La gomma arabica considerata lungamente, per rispetto alla sua chimica costituzione, siccome una sostanza molto affine dello zucchero, non diede mai sospetto che fosse per aver anche l’azoto fra gli elementi, che la compongono: anzi le analisi elementari dei sig. Gay-Lussac, Thenard e Berzelius sembravano avere collocato fuor di ogni dubbio che l’azoto non ci entrasse per niente. Se non che alle analisi prefate successe l’altra di Teodoro de Saussure, il quale accertò l’esistenza dell’azoto nella gomma, per altro nella tenue proporzione, per rispetto agli altri elementi, di c. 44.

La conosciuta esattezza sperimentale del Saussure non lasciò dubbio sopra la veracità del predetto risultamento, tuttavia nessuna conferma ulteriore veniva ad assicurarci che l’azoto si dovesse annoverare fra gli elementi della gomma, o non anzi procedesse da un sale ammoniacale trammischiatovi, come ci vorrebbe far credere il Raspail (1). Vero è che seguendo i pensamenti di questo acuto chimico francese, cui la scienza va debitrice di non pochi utili servigi, noi non dovremmo più ravi-
visare l’azoto negli atomi complessi delle sostanze organiche principalmente vegetabili, siccome facente parte della loro chimica costituzione, perchè egli nega esserci in tale condizione

nel glutine stesso, e in ogni altra maniera di materia vegetabile azotata, affermando che l'ammoniaca fornitaci dalle reazioni, e l'azoto dalle analisi, è ognora il risultamento di una accidentale introduzione di azoto in quelle materie, che i chimici reputano costituite da atomi complessi omogenei.

Il fatto poi sì è che l'accidentale mescolanza di azoto ed i sali ammoniacali di qualunque maniera siano, meschiati collo zucchero non valgono a promuoverne la fermentazione, occorrendo, per quanto ci assicura l'esperienza, una materia, nelle cui molecole complesse ci sia l'azoto, perché la poca stabilità di questo elemento nelle combinazioni principalmente organiche, inducendo la decomposizione della sostanza, questa si faccia delle ulteriori trasformazioni di composizione, che originano i nuovi prodotti, spettanti alla fermentazione.

Se adunque la gomma arabica più pura, o fosse suscettiva d'incontrare la fermentazione, o meglio ancora fosse atta a promuoverla nello zucchero, avremo, pare a me, un dato positivo, per ritenere che l'azoto faccia parte degli atomi complessi della gomma. Sembra che questo argomento ineluttabile corresse anche alla mente del citato Raspail, spianandosi egli la via alla susseguente sua asserzione de' sali ammoniacali con dire, sono sue parole, che la gomma finalmente non fermenta nemmeno coll'aggiunta dello zucchero, o del glutine (1); il che è assolutamente falso, come vedremo dalle sperienze che seguitano, le quali ci palesano, come la gomma arabica tanto sola che congiunta collo zucchero, senza l'intervento del glutine o di altra materia azotata, dia origine ad una vera fermentazione alcolifica, comechè la quantità dell'alcool prodotto sia eccessivamente piccola.

Per accertare questo primo fatto poche sperienze bastavano; ma siccome la scarsa dose di azoto contenuto negli atomi della gomma origina una fermentazione lenta, che niente ha

(1) Veglia, l'op. cit. pag. 279.

Tomo XXIII.
del tumultuoso accompagnante le ordinarie fermentazioni de’ succhi dolci, così la fermentazione della gomma mi parve la più accolta per istudiare la cagione di un fenomeno, che non vediamoci ancora così nettamente come la scienza potrebbe forse desiderare; anzi egli è a questo fine principalmente che furono istituite le sperienze, ch’io mi faccio a descrivere.

PRIMO SPERIMENTO.

Siccome la gomma arabica, come necessaria conseguenza di sua origine, è sovente legata a piccoli frammenti di materie eterogenee, e più spesso ancora in lacrime colorite, così fu mia cura principalissima di scegliere la gomma in modo, che fosse tutta candida perfettamente, e sevra di materie estranee aderenti. Anzi siccome ne’ miei sperimenti io adoperava la gomma sciolta, così dopo di avere verificata la soluzione nell’acqua, io la colava attraverso un velo fino per isceverarvi in tal guisa qualunque eterogeneità fuggita all’occhio, o compresa nella massa de’ pezzi trascelti. E poscia che le mie prime osservazioni furono fatte sopra gomma sciolta e unita allo zucchero mediante il fuoco, la quale unione di zucchero e gomma si scioglieva nell’acqua contenente un volume uguale al proprio di gas acido carbonico, così questo primo esperimento fu instituito sciogliendo in once 14 metrice di acqua contenente l’anzidetta quantità in volume di gas acido carbonico, once 1 ½ di zucchero e mezz’once di gomma, la quale soluzione era messa in una boccia di cristallo, di cui, ad eccezione del collo, empivala esattamente.

Nello stesso tempo si apparecchiava un altro uguale sperimento, in cui era variato semplicemente il veicolo, adoperandosi, anzi che acqua contenente gas acido carbonico, sola acqua di cisterna.

Questi sperimenti erano cominciati il giorno due di Giugno, e la temperatura del luogo, in cui le bocce furono collocate, era a principio dal + 20° al 21° del Reaumur, la quale
Del Dottor Bartolomeo Bizio

temperatura durante le osservazioni variò dai +13° sino al 23 2°, cosicché ometterò appresso per brevità, di tenere conto minuto delle variazioni termometriche successivamente avvenute, dovendosi ognora comprendere tra i due estremi accennati, e più sovente tra il +18° e 21°.

La soluzione nelle due bocce a principio dell'esperienza era limpida perfettamente, e traeva solo un poco al perlato. Il di appresso non si è osservata altra mutazione che un lieve sedimento fioccoso in fondo delle bocce, e questo più nell'acqua contenente gas acido carbonico, che nell'altra.

Nel secondo giorno molti di que' fiocchi erano venuti a galla, sollevati da minutissime bollicine di gas, che vi aderivano, e ciò con piccola o nessuna differenza nelle due bocce. Nel terzo giorno la fermentazione era manifesta in entrambe con isprigionamento continuo di gallozzole e molta spuma sollevata nell'acqua di cisterna, poca nell'altra. Qui per altro le gallozzole erano più grosse, più minute nella precedente, la quale differenza ha sua spiegazione nel gas acido carbonico contenuto in quell'acqua.

Ne' giorni successivi si mostrò sempre più vigorosa la fermentazione dov'era il gas acido carbonico, e si l'una che l'altra cominciò ad affievolirsi undici giorni dopo il cominciamiento. Tuttavia seguitava uno sprigionamento di bollicine anche dopo lo spazio di giorni 30, tempo in cui i due liquidi divenuti già un poco acidi, furono sottoposti alla distillazione.

SECONDO ESPERIMENTO.

Serbata ogni cosa come nell'esperienza antecedente fu variata semplicemente la condizione del liquido, cioè a dire, l'acqua di cisterna prima d'impiegarsi fu sottoposta alla bollitura, e nell'altra contenente gas acido carbonico furono aggiunti nove grammi di bicarbonato di potassa.

Questa due sperienze s'instituivano il giorno 5 di Luglio. Tre giorni dopo il liquido contenente il bicarbonato si rese
assai turbido, e nell’altro dell’acqua bollita solamente piccoli fiocchi in fondo della bocca. Nel quarto di in questa durava ancora la condizione primitiva d’inerzia, nel bicarbonato spuma copiosa, e spriigionamento abbastanza celere di gas acido carbonico. Finalmente il giorno appresso nel bicarbonato la fermentazione era vivacissima, ed appena scorgevansi svolgere alcuna rada bollicina nell’acqua bollita: brevemente in questa, coméché col processo dei giorni la fermentazione aumentasse, si mantenne però ognora assai fievoles, dove nel bicarbonato divenne tanto gagliarda da potersi quasi comparare a quella del succo dell’uva; anzi merita osservazione che nemmeno un mese dopo il cominciamento dell’esperienza lo spriigionamento del gas dava vista di essersi menoamamente affievolito; ed oltre a ciò vuol’essere notata, come differenza qualificante l’azione del bicarbonato nello zucchero e nella gomma, un odore soave manifestatosi nel liquido scorsi otto giorni circa dappoiché la fermentazione era cominciata e che si mantene con piccola diversificazione, durante tutto il tempo dell’esperienza, che fu prolungata a giorni trenta, dopo di che i due liquidi furono destillati, osservando che nel bicarbonato la reazione fu sempre alcalina, laddove nell’altro, ad esperienza innoltrata, si mostrò alquanto acida.

Nel dar fine all’esperienza col bicarbonato avrei dovuto attendere tutto quello spazio di tempo, ch’io adesso ignoro, in cui fosse cessato interamente lo spriigionamento del gas acido carbonico; ma io per allora non attendeva alla qualità dei trammutamenti dello zucchero, e della gomma, ma solamente alle condizioni valevoli a indurre un più pronto, o più vigoroso movimento intestino.

TERZO SPERIMENTO.

Considerando in questo sperimento che lo zucchero e la gomma, per rispetto alla chimica loro costituzione, sono due sostanze, quasi dissi, identiche, ho pretermesso lo zucchero,
sciogliendo nella solita quantità di acqua once 1 ½ metriche di gomma, e quindi abbandonandola a sé stessa; mentre in un'altra soluzione uguale vi ho aggiunto nove grammi di carbonato di potassa sciolti. L'aggiunta del sale alcalino intorbidì grandemente la soluzione, rendendola di una opacità lattiginosa. Appresso cominciò ad adunarsi un precipitato lieve, che nello spazio di un giorno diede in fondo compiutamente, lasciando il liquido soprastante perfettamente limpidi.

A principio era trasparente altresì la soluzione di gomma schiatta, ma mentre quella con l'alcali durava limpida, questa il secondo giorno diventava torbidiccia, e nel terzo del cominciamento dell'esperienza, entrava già in manifesta fermentazione, dove l'altra si manteneva nella stessa condizione d'inernia sino al tredicesimo giorno, dappoiché era messa a ordine l'esperienza. In questo di cominciò quivi pure lo spri- gionamento del gas, ed appresso seguì colla medesima energia dell'acqua contenente il bicarbonato già indicato nella sperienza seconda.

Qui è da osservare che l'inernia lungamente durata della gomma coll'alcali dava luogo nella superficie del liquido alla formazione di una pellicola, ed alla conseguente generazione di alcuni vestigi di muffa, onde il liquido in quel tempo esalava odore di muffa; il quale per altro svanì corsi quattro, o cinque giorni dal cominciamento della fermentazione, succedendovi l'odore piacevole già notato nella citata sperienza seconda.

QUARTO SPERIMENTO.

Quì fu rinnovato l'esperimento precedentemente descritto della gomma schiatta, paragonandola all'altro di gomma e zuccher registrato nella prima sperienza, col divario per altro che qui la gomma e lo zucchero non avevano prima provata l'azione del fuoco. Frutto di questa sperienza si è il fatto a mio credere interessante, che la temperatura durando la media avuta in tutti gli altri sperimenti, dove la gomma schiatta co-
minciava a fermentare due giorni dopo il cominciamento dell'esperienza, quella collo zuccheri fermentava evidentemente sole sedici ore dopo; cosicché pochi giorni appresso ho rinnovata questa esperienza e la fermentazione seguiti venti ore dopo, che vuol dire occorrere in questo caso alla produzione del fenomeno uno spazio di tempo molto minore, che in qualunque altra circostanza di gomma schietta, o collo zuccheri, o coll'alcali, i quali ultimi esperimenti, oltre i descritti, furono estesamente ripetuti e variati nello spazio di quattro mesi crescenti ne' quali mi sono occupato in questa indagine.

I'llazioni, che se ne traggono per rispetto all'azoto nella gomma, ed al fenomeno della fermentazione dalle sperienze descritte.

Queste poche esperienze ci dicono adunque evidentemente essere erronea la sentenza del Raspail che la gomma arabica non fermenti, e che l'azoto ch'essa contiene provenga da' sali ammoniacali che in essa risiedono, essendoci oggi mai bastevolmente assicurati ch'essa fermenta tanto sola, quanto unita allo zucchero. E siccome condizione precipua alla produzione del fenomeno si è la presenza di una materia nelle cui molecole complesse entri l'azoto, così abbia diritto di concludere che l'azoto faccia parte delle molecole complesse della gomma.

La cosa poi che mi sembra meritare attenzione si è le circostanze che accelerano, ritardano, o rendono molto più energica la prefata fermentazione. L'illustre Liebig parlando della fermentazione, accenna una causa novella siccome produttrice del fenomeno sia che si tratti della fermentazione alcoolica, dell'acetica, o della putrida ancora, ed è l'attitudine che pigliano le sostanze in decomposizione d'indurre la medesima condizione in altre materie presenti, e ciò senza adoperare in esse chimicamente, ma per sola trasfusione di movimento. In fatti egli dice così: « Il lievito di birra e in generale
tutte le materie animali e vegetabili in putrefazione inducono in altri corpi lo stato di decomposizione nel quale si trovano elleno stesse; d’onde ne segue che adoperano nella maniera stessa del perossido d’idrogeno coll’ossido d’argento: il movimento che, stante la perturbazione, è impresso a’ propri elementi, si comunica egualmente agli elementi de’ corpi, che si trovano a contatto di essi (1). E più appresso conclude: « I fatti che abbiamo esposti annunciano l’esistenza di una nuova causa producente decomposizioni e combinazioni. Questa causa non è altra cosa che il movimento che un corpo in decomposizione comunica ad altre materie nelle quali gli elementi si tengono uniti da una affinità debolissima. Le materie che inducono questa decomposizione non agiscono in virtù della loro speciale natura chimica, ma solo quale il momento di una azione che si estende al di là della sfera della lor propria decomposizione (2). » Questa enunciazione del Liebig è l’additamento preciso del fatto. Un legno marcito, come altrove nota lo stesso chiarissimo autore, fa marcire il legno sano con cui si trovi a contatto; ma d’onde poi avviene che un corpo in decomposizione induca il medesimo stato in altro corpo presente? Per comprendere la cagione vera di questo fatto e di parecchi altri analoghi, bisogna risalire alle dottrine del Fusinieri fondate nell’esperienza, e concernenti all’espansione o naturale attenuazione della materia. La manifestazione di questa forza inerente alla materia attenuata precede ognora le chimiche decomposizioni siccome cagione distruggitrice delle combinazioni che sussistono, e va innanzi del pari alle combinazioni quale forza che rompe la coesione, riducendo la materia a quell’ultima attenuazione che abbisogna alle chimiche combinazioni. Ora le particelle della materia attenuata ne’ due casi mentovati

(1) Vegg. Traité de Chimie Organique par M. Justus Liebig. Tome Premier, pag. XXVIII.
(2) Vegg. Oper. cit. pag. seguente.
agiscono senza dubbio in maniera diametralmente opposta alla forza che tende ad effettuare od a mantenere le combinazioni chimiche, o la coesione della materia: ma la forza che mantiene le combinazioni o la coesione è vera attrazione delle molecole, dunque la forza che rompe questi vincoli è vera ripulsione delle molecole stesse, che in molti casi si manifesta precedere le combinazioni ad occhio veggenti. Ma la materia in istato ripulsivo tende ad espandersi e ad attenuarsi indefinitamente cozzando contro la materia inerte che la attornia, onde ne segue che, o questa materia resiste assolutamente ed allora converte la espansione in forza coercitiva, ed opera nuove combinazioni cogli elementi della sostanza in decomposizione, o per la debole affinità, onde gli elementi sono legati fra loro non resiste assolutamente, e in tal caso la materia attorniante le sostanze in decomposizione pel movimento impressovi entra anch’essa in istato ripulsivo o di naturale attenuazione; i suoi elementi si disgiungono e si espandono sincè per l’obice di altre materie presenti, ch’effettivamente resistono, si arresta l’espansione, verificandosi le chimiche combinazioni, onde hanno origine i nuovi prodotti. Ecco adunque di qual maniera le materie inducenti la prefata decomposizione, valendomi delle parole stesse del celebre Liebig, agiscano non in virtù della loro speciale natura chimica, ma quale il movente di un’azione che si estende a di là della sfera della lor propria decomposizione.

Se il fatto adunque sta precisamente come noi qui lo abbiamo esposto e come lo riteniamo, riferendoci ora alla fermentazione, avverrà che tutte quelle circostanze che verranno ad assottigliare la materia riducendola in ispigoli, o in lamine attenuate, od a produrre un’azione chimica qualunque, contribuiranno ad accelerare la fermentazione, e per converso a ritarдарla, allorchè le prefate circostanze si allontanino.

Ora nel primo sperimento descritto abbian veduto la gomma arabica sostenuta in una fermentazione più vigorosa per la presenza del gas acido carbonico a confronto della semplice acqua di cisterna; e questa destarsi molto più prontamente in
paragone dell' acqua bollita. Come adunque adopera il gas acido carbonico o l'aria entro il liquido per accelerare la fermentazione, onde sottraendo gli anzidetti gas sia ritardata? In quanto all'aria si potrebbe credere che col suo ossigeno valesse a indurre un primo chimico impulso nella molecola azotata, ma non si può dire altrettanto del gas acido carbonico; eppure il Liebig ebbe ad osservare che nel succo di alcuni frutti l'introduzione di una bolla di gas acido carbonico basta ad indurre la fermentazione alla maniera stessa che la promuove una gallozzola d'aria nello sperimento del Gay-Lussac. Se adunque nel mio caso e in quello del chiarissimo Liebig non vediamo nemmeno un minutissimo principio di azione chimica sufficiente a destare la fermentazione, vuol dire, che il gas acido carbonico ne diviene il movente con ridurre la materia in ispigoli, onde qui si induce la naturale attenuazione operante l'effetto. In fatti il gas acido carbonico introdotto precedentemente nell'acqua tende a sprigionarsi, e ciò avviene riducendosi in gallozzoline che fuggono. Facciamo che tre, quattro, o più di queste gallozzoline si tocchino, siccome avviene effettivamente: che forma va a pigliare il liquido compreso nelle gallozzole e per conseguenza le materie ivi sciolte decomponibili? Qui lo vediamo assottigliato in angoli e in ispigoli esilissimi, dunque posto nell'acconcio il più opportuno, acciocché si ponga in atto la forza di naturale attenuazione, che nella materia si ridotta costantemente si appalesa. Ecco dunque di qual maniera il gas acido carbonico promuove ed accelera la fermentazione, ed ecco in qual guisa la stessa aria naturalmente contenuta nell'acqua vi dia un impulso così da ritardare l'azione, quando sia prima artificialmente scacciata, come l'abbiam veduto nella sperienza seconda.

I sali alcalini, in grado bensì minore degli alcali, adopera uno azione chimica nello zucchero e nella gomma; ma l'azione chimica è ognora precorsa dallo stato ripulsivo o di naturale attenuazione in cui si pongono le molecole de' corpi, che si combinano: dunque ammettendo come causa della
fermentazione lo stato ripulsivo del fermento che si comunica allo zucchero, deve avvenire che l'intervento dei sali alcalini depremovere ed afforzare la fermentazione della gomma, siccome il fatto comprovò evidentemente tale conghiettura. Anzi i sali alcalini temperarono in guisa la prefata azione da originare un principio aromatico speciale, del quale ci resta a indagare la natura, come eziando quella degli altri prodotti, che si originano durante la fermentazione anzidetta.

La differenza notabile del tempo voluto al carbonato a confronto del bicarbonato nel dare principio al movimento intestino, mi sembra che trovi facile spiegazione nella necessità che il carbonato passi a bicarbonato prima che il gas acido carbonico si spriogioni. Non così facile a prima giunta parrà il dar ragione plausibile, onde sia che fermenti tanto prima il zucchero e la gomma che non provarono l'azione del fuoco, in paragone della mescolanza sottoposta prima per un istante all'ebollizione. Il zucchero e la gomma, per quanto dicono le mie osservazioni, che tendono a comprovare l'opinione del Thomson (1), adoperano un'azione reciproca e non si tratta quindi di una semplice mescolanza. Ora la combinazione effettuata col mezzo del fuoco compì l'azione che ha il zucchero nella gomma e reciprocamente; cosicché sciogliendo nell'acqua le materie così apparecchiate non resta che il solo movente della molecola azotata della gomma, che dia impulso alla fermentazione, dove ne' casi dello sperimento quarto, c'è la subita azione della gomma sullo zucchero, che dovendo costantemente essere precorsa dalla condizione espansiva della materia dà celere spinta al movimento intestino; onde ne segue che tutti i fatti sin qui esposti concorrono a provare che qualunque maniera di fermentazione riconosce il movente primo da una sostanza che, per essere a confronto delle altre pre-

(1) Vegg. il Trattato di Chimica del Thenard Versione italiana, Verona 1833. Tom. IV. pag. 457.
sentì più facilmente decomponibile, entra in istato ripulsivo, o di naturale attenuazione inducendo in tutte, o in alcune delle materie presenti la medesima condizione; e questa causa della fermentazione non è speciale, nè dipendente da una nuova forza; ma da quella oggimai conosciuta che risiede nella materia attenuata, cioè, lo stato ripulsivo in che si pone la materia così ridotta, e dalla conseguente azione ch’essa adopera nella materia inerte recandola al medesimo stato; nella stessa guisa che il calorico, materia sicuramente ripulsiva, dispone infinite sostanze alle chimiche combinazioni, o decomposizioni. Brevemente noi non vediamo diversità di causa tra il bisogno che ha il diamante del fuoco di uno specchio utorio per combinarsi all’ossigeno, e quello dello zucchero che vuole la decomposizione del fermento perché abbia luogo la sua trasformazione; perciò che nel diamante si è il calorico che porta le molecole del carbonio in istato di naturale attenuazione, acciocché si congiungano coll’ossigeno, e nel secondo il fermento, od altra materia azotata in decomposizione, che trasconde lo stato ripulsivo nello zucchero onde si opera la sua metamorfosi; cosicché risalendo alla forza che dispiega la materia attenuata sì ha facile ragione del fenomeno della fermentazione, come di altri moltissimi, senza avere uopo di conferire alla materia nessuna altra forza fuor delle comuni, che le sono costantemente inerenti.

Tra le forze comuni alle quali poter ricorrere per ispiegare l’anzi detto fenomeno della fermentazione ci sarebbe l’elettricità; anzi il Colin reputò i fatti gli additassero quella forza quale sicura cagione dell’effetto. In fatti il celebre Thenard recando in sunto i principali sperimenti, che avvalorano l’opinione dell’autore mentovato, ci fa sapere che mentre «il suro di una non fermenta senza il contatto dell’aria o del suo ossigeno, e bastano alcune bolle a produrre l’effetto, fa lo stesso dell’aria la corrente voltaica» senzaché appresso egli seguita così:

«Alcune preparazioni di lievito mescolate collo zucchero e coll’acqua non fermentano, ma sottoposte all’azione della pila entrano pienamente in fermentazione.»
« Il lievito di birra serbato per alcun tempo nell’ acqua bollente perde la facoltà di fermentare, almeno per qualche giorno, e la riacquista a contatto dell’ aria, o sotto l’ influenza della pila. » Onde l’ illustre chimico Francese seguita dicendo che « dal considerare quanto poco fermento abbisogni per decomporre il zucchero dee essere venuto in capo a più chimici l’ idea di riconoscere nella elettricità la causa della fermentazione. Fu ammessa, egli dice, dal Gay-Lussac, ed io stesso l’ ho di già annunziata in una mia Memoria sur il biossido d’ idrogeno. Ora il Colin recò in mezzo la stessa idea fondandosi nella esistenza di alcune mescolanze, le quali non fermentano per sé stesse ed entrano prontamente in fermentazione la mercè di una corrente voltaica. Si potrebbe per altro obbiettare che queste correnti agiscono in quanto che decompongono l’ acqua, rendendo libero l’ ossigeno, il quale come fece vedere il Gay-Lussac, ha la proprietà di determinare la fermentazione (1). » Ma io soggiungeto a questo proposito: Nelle prefate mescolanze, le quali non fermentavano per sé stesse ed entravano prontamente in fermentazione la mercè di una corrente voltaica, non era mica stata esclusa l’ aria? In fatti dove si fosse esclusa l’ aria niuno poteva inferire che quelle mescolanze per sé stesse non fermentassero, anzi in tal caso non dovessero fermentare punto nè poco, sapendo ognuno, dopo l’ esperimento del celebre Gay-Lussac, che il succo stesso dell’ uva per sé stesso non fermenta se non v’ ha a principio almeno una bolla d’ aria che ne dia impulso, o, come acertò il Liebig in qualche caso, una gallozzola di gas acido carbonico. Dunque nelle soprammentovate mescolanze, che non fermentavano non ostante il concorso di tutte le condizioni richieste a indurre la fermentazione, non si può dire che l’ elettricità operasse indirettamente scomponendo l’ acqua e fornendo l’ ossigeno, ma bensì che producesse l’ effetto in-

(1) Vegg. il Trattato di Chimica del Thenard, versione italiana, Verona 1838. Tom. V, pag. 89 e 90.
ducendo la condizione ripulsiva nelle molecole complesse delle sostanze atte a fermentare; brevemente che l'elettricità operasse nello stesso modo in che opera ne' composti inorganici sottoposti alla sua azione, onde quegli elementi che prima, in virtù delle rispettive loro attrazioni si erano congiunti formando degli speciali composti, respingendosi si decompongono e sovente entrano a formare de' composti novelli. Quindi è che ne' fatti del Colin io trovo una luminosa conferma della cagione per me assegnata all'interessante fenomeno della fermentazione.