Ricerche relative alle curve involuppi

Memoria

Di Emmanuele Fergola

Presentata dal Socio Cav. Vincenzo Flauni
e approvata dal Socio e Segretario Prof. Giuseppe Bianchi.

Tra le ricerche che presentano degli ostacoli al Geometra v'ha senza dubbio quei problemi che riguardano curve involuppi, ostacoli in vero nascenti non da difetto di teoriche, ma da difficoltà di calcolazioni; queste però sono spesso graveissime, mentre il più delle volte si va incontro ad elimina-zioni imbarazzanti le quali adombrano o quasi nascondono i veri risultamenti, da che le teoriche rimangono inabili ed infruttuose. E per darne un solo esempio ricorderò il problema in cui si cerca l'involuppo delle corde di costante grandezza iscritte in una data curva; nel qual problema, ancorché voglia questa curva limitarsi a quelle del second'ordine, pure per lunga pezza, a malgrado i tentativi di molti geometri, non venne fatto di riconoscere il grado dell'involuppo, che solamente da poco tempo un nostro geometra, partendo da estranee considerazioni rinvenne dell'ottavo grado. Non ostante però le difficoltà di tali ricerche il Sig. Magnus, distinto analista di Berlino, mostrò (1) che era sempre possibile determinare il punto di contatto tra l'involuppo e la retta mobile che lo genera, mediante costruzioni più o meno semplici; e con un giudizioso maneggio di alcune formole differenziali, egli riesci a compiere eleganti soluzioni ai quattro seguenti problemi:

(1) Gergonne. — Annales de mathématiques, Vol. XVI.
1°. Determinare il punto di contatto dell’involuppo delle corde d’una curva piana qualunque, che tagliano da essa segmenti di costante grandezza con una di tali corde.

2°. Determinare il medesimo punto di contatto, quando tutte le corde debbono tagliare dalla curva archi eguali.

3°. Determinare lo stesso punto allorché le corde sono di grandezza costante.

4°. Determinare il medesimo contatto assoggettando le corde ad esser tali, che le due tangenti applicate agli estremi di ciascuna di esse comprendano angoli eguali.

Or io, nell’applicare le formole e il metodo del Magnus ad altri problemi dello stesso genere, mi avvidi che un tal metodo sovente mena a calcoli si prolissi ed intralciati da sgomentare la pazienza dell’analista; che però mi rivolsi a vedere se era possibile di pervenire per altra via alla costruzione di quei punti di contatto, nè duraf gran fatica a convincermi, potersi questo scopo raggiungere in un modo più semplice col soccorso della pura Geometria, come potrà vedersi dall’applicazione che io farò dell’analisi geometrica a parecchi esempi, non esclusi quelli del Magnus. Ai nuovi che aggiungo applicherò benanche il calcolo algebrico, perché più chiaramente apparisca quanto il metodo da me seguito renda facili le soluzioni dei problemi, che formano l’oggetto della presente Memoria.

§. 1. In una curva piana qualunque SS’ (fig. 1°.) s’immagini una corda muoversi con una determinata legge; dalle infinite posizioni che essa può prendere si ha un sistema di corde tangenti un’altra curva, che può chiamarsi l’involuppo della corda mobile. Or è da notarsi che il punto di contatto dell’involuppo con ciascuna corda si ha nella intersezione di questa corda con quella che tiene, se così può dirsi, la posizione seguente, in somma nella intersezione di due corde vicinissime; mentre la curva involuppo altro in fatti non è, che il poligono di numero infinito di lati piccolissimi, risultante
dall'incontro continuo di ciascuna corda con quella che immediatamente la segue. Siano pertanto MN, M'N' due posizioni contigue della corda mobile; il loro punto d'intersezione C sarà il contatto dell'involucro con la MN. Or l'oggetto dei problemi che seguono essendo quello di determinare questo punto di contatto, e manifesto che tutto riducesi ad assegnare per via di geometriche costruzioni il punto C, cioè a dire l'intersezione delle due corde vicinissime MN, M'N'.

Problema I.

§ 2. La corda MN (fig. 1.) sia assoggettata a troncare da una data curva piana segmenti eguali; si vuol determinare il punto del contatto C.

Sol. Essendo piccialissimi gli archetti MM' NN', i due settori MM'C, NN'C si potranno considerare come due triangoli rettilinei, che dovendo essere eguali, per la condizione del problema, ed avendo eguali gli angoli al vertice C, daranno MC.M'C = NC.N'C. Or per essere vicinissime le corde MN, M'N', le MC, NC sono eguali rispettivamente ad M'C, N'C (1); adunque si avrà MC = NC, ed MC = NC, dove risulta il segnente teorema:

L'involucro delle corde, che tagliano da una curva piana qualunque segmenti eguali, tocca ciascuna di queste corde nel suo punto medio.

Problema II.

§ 3. Un angolo AMN (fig. 2.) di grandezza costante si muova con tal legge, che mentre il suo vertice rimane sul perimetro d'una data curva piana, un lato passi sempre per

(1) A misura che impicciolisce l'angolo MCM', la somma degli angoli MM'C, M'M'C tende a divenire eguale a due retti, e così i seni degli angoli medesimi tenderanno ad eguagliarsi ai pari dei lati MC, M'C, che serbansi lo stesso rapporto di quei sensi. Intanto ad evitare circoli arbitrari noi diremo in generale che: quando un triangolo ha un solo angolo infinitamente piccolo, debbano ritenersi eguali i sensi degli altri due angoli, nonché i lati che comprendono l'angolo infinitesimo.
un punto fisso A; si vuol determinare il punto del contatto C dell'altro lato col suo involuppo (1).

Sol. Si uniscano le AM, AM'. Dovendo essere eguali gli angoli AMG, AM'C, ne risulta che per i quattro punti A, C, M', M possa passare la circonferenza d'un cerchio. Or per essere vicinissimi i punti M, M' questo cerchio toccherà la curva, oppure la sua tangente nel punto M; dunque può concludersi il teorema che segue:

L'involuppo delle corde d'una curva piana qualunque ciascuna delle quali sia lato d'un angolo mobile di costante grandezza, che abbia il vertice sulla curva, e l'altro lato passante per un punto fisso, tocca una qualunque di queste corde in un punto, che si determina descrivendo pel vertice dell'angolo mobile un cerchio che tocchi la tangente la curva nel vertice stesso, e che passi pel punto fisso; e questo cerchio taglierà la corda nel punto cercato.

Problema III.

§. 4. Un angolo AMN (fig. 2.ª) di costante grandezza si muova in modo, che il suo vertice stia sul perimetro d'una data curva piana, a cui uno dei suoi lati debba esser continuamente normale; vuol determinarsi il punto del contatto C dell'altro lato col suo involuppo (2).

Sol. Considerando le posizioni vicinissime AMN, AM'N' dell'angolo costante, si vede che i lati AM, AM' essendo normali alla curva, debbonsi tagliare nel centro di curvatura A del punto M. È chiaro perciò che il punto del contatto C dell'altro lato dell'angolo mobile col suo involuppo, potrà costruirsi come si è indicato nel problema precedente, sostituendo al punto fisso il centro di curvatura del punto M. Per questo caso essendo retto l'angolo PMA lo sarà anche l'angolo MCA; e perciò si avrà il seguente teorema:

(1) Si vegga la nota A.
(2) Veggasi la nota B.
Ricerche relative alle curve cc.

Se un angolo mobile di costante grandezza abbia il vertice sul perimetro d'una curva piana qualunque, cui uno dei suoi lati debba essere normale; il punto di contatto dell'altro lato col suo involuppo sarà il piede della perpendicolare abbassata su questo lato, dal centro di curvatura del vertice dell'angolo mobile.

Le soluzioni de' tre problemi che precedono, risultano semplicissime per la natura delle condizioni che determinano il movimento della corda, donde emerge l'involuppo; ma complicandosi queste condizioni diverranno, in conseguenza anche men semplici le corrispondenti soluzioni, come in effetti si vedrà ne' problemi che seguono. Intanto potendo le oquistioni di tal genere rapportarsi tutte ad un principio comune, che sarà pur valevole a rendere più semplici le loro soluzioni, abbiamo creduto di dichiararlo nel seguente

Teorema

§ 5. Ritenute le supposizioni del § 1., esprimano MN, M'N' (fig. 3.) due posizioni contigue di una corda iscritta in una curva piana qualunque SS'; dico che il rapporto dei due archetti infinitesimi MM', NN' sia assegnabile ed espresso da

PM.MC: PN.NC,

essendo PM, PN tangenti della curva nei punti M ed N estremità della corda.

Dim. Per gli archetti infinitamente piccoli MM', NN' dovendo riputarsi rettilinei i triangoli MCM', NCN', si avranno le due analogie

MM': MC: sen MCM': sen MM'C,

ed

NC: NN': sen NN'C: sen NCN'

dalle quali ricavasi l'altra

MM': NN': (sen NN'C: sen MM'C) (MC: NC).

Or essendo per ipotesi vicinissime le due corde MN, M'N', saranno eguali i seni degli angoli MM'C, M'MC, ovvero quelli
degli angoli MM'C, PMC; e per la stessa ragione si egualizzeranno i seni dei due angoli NN'C, PNC; si avrà perciò

\[\text{MM'} : \text{NN'} : (\text{sen PNC : sen PMC}) (\text{MC : NC}), \]

ma sta sen PNC : sen PMC :: PM : PN,
sarà quindi MM' : NN' : PM. MC : PN. NC

come erasi proposto a dimostrare.

§ 6. Si forni dalle PM, PN il parallelogrammo MPNQ;
si avrà pure

\[\text{MM'} : \text{NN'} : \text{NQ. MC : MQ. NC}; \]

ma, congiungendo QC, si ha

\[\text{MC : MQ : sen MQC : sen MCQ}, \]

ed \[\text{NQ : NC : sen NCQ : sen NQC}; \]
dunque \[\text{NQ. MC : MQ. NC : sen MQC : sen NQC}; \] e quindi anche \[\text{MM'} : \text{NN'} : \text{sen MQC : sen NQC} \]

Problema IV.

§ 7. La corda MN (fig. 3.°) debba tagliare da una data curva piana archi eguali; si vuol determinare il punto di contatto C.

Sol. Poichè dev'essere l'arco MN = M'N'; sarà anche MM' = NN'; dunque si avrà (§ 6.) sen MQC = sen NQC, e quindi l'angolo MQG = NQC. Risulta da ciò il seguente teorema:

L'involuppo delle corde d'una curva piana qualunque, che sottendono archi eguali, tocca ciascuna di queste corde al punto ove essa è tagliata dalla bisecante dell'angolo compreso dallerette tirate per i due suoi estremi parallelamente alle tangenti applicate nei medesimi estremi.

Il punto di contatto C si ottiene ancora bisecondo l'angolo MPN con la retta PC', e poscia tagliando MC eguale ad NC'.

(1) Veggasi la nota C.
Problema V.

§ 8. La corda MN (fig. 4.) debba avere una lunghezza costante; si vuol determinare il punto di contatto C.

Sol. Si tagliano sopra le CM, CN le parti GA, CB eguali alle CM', CN rispettivamente. I due triangoli ACM', BCN essendo isosceli, sarà l'angolo MAM' = NBN'; di più dovendo essere NA = M'B, ed avendosi per supposizione MN = M'N', sarà anche MA = N'B. Posto ciò i due triangoli AMM', BNN' danno

\[\frac{MM'}{MA} = \frac{MAM'}{MM'A}, \]
\[\frac{NB}{NN'} = \frac{N'NB}{NBN'}, \]

dunque si avrà

\[\frac{MM'}{NN'} = \frac{MNP'}{MP'C}, \]

Or poiché le MN, M'N' sono due posizioni contigue della corda mobile, le M'A, NB debbono considerarsi come perpendicolari ad MN (1); abbassando dunque dal punto P sulla MN la perpendicolare PC', i seni degli angoli N'NB, MM'A saranno rispettivamente eguali ai seni degli angoli NPC', MP'C. S' avrà quindi

\[\frac{MM'}{NN'} = \frac{MNP'}{MP'C}, \]

e peró (§ 6.) sen MQC = sen NQC = sen NPC' = sen MP'C;

ma sono eguali gli angoli MQN, MPN, dunque lo saranno anche i due MQC, NPC', e QC dovrà essere parallella a PC', ovvero perpendicolare ad MN. Da ciò risulta il teorema seguente:

L'involuppo delle corde eguali in una curva piana qualunque tocca ciascuna di queste corde al punto ove essa è tagliata dalla perpendicolare abbassata dal concorso delle rette tirate per gli estremi della corda parallelamente alle tangenti applicate nei medesimi estremi.

(1) Esendo M'A parallela alla bisecante dell'angolo M'CN; quando M'N' tende a coincidere con MN, questa bisecante, e con essa la M'A, tenderà a divenire perpendicolare ad MN; lo stesso dicasi di NB.
Il punto di contatto C si ottiene ancora abbassando PC perpendicolare ad MN, e poscia troncando MC eguale ad NC'.

Problema VI.

§ 9. Un angolo mobile MPN (fig. 5.) di costante grandezza sia continuamente circonscritto ad una data curva piana; si vuol determinare il punto di contatto C sulla corda MN, che lo sottende.

\[
\frac{MM'}{NN'} = \frac{MA}{NB}
\]

donde risulta (§ 6.) \(\frac{\sin MQC}{\sin NQC} = \frac{MA}{NB} \).

E di qui è manifesto come possa ottenersi in un modo semplicissimo il punto C. Intanto si formi il triangolo GTZ dai punti medij di MB, NA, AB; e dal punto dove QC incontra MK condotta HL parallela ad NB, si tiri la congiungente KL. Avendosi

\[
\frac{\sin MQC}{\sin NQC} = \frac{MA}{NB} = \frac{GZ}{TZ}
\]

e \(\frac{\sin MQC}{\sin NQC} = \frac{HL}{HK} \);

stara

\[
GZ : TZ : : HL : HK
\]

Quindi essendo eguali gli angoli CZT, LHK, perché aventi i lati paralleli, saranno simili i due triangoli TGZ, KHL, e l'angolo GTZ sarà eguale ad HKL oppure ad HQL. Dunque dovranno essere simili anche i due triangoli QRF, ETF, e QE sarà perpendicolare a GT come lo è TR ad MQ. Si conclude da ciò il teorema che segue:

Tomo XXIV. P.° II.
Oo
Un angolo mobile d'invariabile grandezza essendo costantemente circonscritto ad una data curva piana, il punto di contatto dell'inviluppo di tutte le corde, che sottendono l'angolo mobile con una qualunque di esse, si otterrà colla seguente costruzione geometrica: sopra la corda come diagonale si formi un parallelogrammo i cui due lati siano le tangenti menate all'estremità della corda; poi sopra la medesima corda come lato si costruisca un quadrilatero i vertici del quale siano i centri di curvatura delle due sue estremità; finalmente pel vertice del parallelogrammo opposto al vertice dell'angolo circonscritto si conduca la perpendicolare alla retta che contiene i punti medi delle diagonali del quadrilatero. Questa perpendicolare taglierà la corda del contatto nel punto cercato.

Problema VII.

§ 10. Due raggi vettori AM, AN (fig. 6.) tirati per un punto fisso A al perimetro d'una data curva piana debbano incontrarsi ad angolo di grandezza costante; vuol determinarsi il punto di contatto C sulla corda MN (1).

Sol. Si uniscano le AM, AN, AM', AN'. Dovendo aversi le analogie

\[
\frac{MM'}{MA} : \frac{sen MAM'}{sen MM'A}, \quad \frac{NA}{NN'} : \frac{sen NN'A}{sen NAN'},
\]

sarà pure

\[
(MM':NN')(NA:MA) : (senNN'A:senMM'A)(senMAM':senNAN').
\]

Ma essendo l'angolo \(MAN = M'AN\), risulta anche l'angolo \(MAM' = NAN'\); dunque avrassi

\[
(MM':NN')(NA:MA) : sen NN'A : sen MM'A.
\]

Intanto poichè le due corde MN, M'N' sono vicinissime, i seni degli angoli MM'A, NN'A sono a riputarsi rispettivamente eguali ai seni degli angoli PMA, PNA; si avrà perciò

\[
(MM':NN')(NA:MA) : sen PNA : sen PMA,
\]

(1) Veggasi la nota D.
e di seguito (§ 5.)

donde si ha

PM sen P M A: P N sen P N A:: M A. N C: N A. M C.

Ma è pure

PM sen P M A = PA sen P A M,

PN sen P N A = PA sen P A N,

N C: N A: : sen N A C: sen N C A,

ed

M A: M C: : sen M C A: sen M A C;

dunque anche

sen P A M: sen P A N:: sen N A C: sen M A C.

Di qui si deduce essere eguali gli angoli P A M, N A C, e quindi risulta il seguente teorema:

Se in una curva piana qualunque si tirino delle corde per modo che i raggi vettori condotti ai due estremi di ciascuna di esse per un punto fisso comprendano angoli eguali; il punto di contatto dell'inviluppo di queste corde con una di esse può determinarsi tirando pel punto fisso due rette egualmente inclinate alla bisecante dell'angolo compreso dai raggi vettori, e tali che una passi pel concorso delle tangenti applicate agli estremi della corda; l'altra di queste rette segnerà sulla corda il punto cercato.

Problema VIII.

§ 11. Due raggi vettori A M, A N (fig. 7.*) tirati per un punto fisso A al perimetro d'una data curva piana debbano essere sempre in un rapporto costante; vuol determinarsi il punto del contatto C sulla corda M N (1).

Sol. Si tagli sopra le A M, A N le parti A H, A K eguali rispettivamente ad A M', A N'; dovrà aversi per la condizione del problema

A M: A H:: A N: A K,

e quindi

M H: N K:: A M: A N.

(1) Veggasi la nota E.
Intanto i due triangoli $\triangle MHM', \triangle NKN'$ danno le seguenti analogie:

$$\frac{MM'}{MH} = \frac{MH'}{MM'} = \frac{MM'}{M'H},$$

ed

$$\frac{NK}{NN'} = \frac{NN'}{NK} = \frac{NK}{NKN'},$$

da cui ricavasi

$$\frac{(MM':NN')(AN:AM)}{(\text{sen} MM':\text{sen} NKN')} = \frac{(\text{sen} NN'K: \text{sen} MMM'H)}{\text{sen} NKN'},$$

Ora essendo piccolissimi gli angoli $\triangle AMM', \triangle ANN'$, le $M'H$, $N'K$ debbono riputarsi perpendicolari alle AM, AN; perciò saranno eguali i seni degli angoli $\triangle MM'H$, $\triangle NKN'$, ed applicando ai punti M, N le normali MR, NR, gli angoli $\triangle MM'H$, $\triangle NN'K$ egualglieranno gli angoli $\triangle AMR$, $\triangle ANR$. S'avrà quindi

$$\frac{(MM':NN')}{(AN:AM)} = \frac{\text{sen} ANR}{\text{sen} AMR},$$

e di seguito (\S. 6)

$$\frac{\text{sen} MQC}{\text{sen} NQC} : \frac{AM}{\text{sen} ANR} : \frac{AN}{\text{sen} AMR}.$$

Ciò posto ne'due raggi vettori AM, AN si prendano le parti

$$AE, AF$$
equali ad AN, AM; per i punti E ed F si tirino alle MR, NR le parallele ED, FD che s'incontrino nel punto D; ed in fine si tiri AD: l'ultima analogia ottenuta si cangera nell'altra

$$\frac{\text{sen} MQC}{\text{sen} NQC} : \frac{AF}{\text{sen} AFD} : \frac{AE}{\text{sen} AE}\text{D} : \frac{AE}{\text{sen} AED} = \frac{AB}{AG}$$

$$\frac{\text{sen} ADB}{\text{sen} ADG};$$

dunque sarà pure

$$\frac{\text{sen} MQC}{\text{sen} NQC} : \frac{\text{sen} ADB}{\text{sen} ADG};$$

Intanto essendo eguali gli angoli $\triangle MQN$, $\triangle BDG$, perché i lati dell'uno sono perpendicolari a quelli dell'altro, saran pure eguali gli altri due angoli $\triangle MQC$, $\triangle ADB$, e dovrà essere $\triangle QG$ perpendicolare ad AD, come QM lo è a DB. Quindi potrà dedursi il seguente teorema:

Se in una curva piana qualunque si tirino delle corde per modo che i raggi vettori tirati per un punto fisso A agli estremi di ciascuna di esse stiano in un rapporto costante,
l'inviluppo di queste corde tocca una di esse, la MN, in un punto che si determina come segue. Tirati i raggi vettori AM, AN, si tagliano sulle loro direzioni le parti AE, AF eguali ad AN, AM, e per i punti E ed F si tirino le perpendicolari ED, FD alle PM, PN rispettivamente; congiungendo il punto d'intersezione D di queste rette col punto A, ed abbassando sul tale congiungente dal punto Q la perpendicolare QC, questa perpendicolare taglierà la corda MN nel punto cercato.

Problema IX.

§. 12. Lerette MA, NB (fig. 8.) che congiungono gli estremi della corda MN con due punti fissi A e B debbano essere parallele; vuol determinarsi il punto del contatto C (1).

Sol. Si congiungano le AM, AM', BN, BN'; dovranno aversi le analogie

\[
\text{MM'}: \text{MA} :: \text{sen} \text{MAM'}: \text{sen} \text{MM'A},
\]

\[
\text{NB}: \text{NN'} :: \text{sen} \text{NN'B}: \text{sen} \text{NBN'}.
\]

Ma essendo AM, AM' parallele a BN, BN', risultano eguali gli angoli MAM', NBN'; dunque sarà anche

\[
\left(\text{MM'}: \text{NN'} \right) \left(\text{NB}: \text{MA} \right) :: \text{sen} \text{NN'B}: \text{sen} \text{MM'A}.
\]

Ora poiché le AM, BN sono vicinissime alle AM', BN', i seni dei due angoli MM'A, NN'B egualglieranno i seni dei due PMA, PNB, ovvero i seni degli angoli BNQ, AMQ; e però sarà

\[
\left(\text{MM'}: \text{NN'} \right) \left(\text{NB}: \text{MA} \right) :: \text{sen} \text{AMQ}: \text{sen} \text{BNQ},
\]

e quindi (§. 6.)

\[
\text{sen} \text{MQC}: \text{sen} \text{NQC} :: \text{AM} \text{sen} \text{AMQ}: \text{BN} \text{sen} \text{BNQ}.
\]

Intanto pe' punti A e B si tirino alle MQ, NQ rispettivamente le perpendicolari AE, BF, e le parallele AD, BD. Si avrà dalla precedente analogia

(1) Veggasi la nota F.
sen MQC: sen NQC:: AE: BF;
e poiché tirando DQ si ha
sen ADQ: sen BDQ:: AE: BF,
sara conseguentemente
sen ADQ: sen BDQ:: sen MQC: sen NQC.
Ma abbiamo eguali gli angoli ADB, MQN, onde lo saranno altresì i due ADQ, MQC; e quindi QD starà per dritto con QC. Risulta da ciò il seguente teorema:

L’inviluppo delle corde d’una curva piana qualunque, descritte per modo che le congiungenti dei loro estremi con due punti fissi A e B siano parallele, tocca una qualunque di queste corde, la MN, in un punto che si determina come segue. Si compia dalle tangenti PM, PN il parallelogrammo PMQN, e tirate per i punti A e B le AD, BD parallele alle PN, PM rispettivamente, se si unisca il punto d’intersezione D di queste rette col punto Q, questa congiungente taglierà la corda MN nel punto cercato.

§. 13. In questa occasione indicherò il seguente teorema, che si riattacca alle cose precedenti.

In una data curva piana v sia iscritto un poligono variabile di m lati con tal legge che questi siano sempre tangenti ad altrettante curve ν', ν'', ν'''', ν''''' ecc. Considerando questo poligono in una qualunque delle sue infinite posizioni, si tirino per i suoi vertici le tangenti alla curva ν; si avranno in tal modo due poligoni, l’uno iscritto a questa curva, l’altro circoscritto, i cui lati saranno divisi ciascuno in due segmenti nel punto di contatto corrispondente. Ora il prodotto di tutti i segmenti alterni del poligono circoscritto starà a quello dei rimanenti, come il prodotto dei segmenti alterni del poligono iscritto, presi nello stesso senso del primo prodotto, sta a quello degli altri segmenti.

Così, se sia ABCD..... (fig. ø.*) una delle infinite posizioni che può prendere il poligono variabile, conducendo
per i punti A, B, C, D...... le tangenti alla curva v di maniera che si abbia il poligono circoscritto KLMN..... dovrà stare K.A.LB.MC.ND: KD.NC.MB.LA:: AF.BC.CH.DE: AE.DH.CG.BF.

Se la curva v sia una sezione conica sarà il primo termine della precedente analogia eguale al secondo (1), e quindi anche il terzo eguale al quarto; ond'è che per tal caso il teorema precedente rimane modificato come segue:

Essendo iscritto in una sezione conica un poligono variabile di m lati con tal condizione che questi vadano sempre toccando altrettante curve piane, il prodotto di tutti i segmenti alterni, in una qualunque delle infinite posizioni del poligono, sarà eguale al prodotto dei rimanenti.

Il teorema enunciato offre il mezzo da costruire il punto di contatto dell'involuppo del lato libero di un poligono variabile di m lati iscritto in una curva piana qualunque, e di cui m—1 lati siano tangenti ad altrettante curve date. Questa costruzione si rende più semplice qualora la curva in cui il poligono è iscritto sia una sezione conica; e se le curve toccate dai lati del poligono siano al numero di due, nel qual caso il poligono iscritto non è che un triangolo, si ha allora la stessa costruzione del punto di contatto data dall'illustre Poncelet nelle Propriétés projectives des figures, pag. 323 (2).

(1) Veggasi — Carnot Géométrie de position, pag. 433.

(2) La costruzione di cui si tratta è la seguente: per i vertici degli angoli del triangolo iscritto adiacenti al lato libero si tirino due rette ai punti di contatto dei lati opposti; la congiungente del punto d'intersezione di queste rette col vertice dell'angolo opposto al lato libero, incontrerà il detto lato nel punto cercato.
NOTA A.

Il problema del §. 2, come pure gli altri dei §§. 7, 8, 9, sono stati risolti dal Magnus in una sua Memoria inserita nel Tomo XVI degli Annales de mathématiques. L’andamento seguito da questo geometra è tutto diverso dal nostro, avendo egli derivate le sue soluzioni da talune formule che stabilisce sin da principio, e che qui appresso riporteremo, per mostrare come essi si possano applicare al problema del §. 3, ed agli altri che seguono. « Sia \(y = \phi(x) \) l’equazione d’una curva piana qualunque riferita a due assi ortogonali. Siano inoltre \((\alpha, \beta), (\alpha', \beta') \) due punti comunque determinati su questa curva, di maniera che si abbia \(\beta = \phi'(\alpha), \beta' = \phi'(\alpha') \); l’equazione della corda che unisce questi due punti sarà

\[
(\alpha' - \alpha)(y - \beta) - (\beta' - \beta)(x - \alpha) = \gamma = 0.
\]

Supponendo che esista tra \(\alpha \) ed \(\alpha' \) una relazione data dall’equazione \(U = \alpha \), l’equazione dell’inviluppo di tutte le corde \(\gamma = 0 \) sarà il risultato della eliminazione delle cinque quantità \(\alpha, \beta, \alpha', \beta', \frac{da'}{da} \) tra le sei equazioni

\[
\begin{align*}
\beta &= \phi'(\alpha), \\
\beta' &= \phi'(\alpha'), \\
(\alpha' - \alpha)(y - \beta) - (\beta' - \beta)(x - \alpha) &= \gamma = 0,
\end{align*}
\]

\[
\left[y - \beta - (x - \alpha) \frac{d\beta}{da} \right] \frac{da'}{da} - \left[y - \beta' - (x - \alpha) \frac{d\beta'}{da} \right] = \frac{dy}{da} = 0,
\]

\[
U = \alpha, \quad \left(\frac{dU}{da} \right) \frac{da'}{da} + \left(\frac{dU}{da} \right) = \frac{dU}{da} = 0 \quad (1).
\]

Ma se non vuol trovarsi che il punto di contatto di una delle corde contenute in \(\gamma = 0 \) con l’inviluppo, basterà eliminare \(\frac{da'}{da} \) tra le due equazioni \(\frac{dy}{da} = 0, \frac{dU}{da} = 0 \), cioè che darà l’equazione

\[
\left[y - \beta - (x - \alpha) \frac{d\beta}{da} \right] \left(\frac{dU}{da} \right) - \left[y - \beta' - (x - \alpha) \frac{d\beta'}{da} \right] \left(\frac{dU}{da} \right) = v = 0,
\]

(1) Tutto ciò si rileva facilmente dalla teorica sviluppata dall’illustre Lagrange nella Théorie des fonctions analytiques, rispetto alle curve inviluppi a pag. 192-198.
Memoria di E.M. Fergola 305

«e determinare in seguito i valori di \(x \) ed \(y \), che soddisfano
alle due equazioni \(y = c \), \(v = c \) il che equivale a determinare il punto d'intersezione delle linee espresse da queste equazioni medesime. Or siccome la prima è la stessa corda, così basterà costruire l'altra, che si vede appartenere egualmente ad una retta, che taglierà in conseguenza la corda nel punto cercato. Questo prova in primo luogo, che l'inviluppo non può toccare la corda in più punti. Or l'equazione \(v = c \) è soddisfatta, qualunque possa essere la relazione \(U = c \), facendo nello stesso tempo

\[
y - \beta = \frac{dy}{dx} (x - \alpha) \ldots \ldots (l), \quad y - \beta' = \frac{dy}{dx} (x - \alpha') \ldots \ldots (l')
\]

dunque l'equazione \(v = c \) è quella di una retta che unisce il punto cercato col punto d'intersezione delle due rette \((l), (l')\), punto che in seguito indicheremo con \((s)\). Quanto alle rette \((l), (l')\), si vede che ciascuna di esse è la parallela tirata dall'una delle estremità della corda \(y = c \) alla tangente nell'altro estremo.»

Esposte queste formole passiamo ad occuparci del problema del §. 3. Si prenda a tale effetto per origine delle coordinate il punto fisso \(A \); s'indicino con \((\alpha, \beta), (\alpha', \beta')\) rispettivamente gli estremi \(M, N \) della corda; e si dinoi con \(t \) la tangente trigonometrica dell'angolo costante \(NMA \). Dovrà essere pel caso attuale

\[
\frac{\alpha' - \beta - \beta'}{\alpha (\alpha' - \alpha) + \beta (\beta' - \beta)} - t = U = 0
\]
e quindi

\[
\frac{dU}{dx} = \frac{[\alpha'(\alpha' - \alpha) - \alpha\beta'(\beta' - \beta) + \beta'(\beta' - \beta) - \alpha\beta(\alpha' - \alpha)]}{\left[\alpha(\alpha' - \alpha) + \beta (\beta' - \beta)\right]^2},
\]

\[
e \frac{dU}{dx} = \frac{(\alpha^2 + \beta^2) [\beta' - \beta - (\alpha' - \alpha) \frac{d\beta'}{dx}]}{\left[\alpha(\alpha' - \alpha) + \beta (\beta' - \beta)\right]^2}.
\]

Or nell'espressione generale di tang. CAM, che è

Tomo XXIV. P° 11.
Ricerche relative alle curve ££.

\[
\frac{(a^e-a^b)}{(a^e+a^b)} \left(\frac{d\gamma}{da} \right) \left(\frac{d\gamma}{da} \right)
\]

si sostituisca i precedenti valori di \(\left(\frac{d\gamma}{da} \right) \) e \(\left(\frac{d\gamma}{da} \right) \); s'otterrà in tal modo

tang. CAM =

\[
\left(\frac{a^e-a^b}{a^e+a^b} \right) \left(\frac{d\gamma}{da} \right) \left(\frac{d\gamma}{da} \right)
\]

(1) Le coordinate \(x', y' \) del punto C essendo i valori di \(x \) ed \(y \) corrispondenti alle due equazioni \(\gamma = 0 \), \(\gamma = 0 \), si avrà

\[
x' = a \left[\frac{d\gamma}{da} \right] + a' \left[\frac{d\gamma}{da} \right] \left(\frac{d\gamma}{da} \right)
\]

\[
y' = \beta \left[\frac{d\gamma}{da} \right] \left(\frac{d\gamma}{da} \right) + \beta' \left[\frac{d\gamma}{da} \right] \left(\frac{d\gamma}{da} \right)
\]

Quindi la retta che unisce questo punto C con l'origine A delle coordinate, formerà con l'asse delle ascisse un angolo avente per tangente trigonometrica

\[
\beta \left[\frac{d\gamma}{da} \right] + \beta' \left[\frac{d\gamma}{da} \right] \left(\frac{d\gamma}{da} \right)
\]

ed essendo \(\frac{\beta}{\alpha} \) quella dell'angolo che MA forma con lo stesso asse, dovrà essere

\[
tang. CAM = \frac{\beta}{\alpha} \left[\frac{d\gamma}{da} \right] \left(\frac{d\gamma}{da} \right) \left(\frac{d\gamma}{da} \right)
\]

e riducendo si avrà l'espressione sopra scritta.
e riducendo il denominatore di questo fratto s'averà
\[\text{tang. CAM} = \frac{(\alpha' - \alpha) \frac{d \beta}{da} - (\beta' - \beta)}{(\beta' - \beta) \frac{d \beta}{da} + (\alpha' - \alpha)}. \]

Ma quest'espressione è anche quella di tang. PMN, come facilmente può vedersi: dunque dovrà essere l'angolo MAC=PMN, e però il cerchio che passa per i punti A ed M, e tocca in M la MP passerà anche pel punto cercato G.

NOTA B.

Si dionotino con \((\alpha, \beta), (\alpha', \beta')\) gli estremi M, N della corda; e si chiami \(t\) la cotangente dell'angolo costante, ovvero la tangente trigonometrica dell'angolo PMN. S'avrà, per la condizione del problema
\[\frac{(\alpha' - \alpha) \frac{d \beta}{da} - (\beta' - \beta)}{(\beta' - \beta) \frac{d \beta}{da} + (\alpha' - \alpha)} - t = U = 0, \]
donde ricavasi
\[\left(\frac{dU}{da} \right) = \frac{[(\alpha' - \alpha)^2 + (\beta' - \beta)^2] \frac{d \beta}{da} - [\beta' - (\alpha' - \alpha) \frac{d \beta}{da}] \left(1 + \frac{d \beta}{da}\right)}{[(\beta' - \beta) \frac{d \beta}{da} + (\alpha' - \alpha)]^2}. \]

ed
\[\left(\frac{dU}{da} \right) = \frac{[\beta' - (\alpha' - \alpha) \frac{d \beta}{da}] \left(1 + \frac{d \beta}{da}\right)}{[(\beta' - \beta) \frac{d \beta}{da} + (\alpha' - \alpha)]^2}. \]

Sostituendo questi valori di \(\left(\frac{dU}{da} \right)\) e \(\left(\frac{dU}{da} \right)\) nelle espressioni generali delle coordinate \(x', y'\) del punto di contatto G, determinate nella nota a piedi della pag. prec., si avrà
\[x' = \frac{\alpha \frac{d \beta}{da}^2 \left[(\alpha' - \alpha)^2 + (\beta' - \beta)^2\right] + (\alpha' - \alpha) \left[\beta' - (\alpha' - \alpha) \frac{d \beta}{da}\right] \left(1 + \frac{d \beta}{da}\right)}{\frac{d \beta}{da}^2 \left[(\alpha' - \alpha)^2 + (\beta' - \beta)^2\right]}, \]
\[y' = \frac{\beta \frac{d \beta}{da}^2 \left[(\alpha' - \alpha)^2 + (\beta' - \beta)^2\right] + (\beta' - \beta) \left[\beta' - (\alpha' - \alpha) \frac{d \beta}{da}\right] \left(1 + \frac{d \beta}{da}\right)}{\frac{d \beta}{da}^2 \left[(\alpha' - \alpha)^2 + (\beta' - \beta)^2\right]} \]
S'indichino ora con \(x'', y'' \) le coordinate del centro di curvatura del punto \((\alpha, \beta)\); sarà

\[
x'' = \alpha - \frac{1 + \frac{d\beta}{da}}{\frac{d^2\beta}{da^2}} \times \frac{d\beta}{da}, \quad y'' = \beta + \frac{1 + \frac{d^2\beta}{da^2}}{\frac{d^2\beta}{da^2}} \times \frac{d\beta}{da};
\]

dunque

\[
y' - y'' = \frac{\beta - \beta}{\frac{d^2\beta}{da^2}} \left[\frac{\alpha - \alpha + (\beta - \beta) \frac{d\beta}{da}}{\frac{d\beta}{da} \left[(\alpha - \alpha)^2 + (\beta - \beta)^2 \right]} \right]
\]

e quindi

\[
\frac{y' - y''}{x' - x''} = -\left(\frac{\alpha - \alpha}{\beta - \beta} \right).
\]

Quest'equazione mostra che la retta che unisce i due punti \((x', y')\), \((x'', y'')\) è perpendicolare a quella che passa per i punti \((\alpha, \beta), (\alpha', \beta')\), cioè alla corda \(MN\), e però risulta evidente il teorema enunciato nel § 4.

NOTA C.

Per dimostrare col mezzo delle formule stabilite precedentemente l'analogia ultima del § 6., e con essa il teorema del § 5., si osservi, che indicati per \((\alpha, \beta), (\alpha', \beta')\) rispettivamente i punti \(M, N\), le rette \(QM, QG, QN\) formano con l'asse delle ascisse angoli che hanno per tangenti trigonometriche rispettivamente

\[
\frac{d\beta}{da}, \quad \frac{d\beta}{da} - \frac{d\beta}{da}, \quad \frac{d\beta}{da}.
\]

Quindi sarà

\[
\text{sen } MQG = \sqrt{\frac{\left(\frac{d\beta}{da} \right)^2 - \left(\frac{d\beta}{da} \right)^2}{\left(\frac{d\beta}{da} \right)^2 + \left(\frac{d\beta}{da} \right)^2}} \sqrt{1 + \frac{d\beta}{da^2}}.
\]
e \(\text{sen NQC} = \frac{\left(\frac{dU}{da} \right) \left[\frac{d\beta}{da} \frac{d\beta}{d\alpha} - \frac{d\beta}{da} \frac{d\alpha}{d\alpha} \right]}{\sqrt{1 + \left(\frac{\frac{d\beta}{da} \frac{d\beta}{d\alpha} - \frac{d\beta}{da} \frac{d\alpha}{d\alpha}}{\frac{d\alpha}{da}} \right)^2}} \)

(1);

e di seguito \(\frac{\text{sen MQC}}{\text{sen NQC}} = \frac{-da' \left(\frac{dU}{da} \right) \sqrt{\alpha' \alpha + \beta' \beta}}{da \left(\frac{dU}{da} \right) \sqrt{\alpha \alpha' + \beta \beta'}} \).

Ma per essere la funzione \(U \) di \(\alpha \) ed \(\alpha' \) eguale a zero, lo sarà pure il suo differenziale, dunque dovrà essere

\(\left(\frac{dU}{da} \right) \frac{d\alpha}{da} + \left(\frac{dU}{da} \right) \frac{d\alpha'}{da} = 0 \),

dove si trae \(\frac{-da' \left(\frac{dU}{da} \right)}{da \left(\frac{dU}{da} \right)} = I \),

e quindi \(\text{sen MQC} : \text{sen NQC} : \sqrt{\alpha \alpha' + \beta \beta'} : \sqrt{\beta' \beta + \alpha' \alpha} \),

che è l'analoga che dovevansi dimostrare, mentre i termini del secondo rapporto esprimono precisamente gli archetti \(MM', NN' \).

NOTA D.

Si prenda per origine delle coordinate il punto fisso \(A \); s'indichino con \((\alpha, \beta), (\alpha', \beta') \) rispettivamente i punti \(M, N \); e chiamisi \(\iota \) la tangente trigonometrica dell'angolo costante \(MAN \). Si avrà per questo caso

\(\frac{\alpha' \beta - \alpha \beta'}{\alpha' + \beta' \beta} - \iota = U = 0 \),

e di seguito

\(\left(\frac{dU}{da} \right) = -\left(\beta - \alpha \frac{d\beta}{da} \right) \left(\alpha' + \beta' \right) \left(\alpha' - \beta' \right) \),

\(\left(\frac{dU}{da} \right) = \left(\frac{dU}{\alpha' \alpha + \beta' \beta} \right) \left(\frac{dU}{\alpha' - \beta' \beta} \right) \).

(1) In generale se due rette formano con l'asse delle \(x \) angoli che hanno per tangenti trigonometriche \(h \) ed \(h' \), e si chiami \(\phi \) l'angolo compreso da queste rette, dovrà essere

\[\text{tang.} \phi = \frac{\frac{\text{sen} \phi}{\sqrt{1 - \text{sen}^2 \phi}}}{\frac{h - h'}{1 + h' h}} \]

e quindi \(\text{sen} \phi = \frac{h - h'}{\sqrt{1 + h' h + h' h + h^2 h^2}} \).
Sarà dunque (Nota A)
\[(y-\beta-(x-\alpha)^{\frac{dy}{dx}})(\beta-\alpha^{\frac{dy}{dx}})(\alpha^2+\beta^2) - (y-\beta-(x-\alpha)^{\frac{dy}{dx}})(\beta-\alpha^{\frac{dy}{dx}})(\alpha^2+\beta^2) = \rho = 0\]

l’equazione della retta che passa pel punto Q, e taglia la corda MN nel punto cercato; e se per l’origine A delle coordinate si tiri la parallela AD a questa retta, si avrà
\[y-x^{\frac{dy}{dx}}(\beta-\alpha^{\frac{dy}{dx}})(\alpha^2+\beta^2) = \rho = 0 \ldots \ldots (P).
\]

Ora aggiungendo e togliendo insieme al primo membro della precedente equazione la quantità
\[(\beta-\alpha^{\frac{dy}{dx}})(\beta-\alpha^{\frac{dy}{dx}})\sqrt{\alpha^2+\beta^2}\sqrt{\alpha^2+\beta^2},\]
essa, messo per brevità \[\frac{\alpha^2+\beta^2}{\sqrt{\alpha^2+\beta^2}} = m,\]
prenderà la forma
\[y-x^{\frac{dy}{dx}} - (\beta-\alpha^{\frac{dy}{dx}})(\beta-\alpha^{\frac{dy}{dx}})m(\beta-\alpha^{\frac{dy}{dx}})(\alpha^2+\beta^2) = 0 \ldots \ldots (P),\]
ed è visibile che deve essere verificata quando si ha contemporaneamente
\[y-m\beta = \frac{dy}{dx}(x-m\alpha) \ldots (p), \quad y = \frac{\beta}{m} = \frac{dy}{dx}(x = \frac{m}{m}) \ldots (p').\]

Adunque la retta AD, rappresentata da (P), passa pel punto d’intersezione delle due rette (p), (p') che sono le parallele tirate alle tangenti PN, PM rispettivamente pe’ punti (ma', m\beta'), (\frac{a}{m}, \frac{b}{m}). Or il primo di questi punti si trova sulla retta AN ad una distanza dal punto A eguale ad AM, ed il secondo trovasi sopra AM distante da A per AN; dunque: Se nelle AN, AM si prendano le parti AF, AE
rispettivamente eguali ad AM, AN, e pe’ punti E, F si tirino alle tangenti PM, PN le parallele ED, FD che s’incontrino nel punto D; unendo AD, e tirandogli per Q, la parallela QC, questa retta incontrerà la MN nel punto cercato.

Intanto per passare da questa costruzione a quella che geometricamente s’è rilevata nel § 10, si osservi che deve stare

\[\text{sen } ADF : \text{sen } ADE : : AF \text{sen } AFD : AE \text{sen } AED, \]

ovvero per costruzione

\[\text{sen } ADF : \text{sen } ADE : : AM \text{sen } ANP : AN \text{sen } AMP, \]

o ancora

\[\text{sen } MQC : \text{sen } NQC : : AM \text{sen } ANP : AN \text{sen } AMP, \]

e di seguito

\[PM \cdot MC : PN \cdot NC : : AM \text{sen } ANP : AN \text{sen } AMP. \]

Quest’ultima analogia è quella che si è ottenuta nel § 10.,
donde s’è ricavata la costruzione ivi riportata.

NOTA E.

Preso per origine delle coordinate il punto fisso A, s’indichino con (α, β), (α', β') gli estremi M, N della corda; e sia n il rapporto costante che i due raggi vettori si debbano serbare. Dovrà essere

\[\frac{\alpha^2 + \beta^2}{\alpha'^2 + \beta'^2} - n^2 = U = 0, \]

dove risulta

\[
\left(\frac{dU}{da} \right) = \frac{2}{(\alpha^2 + \beta^2)^2} \left(\alpha + \beta \frac{d\beta}{da} \right),
\]

\[
\left(\frac{dU}{da} \right) = -\frac{2}{(\alpha'^2 + \beta'^2)^2} \left(\alpha' + \beta' \frac{d\beta'}{da} \right),
\]

e quindi l’equazione della retta, che passa pel punto Q, e pel punto cercato, sarà

\[
\left[y - \beta - (x - \alpha) \frac{d\beta}{da} \right] \left(\alpha + \beta \frac{d\beta}{da} \right) \left(\alpha' + \beta' \frac{d\beta'}{da} \right) -
\]

\[
\left[y - \beta' - (x - \alpha') \frac{d\beta'}{da} \right] \left(\alpha' + \beta' \frac{d\beta'}{da} \right) \left(\alpha^2 + \beta^2 \right) = v = 0.
\]

Per l’origine A delle coordinate si abbasì la perpendicolare AD su questa retta; tale perpendicolare sarà rappresentata dall’equazione
al primo membro della quale aggiungendo, e togliendo insieme la quantità
\[(\alpha + \beta \frac{dy}{dx}) \left(\alpha' + \beta' \frac{dy}{dx} \right) \sqrt{\alpha^2 + \beta^2} \sqrt{\alpha'^2 + \beta'^2}, \]
 essa, messo per brevità \(\frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{\alpha'^2 + \beta'^2}} = m \), prenderà la forma
\[\left[y \frac{dy}{dx} + x - (\alpha + \beta \frac{dy}{dx}) m \right] (\alpha + \beta \frac{dy}{dx}) (\alpha' + \beta' \frac{dy}{dx}) = 0. \]
Intanto verificandosi quest'equazione quando si ha nello stesso tempo
\[y - m \beta = -\frac{da}{dy} (x - ma'), \ldots \ (q), \quad y - \frac{\beta}{m} = -\frac{da}{dy} \left(x - \frac{a}{m} \right), \ldots \ (q'), \]
si vede che la retta AD da essa rappresentata deve passare nel punto d'intersezione delle due rette (q), (q') che sono le perpendicolari tirate alle tangenti PN, PM rispettivamente per due punti \((ma', m\beta') \), \((\frac{a}{m}, \frac{\beta}{m}) \). Or questi due punti si trovano sopra i due raggi vettori ciascuno distante dal punto fisso A per quanto è l'altro raggio vettore. Adunque risulta da ciò il teorema enunciato nel § II.

NOTA F.

Per risolvere questo problema prendasi per assi coordinati la retta che unisce i due punti fissi A, B, e la perpendicolare elevata nel suo punto medio. Questi punti potranno allora esprimersi per \((p, c), (p, c); \) e le congiungenti loro con gli estremi \((\alpha, \beta), (\alpha', \beta') \) della corda saranno rappresentate dalle equazioni...
$y = \frac{\beta}{a-p} (x-p)$, ed $y = \frac{\beta'}{a'+p} (x+p)$.

Ciò posto dovrà essere per la condizione del problema

$$\frac{\beta}{a-p} - \frac{\beta'}{a'+p} = U = 0,$$

ovvero $\beta (a'+p) - \beta' (a-p) = U = 0$,

donde ricavasi

$$\left(\frac{dU}{dx}\right) = (a'+p) \frac{d\beta'}{dx} - \beta',$$

e

$$\left(\frac{dU}{dx}\right) = \beta - (a-p) \frac{d\beta'}{dx}.$$

Adunque l’equazione della retta che passa pel punto Q, e pel contatto cercato sarà

$$(y - \beta - (x - a) \frac{d\beta'}{dx}) [(a'+p) \frac{d\beta'}{dx} - \beta'] -$$

$$(y - \beta - (x - a') \frac{d\beta'}{dx}) [(a-p) \frac{d\beta'}{dx} - \beta] = v = 0,$$

ossia

$$[y - x \frac{d\beta'}{dx}] [(a'+p) \frac{d\beta'}{dx} - \beta'] - [y - x \frac{d\beta'}{dx}] [(a-p) \frac{d\beta'}{dx} - \beta] +$$

$$p \alpha' \frac{d\beta'}{dx} + p \alpha \frac{d\beta'}{dx} - p \beta' \frac{d\beta'}{dx} - p \beta \frac{d\beta'}{dx} = 0,$$

o ancora

$$[y - x \frac{d\beta'}{dx}] [(a'+p) \frac{d\beta'}{dx} - \beta] -$$

$$[y - x \frac{d\beta'}{dx}] [(a-p) \frac{d\beta'}{dx} - \beta] = 0.$$

Or si vede che la retta rappresentata da quest’equazione passa pel punto d’intersezione delle due rette

$$y = \frac{d\beta'}{dx} (x-p),$$

ed

$$y = \frac{d\beta}{dx} (x+p)$$

che sono le parallele tirate per i due punti fissi $(p, c), (-p, c)$ alle tangenti PN, PM applicate agli estremi della corda.

Adunque si ha da ciò il teorema che si è concluso nel § 12.

*Tomo XXIV. P.** II.*

Qq