INTORNO ALLA COSTRUZIONE
DEI PARAFULMINI
MEMORIA
DEL PROFESSORE PIETRO CONFICLIACHI

Ricevuta adi 3. Febbraio 1830.

L'età nostra non ha bisogno di nuovi argomenti scientifici o di altre prove di fatto per farsi certa sull'efficacia dei cosi detti Parafulmini a preservarci dai mali, che cagionar potrebbe una delle più frequenti e terribili meteore. La scienza e l'empirismo da un mezzo secolo e più stabilirono questa importante verità. Saggi Governi perciò invitano gli amministrati, o ben anche comandano di armare con spranghe frankliniane quelli edifici principalmente, che per vastità, elevazione o situazione, non che pel fine cui sono destinati e dove molta gente spesso si raduna, potrebbero non di rado e con danno maggiore essere fulminati.

La scienza piuttosto, porgendo mano anche in ciò all'industria manifatturice, si studia di rendere più facile e più economico il modo di eseguire quelle armature senza diminuirne la virtù.

A questo intento non ha guari l'industrioso meccanico italiano, il Sig. Marelli, imaginò nella costruzione dei Parafulmini di far uso di trecce di fili di ferro stagnato per stabilire le necessarie comunicazioni non interrotte fra le spranghe metalliche, e fra queste ed il suolo.

Presentasi però la quistione, se i Parafulmini costruiti nel modo dal Marelli proposto valgano a guarentirli dal fulmine, quanto quelli fabbricati con grosse e continuatue sbarre o ver-
ghe di ferro, ovvero con trecce di fili di rame e come d'ordinario ultimamente si costruivano in Lombardia ed altrove, e principalmente dopo il 1802, allorquando con felicissimo successo si armò l'alta torre di Cremona, fatta prima in ogni anno bersaglio di ripetuti fulmini.

All'adeguata soluzione di questa tesi, su cui verte il presente scritto, parmi necessario il ricordar brevemente alcune proposizioni, le quali nella Scienza dell'Elettricismo applicata alla costruzione dei Parafulmini possono considerarsi come assiomi.

1. Quando l'Elettrico si compone in equilibrio fra corpo e corpo, o fra un sistema di corpi ed un altro, come fra l'atmosfera e la terra, investe la materia, ossia sostanza di quei corpi che servono di strada o di veicolo alla sua corrente: nè si diffonde sulla loro superficie, nè gli abbandona, quando siano capaci a contenerlo. I fenomeni di elettrica trasfusione sono ben distinti da quelli di elettrico accumulamento.

2. Corpi di diversa natura, a cose pari nel rimanente, non sono egualmente atti a contenere la piena elettrica, perché non sono nell'egual grado conduttori dell'Elettrico, ossia non si prestano egualmente al trascorrimento del medesimo.

3. I metalli tutti sono esimii conduttori dell'Elettrico. Ma quando la corrente che gl'investe è copiosa, manifesta si rende la differenza di conducibilità per l'Elettrico anche fra i diversi metalli. La stessa corrente in fatti non arroventa, nè fonde i diversi metalli che trascorre sebbene questi siano disposti o in lastre, o in fili, o in sbarre di eguali dimensioni. Il rame per esempio per l'azione dell'Elettrico si arroventa e si fonde più difficilmente del platino.

4. Affinché quei corpi che sono meno conduttori dell'Elettrico degli altri al pari di questi siano capaci a contenerne la corrente, è necessario aumentare la loro massa quanto è minore la loro conducibilità. In tal guisa per esempio operando con lastre o fili metallici di maggiori dimensioni si arriva ad impedirne l'arroventamento e la fusione, che la cor-

Tomo XX. Ss
rente elettrica produce, allorché s’impiegano sotto dimensioni minori.

5. Quando i conduttori o canali dell’elettrica corrente siano pure metallici, sono interrotti; ovvero quando la corrente stessa, dopo di aver attraversato conduttori metallici capaci a contenerla, trova ostacolo a quella libera e pronta diffusione, che è necessaria per ristabilire l’equilibrio nello stato elettrico dell’atmosfera, per esempio, e della terra cioè incontrando in seguito conduttori più imperfetti dei primi, qual sarebbe un terreno quasi asciutto: allora la stessa corrente elettrica può arroventare e fondere ben anche quei metalli, che sotto le medesime dimensioni, ma tolte quelle circostanze, non avrebbero sofferto sensibile alterazione.

6. I metalli ossidandosi, come avviene a molti di essi prestamente e sensibilmente al solo rimanere esposti all’aria ed alle vicende di umido e di secco, perdono assai della loro facoltà conduttrice dell’elettrico.

Colla scorta di queste cognizioni, intorno alle quali nessun colto elettricista moverà dubbio, si può determinare quale metallo, preso ben anche in considerazione l’economia della spesa, e sotto quali dimensioni e forme possa essere scelto ed adoperato nella costruzione dei Parafulmini, affinché questi, supposto che per le altre relazioni siano ben costruiti e ben collocati, valgano a preservarci dai danni del fulmine.

Il metallo, che sino dai primi momenti dell’invenzione frankliniana si giudicò più opportuno alla costruzione dei Parafulmini, fu il rame. Fra i metalli non molto costosi è uno di quelli, che difficilmente a cose pari si arroventa e si fonde dalla corrente elettrica, e che esposto all’aria, o immerso nell’acqua non si distrugge notabilmente. L’ossidazione superficiale per lungo tempo garantisce il metallo stesso che riconopre.

Ma perchè il rame a cose eguali costa assai più che il ferro, la maggior parte dei fisici per molto tempo impiegò invece quest’ultimo metallo nella costruzione dei Parafulmini.
L'economia vi riconobbe un vantaggio, quantunque la grossezza della sbarra di ferro avesse ad essere pressocché doppia di quella del rame. La maggiore grossezza si giudicò necessaria, e perché il ferro sottoposto all'elettrica azione si arroventa e si fonde più facilmente del rame; e perché, ossidandosi prestamente esposto all'aria, la ruggine non interrompesse col tempo la prosecuzione dell'esito del conduttore, o di troppo non diminuisse la sua capacità a contenere le elettrochimiche correnti. Anzi a togliere o ritardarne principalmente quest'ultimo difetto, si pensò con buon consiglio d'inverniciare ad olio le sbarre di ferro, ovvero di stagnarlo, come insegnò il Cav. Marsigli Landriani valente fisico sino dal 1784, nella sua opere dell'utilità dei conduttori elettrici stampata in Milano. Certo è che la stagnatura, mentre guarentisce il ferro dalla ruggine, ne accresce alcun poco la capacità a contenere l'elettrica corrente.

Avuto perciò riguardo alla minore spesa, che si aveva a sostenere nella costruzione dei Parafulmini, quale in allora si praticava sin verso il 1804, questi generalmente si costruirono con sbarre cilindriche ossia verghe di ferro non interrotte, del diametro non minore di mezzo pollice del piede parigino, che tutt'al più s'inverniciarono a risparmio della spesa per la stagnatura. E lo stesso Landriani, il quale nei nostri paesi ed altrove eletto tanti Parafulmini, si attene a questo metodo; che è pur quello che alcune volte si segue attualmente e massime in Francia.

Dalle parti però più elevate di altri edifici condurre sin sotto terra quelle sbarre o verghe di ferro dell'indicata grossezza, e perciò assai pesanti; ed in modo che l'unione fra le diverse tratte della lunghezza totale fosse fatta con sicurezza e stabilità, (imperocché nella costruzione dei Parafulmini nulla vi ha di peggio dell'interruzione nei conduttori metallici adoperati, per la qual cosa si dovette ben presto rinunciare anche all'uso delle catene metalliche da taluno suggerito nel principio di quello stupendo ritrovamento) rende-
va il lavoro difficile, e di molto scemava il guadagno che si otteneva impiegandovi il ferro in vece del rame.

Moltiplicate le filiere metalliche, venne ad altri il buon pensiero di sostituire alle sbarre e verghe metalliche i fili di metallo, riuniti in lunghe e rilasciate trecce, i quali avessero tale diametro da rendere il conduttore formato dal loro insieme capace a contenere le correnti fulminee. Ciascuno di quei fili avendo piccola grossezza potevasi maneggiare facilmente quantunque lungo, ed annodare con altri e ripiegare al bisogno con sicurezza di stabile contatto; e perciò con sensibile diminuzione di opera manuale.

E siccome facendosi uso del ferro, non potevasi adopera
tre quel metallo in fili di piccolo diametro, come p. e. di i. a 2. linee, perché più facile ad arroventarsi ed ossidarsi, e perciò a spezzarsi ben anche, e a diventare meno atta a condurre e contenere l'elettrica piena: così si pensò di adopera
tre, come si fece con ottimo successo, le trecce di fili di rame. Non solo i fisici ne furono contenti, essendosi provveduto alla maggiore sicurezza dell'effetto dei Parafulmini; il che è ciò che più importa: ma soddisfatti rimasero anche quelli che economicamente consideravano la cosa; avendo riconosciuto nel risparmio dell'opera manuale un compenso del maggior costo del rame, il quale poi anche dopo un lunghi
cissimo periodo di tempo a motivo della ossidazione solo su
erficiale conservava un ragguardevole valore.

Le cose erano in questo stato rispetto alla costruzione
dei Parafulmini, quando il Marelli pochi anni sono credette di migliorarla e in quanto all'effetto, e in quanto all'econo
mia, apprestando le trecce con fili di ferro, ma stagni, onde evitare il danno della facile ossidazione.

Il pensamento del Marelli non è privo di merito, quantun
tue quello non gli si competa della novità; e falso sia quanto si lesse in alcuni pubblici fogli, aver egli cioè ritrovato un nuovo metallo, più eccellente conduttore dell'elettrico, e che non si spezzi o si fonda sotto l'azione della cor-
rente elettrica come il rame: il merito suo sta in ciò, di aver egli studiato di provvedere alla maggiore economia nella costruzione di quelle armature, combinando col risparmio della spesa pel lavoro quello del prezzo del metallo impiegato. Le treccie a fili di ferro stagnato, a cose pari, costano quasi un terzo meno di quelle a fili di rame.

Ma i Parafulmini in tal modo costruiti sono così efficaci a preservarci dal fulmine quanto quelli fabbricati altrimenti, come si disse? Dal complesso di tutte le cose e scientifiche e pratiche fin qui esposte, dipende la soluzione del quesito.

1. Quando i fili di ferro, che impiegansi nella costruzione delle treccie, siano bene stagnati, cioè in modo che qua e là non appaiano sensibili interruzioni nella stagnatura, e principalmente dove i fili si piegano o fra loro si annodano.

2. Quando per tutto quel tratto, che il conduttore metallico devi essere interrato in luogo che si mantenga in ogni tempo umido, ovvero immergere nell’acqua, alla treccia di fili di ferro stagnato quella si sostituisca di fili di rame, ovvero una sbarra o lastra di rame, o anche di piombo.

3. Quando in ultimo il numero dei fili di ferro stagnato componenti la treccia, o il loro diametro, ovvero e l’uno e l’altro insieme, siano tali che la somma dei diametri sia ad un dipresso doppià di quella, che si richiederebbe a pari circostanze costruendo i Parafulmini con treccie di fili di rame: non si dubita di asserire, che per molti anni i Parafulmini fabbricati con quel nuovo metodo equivalgano nell’efficacia a salvare dal fulmine a quelli altrimenti costruiti, e specialmente a quelli fatti con fili di rame.

La necessità delle prime due condizioni, che affrancano i Parafulmini a fili di ferro stagnato di loro virtù, è per se stessa manifesta. Il guasto dell’ossidazione potrebbe a non molto rendere insufficiente il conduttore metallico a contenere le correnti elettriche, o interromperlo nella sua tratta, ovvero diminuirne la conducibilità dov’esso si fa strada nel suolo umido o nell’acqua. Il danno dell’ossidazione a cose eguali
sarebbe maggiore; essendo la stessa massa di ferro ridotta in fili, si perché la superficie del metallo esposta all'aria ed a contatto di altri corpi è maggiore, e si ancora perché la tessitura del ferro passato alla filiera è meno compatta del battuto, e qua e là presenta dei peli e delle scabrezze, quando i fili non sono assai sottili.

Ma la necessità della terza condizione, e nella misura che superiormente si è detto, dalla scienza e dalla pratica insieme si viene dimostrata, quando nulla si voglia porre a rischio in un oggetto così importante, ed in confronto di un meschino guadagno.

La scienza elettrica e l'empirismo, ossia le osservazioni fatte per molti anni ed in diversi luoghi, e fra questi nei più sottoposti alle scariche fulminee, e le più poderose, possono sole d'accordo ammaestrarci intorno alle grandezze o dimensioni da adottarsi nel comporre quelle treccce o quelle metalliche comunicazioni, secondo che scegliamo l'uno piuttosto che l'altro metallo. La scienza ci fa conoscere la diversa azione che esercita l'elettrico sui diversi metalli, principalmente allorquando in copia gli invade: l'empirismo, che solo c'istrui sulle distanze alle quali dobbiamo collocare le sparghe elettriche su vasti edifici per preservarli in ogni loro parte, è pure quel solo, che c'insegna sotto quali dimensioni fatte le treccce metalliche adoperate le verghe o barche continue di metallo, abbiano resistito alle scariche elettriche le più copiose e le più violenti senza arroventarsi, senza spezzarsi, senza fonderosi, e perciò i Parafulmini con quelle fabbricati, e nel resto come si suppone bene costruiti, non mai abbiano mancato di efficacia al fine cui sono destinati. Qual fisico infatti conosce a priori la sfera di azione di una sparga elettrica? quale il grado massimo d'intensità cui possa giungere, l'elettrico sconcerto fra la terra e l'atmosfera? quanto la copia di una corrente fulminea, e la velocità con cui trascorre e quindi gli effetti che in relazione principalmente a questi due elementi vale a produrre nei corpi che investe?
L'esperienza di ben mezzo secolo c'istruì, che le sbarche o verghe continue di ferro del diametro di 6 linee parigine, ossia di 13,536 millimetri e d'ordinario inverniciate ad olio, non che quelle di rame nudo del diametro di sole 3 linee parigine, ossia di millimetri 6,768. impiegate alle unioni e comunicazioni delle spranghe frankliniane valgono a garantirsi dal fulmine, quando i Parafalmini siano nel rimanente ben costruiti e disposti, e principalmente quando sicura è la comunicazione delle estremità inferiori dei conduttori metallici coll'acqua, che scorre o riposa su fondo morto ossia terroso, come quella di un pozzo, e non già di una cisterna, ovvero con un terreno per particolari circostanze di luogo, o per se stesso molto umido, ed in ogni stagione dell'anno, come sono gli argillosi anche a non molta profondità.

Alle spranghe o verghe continue di ferro o di rame sostituite da molti anni le treccie a fili di rame ricotti, per le ragioni qui sopra riferite, e che conciliano la sicurezza dell'effetto desiderato coll'economia del lavoro, l'esperienza dimostrò, che, composte le treccie di due o tre fili di tale diametro, che la somma delle periferie di quei cilindretti di rame corrispondesse ad un pollice parigino, ossia a millimetri 37,072., i Parafalmini con esse costruiti non mai smentirono la loro efficacia, anche nelle più pericolose situazioni. Una chiesa p. e. posta all'altezza di piedi parigini 4122. sopra il livello del mare e fabbricata sulla roccia, il Santuario cioè della Vergine sulla vetta del Monte Bisbino nella Provincia di Como, monte di forma conica, isolato a grandi distanze dalle altre cime che signoreggia, e dove non vi è acqua in cui tuffare le corde metalliche, armata di Parafalmini nel modo ora indicato, da sette e più anni andò illesa dalle ruine del fulmine, che ogni anno e più volte la bersagliava; come preservate furono molte alte torri, e molti vasti edifici in egual modo difesi.

Ora volendo surrogare ai fili di rame quelli di ferro stagnato, affinché equivalentano nella costruzione dei Parafalmini ai primi, secondo gli insegnamenti della scienza e molto più
in forza delle pratiche cognizioni finora acquistate, la somma dei
diametri dei fili componenti le trecce doppia esser dovrebbe
ad un di presso di quella dei diametri dei fili di rame, che
in pari circostanza s’impiegherebbero, non mai poi minore di
quella, cui corrisponde la periferia totale, ossia l’insieme del-
le periferie dei cilindretti di un pollice e mezzo parigino, ossi-
sia di millimetri 40,608, per approssimazione.
Che poi formandosi le trecce conduttrici con fili di fer-
ro stagnato convenga, per nulla azzardare, che la somma dei
diametri dei fili che le compongono abbia ad essere anzi un
poco maggiore del diametro della sbarra o verga di ferro, che
si usava in passato e da lungo tempo con felice successo; non
dissimilmente di quello che si fece allorché alle verghe o sbar-
re di rame si sostituirono con eguale buon esito le trecce a
fili di questo metallo, chiaro risulta dalle seguenti considera-
zioni. Quantunque i fili di ferro si suppongano con termine
dell’arte lodevolmente stagnati, non di meno evitare non si
possono nel velo di stagno che li ricopre le frequenti inter-
ruzioni, e particolarmente dove si connettono fra loro o si ri-
piegano. Nelle stesse piegature l’acqua talvolta vi si ferma,
e l’ossidazione in appresso progredisce più facilmente. Ricor-
cendo il ferro perché si presti alle piegature, la sua massa
sensibilmente diminuisce ossidandosi facilmente alla superfi-
cie. Sebbene la fisica non sappia ancora chiaramente deter-
minare la ragione, per la quale i metalli si comportano di-
versamente sotto l’azione della corrente elettrica che sotto
quella del fuoco delle nostre fucine, è però indubbiato dopo
le esperienze prima di *Van-Marum*, e poi di *Children*, che il
ferro si arroventa e si fonde più facilmente del rame, allor-
quando a cose eguali sono investiti dalla corrente elettrica.
Il ferro è altresì il metallo più combustibile, mentre riscal-
dato ad un grado minore degli altri metalli, e massime del
rame, si combina prontamente coll’ossigeno, coprendosi alla
superficie di una squamma di ossido. Lo stesso velo poi di
stagno in occasione di poderose scariche fulmince potrebbei
fondere, e molto più facilmente che il rame e il ferro, come
manifesto appare in molte esperienze anche di gabinetto, quando
non fosse già ossidato col solo star esposto all'atmosfera.
Affinché adunque senza ragionevole timore possiamo nello
stato delle attuali nostre cognizioni teoriche e pratiche riguardare
i Parafalmini costruiti colle trecce a fili di ferro stagnato,
euamentat atti a condurre senza danni le correnti fulminee, sia
no le più copiose, che quelli fabbricati con trecce a fili di
rame nudo, è necessario che le dimensioni dei fili di ferro
stagnato siano ben poco minori a cose pari del doppio di quelle
che vi vorrebbero usando i fili di rame. Quando l'esperienza
di molti e molti anni, quale si è quella che ci assicura dell'ef-
ficacia dei Parafalmini costruiti coi soliti metodi anche nei casi
in cui l'elettrico si scarica a torrenti, deporrà a favore del nuo-
vo metodo praticato con fili di ferro stagnato ma del diamet-
tro pressocché eguale a quello che si dà ai fili di rame, ben
volentieri si correggeranno le misure sopraindicate, mentre al-
ora solamente si concilierà la sicurezza dell'effetto colla ve-
ra economia.

Quella in fatti nello stato presente delle cose o non si
otterrebbe, o solo col sanguizzo penoso e continuo di nostra
tranquillità. Se i fili di ferro ben stagnato da impiegarsi nel-
là costruzione delle armature a guardarsi dal fulmine devono
avere il diametro quasi doppio di quelli di rame, non solo
scompare il risparmio che si ottiene pel minore costo di quel
metalio, ma per la stagnatura del ferro lo spendere si au-
menta.

Che se si pon mente, che il pericolo di guasto, e di in-
terruzione o rottura nei fili di ferro stagnato è più facile che
in quelli di rame; se si considera che alle stesse circostan-
ze i primi conserveranno più a lungo la facoltà conduttrice
esima per l'elettrico, quale è propria dei metalli, che i se-
condi; sebbene il tempo sia indeterminato, per le quali cose
maggiore sorveglianza si dovrà esercitare rispetto ai Parafal-
mini costruiti con trecce a fili di ferro stagnato, che a quel-

Tomo XX. Tt
li con trecce a fili di rame: ancor più difficilmente converrà abbandonare il metodo finora seguito per ripararci dal fulmine.

Finalmente il rame che s'impiega in simili armature, anche dopo lunga pezza di tempo, perché superficialmente ossidato, conserva in commercio un discreto valore, mentre di poco o nessun momento è quello che può ricavarsi dal ferro.