangolo $HC.CE$, vale a dire al quadrato del raggio. Per eguale ragione sarà equivalente al quadrato del raggio anche il rettangolo $Ha.EA$; e perciò sarà $Hm.EM = Ha.EA$.

Quindi $Hm: Ha = EA : EM = J'a' : J'm'$;
dai cui $Hm.J'm' = Ha.J'a'$. C. D. D.

Avvertenza. La considerazione de' casi, ne' quali il punto P (fig. 69.) esiste nella tangente jk parallela alla HG, casi ne' quali, come si è veduto, il porisma trattato non ha luogo, dà occasione ai due porismi che seguono.

Porisma 54.° «Essendo dato un circolo, e due rette EF, HG (fig. 71.° e 72.°) ad esso tangenti e non parallele tra loro, ed un punto P esistente nella rf tangente al circolo e parallela alla HG e distinta dal punto di contatto; se con tm, Pm' si rappresentano due rette, l'una tangente il circolo, l'altra passante pel punto P, e variabili di posizione in modo che, ove la prima incontri la EF in un punto M, anche la seconda incontri la EF nel medesimo punto M, ed, ove la prima sia parallela alla EF, lo sia anche la seconda; indicando con m, m' i punti in cui queste due rette incontrano la HG, io dico che si potrà trovare un punto d nella HG tale che il rapporto del segmento dm al segmento dm' sia costante. »

Dim. Se ciò è vero, noi avremo che, quando m si trova in d, anche m' dovrà trovarsi in d. Allora dunque coincideranno le due rette tm, Pm', e formeranno una sola retta, la quale sarà tangente al circolo e passerà pel punto P. Se dunque condurremo dal punto P quella tangente al circolo che è diversa dalla Pf, essa incontrerà la HG in un punto che sarà il punto d dell'enunciato.
Considerando per ora il caso che questa tangente \(Pd \) non sia parallela alla \(EF \) (fig. 71.\(^{a} \)) conduciamo la tangente \(e\alpha \), e la retta \(Pa' \), parallele entrambe alla \(EF \). I punti \(\alpha, \alpha' \) nei quali esse incontrano la \(HG \) saranno due posizioni corrispondenti dei punti \(m, m' \); e perciò se il porisma è vero, dovrà essere \(dm : dm' = d\alpha : d\alpha' \).

Accingiamoci pertanto a dimostrare che, essendo il punto \(d \) per tal modo determinato, sussisterà realmente questa proporzione.

Pel porisma 52.° avremo \(JM : \omega m = jD : \omega d \), e quindi la proporzione
\[
\omega d : \omega m = jM : jD ;
\]
dalla quale
\[
d\alpha : dm = Mj : MD .
\]
Ma, condotta \(m'qr \) parallela alla \(FE \), noi avremo
\[
Mj : MD = m'r : m'q = \omega P : m'q = d\alpha' : dm' .
\]
Dunque
\[
d\alpha : dm = d\alpha' : dm',
\]
e quindi
\[
dm : dm' = d\alpha : d\alpha'. \quad \text{C. D. D.}
\]

Ora consideriamo il caso in cui la tangente al circolo dato, condotta dal punto \(P \) e diversa dalla \(Pj \), riesce parallela alla \(EF \) (fig. 72.\(^{a} \)). E dimostriamo che, anche in questo caso, indicando con \(d \) l'incontro di questa tangente colla retta \(HG \), il rapporto \(\frac{dm}{dm'} \) sarà costante.

Indicando con \(C \) il centro del circolo dato, a motivo del porisma 52.° avremo
\[
jM : dm = Cd^2 .
\]
D'altronde i triangoli simili \(MJP ; Pd' m' \) danno \(jM : jP = dP : dm' \);
\[
\text{o} \quad jM : dm' = Pd' .
\]
Quindi sarà
\[
jM : dm ; jM : dm' = Cd^2 : Pd' ;
\]
oossil
\[
dm : dm' = Cd^2 : Pd' = de : dP . \quad \text{Dunque ecc.}
\]

Porisma 55.° « Essendo \(EF, HG \) (fig. 73.\(^{a} \)) due rette non parallele tra loro e tangenti ad un circolo \(EF/H \), ed essendo \(P \) il punto di contatto della retta tangente al detto circolo e parallela alla \(HG \); se, da un punto \(M \) variabile di posizione nella retta \(EF \), si conducano la tangente \(Ml \) e la retta \(MP \), le quali incontreranno la tangente \(HG \) in due punti \(m, m' \), l'ascissa \(mm' \) sarà di lunghezza costante. »

Dim. Si conduca la retta \(PE \), la quale incontrerà la \(HG \) in un punto \(e' \), e si indichi con \(e \) il punto comune alle \(EF, HG \).

Quando il punto \(M \) è in \(E \), allora il punto \(m \) si trova in \(e \), ed il punto \(m' \),

\[
\text{settantacinque Porismi ecc.}
\]
in \(e' \); dunque \(e, e' \) sono due posizioni corrispondenti dei punti \(m, m' \); e quindi, se il porisma è vero, sarà sempre \(mm' = ee' \). Pertanto, onde dimostrare il porisma, noi potremo prendere in mira di provare questa eguali
tanza.

Ora, chiamiamo \(j, \mu \) i punti ne' quali la tangente in \(P \) incontra le ret
te \(EF, MF \), ed osserviamo che, essendo \(Pj = jE \), ed essendo simili i triangoli \(PjE, Ee' \), sarà \(ee' = eE = H \). Perciò noi ci prefiggeremo di dimostrare che \(mm' \) è sempre eguale ad \(H \).

Da un passo della dimostrazione del secondo caso considerato relativamente al porisma \(53.° \) risulta \(\mu H = Pj = He \), e quindi \(He = \mu H = Pj = me = \mu j = Mm = Mu = mm' = \mu P \).

Dunque \(mm' = He \). C. D. D.

Porisma \(56.° \) (260.° del Chasles). Sia dato un cerchio (fig. 74.°, 75.°, 76.°, 77.°), un punto \(P \) appartenente alla sua periferia, un punto \(\rho \) ad essa non apparte
tenente, ed una retta \(DX \) non passante pel punto \(P \). Sia \(MM' \) una corda passante pel punto \(\rho \) e rotante intorno a questo punto; e sieno condotte PM, PM', le quali incontreranno la retta \(DX \) in due punti \(m, m' \). Dico che in questa retta si potrà trovare un punto \(O \) tale che l'area del rettag
go \(Om, Om' \) riesca costante.

Dim. Se il porisma è vero, quando il punto \(m \) è in \(O \), allora il punto \(m' \) non esisterà; vale a dire, la retta \(PM' \) non incontrerà la \(DX \). Dunque per trovare il punto \(O \) basterà trovare la posizione che prende il punto \(m \) quando \(PM' \) è parallela a \(DX \). Pertanto

1.° Generalmente parlando, si otterrà il punto \(O \) colla costruzione se
guente: Sì conduca la corda \(PC \) (fig. 74.° e 75.°) parallela alla retta \(DX \); si
guida la retta \(\rho C' \), che incontrerà la periferia in un altro punto \(C \), e si con
duca la \(PC \). Il punto in cui questa incontrerà la \(DX \) sarà il punto cer
cato \(O \).

2.° Nel caso in cui la retta parallela alla \(DX \) condotta dal punto \(P \) sia tangente al cerchio, e non passi pel punto \(\rho \) (fig. 76.°), noi avremo che il punto \(O \) sarà il punto d'incontro della \(P \rho \) colla \(DX \).

3.° Nel caso in cui la parallela alla \(DX \) condotta pel punto \(P \) passi pel punto \(\rho \), e non sia tangente al cerchio dato (fig. 77.°), noi avremo che, allora unicamente la \(P'M' \) sarà parallela alla \(DX \), quando la \(\rho MM' \) coinciderà colla \(\rho P \), il che ha luogo soltanto quando la \(Pm \) è tangente al
circolo. Dunque, in tal caso, basterà condurre la tangente il circolo nel punto \(P \), ed il punto in cui essa incontrerà la DX sarà il punto \(O \) cercato.

4.° Finalmente, nel caso in cui (indicando con \(C \) il secondo punto in cui la retta parallela a DX condotta per \(P \) incontra la periferia, ovvero lo stesso punto \(P \), se tale parallela riesce tangente al circolo) nel caso, dico, in cui la retta \(\rho C \) riesce tangente al circolo, noi avremo che il punto \(C \) cadrà in \(C' \), e perciò la PC riuscirà parallela alla DX; onde il punto \(O \) dovrà trovarsi nella DX e nella parallela a DX condotta dal punto \(P \), ciò che non può aver luogo. Dunque in quest'ultimo caso il porisma non ha luogo.

Mi resta a dimostrare che nei primi tre casi, essendo il punto \(O \) determinato colle indicate costruzioni, il rettangolo \(Om' \cdot Om' \) sarà costante.

Quanto al primo caso, che è il caso generale, si conduca pel punto \(\rho \) (fig. 74.° 75.°) la parallela alla DX, che incontrerà le rette \(PO, PM, PM' \) in tre punti \(\omega, \mu, \mu' \); e si guidino le rette \(CM, C'M \). Essendo il quadrilatero \(MCCP \) inscritto nel circolo, avremo l'angolo \(MCCP \) eguale all'angolo \(mPC' \); ma questo è uguale all'angolo \(m\mu P \), dunque l'angolo \(MCCP \) uguaglia l'\(m\mu P \); e perciò il quadrilatero \(C\mu\mu' M \) ha i suoi vertici in una periferia circolare. Pertanto l'angolo \(\rho\mu C \) eguaglia l'angolo \(\rho MC \); ma questo, per proprietà del circolo, uguaglia l'angolo \(M'PC \), dunque sono eguali i due angoli \(\rho\mu C, M'PC \); e per conseguenza i quattro punti \(\mu, P, \mu', C \) sono in una medesima periferia circolare; per cui lo spazio \(\omega\mu, \omega\mu' \) sarà eguale allo spazio costante \(\omega C, \omega P \), e quindi esso pure costante. Ma lo spazio \(\omega\mu, \omega\mu' \) ha collo spazio \(Om' \cdot Om' \) il rapporto costante del quadrato di \(PO \) al quadrato di \(PO \); dunque anche lo spazio \(Om' \cdot Om' \) è costante.

Rispetto al secondo caso, nel quale la \(PG \) parallela alla DX riesce tangente al circolo e non passa pel punto \(\rho \) (fig. 76.°), si conduca ugualmente la \(\rho\mu\mu' \) parallela alla DX, e le \(MC, \mu C \). Avremo l'angolo \(\mu\mu C \) eguale all'angolo \(\rho\rho' \), per le parallele, e questo eguale al \(PMC \), per proprietà del circolo: onde gli angoli \(\mu\mu C, PMC \) saranno eguali; e perciò i quattro punti \(M, C, \rho, \mu \) in una periferia circolare. Pertanto l'angolo \(\rho\mu C \) eguaglia l'angolo \(\rho MC \); ma questo uguaglia l'angolo \(M'PC \); dunque \(\rho\mu C \) eguaglia \(M'PC \); e, per conseguenza, i quattro punti \(P, C, \mu, \mu' \) sono in una periferia circolare, e perciò lo spazio \(\rho\mu, \rho\mu' \) eguaglia lo spazio \(\rho C, \rho C' \). Questo è costante; dunque anche quello, ed anche lo spazio \(Om' \cdot Om' \) che ha con quello un rapporto costante.
Memoria del Prof. P. D. Marianini

Quanto al terzo caso finalmente, in cui la \(P \rho \) è parallela alla DX ed incontra la periferia data in un secondo punto \(P' \) distinto dal punto \(P \) (fig. 77.\(^a\)), dobbiamo dimostrare che, essendo O l’incontro della DX colla retta tangente il circolo nel punto \(P \), sarà costante l’area del rettango-lo \(Om \cdot Om' \). Si conduca la corda \(M'M' \), e poi dal punto \(M' \) la retta \(M'M' \parallel \) parallela alla XD. Avremo, per somiglianze di triangoli,

\[\frac{Om \cdot Om'}{OP} = \frac{hP}{hM'} = \frac{hP}{hM'} \cdot \frac{hM}{hn} \cdot \frac{hM'}{hP} \cdot \frac{hn}{hP}. \]

Ora, essendo l’angolo \(hP'M \) eguale all’angolo \(PP'M \), per proprietà del cir-

colo, e quest’angolo eguale all’\(hP'M \), per le parallele, sarà l’angolo \(hP'M \)

eguale all’angolo \(hP'M \), e perciò i punti \(h, P, P', M \) esisteranno in una me-

desima periferia circolare. Sarà pertanto \(\frac{hP}{pp} = \frac{Pp}{Pp} = \frac{Pm}{np} = \frac{Pm}{Pm} \);

e quindi \(\frac{hP}{np} = \frac{pp'}{Pp} = \frac{Pp}{Pp} \). E di qui si deduce \(\frac{hP}{hn} = \frac{PP}{Pp} \). Dunque sarà \(Om \cdot Om' = pp' = Pp : Pp \), e perciò \(Om \cdot Om' \) è costante.

Avvertenza. Nel caso quarto, nel quale, come abbiamo veduto, il porisma non ha luogo, ha luogo invece che il punto di mezzo dell’ascissa \(mm' \) è un punto fisso. Io ne ho trattato il seguente porisma, che appartiene al quinto de’generi distinti da Pappo ne’porismi di Euclide.

Porisma. 57.\(^b\) « Essendo dati (fig. 78.\(^a\)) un circolo, un punto \(\rho \) fuori di esso, un punto \(P \) nella sua periferia, ed un punto \(D \) non coincidente col punto \(P \), riteniamo che intorno al punto \(P \) girino due rette \(PM, PM' \) in modo che i punti \(M, M' \), ne’quali esse incontrano di nuovo la periferia, siano sempre in linea retta col punto \(\rho \). Dico che si potrà condurre pel punto \(D \) una retta DX non passante pel punto \(P \) e tale che la porzione \(mm' \) di questa retta, compresa tra le due rette giranti \(PM, PM' \), abbia il suo punto di mezzo in un punto fisso. »

Dim. Condotte dal punto \(\rho \) le due tangenti al circolo, i loro punti di contatto \(E, F \) saranno in generale distinti dal punto \(P \), ma potrà anco-
darsi il caso che uno di essi coincida con questo punto. Consideriamo prima il caso generale, in cui ciascuno de’due punti \(E, F \) è distinto dal punto \(P \).

Sia DX una retta soddisfacente la condizione del porisma, e sieno con-
dotte le rette \(PE, PF \). Nell’atto in cui la retta \(\rho MM' \) coincide colla tan-
gente \(\rho E \), le due rette \(PM, PM' \) cadono entrambe nella PE, e, per conse-
guenza, posto che la retta DX sia incontrata dalla PE in un punto \(e \), in questo punto \(e \) coincideranno i due punti \(m, m' \), ed anche il punto di

Serie II. Tomo II.
mezzo del segmento \(mm' \). Dunque, posto che la retta \(DX \) sia incontrata dalla \(EP \), il segmento \(mm' \) avrà sempre il suo punto di mezzo nel punto \(e \) comune a quelle due rette. Per analoga ragione, posto che la retta \(DX \) sia incontrata dalla \(PF \), il segmento \(mm' \) avrà sempre il suo punto di mezzo nel punto comune alle \(DX, PF \). Pertanto, se la retta \(DX \) fosse incontrata da ambedue le rette \(PE, PF \), il punto di mezzo del segmento \(mm' \) dovrebbe essere simultaneamente nell’uno e nell’altro dei due incontri, ciò che è impossibile, perché tali due incontri sono distinti, atteso che la retta \(DX \), per condizione del porisma, non passa pel punto \(P \).

Segue da ciò che la retta \(DX \), o sarà parallela alla \(PF \), ed il punto di mezzo del segmento \(mm' \) sarà sempre nel punto in cui la \(DX \) è incontrata dalla \(PE \), ovvero sarà parallela alla \(PE \), ed il punto di mezzo del segmento della \(DX \) compreso tra le \(PM, PM' \) sarà sempre nel punto in cui la \(DX \) è incontrata dalla \(PF \). E quindi, onde dimostrare il porisma, si dee prender in mira di provare che, essendo condotta \(DX \) parallela ad una delle due \(PE, PF \), per esempio alla \(PF \), e ritenuto ch’essa non passi pel punto \(P \), il segmento \(mm' \) della \(DX \) compreso tra le \(PM, PM' \) avrà sempre il suo punto di mezzo nel punto \(e \), ove la \(DX \) è incontrata dalla \(PE \). Al che mi accingo.

Si conduca dal punto \(P \) la parallela alle \(DX, PF \), la quale incontrerà le rette \(PM, PE, PM' \) in tre punti \(\mu, \varepsilon, \mu' \); e si guidino le rette \(EM, EF, FM, FE \).

L’angolo \(\mu'EP \) è uguale ad \(F'P' \) per le parallele, e questo è uguale a \(\rho FE \) per proprietà del circolo, dunque l’angolo \(\mu'EP \) uguaglia l’angolo \(\rho FE \); e perciò i quattro punti \(E, \varepsilon, \rho, F \) sono in una periferia circolare. Sarà pertanto l’angolo \(\rho EF \) uguale al \(\rho EF \); ma questo uguaglia l’angolo \(EPF \), il quale è uguale a \(\mu'EP \); e perciò l’angolo \(\rho EF \) è uguale al \(\mu'EP \).

Ora, questi due ultimi angoli uguagliano rispettivamente i due \(\varepsilon FP, \varepsilon PF \), i quali perciò saranno anch’essi tra loro eguali; e per conseguenza sarà \(P \varepsilon = EF \).

Essendo poi l’angolo \(\varepsilon UM \) eguale all’angolo \(F'P' \) per le parallele, e questo eguale all’angolo \(\rho FM \) per proprietà del circolo, sarà anco l’angolo \(\varepsilon UM \) uguale all’angolo \(\rho FM \), e perciò i quattro punti \(M, \mu, \rho, F \) sono in una periferia circolare. Dunque l’angolo \(\mu MF \) uguaglia l’angolo \(\rho MF \); ma questo uguaglia \(M'PF \); dunque \(\mu MF \) uguaglia \(M'PF \), e per conseguenza il supplemento \(\varepsilon UF \) uguaglia il supplemento \(\mu P \).
Raccogliendo le conclusioni, noi abbiamo che, ne' due triangoli μeF, μeP, gli angoli μ, ε del primo sono rispettivamente eguali agli angoli μ', ε del secondo, ed il lato εF è uguale ad εP. Dunque sarà $\varepsilon \mu' = \varepsilon \mu'$, cioè $\mu' F$ avrà il suo punto di mezzo in ε. Per conseguenza il segmento mm' ha il suo punto di mezzo in ε. C. D. D.

Assumiamo ora il caso in cui la retta ρP riesca tangente al circolo dato (fig. 79.4).

Si conduca da ρ l'altra tangente ρF e si congiunga P con F.

Nell'atto in cui la retta PM cade nella PF, vi cade anco la PM'; e nell'atto in cui la PM cade nella PF, anche la PM' cade nella PF. Dunque le due rette PF, PM, di questo caso corrispondono alle PF, PM del caso generale. Pertanto, in modo analogo a quello seguito di sopra, si potrà dimostrare che, se una retta DX soddisfa alla condizione del porisma, essa sarà parallela all'una o all'altra delle due PF, PM', e che il punto di mezzo del segmento di questa retta interseco tra le PM, PM' si troverà in quella delle due rette PF, PM' medesime, alla quale la DX non è parallela.

Proponiamoci pertanto di dimostrare 1° che, essendo condotta pel punto D la DX parallela alla PF (fig. 79.4), e ritenuto ch'essa non passi per P, il segmento mm' di questa retta, compreso tra le PM, PM', avrà sempre il punto di mezzo in ε, suo incontro colla PF; 2° che, essendo condotta dal punto D la DY parallela alla PF (fig. 80.4) e ritenuto ch'essa non passi per P, il segmento mm' di questa retta, compreso tra le PM, PM', avrà sempre il suo punto di mezzo in ε, punto d'incontro delle DY, PF.

Si conduca dal punto ρ (fig. 79.4) la parallela alle PF, DX, la quale incontrerà le PM, PM' in due punti μ, μ', e si guidino le FM, FM'.

Nei due triangoli $FP\mu$, $F\mu P$ abbiamo il lato ρF uguale al lato ρP, per proprietà del circolo, e l'angolo μPF eguale all'angolo $\mu' P P$ perché questi due angoli sono rispettivamente eguali ai due $F P \rho$, $F P \rho$, i quali sono tra loro uguali. Inoltre, essendo l'angolo $\mu P M$ eguale all'angolo $F P M$ per le parallele, e questo eguale al $\rho F M$ per proprietà del circolo, sarà l'angolo $\rho P M$ eguale all'angolo $\rho F M$; onde i quattro punti M, P, μ, μ', F sono in una periferia circolare. Dunque l'angolo $\rho \mu F$ uguaglia l'M'MF; ma questo uguaglia l'M'PF, il quale è uguale all'angolo $P \mu' P$; dunque, ne' due triangoli suddetti, sarà anco l'angolo $\rho P \mu$ eguale all'angolo $P \mu' P$; e perciò anche il lato $\rho \mu$ sarà uguale al lato $\rho \mu'$; e per conseguenza sarà em...
eguale ad em'; cioè il segmento mm' avrà il punto di mezzo in e, come dovevasi dimostrare in primo luogo.

Ora dal punto M (fig. 80.°) si conduca la parallela alle rette ρP, DY, la quale incontrerà le PF, PM' in due punti ϕ, μ'; dal centro C del circolo si conduca CR perpendicolare alla corda MM'; si congiunga R con ϕ; e si guidino i raggi CP, CF, che nella figura sono sottintesi.

Essendo retti gli angoli $CP\rho$, $CF\rho$, $CR\rho$, i cinque punti C, P, ρ, F, R si trovano in una medesima periferia circolare; e perciò, chiamato S il punto comune alle rette $R\rho$, PF, avremo

\[
\begin{align*}
RS:SP &= PS:SF = MS:SM' \\
\text{e quindi} & \\
SR:SM' &= SM:SR. \\
\end{align*}
\]

Ma, essendo $M\phi$ parallela a ρP, noi abbiamo anco

\[
\begin{align*}
S\phi:SP &= SM:SR \\
\text{dunque} & \\
SR:SM' &= S\phi:SP; \\
\end{align*}
\]

dal che deducesi che la retta $R\phi$ è parallela alla MP. Essendo dunque, nel triangolo $M\phi'\phi$, la retta $R\phi$ parallela al lato $M\phi'$, ed essendo d'altronde R il punto di mezzo del lato MM', ne viene che ϕ sarà il punto di mezzo del lato $M\mu'$; e, per conseguenza, f sarà il punto di mezzo del segmento mm', come dovevasi dimostrare in secondo luogo.

Porisma 58.° (177.° del Chasles). « Se da un punto m variabile di posizione su di una retta data L (fig. 81.°, 82.°) sieno condotte le tangenti ma, mb ad un circolo dato, la retta ab, che congiunge i due punti di contatto, passerà sempre per un medesimo punto. »

Dim. Si conduca dal centro O del circolo dato la retta Od perpendicolare alla retta data L; e s'immaginì che tutta la figura si rovesci, ruotando intorno alla retta Od sinché torni a cadere nel piano della sua posizione primitiva. Le nuove posizioni della retta data e del circolo dato coincideranno rispettivamente colle loro posizioni primitive. Pertanto, dopo l'immaginato rovesciamento, la retta ab potrà prendere tutte le posizioni che poteva prendere prima; giacché tali posizioni della retta ab dipendono unicamente dalla retta data e dal circolo dato, che pel rovesciamento della figura non cambiano posto. Dunque, posto che il porisma sia vero, il punto, pel quale passano tutte le posizioni della retta ab, avrà, dopo il rovesciamento, la stessa posizione che aveva prima; e perciò questo punto deve trovarsi nella retta Od. Noi pertanto ci proponiamo di dimostrare che il punto P, in cui la retta ab incontra la retta Od, è un punto fisso.
Si conduca il raggio Oa, e la retta Ocm, che sarà perpendicolare alla ab. Essendo retti gli angoli Pdm, Pcm, i quattro punti P, d, c, m sono nella periferia di un circolo; per cui $OP \cdot Od = Om \cdot Oc$.

Ma abbiamo ancora $Oa^2 = Om \cdot Oc$; dunque $OP \cdot Od = Oa^2$.

Dunque OP è costante, e quindi P è un punto fisso.

Corollario. Nei casi in cui la retta L è segante (fig. 81.°), se si congiungono i punti H, K, ne' quali essa incontra la periferia, col punto P ed anche col centro O, noi avremo $Od \cdot OP = OH^2 = OK^2$, e perciò saranno retti gli angoli OHP, OKP, e le PH, PK saranno tangenti al circolo. Dunque P è il punto comune alle due rette che toccano il circolo nei due punti ne' quali la segante L incontra la periferia. Possiamo pertanto concludere che

« La retta (ab), che unisce i punti di contatto delle due tangenti $(ma$, $mb)$ ad un circolo condotte da un punto (m) di una segante (l), passa pel punto (P) comune alle due rette che toccano il circolo ne' punti (H, K) ne' quali la detta segante incontra la periferia. »

Porisma 59.° (179.° del Casale). « Sia dato un circolo, e due rette parallele L, L' (fig. 83.°); e per un punto m variabile di posizione nella retta L sieno condotte le rette ma, mb tangenti al circolo dato, e la retta mP' passante per P' punto di mezzo del segmento $a'b'$ intercetto sulla retta L' tra le dette due tangenti. Io dico che questa retta mP' passa sempre per un medesimo punto. »

Dim. Dal centro O del circolo si conduca la retta OC perpendicolare alla retta L. Si osservi che, quando il punto m è in C, allora la retta mP' cade nella CO. Se pertanto la retta mP' passa sempre per un medesimo punto, questo punto dovrà essere nella CO. Pertanto noi ci proponiamo di dimostrare che il punto P, nel quale la mP' incontra la CO, è un punto fisso.

A tale oggetto si conduca pel punto P la parallela alla retta L, che incontrerà le tangenti ma, mb in due punti g, h. E si osservi che, essendo $a'P' = P'b'$, sarà anco $gP = Ph$; per cui i punti g, h sono egualmente distanti dal centro O; e quindi le tangenti ga, hb sono tra loro eguali.

Ora si conduca la retta bP', e dal punto g la parallela alla mb che incontrerà la bP' in un punto i. I due triangoli giP', hbP', essendo equiangoli, ed avendo i lati gP', $P'A$ tra loro eguali, avranno fra loro eguali anche
i lati \(gi, bh \). Ma \(bh = qa \); dunque \(gi = ga \). E, siccome inoltre \(mb = ma \), e le rette \(gi, mb \) sono parallele, saranno in linea retta i tre punti \(a, i, b \). Dunque \(P \) è il punto in cui la retta \(ab \) incontra la \(OC \). Ma, a motivo della dimostrazione del porisma precedente, il punto in cui la \(ab \) incontra la \(OC \), è un punto fisso, che si determina prendendo sulla \(OC \) da \(O \) verso \(C \) il segmento \(OP \) tale che il rettangolo \(OP \cdot OC \) equivalga al quadrato del raggio; dunque ecc.

Porisma 60. (162.° del Chasles.) « Abbiasi un circolo, ed un triangolo \(USS' \) ad esso circoscritto (fig. 84.°, 85.°), ed una retta \(aa' \) tangente al circolo e variabile di posizione. I punti \(a, a' \), ne' quali essa incontra i lati \(US \), \(US' \), sieno congiunti coi punti \(S, S' \), rispettivamente. Dico che il punto comune alle due congiungenti si trova sempre in una medesima retta. »

Dim. Denotiamo con \(\alpha, \alpha', \sigma \), \(\alpha \) i punti di contatto delle \(US \), \(US' \), \(SS' \), \(aa' \), e chiamiamo \(m \) il punto comune alle \(Sa, S'a \).

Siccome, quando la tangente \(aa' \) si muove in modo che il punto \(\alpha \) si accosti indefinitamente al punto \(\sigma \), allora i punti \(a, a' \) s'accostano indefinitamente ai punti \(\alpha, U \), così questi due punti possono riguardarsi come due posizioni corrispondenti dei punti \(a, a' \), e quindi le rette \(S\alpha, SU \) come due posizioni corrispondenti delle \(S'a, S'a' \), e, per conseguenza, il punto \(\sigma \) come una posizione particolare del punto \(m \). Per simile ragione anche il punto \(\alpha' \) può riguardarsi come una posizione del punto \(m \); e perciò, se il porisma è vero, la retta nella quale si trova sempre il punto \(m \) sarà la \(\alpha\alpha' \). Proponiamoci adunque di dimostrare che realmente il punto \(m \) si trova sempre nella \(\alpha\alpha' \).

Osserviamo che, se è vero che il punto \(m \) si trova sempre nella \(\alpha\alpha' \), sarà vero altresì che in ogni quadrilatero circoscritto ad un circolo il punto comune alle sue diagonali si troverà nella retta che unisce i punti di contatto di due qualunque suoi lati opposti; onde lo stesso punto \(m \) dovrà trovarsi anco nella \(\alpha\sigma \), e le quattro rette \(aS', a'S, \alpha\alpha', \alpha\sigma \) passeranno per un medesimo punto. Potremo dunque proporci di dimostrare che le rette \(Sa, S'a \) passano pel punto comune alle \(\alpha\alpha', \alpha\sigma \).

Dal punto \(S \) si conduca la retta \(Sh \) parallela alla \(aa' \), che incontrerà la \(\alpha\sigma \) in un punto \(h \), e si conduca anco la \(Sk \) parallela ad \(SU \), che incontrerà \(\alpha\alpha' \) in un punto \(k \).
Essendo l'angolo αh eguale al αa per proprietà del circolo, e quest'angolo αa eguale al αh per le parallele, saranno tra loro uguali gli angoli αh, αh, e perciò $h = h$. Similmente avremo l'angolo $\alpha k = \alpha k\alpha' = \alpha\alpha' = \alpha\alpha' = \alpha\alpha'$, onde $\alpha = \alpha$. Ma $\alpha = \alpha$, dunque sarà $h = h$. Ora queste due rette h, k sono rispettivamente parallele alle $\alpha\alpha'$, $\alpha\alpha'$, le quali sono anch'esse tra loro uguali, e perciò la α passa pel punto comune alle due $h\alpha$, $k\alpha'$, cioè $\alpha\alpha'$, $\alpha\alpha'$.

Egualmente si dimostra che anche la α passa pel detto punto comune alle $\alpha\alpha'$, $\alpha\alpha'$. Dunque le rette α, α s'incontrano nel punto comune alle $\alpha\alpha'$, $\alpha\alpha'$; dunque ecc.

Corollario. Se $\alpha\alpha'$, $\alpha\alpha'$, $\alpha\alpha'$ sono le quattro tangenti ad un medesimo circolo condotte da due punti α, α, le rette $\alpha\alpha'$, $\alpha\alpha'$ passano entrambe per un medesimo punto della α'. Inoltre: Il punto comune alle diagonalì di un quadrilatero circoscritto ad un circolo si trova nella retta che unisce i punti di contatto di due lati opposti.

Porisma 61 (218.° del Chasles) « Intorno a due punti fissi P, Q esistenti in una retta tangente un circolo dato (fig. 86.) girino due rette PN, QH, in modo che la prima incontri sempre questo circolo, e la seconda passi sempre pel punto L comune alle rette che toccano il circolo ne’ punti M, N, ne’ quali la prima ne incontrà la periferia. Dimoche il punto m comune alle due rette giranti si trova sempre in una medesima retta. »

Dim. Conducansì dai punti P, Q le due tangenti PB, QD, e si osservi che, quando la PN è in PB, allora il punto m è in B, e quando la PN è in PD, allora il punto m è in D. Dunque i punti B, D sono due posizioni particolari del punto m. Nei pertanto ci proponiamo di dimostrare che il punto m si trova sempre nella retta che passa per punti B, D.

Osserveremo primieramente che, pel corollario del porisma 58°, la retta BS (che unisce i punti di contatto delle tangenti al circolo condotte dal punto P esistente nella segante MN) passa pel punto L comune alle rette tangenti il circolo nei punti M, N. Ciò posto, dal punto H, comune alle PB, QL, si conduca l’altra tangente HI, e si denoti con K il punto in cui essa incontra la QD; e si guidi la retta DI. Per la prima parte del corollario del precedente porisma, le rette SB, DI passeranno entrambe per un medesimo punto della retta QH; ma la SB passa pel punto L della QH, dunque anche la DI passa per L. Quindi la retta MN (che unisce
i punti di contatto delle tangenti condotte da L punto della segante D1) passerà pel punto K comune alle tangenti il circolo nei punti l, D (corollario del porisma 58°). Pertanto il punto m è comune alle diagonali del quadrilatero PQKH circoscritto al circolo; dal che (all'appoggio della seconda parte del corollario del porisma precedente) si conclude che questo punto m si trova nella retta BD. C. D. D.

Porisma 62.° (173.° del Chasles) « Sia dato un circolo, ed un punto P distinto dal suo centro O (fig. 87.°) Se da un punto D variabile di posizione nella sua periferia sia condotta una retta passante pel punto P, la quale incontrerà la periferia in un secondo punto C, ed un'altra retta DE perpendicolare al diametro AB che passa pel punto P, la quale incontrerà la periferia in un altro punto E; io dico che la retta EC passerà sempre per un punto implicitamente dato. »

Dim. Quando il punto D è in A, allora i punti E, C cadono rispettivamente in A, B; e perciò AB è una posizione della retta EC. Se dunque è vero che questa retta EC passa sempre per un punto fisso, questo punto dovrà essere nella retta AB. Onde, per dimostrare il porisma, noi prendereemo in mira di dimostrare che il punto Q, in cui la EC incontra la AB, è un punto fisso.

Sia condotto il raggio OD. Essendo l'arco DAE doppio dell'arco DA, ed insistendo sul primo di questi archi l'angolo ECD fatto alla periferia, e sul secondo l'angolo AOD fatto al centro, questi due angoli saranno uguali; e quindi saranno eguali anche i loro supplementi PCQ, DOP; onde i punti D, O, C, Q sono in una periferia circolare, e perciò sarà

\[OP = PQ = DP = PC = AP = PB. \]

Dunque la lunghezza PQ è costante e conosciuta, e perciò Q è un punto fisso conosciuto.

Porisma 63.° (178.° del Chasles). « Sia circoscritto un angolo APB ad un circolo (fig. 88.° 89.°) e sia dato nella retta che passa pei punti di contatto A, B un punto Q non equidistante da questi punti A, B, e sieno condotte dai due punti P, Q due rette concorrenti in un punto M variabile di posizione nella periferia del detto circolo, le quali incontreranno la periferia stessa in due altri punti m, m'. Dico che la retta mm' passa sempre per un medesimo punto. »

Dim. Quando il punto M è in A, allora la retta mm' si trova in AB.
Se dunque la retta \(mm' \) passa sempre per un medesimo punto, questo punto si troverà nella retta \(AB \). Prenderemo pertanto in mira di dimostrare che la retta \(mm' \) incontra sempre la \(AB \) in un medesimo punto.

Si conduca la retta \(CP \), la quale incontrerà la \(AB \) in un punto \(I \), e la periferia in un punto \(D \), poi si guidino corde \(\text{M} \text{I} \text{m} \), \(ma \). Si può facilmente dimostrare che \(D \) è il punto di mezzo dell’arco \(mm \), appoggiandosi al teorema relativo al porisma 43\(^{\circ}\), ovvero come segue.

Si conducano i raggi \(C \text{A} \), \(C \text{m} \). Essendo retto l’angolo \(PAC \), e la retta \(AI \) perpendicolare alla \(CP \), noi avremo

\[
\frac{\text{PI} \cdot \text{PC}}{\text{PA}^2} = \frac{\text{PM} \cdot \text{PM}}{\text{PM} \cdot \text{PM}}.
\]

Pertanto i quattro punti \(M \), \(m \), \(I \), \(C \) sono in una medesima periferia circolare, e quindi sono tra loro uguali gli angoli \(\text{m} \text{M} \text{i} \), \(\text{m} \text{C} \). E siccome il primo di questi angoli è fato alla periferia, l’altro al centro del circolo \(\text{A} \text{M} \text{B} \), viene di conseguenza che l’arco \(mm \) è doppio dell’arco \(m \text{D} \), vale a dire che \(D \) è il punto di mezzo dell’arco \(mm \).

La corda \(mm \) è pertanto perpendicolare al raggio \(CD \), e perciò parallela alla \(AB \). Ne segue che la \(mm' \) non sarà parallela alla \(AB \), ma la incontrerà in un punto, che indico con \(R \). Dunque l’angolo \(QRm' \) è uguale all’angolo \(mm' \). Ma questo è uguale all’angolo \(nMm' \) per proprietà del circolo, dunque l’angolo \(QRm' \) uguaglia l’angolo \(nMm' \). Perciò i quattro punti \(M \), \(I \), \(R \), \(m' \) si trovano in una medesima periferia circolare, onde sarà

\[
QR \cdot QR = QM \cdot Qm' = QA \cdot QB.
\]

Dunque la lunghezza \(QR \) è costante, e perciò \(R \) è un punto fisso. Dunque ecc.

Porisma 63\(^{\circ}\) (219\(^{\circ}\) del Chasles). a Sia circoscritto un angolo \(APB \) ad un circolo (fig. 90\(^{\circ}\)) sia condotta la retta che passa per punti di contatto \(A, B \), e dal vertice \(P \) dell’angolo sia condotta un’altra retta \(PR \). Sia rappresentata in \(aMN \) una retta tangente al circolo e di posizione variabile, la quale incontrerà le rette \(AB \), \(RP \) in due punti \(M, N \), e da questi punti sieno condotte le tangenti \(Ma, Na' \). Dico che il punto \(m' \) comune a queste due tangenti si trova sempre in una medesima retta.

Dim. Considero prima il caso in cui la \(PR \) incontra la \(AB \) in un punto \(R \) situato fuori del circolo.

Sieno condotte da questo punto \(R \) le tangenti \(Rd, Rd' \), e sia guidata la retta \(dd' \).

Serie II. Tom. II.
Quando la tangente \(aMN \) s’accosta indefinitamente alla \(dR \), allora il punto \(m' \) s’accosta indefinitamente al punto \(d' \); e quando quella tangente s’accosta indefinitamente alla \(d'R \), allora il punto \(m' \) s’accosta indefinitamente al punto \(d' \). Dunque i punti \(d \) e \(d' \) nonno considerarsi come due posizioni del punto \(m' \); e perciò, se il porisma è vero, la retta nella quale si trova sempre il punto \(m' \) sarà la \(dd' \).

Dimostriamo che effettivamente il punto \(m' \) si trova sempre nella retta \(dd' \).

Si guidino le rette \(aa' \), \(aa'' \), \(a'a'' \), e dal centro \(C \) la \(CH \) perpendicolare alla \(RP \), e si chiami \(Q \) il punto comune alle \(CH \), \(AB \).

La retta \(aa'' \) passerà sempre per un medesimo punto, il quale sarà nella \(CH \) (porisma 58.\(^{\circ} \)) e, siccome \(AB \) è una posizione della \(aa'' \), questo punto sarà \(Q \), e per questo stesso punto passerà anco la \(dd' \), che è pure una posizione della \(aa'' \). La retta \(aa' \) poi, pel corollario del porisma citato, passa pel punto \(P \); e così pure la \(dd' \). Ora, siccome i due lati \(aa' \), \(aa'' \) del triangolo inscritto \(ad'ad'' \) passano rispettivamente pei punti \(P \), \(Q \), il secondo de’quali è nella retta che unisce i punti di contatto delle tangenti condotte dal primo; così, pel porisma precedente, avremo che il terzo lato \(a'a'' \) passerà per un punto fisso. E, siccome, condotta \(CI \) perpendicolare ad \(AB \), i punti \(d \), \(I \), \(d' \) si trovano nella periferia circolare avente per diametro \(CB \), onde sarà \(IQ \cdot QR = dQ \cdot Qd' = BQ \cdot QA \), così, a motivo del teorema risultante dalla dimostrazione del precedente porisma, avremo che il punto fisso pel quale passa sempre la \(a'a'' \) sarà \(R \). Pertanto, a motivo del già citato corollario del porisma 58\(^{\circ} \), la retta \(dd' \), che unisce i punti di contatto delle tangenti condotte dal punto \(R \) esistente nella segante \(a'a'' \), passerà per \(m' \) punto comune alle rette tangenti il cerchio nei punti \(a' \), \(a'' \). Dunque il punto \(m' \) si trova nella \(dd' \). C. D. D.

Mi accingo al caso in cui la retta data passante pel vertice \(P \) dell’angolo circoscritto al cerchio incontrò la \(AB \) in un punto situato entro il cerchio, e supporro che questo punto non sia equidistante dai punti \(A \), \(B \).

E, per approfittare della stessa figura, supponiamo che questa retta data sia la \(PQ \), e che, essendo \(M \) ed \(m' \) i punti d’incontro di una tangente variabile \(Ma'm' \) colle rette \(AB \), \(PQ \), ed essendo condotte le tangenti \(Ma \), \(m'a'' \), si tratti di dimostrare che il punto \(N \) comune a queste tangenti si trova sempre in una medesima retta.

Dai punti \(d \), \(d' \), nei quali la retta \(PQ \) incontra la periferia, sieno condotte le tangenti, che s’incontreranno in un punto \(R \).
MEMORIA DEL PROF. P. D. MARIANINI

La retta AB passerà pel punto R, a motivo del corollario del porisma 58.°
Osservo poi che, quando la tangente variabile $Ma'm'$ cade in dR, allora il
punto M è in R, il punto m' in d; onde le Ma, $m'a'$ cadono rispettivamente
in Rd', dR, ed il punto N ad esse comune cade in R. E, quando la $Ma'm'$
cade in AP, allora il punto N cade in P. Pertanto R e P sono due posizioni
del punto N; e perciò, se il punto N si trova sempre in una retta, questa
sara la retta PR.

Dimostriamo ora che effettivamente il punto N si trova sempre nella
retta PR.

Chiamo N' il punto in cui la aM incontra la retta PR.

Se dal punto N' si conduce quella tangente al circolo che è distinta
dalla Na, essa, a motivo della dimostrazione del caso già considerato, in-
contra la Ma' in un punto della retta PQ, e perciò nel punto m'. Essa
perciò, non potendo coincidere colla $m'a'$, coinciderà colla $m'a''$, e per-
ciò N' coincide con N. Dunque N si trova nella PR. C. D. D.

I casi particolari, ne' quali la retta fissa passante pel punto P è paral-
lela, ovvero perpendicolare, alla retta AB, non presentano difficoltà dopo i
casi generali trattati.

Porisma 65.° (182.° del Chasles). « Se un quadrilatero $abcd$ (fig. 91.°)
inscritto in un circolo dato varia in modo che, conservandosi inscritto
nel circolo stesso, tre dei suoi lati ab, bc, cd, passino sempre per tre punti
dati P, Q, R posti in linea retta, io dico che il quarto lato ad, o sarà sempre
parallelo ad una stessa retta, o passerà sempre per un medesimo punto. »

Dim. Supponiamo che la retta PQ seghi il circolo dato.

Quando la retta Pab cade nella PQ, allora tutti quattro i lati del qua-
drilatero cadono nella PQ stessa. Se pertanto il lato ad è sempre paral-
lelo ad una stessa retta, dovrà esserlo alla PQ; e, se passa sempre per un
medesimo punto, questo punto dovrà trovarsi nella retta PQ. Proponiamoci
pertanto di dimostrare che il lato ad, o è sempre parallelo alla PQ, ovvero
incontra sempre questa retta in un medesimo punto.

Si conduce dal punto a, che è uno dei termini del quarto lato, la
corda $a\delta$ parallela alla retta PQ; poi si congiunga il punto δ col vertice c
opposto ad a, e chiamiamo ρ il punto in cui la congiungente incontra
la retta PQ.

Per proprietà del circolo, sarà l'angolo $P\delta Q$ eguale all'angolo $a\delta \rho$; ma
questo è uguale all’angolo \(Q\rho c \) per le parallele; dunque gli angoli \(P\rho Q, Q\rho c \) sono eguali, e perciò i quattro punti \(P, c, \rho, c \) si trovano in una periferia circolare; onde sarà \(Q\rho = Qb \cdot Qc \). Pertanto \(\rho \) è un punto conosciuto, la cui posizione dipende soltanto da cose date.

Ora; nei casi in cui il rettangolo \(QP, QR \) equivalga al rettangolo costante \(Qb, Qc \), ed i due punti \(P, R \) siano dalla stessa banda del punto \(Q \), ovvero da bande opposte, secondo che il punto \(Q \) è fuori, ovvero dentro del circolo, i punti \(\rho \) ed \(R \) coincidono. In tali casi pertanto, la retta \(C\rho \) coincide colla \(CR \), il punto \(\delta \) col punto \(d \), e la retta \(ad \) colla \(ad \); onde questa retta \(ad \) è sempre parallela alla retta \(PQ \).

Negli altri casi poi, i punti \(\rho \), \(R \) sono distinti. Perciò la retta \(C\rho \) è distinta dalla \(CR \), il punto \(\delta \) dal punto \(d \), e la retta \(ad \) dalla \(ad \). Dunque questa retta \(ad \) incontra la \(PQ \) in un punto, che indico con \(S \), e che devo dimostrare essere un punto fisso.

L’angolo \(R\rho C \), ossia l’angolo \(d\delta \), è uguale all’angolo \(da\delta \) per proprietà del circolo, e quest’ultimo angolo è uguale all’angolo \(d\delta \rho \) per le parallele, dunque l’angolo \(R\rho \) è uguale all’angolo \(d\delta \rho \). Pertanto i quattro punti \(S, c, \rho, d \) sono in una periferia circolare; per cui sarà \(SR \cdot R\rho = dR \cdot dR \).

E siccome \(R\rho \) è costante, come pure lo spazio \(dR \cdot dR \), così sarà costante anco \(SR \), e perciò \(S \) un punto fisso.

Osservazione 1. In modo analogo affatto a quello, col quale abbiamo dimostrato che nel caso in cui la \(PQ \) sega il circolo dato, il quarto lato del quadrilatere o è sempre parallelo alla retta \(PQ \), ovvero incontra questa retta sempre in un medesimo punto, si può dimostrare la stessa cosa anche nel caso in cui la retta \(PQ \) non segui il circolo. Anzi, il ragionamento precedente riguardante il primo caso si può applicare alla figura 92a, nella quale la retta \(PQ \) non sega il circolo.

Ma non è applicabile a questo secondo caso la prima parte della dimostrazione, cioè l’indagine colla quale si è trovato che, se il porisma è vero, la retta \(ad \) passerà sempre per un medesimo punto della retta \(PQ \), ovvero sarà sempre parallela alla \(PQ \) stessa. Eccò pertanto un altro modo d’istituire tale indagine, il quale è applicabile a tutti i casi.

Ammettiamo la verità del porisma; ammettiamo cioè che la retta \(ad \) (quarto lato del quadrilatere inscritto \(abcd \) variabile in modo che i suoi lati \(ab, bc, cd \) passino sempre pel punti \(P, Q, R \) rispettivamente) (fig. 93a),
o passi sempre per un medesimo punto, o riesca sempre parallela ad una medesima retta. Se la retta \(ad \) passa sempre per un medesimo punto, vi saranno necessariamente posizioni di questa retta che incontreranno la PQ. Potremo dunque considerare uno stato del quadrilatero \(abcd \) corrispondentemente al quale la retta \(ad \) incontri la PQ. Indichiamo con \(S \) questo incontro. Sia condotta la \(Sb, \) e si chiami \(\dot{S} \) l’altro suo incontro colla periferia \((*) \). Sia condotta anche la \(R\dot{S} \) e si chiami \(\gamma \) l’altro punto d’incontro di questa retta colla periferia.

I punti \(Q, \gamma, a \) saranno in linea retta; ed, ammettendo noi la verità del porisma, potremo dimostrar ciò come segue. Imaginiamo che il quadrilatero vari in modo che, conservandosi inscritto nel cerchio, i suoi lati \(ad, dc, cb \) passino sempre pei punti \(S, R, Q \) rispettivamente. Noi avremo che il rimanente lato \(ab \), o passerà sempre per un medesimo punto, o si conserverà sempre parallelo ad una medesima retta. In tale deformazione poi, nell’atto in cui il punto \(d \) sarà in \(\dot{S} \), il punto \(a \) sarà in \(b \), e perciò il lato \(ba \) avrà preso una posizione, nella quale passerà ancora pel punto \(b \); e, poiché questo lato passa sempre per un medesimo punto (che non può esser nella periferia e perciò è diverso da \(b \)), ovvero si conserva sempre parallelo ad una medesima retta, esso nella sua nuova posizione coinciderà colla sua posizione primitiva; solo che, essendo il punto \(a \) passato in \(b \), il \(b \) sarà passato in \(a \). La retta \(R\dot{S} \) poi sarà passata in \(R\dot{S} \); e perciò il punto \(c \) in \(\gamma \), ed il lato \(bc \) in \(a\gamma \). Ma il lato \(bc \) passa sempre pel punto \(Q \), dunque \(a\gamma \) passerà per \(Q \), vale a dire i punti \(Q, \gamma, a \) sono in linea retta.

Ciò posto, consideriamo quel cambiamento del quadrilatero \(abcd \), al quale si riferisce il porisma; riteniamo cioè ch’esso quadrilatero, conservandosi inscritto nel cerchio, varj in modo che i suoi lati \(ab, bc, cd \) passino sempre pei punti \(P, Q, R \) rispettivamente. Nell’atto in cui il punto \(d \) sarà in \(\dot{S} \), il punto \(c \) sarà in \(\gamma \), e quindi, siccome \(Q, \gamma, a \) sono in linea retta, il punto \(b \) sarà in \(a, \gamma \), per conseguenza, il punto \(a \), in \(b \); laonde, in tale atto, il lato \(ad \) sarà in \(b\dot{S} \). Dunque \(b\dot{S} \) è una delle posizioni che prende il lato \(ad \) nel supposto cambiamento del quadrilatero \(abcd \). Se dunque, in tal

\((*) \) Nel caso in cui \(S\dot{S} \) fosse tangente, s’intenda che \(\dot{S} \) sia un altro nome dello stesso punto \(b \).
cambiamento, il lato \textit{ad} passa sempre per un medesimo punto, questo punto dovrà trovarsi e nella retta \textit{ad} e nella \textit{bd}; e perciò nella retta \textit{PQ}, giacché il punto \textit{S} comune a quelle due rette si trova appunto nella retta \textit{PQ}.

Se invece la retta \textit{ad} è sempre parallela ad una medesima retta, dovrà esserlo alla retta \textit{PQ}. Altrimenti, chiamando \textit{S} il punto in cui la retta \textit{ad} incontra la \textit{PQ}, si potrebbe dimostrare, come si è fatto testé, che \textit{bs} è un’altra posizione della retta \textit{ad}; onde questa \textit{ad} non sempre si conserverebbe parallela ad una medesima retta.

Se dunque il porisma è vero, la retta \textit{ad} o passerà sempre per un medesimo punto della \textit{PQ}, ovvero sarà sempre parallela a questa retta.

\begin{itemize}
 \item \textit{Osservazione 2.} Da questo porisma, o piuttosto dal teorema ad esso relativo, si può dedurre ciò che abbiamo detto dal porisma 49a, che cioè i punti comuni ai lati primo e quarto, secondo e quinto, terzo e sesto di un esagono inscritto in un circolo sono in linea retta.
\end{itemize}

Sia infatti \textit{abcdefa} (fig. 94.a) un esagono inscritto in un circolo, e \textit{Q, R, S} i punti comuni ai suoi lati \textit{ab, de; be; ef; cd, fa}. Siano condotte le rette \textit{QR, ad}, e si chiami \textit{P} il loro punto comune. Se noi concepiamo un quadrilatero variabile inciso nel circolo, i cui lati primo, secondo e terzo passino rispettivamente nei punti \textit{P, Q, R}, il suo quarto lato, o incontrerà la \textit{QR} sempre in un medesimo punto, ovvero sarà sempre alla \textit{QR} parallelo. Ora il quadrilatero \textit{ade}a è uno stato del quadrilatero variabile immaginato; e \textit{da}b\textit{c}d\textit{e} ne è un altro stato. Dunque i quarti lati \textit{fa, cd} di questi due quadrilateri, o incontreranno la \textit{PR} in un medesimo punto, ovvero saranno entrambi paralleli a questa retta \textit{PR}. Dunque ecc.

Qui però è da avvertirsi che le rette \textit{QR, ad} potrebbero essere tra loro parallele, e che conserverebbe considerare anche questo caso onde completare la dimostrazione. A tale scopo si potrebbe trattare il seguente porisma: « Se un quadrilatero inscritto in un circolo varia in modo che due dei suoi lati passino sempre per due punti dati ed un terzo sia sempre parallelo alla retta che passa per questi due punti, il suo quarto lato, o passerà sempre per un medesimo punto, o sarà sempre parallelo ad una stessa retta. » E si troverebbe che il detto quarto lato, o passerà sempre per un medesimo punto della retta che unisce i due punti dati, o riuscirà sempre parallelo a questa retta. E da ciò si può dedurre la verità del teo-
rema, di cui si tratta, pel caso in cui le rette QR, \(ad\) sieno tra loro parallele, nello stesso modo nel quale dal porisma trattato si è dedotta la verità del teorema stesso pel caso generale.

Osservazione. Il vigesimonono, cioè l'ultimo dei generi nei quali Pappo Alessandrino ha distinto i porismi di Euclide, è da lui caratterizzato come segue:

« Che tal retta avrà una direzione data, ovvero insieme con cert'altra retta passante per un punto dato conterrà un angolo dato. »

Il Simson, come esempio di porismi di questo genere, esibisce il seguente:

« Se da due punti dati A, B (fig. 95.\(^a\)) si conducano comunque due rette AC, BC ad una periferia circolare CDE data, le quali incontreranno di nuovo tale periferia in due punti D, E, la retta DE conterrà un dato angolo con una retta passante per un dato punto; o sarà parallela ad una retta data di posizione, o passerà per un dato punto. »

Ma il Chasles dopo aver riportato questo enunciato (pag. 259), osserva che, siccome la retta DE può anche passare per un punto dato, il che non è ammesso nell'enunciato di Pappo, così questo porisma non appartiene a tutto rigore al XXIX genere suddetto, e perciò non si occupa di dimostrarlo. Egli poi asserisce che i tre porismi, ch'egli ha proposti come appartenenti a questo genere, soddisfano rigorosamente all'enunciato di Pappo. Ma, se non mi appongo, questi tre porismi si trovano rispetto all'enunciato di Pappo nella stessa condizione del porisma esibito dal Simson. Eccone il primo (\(^*\)):

« Quando due punti variabili \(m, m'\) (fig. 96.\(^b\)) dividono due rette in parti proporzionali, le rette \(mm'\) sono parallele a una retta data di direzione; ovvero esiste un punto O tale che ciascuna retta \(mm'\) fa un angolo dato colla retta condotta dal punto \(m'\) a questo punto O. »

E qui è manifesto che, quando le due rette divise in parti proporzionali dai punti \(m, m'\) sieno tra loro parallele la retta \(mm'\) passerà sempre per un medesimo punto, a meno che le divisioni fatte dai due punti \(m, m'\) sieno, non solo proporzionali, ma anco uguali. Se dunque vogliamo che il

\(^{(*)}\) Chasles pag. 257, porisma CI\(V\).
porismo appartenga al XXIX.° genere, a tutto rigore fa duopo restringerne la ipotesi, esprimendo che le due rette divise in parti proporzionali dai punti \(m, m' \) non siano tra loro parallele. Analogamente può dirsi rispetto ai due porismi CLVI e CLVII del Chasles. E si avverte che, facendo una opportuna restrizione nella ipotesi del porismo esibito dal Simson (sebbene questa riesca a vero dire stiracchiata), si può ridurlo anch'esso ad appartenere a tutto rigore al genere di cui si tratta. E la restrizione da farsi è che se uno dei punti dati \(B, A \) è fuori del cerchio, l'altro o sia il punto di mezzo della retta che misura i punti di contatto delle tangenti condotte da quel punto, ovvero non si trovi in linea retta coi detti punti di contatto (\(*\)).

Tutto ciò si è detto nella ipotesi, ammessa dal Chasles, che, quando Pappo dice che una retta fa con una retta un angolo dato, egli intende sempre assolutamente escluso il caso che quest'angolo sia nullo, ovvero eguale a due retti; la qual cosa forse non è assolutamente certa.

E, siccome inoltre il suddetto porismo del Simson offre interesse rispetto all'indagine occorrente per ridurlo ad un teorema, così mi parve non inopportuno di trattarlo. Anzi trattarò anche alcuni altri porismi ad esso affini, quantunque non tutti appartengano precisamente al XXIX genere suddetto e quantunque, anche dietro le espressioni di Pappo riguardanti lo spirito dell'opera di Euclide, non possa ammettersi che tutti questi porismi vi siano stati trattati.

Devo poi avvertire che le dimostrazioni di tali porismi sono pressoché desunte dalla soluzione del problema XI, proposizione CXVII, del libro settimo delle Collezioni Matematiche di Pappo, e da quelle di alcuni problemi a questo affini esibite da Annibale Giordano di Ottaiano (\(\ast\)).

Per brevità di discorso, io chiamero deviation de una retta da un'altra il minor angolo di cui deve rotare in un dato senso da seconda per diventare parallela alla prima. E dirò che la deviation di una retta da una altra ad essa parallela, ovvero con essa coincidente, è nulla.

Lemma. Posto che \(a \) (fig. 97.\(\ast\)) sia un punto variabile di posizione nella

(\(*\) Già si ammette tacitamente che nè l'uno nè l'altro dei due punti dati si trovi nella periferia data.

(\(\ast\)) Memorie della Società Italiana delle Scienze, T. IV, pag. 8 e seg.
periferia di un circolo dato, e P un punto fisso non esistente in tale periferia, se Q sarà un punto fisso, e la retta Qa avrà dalla Pa una deviazione costante, il punto Q coinciderà col punto P, e la detta deviazione sarà nulla.

Indicate infatti con \(a, a', a''\) tre posizioni del punto \(a\), cioè tre punti della periferia data, se il punto \(Q\) non coincidesse col punto \(P\), si avrebbero gli angoli \(QaP, Qa'P, Qa''P\) tra loro uguali; e perciò i cinque punti \(P, Q, a, a', a''\) esisterebbero in una medesima periferia circolare; e quindi il punto \(P\) esisterebbe nella periferia data, ciò che è contro l'ipotesi.

Porisma 66.° « Se un quadrilatero \(abcd\) (fig. 98.°) inscritto in un dato circolo varia in modo che, conservandosi inscritto in quel circolo, i suoi lati \(ab, bc, cd\) passino sempre per tre punti dati \(A, B, C\) non esistenti nella periferia, nè posti in linea retta, io dico che il quarto lato \(ad\) del quadrilatero ha una deviazione costante dalla retta che unisce il vertice \(d\) con un punto fisso \(D\) implicitamente dato.

Dim. In primo luogo, ammessa la verità del porisma cercheremo di determinare quale posizione debba avere questo tal punto \(D\); rispetto al quale possiamo innanzi tutto osservare che esso non potrà trovarsi nella periferia data; altrimenti, essendo costante la deviazione della \(ad\) dalla \(dD\), dovrebbe esser costante anco l'arco compreso tra i punti \(a, D\), e perciò \(a\) dovrebbe essere un punto fisso, ciò che è impossibile.

Sia congiunto il punto \(C\) col punto \(D\); ed inoltre sia condotta da \(\gamma\), punto nel quale la retta \(Dd\) incontra di nuovo la periferia, la corda \(\gamma\beta\) parallela alla retta \(CD\), e sia condotta la retta \(\beta c\), la quale incontrerà la \(CD\) in un punto \(C\). Per proprietà del circolo, la deviazione della retta \(\gamma d\) dalla \(cd\) sarà uguale a quella della \(\gamma\beta\) dalla \(c\beta\); ma, essendo la retta \(\gamma\beta\) parallela alla \(CD\), la deviazione della \(\gamma\beta\) dalla \(c\beta\) uguaglia quella della \(CD\) dalla \(C\beta\); e quindi la deviazione della \(\gamma d\) dalla \(cd\) uguaglia quella della \(CD\) dalla \(C\beta\). Pertanto i quattro punti \(c, d, D, C\) sono in una periferia circolare; dunque il rettangolo \(CC'\), CD equivale al rettangolo \(CcCd\), il quale è di area conosciuta, e di più i punti \(C, D\) sono dalla stessa banda del punto \(C\), ovvero uno da una banda l'altro dall'altra, secondo che il punto \(C\) è fuori del circolo dato, ovvero dentro. Segue da ciò che, siccome \(D\) è un punto fisso, tale dovrà essere anche \(C\), e che, se arriveremo a determinare questo punto \(C\), noi avremo determinato anco il punto \(D\).

Serie II. Tomo II.
Sia ora condotta la retta BC'; indi dal punto β la corda $\beta a'$ parallela a questa retta; e sia guidata la $a'b$, e si chiami A' il punto in cui essa incontra la BC'. Essendo per proprietà del circolo, la deviazione della retta ba' dalla bc eguale a quella della $\beta a'$ dalla βc, ossia a quella della BC' (che è parallela alla $\beta a'$) dalla bc medesima, ne viene di conseguenza che i quattro punti b, c, A', C' sono in una periferia circolare. Pertanto il rettangolo $A'B' \cdot C'B'$ equivale al rettangolo $B'b \cdot Bc$, il quale è d'area data, e i punti A', C' sono dalla stessa banda del punto B', ovvero uno da una banda l'altro dall'altra, secondo che il punto dato B' è fuori del circolo dato, ovvero dentro. Dunque A' è un punto fisso, e se giungeremo a determinarlo, sarà determinato anco il punto C', e quindi il punto D'.

Si osservi ora che la deviazione della $a\beta$ dalla $\gamma \beta$ è uguale alla deviazione della ad dalla $\gamma dD'$, la qual deviazione è costante; onde; siccome la retta $\gamma \beta$ è sempre parallela alla retta $fissa$ CD, anche la retta $a\beta$ sarà sempre parallela ad una retta fissa. Ma anche la $a'\beta$ è sempre parallela ad una retta fissa (alla $C'B'$), dunque la deviazione della $a\beta$ dalla $a'\beta$ è costante. Lo sarà perciò anco quella della ab dalla $a'b$; e, siccome queste due rette passano rispettivamente per punti fissi A, A', il primo de' quali non è nella periferia data, noi avremo, a motivo del lemma, che il punto A' coinciderà col punto A. Pertanto è determinata la posizione del punto A', e quindi anche quella del punto C' e quella del punto D'.

Si osservi ancora che riesce determinata con ciò anche la deviazione del lato ad dalla dD'. Giacché questa deviazione uguaglia quella della $a\beta$ dalla $\gamma \beta$, pel circolo; ma il punto A' coincide col punto A, e quindi il punto a' con a, e quindi la retta $a'\beta$ colla $a\beta$, per cui quest'ultima è parallela alla AB; e, d'altra parte, la retta $\gamma \beta$ è parallela alla CD; dunque la deviazione della retta $a\beta$ dalla $\gamma \beta$ uguaglia quella della retta conosciuta AB dalla CC' pure conosciuta. E pertanto a quest'ultima deviazione dovrà essere uguale anco quella del lato ad dalla retta $D'd$.

Onde compiere la trattazione del porisma, ci resta a dimostrare che: essendo preso nella AB il punto C' da quella banda del punto B dalla quale è il punto A, ovvero dall'altra, secondo che il punto B' è fuori ovvero dentro del circolo, ed in modo che il rettangolo $AB' \cdot C'B'$ equivalga al rettangolo conosciuto $bB' \cdot CB'$; ed essendo condotta la CC' e preso in essa il punto D da quella banda del punto C dalla quale è C', ovvero dall'altra, secondo
che C è fuori o dentro del circolo, ed in modo che il rettangolo CC' - CD eguagli il rettangolo conosciuto Cc - Cd; riuscirà la deviazione del lato ad dalla retta che unisce il punto d col D costantemente uguale alla deviazione della AB dalla CC'.

A tale oggetto si osservi che, per proprietà del circolo, la deviazione della da dalla dc uguaglia quella della bA dalla bc. In conseguenza poi del modo con cui si è costruito il punto C', abbiamo che i quattro punti b, A, C', c sono in una periferia circolare, e perciò la deviazione della bA dalla bc uguaglia quella della CB dalla Cc; e pertanto la deviazione della da dalla dc uguaglia quella della CB dalla Cc.

Abbiamo poi che, in conseguenza dalla costruzione colla quale si è ottenuto il punto D, i quattro punti C', c, d, D sono in una periferia circolare. Quindi la deviazione della dC dalla dc uguaglia quella della C'C dalla Cc.

Poiché adunque le due rette da, dD hanno dalla dc deviazioni eguali rispettivamente a quelle che le due rette CB, C'C hanno dalla Cc; ne viene che la deviazione della da dalla dD sarà uguale a quella della CB dalla C'C. C. D. D.

Osservazione: I due porismi precedenti, 65° e 66°, si pongono riunire in uno solo, e ne risulta il seguente:

Porisma 67.° « Se un quadrilatero inscritto in un dato circolo varia in modo che tre suoi lati consecutivi passino sempre per tre punti dati non esistenti nella periferia, il rimanente lato o sarà sempre parallelo ad una medesima retta, ovvero avrà sempre una medesima direzione rispetto a quella retta che unisce uno de' suoi termini con un certo punto fisso implicitamente dato. »

Porisma 68.° (del Simson) « Essendo dato un circolo e due punti p, q (fig. 99.°) non esistenti nella sua periferia; essendo M un punto variabile di posizione in questa periferia, ed essendo m, m' i due punti ne' quali le rette pM, qM la incontrano di nuovo, io dico che, o la retta mm' sarà sempre parallela ad una medesima retta, ovvero si potrà trovare un punto O tale che la deviazione della retta mm' dalla mO sia costante. »

Dal punto m' sia condotta la corda m'n parallela alla retta pq, indi sia condotta la retta nm (*), la quale incontrerà la pq in un punto h. Avremo

(*) Nel caso in cui i due punti m, n coincidessero, s'intenda con n m indicata la tangente nel punto m.
che la deviazione della \(ph \) dalla \(hm \) sarà eguale a quella della \(mn' \) dalla \(nm \), cioè a quella della \(Mm' \) dalla \(Mm \); e perciò i quattro punti \(h, q, M, m \) si trovano in una periferia circolare. Dunque il rettangolo \(ph \cdot pq \) equivale al rettangolo \(pM \cdot pm \), il quale ha una estensione costante e conosciuta; ed inoltre il punto \(h \) è dalla stessa banda del punto \(p \) dalla quale si trova il punto \(q \), ovvero dall'altra banda, secondo che i punti \(m, M \) sono dalla stessa banda del punto \(p \), ovvero uno da una banda l'altro dall'altra, vale a dire: secondo che il punto \(p \) è fuori, ovvero dentro del circolo dato. Quindi è che il punto \(h \) è un punto fisso conosciuto, il quale non si trova nella periferia del circolo dato, perché non vi si trovano i punti \(p, q \).

Si osservi ora che, in conseguenza di ciò, la retta \(mm' \) è la retta che unisce i due punti \((m, m') \) nei quali le due rette, condotte da un punto \((n) \) variabile di posizione nella periferia del circolo dato, una al punto fisso \(h \), l'altra parallela alla retta data \(pq \), incontrano di nuovo la periferia.

Si osservi ancora che, potendo essere i punti dati \(p, q \) due punti qualsivogliano non esistenti nella periferia data, anche il punto \(h \) potrà riuscire un punto qualsivoglia non esistente nella periferia data, ed insieme la retta \(pq \) potrà avere una direzione qualunque.

Pertanto il porisma di cui si tratta viene ridotto al seguente:

Porisma 69.°: Essendo dato un circolo (fig. 100.° e 101.°), un punto \(h \) non esistente nella sua periferia, ed una retta \(ph \); essendo \(n \) un punto variabile di posizione in questa periferia, ed essendo \(m, m' \) i punti nei quali la detta periferia è incontrata di nuovo dalle due rette condotte dal punto \(n \), una al punto \(h \), l'altra parallela alla \(ph \); dico che, o la retta \(mm' \) sarà sempre parallela ad una medesima retta, ovvero si potrà trovare un punto \(O \) tale che la deviazione della retta \(mm' \) dalla \(mO \) sia costante.

Dim. Indaghiamo primieramente, ammessa la verità del porisma, quali circostanze debbano verificarsi rispetto ai dati acciò che la retta \(mm' \) riesca sempre parallela ad una medesima retta, e quale allora debba essere la direzione di questa.

Ove la \(mm' \) sia sempre parallela ad una stessa retta (fig. 100.°), la sua deviazione dalla \(mm' \) sarà costante; giacché questa seconda retta \(mm' \) è sempre parallela ad una medesima retta, cioè alla \(ph \). Pertanto la lunghezza della corda \(mm' \) sarà costante. Ma questa corda passa sempre pel punto \(h \); ed una corda, variabile di posizione e passante sempre per un punto fisso, al-
Iora soltanto è di lunghezza costante quando questo punto è il centro del circolo; dunque il punto h sarà il centro del circolo.

Viceversa, se il punto dato h è centro del circolo, noi avremo che la retta mm' sarà sempre perpendicolare alla nn', e perciò anche alla retta fissa ph; onde essa mm' sarà sempre parallela ad una medesima retta.

Ora, da ciò che si è poco sopra dimostrato, risulta che, quando il punto h non sia il centro del circolo (fig. 101.2) la retta nn' non potrà essere sempre parallela ad una medesima retta; e quindi, se il porisma è vero, si potrà allora trovare un punto O tale che la deviazione della nn' dalla mO sia costante. Ora pertanto, ammesso che sia reperibile un punto siffatto, indaghiamo la posizione.

Si chiamino a, b i punti in cui la periferia data è incontrata dalla retta che unisce il punto h col centro c del circolo. Da questi punti a, b si conducano le corde ab', ba' parallele alla retta data ph, e si guidino poi le bb', aa'. Queste due ultime saranno le posizioni della nn' corrispondenti rispettivamente alle posizioni a, b del punto n. Esse pertanto avranno rispettivamente dalle rette aO, bO deviazioni tra loro uguali. Ma le rette aa', bb' sono tra loro parallele (giacché, essendo a, b gli estremi di un diametro del circolo, tali due rette sono rispettivamente perpendicolari alla ba', $b'a$, le quali sono tra loro parallele), dunque le aO, bO avranno la stessa direzione, e perciò il punto O si troverà nella retta che passa per i punti a, b, cioè nella ch.

Si conduca ora pel centro c del circolo la retta deg perpendicolare alla ph; che riuscirà anco perpendicolare alle ab', nn', ba', e parallela alle aa', bb'. Noi avremo che la deviazione della cb dalla cd eguaglia quella della aO dalla aa', e quindi anco quella di mO da nn'. Dunque le rette cb, mO hanno deviazioni uguali dalle rette cd, mn' rispettivamente. Ma, per proprietà del circolo, anche le rette cn, mn hanno deviazioni uguali dalle due stesse rette cd, mn' rispettivamente. Dunque la deviazione della nc dalla cb eguaglia quella della mn dalla mO; e perciò i quattro punti m, n, c, O sono in una periferia circolare. Quindi è che il rettangolo hc, hO sarà equivalente al rettangolo di superficie costante e conosciuta hn, hm; ed inoltre il punto O sarà da quella banda del punto h dalla quale si trova il punto c, ovvero dalla banda opposta, secondo che il punto h è fuori, ovvero dentro del circolo dato. Abbiamo pertanto determinata la posizione che, posto vero il porisma, deve avere il punto O.
Resta che dimostriamo che, se il punto O ha questa posizione (se cioè esso sarà nella retta hc e dalla stessa banda del punto h dalla quale è il punto c, ove h sia fuori del circolo, dalla banda opposta, ove h sia dentro; e se inoltre si troverà questo punto O talmente distante dal punto h che il rettangolo ho risca equivalente al rettangolo $km: km$) allora la deviazione della retta mm' dalla mO sarà sempre uguale a quella della cg, perpendicolare alla retta data ph, dalla ch.

Osserviamo perciò che, soddisfacendo il punto O a tali condizioni, i quattro punti $m, \ n, \ c, \ O$ si trovano in una periferia circolare, per cui la deviazione della mO dalla mn uguaglia quella della cb dalla cn. Abbiamo poi, per proprietà del circolo, che la deviazione della mm' dalla mn uguaglia la deviazione della cd dalla cn. Dunque anche la deviazione della mm' dalla mO uguaglia quella della cd, ossia cg dalla cb, ossia ch.

Osservazione 1. Nel caso in cui la retta data ph sia perpendicolare a quella che unisce il punto dato h col centro del circolo, la deviazione della retta cg dalla ch sarà nulla, e perciò sarà nulla anco la deviazione della mm' dalla mO, vale a dire, la mm' passerà sempre per il punto O.

Osservazione 2. Il porisma 68.° si può dedurre dal 67.°, come segue:

Dal punto m' (fig. 102.°), in cui la retta qM, passante pel punto dato q e pel punto M variabile di posizione nella periferia data, incontra di nuovo questa periferia, si conduca il diametro $m'c$, e si congiunga il punto l col punto m, nel quale la retta che passa per l’altro punto dato p e pel punto M suddetto incontra di nuovo la periferia.

Noi avremo che il quadrilatero $mMm'l$, conservandosi inscritto nel circolo varierà in modo che i suoi lati MM', Mm', $m'l'$ passeranno sempre per tre punti fissi $p, \ q, \ c$ rispettivamente. Dunque, pel porisma 67.°, noi avremo che, o il quarto lato ml si conserverà sempre parallelo ad una medesima retta; ed in tal caso la retta mm', che è sempre perpendicolare ad ml, si conserverà anch'essa sempre parallela ad una medesima retta; ovvero esisterà un punto O tale che il lato ml avrà una direzione costante rispetto alla retta mO; ed allora anco la retta mm', che è perpendicolare alla ml, avrà una direzione costante rispetto alla stessa retta mO.

Porisma 76.° « Essendo m (fig. 103.°) un punto variabile di posizione nella periferia di un circolo, e P un punto dato non esistente in tale peri-
feria, ed essendo condotta dal punto \(m \) una corda \(mn \) avente una deviazione costante dalla retta \(mp \), io dico che si potrà trovare un punto \(Q \) tale che la corda stessa \(mn \) avrà una deviazione costante anco dalla retta \(nq \).

\[\text{Dim. Se il punto dato } P \text{ è nel centro del circolo dato, allora questo stesso punto avrà, come è manifesto, la proprietà enunciata pel punto } Q \text{; nè alcun altro punto distinto dal detto centro la possederà, come può dedursi dal lemma premesso al porisma 66.} \]

Supponiamo pertanto che \(P \) non sia il centro del circolo dato.

Per questo centro, che denoterò con \(C \), e pel punto \(P \) si conduca la seguente \(mc' \) \(cp \); e sia rappresentata da \(m'n' \) la posizione che prende la corda \(mn \) quando il punto \(m \) è in \(m' \), e da \(m'n'' \) quella che prende quando il punto \(m \) è in \(m'' \). Le corde \(m'n' \) e \(m'n'' \) avranno dalla retta \(m'n'p \) deviazioni tra loro eguali, e perciò saranno tra loro parallele. E poiché la \(m'n'' \) è perpendicolare alla retta che unisce i punti \(m' \) e \(n'' \) (giacché \(m'm'' \) è un diametro), lo sarà anco la \(m'n' \), e perciò è un diametro anco la retta che unisce \(m' \) con \(n'' \).

Ora, ammesso che il punto \(Q \) soddisfacci la condizione del porisma, noi avremo che le due rette \(m'n' \) e \(m'n'' \) avranno deviazioni eguali dalle rette \(qn' \), \(qn'' \) rispettivamente. Dunque reciprocamente, le due rette \(qn' \), \(qn'' \) (le quali passano per un medesimo punto) hanno deviazioni eguali dalle due rette \(m'n' \), \(m'n'' \); e, siccome queste sono parallele, quelle si troveranno in una medesima retta, la quale, passando per punti \(n' \), \(n'' \), passerà anco per il centro.

Pertanto la deviazione della retta \(qn' \) dalla \(m'n' \) è uguale a quella della \(m'n' \) dalla \(m'n'' \); e per conseguenza anco la deviazione della \(qu \) dalla \(mn \) uguaglierà quella della \(mn \) dalla \(pm \). Ed inoltre la deviazione della \(qu \) dalla \(pm \) sarà uguale a quella della \(qn' \) dalla \(pm' \), ossia della \(qc \), dalla \(qpc \). Quindi avremo altresì la deviazione della \(qu \) dalla \(qc \) eguale a quella della \(pm \) dalla \(pc \). Indicato poi con \(v \) il punto in cui la \(mp \) incontra di nuovo la periferia, sarà l'arco \(cm \) eguale e nello stesso senso dell'arco \(m'n' \); giacché le \(mn \), \(m'n' \) hanno deviazioni tra loro uguali dalle \(mv \), \(m'm' \). Se quindi il triangolo \(cmq \), conservandosi nel medesimo piano, ruoterà intorno al punto \(c \) finché il punto \(n \) coincida col punto \(v \), allora il punto \(n' \) coinciderà con \(m' \), e perciò la \(cn' \) colla \(cm'' \), ed inoltre la \(nq \) (avendo sempre dalla \(cq \) deviazione eguale a quella della \(vq \) dalla \(p \)).
CP dovrà allora coincidere colla vP. Dunque il punto Q, nella sua propria posizione, sarà distante da C quanto lo è il punto P, e sarà da quella banda del punto C dalla quale si trova il punto \(n' \), ovvero dalla banda opposta, secondo che i punti P, \(m'' \) saranno dalla stessa banda del punto C, ovvero uno da una banda l'altro dall'altra.

Se dunque il porisma è vero, il punto Q si determinerà conducendo pel centro la segante \(Pm''m' \), indi guidando la corda \(m'n' \), cioè la posizione che prende la retta \(mn \) quando il punto \(m \) è in \(m' \), e conducendo poi la retta \(Ca' \), e prendendo su questa a partire da C la \(CQ \) eguale alla \(CP \), e avendo riguardo che questa \(CQ \) sia da quella banda del punto C dalla quale si trova il punto \(n' \), se \(P \) ed \(m'' \) sono dalla banda del punto \(C \), e che sia dalla banda opposta nel caso che \(P \) ed \(m'' \) siano uno da una banda l'altro dall'altra del punto C. E la deviazione della \(mn \) dalla \(nQ \) riuscirà uguale alla deviazione costante della \(mP \) dalla \(mn \).

Riteniamo ora che il punto Q sia in tal modo determinato, e dimostriamo che la deviazione della \(mn \) dalla \(nQ \) riuscirà effettivamente eguale a quella della \(mP \) dalla \(mn \).

Essendo la deviazione di \(m'n' \) da \(m'P \) eguale a quella di \(mn \) da \(mP \), avremo che l'arco \(n'm'' \) sarà eguale e nello stesso senso dell'arco \(nv \). Dunque se il triangolo \(CnP \) ruota nel suo piano intorno al punto C finché \(m'' \) cada in \(n' \) (per cui P cadrà in Q), il punto \(v \) cadrà in \(n \), e quindi la \(vP \) nella \(nQ \). Quindi la deviazione della \(vP \), cioè \(mP \), dalla \(nQ \) uguaglia quella della \(CP \) dalla \(CQ \). Siccome pertanto le deviazioni della \(mn \) dalla \(mP \), e della \(mP \) dalla \(nQ \) uguaglia rispettivamente le deviazioni della \(m'n' \) dalla \(m'CP \), e della \(CP \) dalla \(CQ \), ne viene che la deviazione della \(mn \) dalla \(nQ \) eguaglia quella della \(m'n' \) dalla \(n'Q \), e quindi anche quella della \(mP \) dalla \(m'n' \), e quella della \(mP \) dalla \(mn \). C. D. D.

Porisma 71. « Se un triangolo \(abc \) (fig. 104.\(^a \)) inscritto in un circolo dato varia in modo che un solo lato \(ab \) passi sempre per un punto fisso \(p \) non esistente nella periferia del circolo dato, ed un altro suo lato \(bc \) abbia una deviazione costante dalla retta che unisce uno de' suoi termini (sempre il \(b \), ovvero sempre il \(c \)) con un punto fisso non esistente nella detta periferia, io dico che, o il terzo lato \(ac \) sarà sempre parallelo ad una medesima retta, ovvero si potranno trovare due punti \(r \), \(r' \) tali, che questo terzo lato \(ac \) abbia deviazioni costanti dalle rette \(or \), \(ar' \). »
Memoria del Prof. P. D. Marianini

Dim. O per dato immediatamente, ovvero in conseguenza del porisma precedente, noi avremo che esisterà un punto g, non situato nella periferia data, tale che il lato bc avrà dalla retta bg una deviazione costante.

Ciò posto, si conduca la gb e si denoti con $γ$ l'altro punto in cui essa incontra la periferia, e si congiunga a con $γ$. In conseguenza del porisma 68.° avremo che, o la retta $aγ$ sarà sempre parallela ad una medesima retta, ovvero esisterà un punto r' tale che essa retta $aγ$ avrà dalla ar' una deviazione costante. Ora, siccome la retta bc ha per dato una deviazione costante dalla bg, l'avrà anche la ac dalla $aγ$, per proprietà del circolo. E perciò avremo altresì che, o la retta ac sarà sempre parallela ad una medesima retta, ovvero essa avrà una deviazione costante (e che potrà anche esser nulla) dalla retta ar'; ed in questo ultimo caso, in conseguenza del porisma precedente, esisterà altresì un punto r tale, che sarà costante anco la deviazione della ac dalla cr. Dunque ecc.

Porisma 72.° Se un triangolo abc (fig. 105.) inscritto in un circolo dato varia in modo che il suo lato ab abbia una deviazione costante dalla retta che unisce uno de' suoi termini (sempre l' a o sempre il b) con un punto fisso non esistente nella periferia del circolo dato, ed il suo lato bc soddisfaccia ad un' analoga condizione, io dico che, o il suo terzo lato ca si conserverà sempre parallelo ad una medesima retta, ovvero esisteranno due punti r, r' tali che questo terzo lato ca avrà deviazioni costanti dalle rette cr, ar'.

Dim. Dal dato noi abbiamo, o immediatamente, od in conseguenza del porisma 70.°, che esistono due punti p', q non situati nella periferia e tali che il lato ba ha una deviazione costante dalla retta bp', ed il lato cb ha una deviazione costante dalla bg.

Indico con a l'altro punto in cui la bp' incontra la periferia. Sia condotta la ca. Al triangolo abc si può applicare il porisma precedente, e se ne conchiude che la retta ca o sarà sempre parallela ad una medesima retta ovvero avrà una deviazione costante dalla retta che unisce il punto c con un punto fisso reperibile r. E siccome la ca ha dalla ca una deviazione eguale a quella della ba dalla ba, che è costante, così anco la retta ca o sarà sempre parallela ad una medesima retta ovvero avrà una deviazione costante dalla retta che unisce il punto c con quel tal punto r suddetto. Dal porisma 70.° poi ne viene che, in quest'ultimo caso, il lato ca
avrà anco deviazione costante dalla retta che unisce il punto a con un certo punto reperibile r'.

Porisma 73.° « Se un triangolo abc (fig. 106.°) inscritto in un circolo dato varia in modo che il suo lato ab abbia una deviazione costante dalla retta che unisce un termine di questo lato con un punto fisso non situato nella periferia del circolo dato, ed il lato bc si conservi sempre parallelo ad una medesima retta, io dico che il rimanente lato ca o si conserverà sempre parallelo ad una medesima retta, ovvero avrà deviazioni costanti dalle due rette che uniscono i suoi termini c, a con due punti fissi reperibili. »

Questo porisma si può dimostrare in maniera affatto conforme a quella usata nel porisma precedente, appoggiandosi però al porisma 69.° invece che al 68.°

Porisma 74.° « Se un triangolo abc (fig. 107.°) inscritto in un circolo dato varia in modo che i suoi due lati ab, bc si conservino sempre paralleli a due rette date rispettivamente, il suo terzo lato avrà una deviazione costante dalla retta che unisce il punto c con un punto fisso reperibile. »

Dim. 1.° Sia C questo punto, e lo si congiunga col punto c, e si chiami c' il punto in cui la congiungente incontra di nuovo la periferia del circolo dato. Essendo costante la deviazione della bc dalla ba per conseguenza della ipotesi, la distanza tra il punto c ed il punto a, contata sulla periferia in un dato senso di rotazione, sarà pure costante. Parimente, essendo costante la deviazione della ca dalla cc', sarà costante anco la distanza tra il punto a ed il punto c', contata essa pure sulla periferia e nel medesimo senso di rotazione. Ne viene che sarà costante anco la distanza, similmente contata, tra il punto c ed il punto c'; e quindi che sarà costante anco la lunghezza della corda cc'. Ciò esige che il punto fisso C intorno al quale gira questa corda, sia il centro del circolo dato.

Ritenuto ora che C sia il centro del circolo, noi avremo che la corda bc sarà perpendicolare alla ba; e quindi la deviazione della ca dalla cc', la quale uguaglia quella della ba dalla bc', sarà costantemente uguale alla deviazione, che quella delle due rette date, alla quale la ba è parallela, ha da una qualunque perpendicolare all'altra retta data.

Dim. 2.° Sia rappresentato da C il punto che soddisfa la condizione del porisma e da ct la retta tangente il circolo dato nel punto c. Per pro-
prietà del circolo, la deviazione della \(ct \) dalla \(ca \) sarà uguale a quella della \(bc \) dalla \(ba \), e perciò costante. Ma anche la deviazione della \(ca \) dalla \(cC \) è costante; dunque anche quella della \(ct \) dalla \(cC \). E ciò importa manifestamente che \(C \) sia il centro del circolo dato.

Ritenuto poi che \(C \) sia il detto centro, noi avremo \(Cc \) pendicolare a \(ct \). E, siccome la deviazione della \(ca \) dalla \(ct \) uguaglia quella della \(ba \) dalla \(bc \), cioè quella della prima retta data dalla seconda, così la deviazione della \(ca \) dalla \(cC \), che è perpendicolare alla \(ct \), sarà uguale alla deviazione costante della prima retta data da una perpendicolare alla seconda.

Porisma 75.° « Abbiasi un poligono inscritto in un circolo dato, il quale poligono varj conservandosi inscritto in tal circolo; ed il primo lato di questo poligono soddisfaccia alla seguente condizione: di essere, o sempre parallelo ad una retta fissa, ovvero di avere deviazione costante dalla retta che unisce un suo termine con un punto fisso. Inoltre i suoi lati secondo, terzo, ecc. sino al penultimo inclusivamente, soddisfacciano ad altrettante condizioni analoghe a quella cui soddisfa il primo. Io dico che anche l'ultimo lato di tale poligono soddisfà ad una condizione di tal fatta. »

Dim. Indichiamo con \(ab, ac, cd, de \), ecc. i successivi lati di tale poligono. Siccome i lati \(ab, bc \) soddisfano rispettivamente a due condizioni dell'esposto genere, noi avremo, in conseguenza dei quattro porismi precedenti, che ad una condizione dello stesso genere soddisfarà anche la diagonale \(ac \). Ma anche il lato \(cd \), per dato; dunque, pei medesimi porismi, anche la diagonale \(ad \); ma anche il lato \(de \); dunque anche la diagonale \(ae \); e così seguitando si andrà alla fine a concludere che l'ultimo lato del poligono soddisfa esso pure ad una condizione di quello stesso genere.
<table>
<thead>
<tr>
<th>Pag. 44 lin.</th>
<th>7 ascend.</th>
<th>5.°</th>
<th>6.°</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>12</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>e per</td>
<td>o per</td>
</tr>
<tr>
<td>61</td>
<td>6, 7, 8, 9</td>
<td>$\text{Im}J'A' + \alpha \text{.} \text{Am} = \ldots$</td>
<td>vale a dire $\text{Am} \cdot \text{A}' \cdot \text{J}$; e quindi sarà $\lambda \cdot \alpha = \text{A}' \cdot \text{J}$, ed</td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>$c' \alpha$</td>
<td>aa</td>
</tr>
<tr>
<td>71</td>
<td>6</td>
<td>posizione di m</td>
<td>posizione di m'</td>
</tr>
<tr>
<td>75</td>
<td>13</td>
<td>alla</td>
<td>colla</td>
</tr>
<tr>
<td>76</td>
<td>8 ascend.</td>
<td>punto</td>
<td>punto</td>
</tr>
<tr>
<td>88</td>
<td>10</td>
<td>Cm</td>
<td>Cm</td>
</tr>
<tr>
<td>95</td>
<td>6</td>
<td>comuna</td>
<td>comune</td>
</tr>
<tr>
<td>104</td>
<td>22</td>
<td>Θ'</td>
<td>ω'</td>
</tr>
<tr>
<td>116</td>
<td>15</td>
<td>RC_{ρ}</td>
<td>R_{ρ}</td>
</tr>
<tr>
<td>129</td>
<td>5 ascend.</td>
<td>m'</td>
<td>m</td>
</tr>
<tr>
<td>128</td>
<td>14</td>
<td>dalla banda</td>
<td>dalla stessa banda</td>
</tr>
<tr>
<td>127</td>
<td>7 ascend.</td>
<td>un solo</td>
<td>un suo</td>
</tr>
</tbody>
</table>