NUOVA SOLUZIONE D’UN PROBLEMA STATICO
EULERIANO

DI GREGORIO FONTANA

Ricevuta il di 25. Novembre 1801.

L’Eulero nella sua profonda Dissertazione sopra l’armonia fra i principii generali di quiete e di moto del Sig. de Maupertuis, inserita nel tomo VI degli Atti dell’Accademia di Berlino, fa un’ingegnosa applicazione di que’ principij a molti problemi meccanici, che egli scioglie con impareggiabile semplicità ed eleganza, e fra gli altri egli intraprende la soluzione del seguente problema, che egli dice essergli stato altra volta proposto.

PROBLEMA.

Contro un muro immobile DC (fig. 1) trattasi di appoggiare la verga AB in maniera, che essendo sostenuta sopra un punto fisso O, e sollecitata all’estremo A da un peso P, essa rimanga in tal posizione in equilibrio.

L’Eulero scioglie il Problema con supporre la verga priva di gravità, ed il muro perfettamente levigato, sicché la verga possa strisciare senza ostacolo di sfregamento; indi avverte, che esso non sarebbe si facile a sciogliersi co’ principij ordinari della Meccanica. Ma fatto sta, che senza alcun bisogno di ricorrere al principio un poco precario di Maupertuis, il Problema si scioglie mediante le comuni nozioni della Meccanica nel modo più semplice e facile, che si possa bramare, e ciò anche nel supposto che voglia teneri conto della gravitā della verga, e dello sfregamento del muro. Eccone pertanto la soluzione, e primieramente nel caso con-

tem-
Di Gregorio Fontana.

627

templato da Eulero dello sfregamento nullo, e della verga non grave; poi nell’altro caso della verga pesante, e del muro dotato di sfregamento.

Soluzione del 1° caso in cui si prescinde dal peso della verga, e dallo sfregamento.

Suppongo trovarsi la verga nella posizione richiesta per l’equilibrio, e risolvo la forza del peso P rappresentata dalla retta verticale AF nella forza FG perpendicolare alla verga, e nella AG in direzione della verga, la prima delle quali tende a far girare la verga attorno al sostegno O, e la seconda a farla strisciare sul sostegno a seconda della sua stessa direzione.

Si rappresenti colla retta BM perpendicolare al muro la reazione o resistenza, che quivi incontra la verga, e si risolva anche la forza BM nelle due MN, e BN, quella normale alla verga, questa in direzione di lei, quella tendente a rivolgerla intorno all’appoggio O, questa a farla correre sull’appoggio nella direzione BA. Guido dal sostegno O al muro la perpendicolare OE = b, e faccio l’angolo BOE = φ, tutta la verga BA = a; la sua parte OB = x, l’altra OA = a − x, il peso P = p, e la forza BM = f. Ora lo stato di equilibrio della verga esige queste due condizioni; 1.° che non ci sia moto rettilineo di strisciamento sul sostegno O; 2.° che non ci sia moto rotatorio intorno ad O; le quali condizioni importano 1.° l’uguaglianza delle forze opposte AG, BN; 2.° l’uguaglianza dei momenti delle forze GF, NM. Ma AG = p sen φ, BN = f cos φ, GF = p cos φ, NM = f sen φ. Si avranno dunque le due seguenti equazioni dell’equilibrio: 1.° p sen φ = f cos φ. 2.° p (a − x) cos φ = f x sen φ; dalle quali, cacciando f, si avrà tosto

\[p (a - x) \cos \phi = \frac{px \sen \phi}{\cos \phi}, \]

e quindi

\[(a - x) \cos \phi = x \sen \phi, \]

e per ultimo

\[x = \sqrt{a b^2}. \]

Il che &c.

Kkkk 2 Que.
Nuova Soluzione di un Problema cc.

Questo Problema, come riflette Eulero, è rimarchevole per questa circostanza singolare; che è di potersene far uso per ritrovare due medie proporzionali fra due linee date, essendo in fatti la parte OB della verga la prima delle due medie proporzionali fra le linee OE distanza del sostegno dal muro, e AB lunghezza della verga.

Soluzione del 2° caso, in cui si tiene conto dello sfregamento e del peso della verga.

Ritenuta la costruzione precedente dai punti di mezzo K ed R (fig. II) ossia dai centri di gravità delle due porzioni AO, ed OB della verga si abbassino le rette verticali KH, RS che ne esprimano il loro rispettivo peso; indi si risolvano queste forze nelle HT, ST normali alla verga, e KT, RT in direzione della medesima. Siccome poi dalla forza BM originata dalla pressione della verga contro il muro risulta uno sfregamento nella direzione BC contraria alla direzione BE, secondo cui la verga tende a strisciare sul muro in virtù dello sforzo del peso P, si risolve anche questa forza BQ nelle due QL normali alla verga, e BL in direzione della verga. Ciò fatto, egli è manifesto, che le quattro forze AG, KI, RT, e BL si esercitano a far correre la verga sul sostegno nella direzione AB, e che la quinta forza BN agisce in verso contrario e spinge la verga da B in A; onde che l'ipotesi dell'equilibrio darà la prima equazione tra quest'ultima forza e la somma di quelle quattro. Ottaccò le due forze CF, ed IH tendono a far girare la verga intorno all'appoggio O per un verso, e le tre altre TS, NM, ed LQ, si adopranò a farla girare in verso contrario; e conseguentemente per la natura dell'equilibrio la somma de' momenti di quelle dovrà uguagliarsi alla somma de' momenti di queste. Presentemente ritengo le denominazioni di prima, e pongo \(\text{ma} \) il peso della verga, come proporzionale alla sua lunghezza, essendo \(m \) un dato coefficiente, e così pure stabilisco \(nf \) la forza di sfregamento BQ, come quella che è una data parte della pressione \(f \), essendo \(n \) la frazione es-
primente la detta parte. Ciò supposto, trovasi \(AC = p \sin \phi \),
\(GF = p \cos \phi \); \(KL = m(a - x) \sin \phi \); \(HH = m(a - x) \cos \phi \);
\(RT = mx \sin \phi \); \(TS = mx \cos \phi \); \(BN = f \cos \phi \); \(NM = f \sin \phi \);
\(BL = nf \sin \phi \); \(IQ = nf \cos \phi \). Perlocché l'ipotesi dell'equilibrio, che rende nullo così il moto rettilineo della vergha, come il rotatorio, ci offre le due equazioni I.° \(p \sin \phi + m(a - x) \sin \phi + mx \sin \phi + nf \sin \phi = f \cos \phi \), cioè
II.° \(p \sin \phi + ma \sin \phi = f \cos \phi - n \sin \phi \); II.° \(p(a - x) \cos \phi + \frac{1}{2} m(a - x) \cos \phi = f(x \sin \phi + n \cos \phi) \). Dalla prima equazione deduco
\(f = \frac{p \sin \phi + ma \sin \phi}{\cos \phi - n \sin \phi} \), che sostituito nella seconda mi dà
\(p(a - x) \cos \phi + \frac{1}{2} m(a^2 - 2 ax) \cos \phi = \frac{\sin \phi + n \cos \phi}{\cos \phi - n \sin \phi} \), oppure \(pa + \frac{1}{2} ma = \frac{(\sin \phi + n \sin \phi \cos \phi)(p + ma)x}{\cos \phi - n \sin \phi} \)
\((p + ma)x = \frac{(\sin \phi + n \sin \phi \cos \phi)(p + ma)x}{\cos \phi - n \sin \phi} \), che si riduce semplicemente ad
\(a(p + \frac{1}{2} ma) = \frac{(p + ma)x}{\cos \phi - n \sin \phi \cos \phi} \). Laonde per esser \cos \phi = \frac{b}{x}, \sin \phi = \sqrt{1 - \frac{b^2}{x^2}} \), si ha finalmente
\(a(p + \frac{1}{2} ma) = \frac{(\sqrt{x^2 - b^2})^3}{x} \), e quindi \(ab(p + \frac{1}{2} ma) \)
\(-(p + ma)x^3 = nha(p + \frac{1}{2} ma)\sqrt{x^2 - b^2} \), e quindi ab\((p + \frac{1}{2} ma) \)
\((p + ma)x^3 \) e quadrando,
\((p + ma)^2 x^6 - 2 ab^2 \chi(p + ma)(p + \frac{1}{2} ma)x^3 \)
Della Soluzione di un Problema cc.

$+ a^2 b^4 (p + \frac{1}{2} ma)^2 = n^3 b^2 a^2 (p + \frac{1}{2} ma) (x^n - b^4)$

e per fine ordinando

$x^6 - \frac{2 a b^2 (p + \frac{1}{2} ma)}{p + ma} x^3 + n^3 b^2 a^2 \left(\frac{p + \frac{1}{2} ma}{p + ma} \right) x^i$

$+ (n^i + 1) a^2 b^4 \left(\frac{p + \frac{1}{2} ma}{p + ma} \right)^2 = 0$.

La radice di quest'equazione di sesto grado darà quanto si addimanda. Il che &c.

Cor. 1.° Se si vuol prescindere dallo sfregamento, e dal peso della verga, facendo $n = o$, ed $m = o$, l'equazione ritrovata diventa

$x^6 - 2 a b^4 x^i + a^2 b^4 = 0$, ovveramente

$(x^6 - a b^4)^2 = 0$, dalla quale si ottiene $x = \sqrt[3]{a b^4}$, come appunto nel primo caso.

Cor. 2.° Se si vuol prescindere dal solo sfregamento, e tener conto del peso della verga, l'equazione si cangia in questa

$x^6 - \frac{2 a b^2 (p + \frac{1}{2} ma)}{p + ma} x^3 + a^2 b^4 \left(\frac{p + \frac{1}{2} ma}{p + ma} \right) = 0$

cioè

$(x^3 - \frac{a b^4}{p + ma})^2 = 0$, la quale dà

$x = \sqrt[3]{a b^4} \frac{p + \frac{1}{2} ma}{p + ma}$.

Cor. 3.° Qualora non si voglia tener conto del peso della verga, ma bensì dello sfregamento, l'equazione trovata si riduce a questa

$x^6 - 2 a b^4 x^i - n^3 b^2 a^2 x^i$

$+ (n^i + 1) a^2 b^4 = 0$.

Scolio. Qui ci si presenta una specie di paradosso, ed è, che nel supposto della verga non grave tanto se si con-

si-
sidera, quanto se si trascura lo sfregamento, si sorge uscire dal calcolo la quantità p, cioè il peso attaccato all’estremità della verga; il che mostra ad evidenza che qualunque sia questo peso, e quand’anco fosse infinitamente grande o infinitamente piccolo, la situazione della verga per l’equilibrio riman sempre la stessa. Ma ciò che vi ha di più singolare e memorabile, è che qui il peso infinitamente piccolo non si può in verun conto riguardare come nullo; perché riguardandosi come nullo il peso annesso alla verga, ed inoltre supponendosi la verga non grave, questa dee rimanere equilibrata ed immobile in tutte le possibili situazioni, laddove essendo comunque infinitamente piccolo il peso attaccato all’estremità della verga, la posizione di equilibrio è una sola, cioè quella, in cui posto nullo lo sfregamento, la parte della verga fra il muro e il sostegno riesce eguale alla prima di due medie proporzionali fra la distanza del sostegno dal muro e la lunghezza della verga.

Qui è anco da notarsi, che supposta la verga pesante, ma senza alcun peso estrinseco attaccato alla sua estremità, la sua situazione per l’equilibrio esige, che la parte della verga fra l’appoggio e il muro sia la prima di due medie proporzionali fra la distanza dell’appoggio dal muro, e la metà della lunghezza della verga, il che si deduce dall’equazione del Cor. a.º, la quale diventa in quest’ipotesi

$$x = \sqrt[3]{\frac{1}{a} - \frac{1}{b}}.$$ Ed anche qui scorgesi uscire dal calcolo la lettera m, il che vale quanto il dire, essere sempre unica ed inalterabile la posizione di equilibrio della verga pesante, comunque voglia suporsi svariato il suo peso.