SULLA TEORICA
DEL MOTO COMPOSTO
MEMORIA
DELL’AB. GIUSEPPE ZAMBONI
PROF. DI FISICA NELL’I. R. LICEO DI VERONA

Fra i teoremi fondamentali della Meccanica, quello della equipollenza di due forze unite ad angolo alla forza espressa per la diagonale nel moto composto, sembra, a giudizio di sommi Matematici, non potersi dimostrare con tutto rigore geometrico se non per parecchi altri teoremi, e lunghe dimostrazioni, come può vedersi nel Bernoulli, nel d’Alembert, e nel P. Riccati. E quel che è più, dappoché il celebre P. Fontana (*) illustrò la dimostrazione semplicissima lasciataci dal Newton di quel Teorema, ecco nuovamente in campo al principio di questo secolo il Professor Michele Araldi nome assai caro alle scienze, e di preziosa memoria nella Società nostra non meno, che nell’Istituto Nazionale d’Italia. Egli pertanto nella sua Memoria inserita nel T. I. del suddetto Istituto P. I. p. 415, riconosciuta l’importanza di sostenere il detto principio dell’equipollenza con tal forza di raziocinio, che soggiungendo l’intelletto, costi tia anche i più fastidiosi e difficili a dichiararsene soddisfatti, propone con esemplare modestia una sua prova, promettendone il vantaggio dalle altre, che mentre Ei dice le di-

(*) Biblioteca Fisica d’Europa T. VII. pag. 5c.
mostrazioni dei Mathematici soprallodati si avvolgono ed al-
lungano per ben sei ed anche sette dimostrazioni, il mio tenta-
tativo, se pur desse ha raggiunto lo scopo, spedisce tutto l'aff-
fare in tre soli Teoremi. Nel primo di questi Egli tratta del-
là forza equivalente a due altre eguali, le cui direzioni si
uniscono ad angolo retto. Nel secondo suppone retto l'ang-
golo delle direzioni, e disuguagli le forze; nel terzo finalmen-
te disuguagli le forze, e le direzioni unite da qualunque ang-
golo. Semplice e facilissima è la sua dimostrazione del pri-
mo teorema, ma però di quelle indirette, che diconsi per
absurdum. Semplicissima altresì quella del terzo; ma il se-
condo da cui il terzo dipende abbisogna di cinque figure, e
del lunghissimo raziocinio di quattro pagine e mezza.

Mirabile a dir vero è la finezza di quel suo ragionare
geometrico; ma per ciò appunto riesce a confermare, che
sia molto difficile la dimostrazione rigorosa del teorema colla
geometria elementare. D'altra parte il Newton, pur severis-
simo nelle sue dimostrazioni, giudicò provata ogni cosa di
quei tre teoremi per un solo, nel modo più facile, e riput-
tato il migliore dal sullodato Fontana. Or dunque dove la
differenza si strana? E come ischifare la taccia di ardito,
chi volesse definirla? Io certamente

Colla veduta corta d'una spanna
non verrò mai a disputare fra le linci.

Se non che abbracciata la dimostrazion Newtoniana, for-
se perchè più conveniente alla brevità del mio ingegno, mi
sono studiato di trovare nella medesima quel rigore geo-
metrico, che per avventura non si manifesta nel comento che
ce ne diede il Fontana. Come io vi sia riuscito, lo giudiche-
ranno i più veggenti; ma spero, che alla maniera che io ten-
go per giungere allo scopo, si accorderà almeno il vantaggio
di chiarire vie meglio l'istruzione sul moto composto.
DEFinizioni

I.

Il moto rispettivo a un dato punto o retta linea è il cambiamento successivo della distanza del mobile dal detto punto o linea.

II.

La misura della detta distanza nel moto rispettivo è la linea più corta intercetta fra il punto ove il mobile si trova, ed il punto o retta linea riguardo a cui si fa il moto rispettivo prolungata se occorre. Un mobile per esempio, che dal punto A (Fig. 1.) viene in B descrivendo la AB.

1.° Ha un moto rispettivo dal punto A verso il punto B, e le varie distanze che acquista il mobile successivamente dal punto B nei punti E, G sono misurate dalle rette EB, GB.

2.° Il mobile venendo da A in B ha eziandio dei modi rispettivi riguardo ad altre linee. Si avvicina per esempio alle rette CB, BH; e le varie distanze del mobile dalla prima CB quando si trova successivamente nei punti A, E, G sono misurate dalle normali AC, ED, GF; e le normali AR, EH, GP misurano il variare della sua distanza nei punti medesimi A, E, G dalla retta BH. Così pure collo stesso movimento da A in B si allontana contemporaneamente dalle rette AC, AO; e le normali EM, GN, BO misurano il crescere della sua distanza dalla retta AO, come le normali ES, GT, BC il suo allontanarsi più e più dalla retta AC.

III.

La velocità per la quale un mobile fa un moto rispettivo di una certa misura in certo tempo dicesi velocità rispettiva.
E però se un mobile dal punto A (Fig. 2.) abbia un moto rispettivo verso la retta BD per l'una o l'altra delle tre direzioni AB, AC, AD; ed impieghi lo stessimo tempo a descrivere tanto la AB, quanto la AC, o la AD, avendo tutte e tre per misura comune del detto moto rispettivo la distanza normale AE, la velocità rispettiva del mobile è la medesima in ciascuna delle tre direzioni.

ASSIOMI

Un mobile non ha alcun moto rispettivo riguardo a una linea parallela a quella ch'esso describe.

II.

Un mobile fra due linee parallele non può aver contemporaneamente due moti rispettivi di avvicinamento alle dette due linee, o di allontanamento dalle medesime.

TEOREMA.

Un mobile in A (Fig. 3.) spinto al moto contemporaneamente da due forze AB, AC le cui direzioni si uniscano con un angolo qualunque CAB, in quel tempo che avrebbe descritto o l'una o l'altra delle AB, AC, descrive la diagonale AD del parallelogrammo ABDC, che risulta dalle due linee AC, AB esprimenti le direzioni e i valori delle due forze.

DIMOSTRAZIONE.

Ecco quella del Newton: Nam quoniam vis AC agit secundum lineam AC ipsi BD parallelam, haec vis AC (per Legem II. motus) nihil mutabit velocitatem accedendi ad lineam illam BD a vi altera AB genitam. Accedet igitur corpus eodem tempore ad lineam BD, sive vis AC imprimatur sive non;
atque adeo in fine illius temporis reperietur alicubi in linea illa BD. Eodem argumento in fine temporis ejusdem reperietur alicubi in linea CD; et idcirco in utrisque lineae concursu D reperiri necesse est. Perget autem motu rectilinéo ab A ad D per Leg. I.

Or questa dimostrazione dietro gli allegati principj del moto rispettivo si potrebbe svolgere nella seguente maniera.

La forza AC produce da sè il moto per AC, e con esso un moto rispettivo verso la retta CD (Defin. II). Il qual moto rispettivo potrebbe avere la stessa velocità rispettiva tanto per la direzione AC, quanto per altra direzione che dal punto A venisse a toccare altro punto della CD diverso dal punto C. (Definiz. III.)

Dico primieramente, che il mobile non può fare il detto moto rispettivo di avvicinamento alla CD per la direzione AC, ed ubbidire insieme all'altra forza AB. Imperciocché questa forza AB produce un moto rispettivo dal punto A verso la retta BD. Ma se il mobile si movesse per AC non avrebbe alcun moto rispettivo verso la retta BD, essendo AC parallela a BD (Assioma I). Dunque il mobile se venisse per AC non avrebbe in nulla ubbidito alla forza AB. Similmente si dimostra, che se il mobile andasse per AB non potrebbe in nulla ubbidire alla forza AG.

Dico in secondo luogo, che il moto rispettivo di avvicinamento dal punto A verso la retta CD dee farsi, malgrado dell'altra forza AB, per direzione bensi diversa dalla AC, ma colla stessa velocità rispettiva, che si avrebbe per la direzione AC. Poiché essendo AB parallela a CD, la forza che produce il moto per AB non produce alcun moto rispettivo riguardo alla linea CD (Assioma I); vale a dire la forza AB colla sua direzione AB parallela alla CD non può né accrescere né diminuire la velocità rispettiva dell'altra forza AC dal punto A verso la retta CD. Dunque se il mobile non può fare il suo moto rispettivo dal punto A verso la retta CD per la direzione AC, come fu provato, dovrà far-
lo per altra direzione e colla stessa velocità rispettiva che avrebbe avuto per la direzione AC. Similmente si dimostra, che essendo AC parallela a BD, il moto rispettivo dal punto A verso la retta BD, che non può farsi per la direzione AB, si dovrà fare, malgrado della forza AC, per altra direzione colla stessa velocità rispettiva che si avrebbe per la AB.

Pertanto essendosi provato, che il moto rispettivo dal punto A verso la CD non può essere nè agevolato nè impedito dalla forza AB; nè parimenti il moto rispettivo dallo stesso punto A verso la BD può essere impedito nè agevolato dalla forza AC, ne viene, che il mobile dovrà ubbidire alle due forze col descrivere una linea la cui direzione partendo dal punto A abbia contemporaneamente due moti rispettivi di avvicinamento l' uno alla retta CD, l' altro alla retta BD; e la detta linea si descriva colla stessa velocità rispettiva, che si avrebbe avuto o per la AC o per la AB essendo il tempo per AB uguale al tempo per AC. Ma la sola diagonale AD (Defin. II.) è quella la cui direzione AD contiene i due moti rispettivi l' uno verso la retta CD, l' altro verso la retta BD, al termine della qual diagonale descrìtta nel detto tempo il mobile compisce ambedue i moti rispettivi, toccando ambedue le rette CD, BD nel punto D comune ad entrambi. Dunque ec.

Ecco a parer mio l'evidenza geometrica che si può dare alla dimostrazione del Newton colla figura simplicissima da Lui usata.

Ma se si adoperi la Fig. 4. colla quale i Fisici scomponendo si l'una delle forze date AB nelle due AE, AH, come l' altra AC nelle due AF, AG, dimostrano, che delle quattro forze le due AE, AF perchè uguali e contrarie non producono alcun moto; e le altre due AE ed AG, che rimangono cospiranti servono a far descrivere la sola diagonale AD, se, dico, applicheremo le nozioni e i principj del moto rispettivo a tal figura, nè verrà altra dimostrazione ancor più analizzata dello stesso Teorema; mentre nell'uso fat-
SULLA TEORICA DEL MOTO COMPOSTO

to da Fisici di tal costruzione, si suppone già dimostrato, che la forza AB equivalga alle due espresse dalle AE, AH, e così pure l’altra forza AC equivalga alle due AF AG.

Pertanto colle due rette AB, AC, che esprimono le due forze componenti, compiuto il parallelogrammo ABDC, e tirata la diagonale AD, io non propongo già di scomporre veruna delle forze date; ma condotta comunque si voglia la BH, con le due HA, HB formo il parallelogrammo AEBH; indi condotta CG parallela ad AE, e CF parallela ad AG, prolungo EA in F per compiere l’altro parallelogrammo AGCF.

Per tal costruzione abbiamo dalla Geometria AE uguale ad AF, ed AH uguale a GD; e quindi la somma di AG con AH uguale a tutta la diagonale AD. Dico adunque, che le due forze AB, AC non possono dare il moto se non per la diagonale AD.

Imperciòché la forza in A colla sua direzione AB produce due movimenti rispettivi di avvicinamento l’uno alla retta BH, l’altro alla retta EB (Defin. II.); e parimenti l’altra forza in A colla sua direzione AC produce altri due movimenti rispettivi di avvicinamento l’uno alla retta CG, l’altro alla retta FC. Dei quali movimenti rispettivi quello dal punto A verso la EB e l’altro dallo stesso punto A verso la FC non possono aver luogo; perciòché il mobile in A fra le due parallele EB, ed FC non può essere contemporaneamente avvicinato ad entrambi (Assioma II.); e nemmeno all’una più che all’altra; perchè essendo EA uguale ad AF, amendue gli avvicinamenti dal punto A alla EB, e dallo stesso punto A alla FC sono di uguale misura; ed il tempo per AB ponendosi uguale al tempo per AC, il mobile in A tende a fare ciascuno dei detti due avvicinamenti con la stessa velocità rispettiva (Defin. III.), e perciò non dovrà fare nè l’uno nè l’altro. Ma i due movimenti rispettivi dal punto A verso la BH, e dallo stesso punto A verso la CC possono farsi per una sola direzione. Dunque il mobile dovrà farli amendue, ma per tal direzione che non ab-
Dell' Ab. Giuseppe Zamboni

bìa alcun moto rispettivo né verso l'EB, né verso l'FC; ciò è per una direzione parallela a queste due linee (Assio-

ma I). Ora la diagonale AD è appunto parallela alle due
EB, FC. Dunque il movimento rispettivo dal punto A verso
la BH dovrà farsi per AH porzione della diagonale, e l'alt-
ro dal punto A verso la GC per l' altra porzione AG; le
quali due porzioni formano appunto tutto il moto per la
diagonale AD come doveva dimostrarsi. Da ciò si vede, che
la risultante di due forze unite ad angolo contiene quei so-
lì movimenti rispettivi delle componenti, che possono farsi
per una sola direzione; e gli altri si distruggono l' un l'al-
tro, il che mostra in qualunque caso la distruzione d' una
parte di moto in ciascuna delle forze componenti.

E questa maniera di rappresentare la risultante di due
forze unite ad angolo ci fa strada a dover considerare in
qualunque forza anche semplice i suoi moti rispettivi; il che
darà maggior luce a quelle teorie meccaniche, nelle quali si
usa risolvere una forza semplice in altre obblique.

Ed in vero, per l'esempio della Definizione II, e per
le fatte dimostrazioni si potrà formare il seguente principio
generale: Qualunque movimento semplice da un punto a un
altro contiene necessariamente tutti i moti rispettivi ai lati di
tutti i parallelogrammi, che hanno per diagonale comune la
retta esprimente quel moto semplice. Un mobile per es. che
describe il moto semplice da A in B (Fig. 5), colla sua di-
rezione AB fa nello stesso tempo tanto i movimenti rispet-
tivi ai lati AC AE, CB, EB del parallelogramma AEBC, quan-
to i movimenti rispettivi ai lati del parallelogramma ADBF,
e così pure tutti i movimenti rispettivi ai lati di tutti quei
parallelogrammi che hanno la retta AB per diagonale comune.
Il perché una forza semplice in tanto produce il movimento
da A in B, in quanto che non vien impedita dal fare nello
stesso tempo tutti gli altri suddetti rispettivi; de' quali un
solo che le fosse tolto di fare, la forza produrrebbe un moto
diverso da AB in direzione e in valore.
Per determinare in tal caso, qual debba essere il nuovo movimento prodotto dalla forza; sia e. g. il moto rispettivo dal punto A (Fig. 5) verso la EB tolto interamente da un ostacolo che si oppone da E in A. Allora colle due AE, EB fatto il parallelogramma $AEBC$, si prova, che la forza in vece del moto AB produrrà nello stesso tempo il moto AC.

Ed in fatti la direzione AB contiene necessariamente il movimento rispettivo dal punto A verso la retta EB. Ma questo movimento rispettivo si suppone impossibile a farsi per cagion dell’ostacolo. Dunque non si avrà più moto per la direzione AB, ma per altra direzione, che non abbia alcun moto rispettivo verso la EB. La causa poi, o l’ostacolo che toglie il moto rispettivo dal punto A verso la EB operando da E in A cioè in direzione parallela a CB, non può alterare il moto rispettivo, che la forza in A produce dal punto A verso la BC (Assioma I). Laonde il mobile dovrà prender tal direzione dal punto A, che non abbia alcun moto rispettivo verso la EB, ma lo abbia verso la BC colla stessa velocità rispettiva che avrebbe avuto descrivendo la AB. Ma la sola AC essendo parallela ad EB non contiene alcun moto rispettivo riguardo alla EB (Assioma I); ed il mobile descrivendo la detta AC nel tempo medesimo che avrebbe percorso la AB, conserva la stessa velocità rispettiva verso BC (Defin. III). Dunque la forza produrrà il movimento da A in C col valore AC in luogo del movimento AB.

Vero è, che posto il principio della risoluzione d’una forza semplice AB in altre due oblique AE, AC, si conchiude più prestamente, che tolta una di queste AE dall’ostacolo, il moto sarà fatto unicamente dall’altra AC; nè io pretendendo già infirmare di un minimo chè la sicurezza di tal principio. Ma lo spiegare il fenomeno d’un moto, come sarebbe l’urto obliquo AB sul piano EG (Fig. 6) col sostituire alla forza reale AB due forze, che in fatto non esistono cioè le AD, AC unite ad angolo retto in A, può bensì convincere per la equivalenza della forza reale AB alle due
supposte AD, AC; ma l'animo, che non trova esistenti realmente queste due forze, non può esserne pienamente soddisfatto e domanda tuttavia cosa v'abbia nella forza reale AB, che la fa operare al modo stesso delle due supposte AD AC.

Ora usando del principio soprallegato, che ogni moto semplice contiene necessariamente dei moti rispettivi, se in vece di considerare le due AC, AD come forze da sostituirsi alla forza AB, si dica, che la forza reale produttrice del moto AB, produce altresì con esso due moti rispettivi di avvicinamento, l' uno al piano EG, l' altro alla retta CB, si dice cosa che realmente esiste; essendo verità di fatto, che il mobile venendo per AB, si avvicina tanto al piano EG quanto alla retta GB. E perché l'urtare del mobile nel piano viene unicamente dal suo avvicinarsi al piano stesso; così questo solo moto rispettivo di avvicinamento al piano misurato dalla normale AD potrà essere alterato nell'urto, a quel modo che prescrivono le leggi dinamiche nei vari casi. E l' altro moto rispettivo di avvicinamento alla retta CB perché misurato dalla normale AC, parallela alla DB, si rimarrà intatto dopo l'urto.

Simmilemente la discesa di un grave per il piano inclinato AE (Fig. 7) vien certo dalla gravità insita nel mobile; ma la teoria della risoluzione d'una forza in altre, col sostituire alla gravità AC del mobile le due forze AD, AB, unite sotto l'angolo retto DAB fa comparire invece quella discesa come prodotta dalla forza AB. Laddove il principio suddetto dei moti rispettivi mostra direttamente, che la gravità in tal caso non può produrre che il moto per AB nel tempo stesso che il grave avrebbe fatto AC senza l'impedimento del piano. Poiché la gravità per se stessa tende a produrre il moto semplice per AC verticale, direzione propria de' gravi. Ma questo moto semplice contiene di necessità anche i due moti rispettivi di avvicinamento l'uno dal punto A verso la retta CD, e l' altro dallo stesso punto A verso la retta BC;
SULLA TEORICA DEL MOTO COMPOSTO

dei quali il primo essendo impossibile per la reazione del piano, la gravità dee produr l’altro solamente per AB parallela a DC.

Finalmente dalle premesse nozioni e principj del moto rispettivo verrà più chiara ed esatta la teoria del moto curvilineo. Due sole forze realmente esistenti unite ad angolo producono il moto composto per l’elemento AD d’una curva (Fig. 8.). Una delle forze è detta centrale come sarebbe la centripeta espressa da AC, e l’altra espressa da AB che tangenziale si appella. La prima AC tende a produrre un moto rispettivo di avvicinamento verso un punto interno F nella concavità della curva; e l’altra, cioè la tangenziale AB tende a produrre un moto rispettivo di allontanamento dallo stesso punto F. Perciocché il mobile abbandonato dalla centripeta AC fuggirebbe per la tangente AB, e si troverebbe nel punto B nell’istante medesimo nel quale per la unione delle due forze si sarebbe trovato in D. Se impertanto il moto rispettivo della centripeta sarà di uguale valore o misura del moto rispettivo della tangenziale, il mobile dovrà nel suo moto descrivere tal curva, in ciascun punto della quale nè si avvicini nè si allontani dal punto F, cioè dovrà fare un circolo intorno a questo punto. E in altro caso descriverà altra curva secondo la diversa ragione che avranno tra loro i valori o misure dei detti due moti rispettivi.

Oltre a ciò vuolsi notare, che la retta AC misura tanto il valore assoluto della forza centripeta quanto il suo moto rispettivo verso il punto F; poiché nel caso che manchi la tangenziale AB, il mobile in quel tempo che avrebbe fatto l’elemento di curva AD in virtù delle due forze, farebbe invece la AC, avvicinandosi nel detto tempo al punto F quanto porta AC. Ma quanto alla tangenziale, il suo valore assoluto è misurato dalla AB, ed il suo moto rispettivo di allontanamento dal punto F vien misurato dalla OB. Questa OB, se l’arco infinitesimo AD è circolare, si confonde colla BD parallela alla AC. Poiché, per la proprietà del circolo, è ret-
to l'angolo \(\text{BOD} \), ed è retto eziandio l'angolo \(\text{BDO} \) perché uguale all'altro retto \(\text{CAD} \). Ma i due angoli \(\text{BOD}, \text{BDO} \) non possono esser retti, se non perché la \(\text{BD} \) si confonde colla \(\text{BO} \). Dunque, il detto moto rispettivo della tangenziale si esprime nel circolo dalla \(\text{OB} \) egualmente che dalla \(\text{DB} \). Ma la \(\text{AB} \) che esprime il valore assoluto della forza tangenziale non può esser mai confusa con la \(\text{DB} \), o colla sua identica \(\text{OB} \), perciò che dell'arco infinitesimo \(\text{AD} \) il seno verso \(\text{AC} \) uguale a \(\text{BD} \) è un infinitesimo di secondo ordine, mentre \(\text{CD} \) uguale ad \(\text{AB} \) essendo il seno dello stesso arco, è un infinitesimo di primo ordine.

Pertanto da questa differenza di misura fra il valore assoluto della tangenziale, ed il moto rispettivo della medesima è venuto, che i Fisici comunemente riguardano il moto rispettivo \(\text{OB} \) della tangenziale come prodotto da una forza particolare detta \(\text{centrifuga} \) espressa dalla \(\text{OB} \). Ma se com'è evidente, il detto moto rispettivo di allontanamento \(\text{OB} \) dal punto \(\text{F} \), si contiene essenzialmente nel moto semplice \(\text{AB} \) della tangenziale, questo moto rispettivo non può al certo provenire da un'altra forza che realmente esista distinta da quella che produce il moto semplice per \(\text{AB} \); altrimenti essendosi infiniti i moti rispettivi contenuti in un moto semplice, bisognerebbe ammettere altrettante forze reali e distinte in qualunque moto semplice prodotto da una sola forza il che sarebbe un assurdo. Dunque la forza \(\text{centrifuga} \) non può essere una forza speciale, che realmente esista distinta dalla tangenziale; ma è la tangenziale medesima, che ha la proprietà di essere centrifuga per il suo moto rispettivo di allontanamento misurato dalla \(\text{OB} \).

Accorderò bensì che per agevolare le dimostrazioni ed i calcoli si possa supporre questa forza speciale, che operi da \(\text{O} \) in \(\text{B} \) col valore \(\text{OB} \), e che si chiami centrifuga; perché quanto all'effetto, la cosa torna a un medesimo, come se questa forza esistesse realmente appunto come nella risoluzione di una forza semplice, si adoperano altre forze ad es-
Sulla teorica del moto composto

sa equivalenti, che però non esistono; ma sembrami, che nel
dare a principio le nozioni delle forze, che producono que-
sto moto curvilineo, si dovrebbe procedere con esattezza
maggiore, e distinguendo ciò principi del moto rispettivo le
forze reali dalle supposte, evitare lo sconciò di qualunque
oscurità e confusione oggimai intollerabile in tanta luce di
fisiche discipline.