MEMORIE
DI
MATEMATICA E FISICA

DELL'ORIGINE DEL CARBONIO CHE ENTRA NELLE PIANTE.

DI GIOVAMBATISTA DA S. MARTINO.

La mancanza di cognizioni esatte, che fu mai sempre l'origine della mostruosità dei sistemi, fu la causa altre
zioni di quell'ammasso informe di fallacie, di abbagli, di
prejudizj, e di errori, in cui ravvolte se ne rimasero per
tanto tempo le scienze. Se noi rivolgiamo alcuni anni ad
dietro lo sguardo, troviamo, che tutto il corredo dell'uma
no sapere riduceasi unicamente ad una quantità d'ipotesi mal
fondate e sconnesse, ad un guazzabuglio di termini vuoti,
ad un giuoco di parole arbitrarie e prive di senso. Il caos
delle proprietà flogistiche occupava la faccia dell' universo,
la spiegazione delle più rimarchabili verità stavasi in allo
ra appoggiata a falsi e vacillanti supposti; il supposto di
pendea bene spesso dal sistema; ed il sistema era figlio per
lo più d'una fantasia riscaldata, ed effervescente. Per entro
a questo stato di cose lo spirito umano, usando del nativo
valore, fece uno sforzo vittorioso ed energico, scosse ad
un tratto i ceppi del tirannico giogo, conobbe la necessità
di dovere interrogar la Natura e d' interpretarne il genuino
linguaggio.
L'analisi de' corpi la più circostanziata e severa in-
cominciò fin da quel punto a divenire il fondamento pri-
mario della scienza novella. La teoria dei gas, fino allora
quasi del tutto sconosciuta; la scoperta dell'ossigeno, da
cui dipendono tanti e si portentosi fenomeni; le proprietà
del calorico, tenuto per l'addietro come una semplice mo-
dificazione degli esseri; la sintesi e l'analisi dell'acqua, che
credeasi da tutti un puro elemento, divennero, fra le mani
di sommi Geni, altrettanti princij inconcussi, onde erigere
i fondamenti dell'immortale edificio. La Chimica, vitupero
fin dallora ed obbrobrio del genere umano, si eresse in di-
rettirice di tutte le umane cognizioni: le scienze, le profes-
sioni, i mestieri, le manifatture, le arti si affrettarono a
gara a tributarle il loro omaggio, e ad implorare il suo va-
lide soccorso per la spiegazione delle più implicite teorie,
per lo stabilimento de' più sodi principj, e per l'esattezza
inappuntabile de' propri lavori.

Dietro pertanto alle tracce di questa novella scienza,
tra il numero ben grande delle verità, che ci si rendettero
manifeste, siam giunti altresì a conoscere, che i vegetabili
di qualunque genere egli chiamo sieno, sono composti di tre ori-
ginarj principj, a cui in ultima analisi si risolvono, cioè di
carbonio, d'idrogeno, e d'ossigeno; che alcuni di essi con-
tengono altresì dell'azoto (*); e che oltre agli indicati prin-
cipj, entravvi ezando nella loro composizione in più o
meno dose della terra, della potassa, del ferro, e simili al-
tre sostanze, come dalla loro analisi evidentemente si rac-
coglie. Partendo da questi fatti, divenuti ormai della più

(*) Azoto è nome greco derivan-
te dalla particella privativa, «, e
dal nome Zan, vita, ed indica la
facoltà di privar di vita gli ani-
imali. Ma siccome questa proprietà
non è caratteristica del solo azoto,
ma comune a tutti gli altri gas
inabili alla respirazione; perciò il
Chaptal giudicherebbe più opportu-
no dargli la denominazione di Nit-
rogeno, dedotta dalla proprietà, che
ha questa sostanza di generare il
Nitro. Ma poscia che l'azoto, a
parlar propriamente, non è gene-
ratore del nitro, ma bensì dell'ac-
do nitrico; per questa ragione al
Dottor Brignatelli piacerebbe meg-
glio chiamarlo Ossis-nitrogeno; la-
sciando per ora da parte l'altra
denominazione di Ossigeno, cioè,
generator della luce; finché non sia
un po' meglio conosciuta questa
proprietà.
chiara ed incontestabile evidenza presso tutti coloro, che
godono il dono esclusivo d'un sano criterio, restava solo
ad indagare, da quali fonti vengano somministrati alle pian-
te i tre menovati primari principii, carbonio, idrogeno, ed
ossigeno; daccè stabilita la vera sorgente di questi, l'ori-
gine delle altre particolari sostanze diveniva una quistione
di facile scioglimento.

In quanto all'idrogeno ed all'ossigeno, non può riman-
nere alcun dubbio; ch'essi non derivino dall'acqua stessa
impiegata al loro innaffiamento; daccè essendo l'acqua un
composto di questi due elementi, e venendo essa trasporta-
ta in circolo a tutto il sistema del vegetabile; mediante l'in-
flusso del calorico e della luce solare, se ne rimane de-
composta, e ridotta a' suoi primi principii: di maniera che
l'idrogeno, ed una parte dell'ossigeno si uniscono al car-
bonio, e si fanno nel tessuto cellulare della pianta stessa;
mentre l'altra parte maggiore dell'ossigeno si combina, per
una prevalente affinità, al calorico ed alla luce solare, e se
ne passa allo stato di gas ossigeno, ossia di aria vitale.
Rapporto al carbonio, ch'è l'altro principio delle piante
stesse, sembrava seguire anche in forza del solo razioci-
nio, che non potendo essere costantemente somministra-
to dall'acqua, perchè essa punto radicalmente non lo
contiene, dovesse derivare dal terreno. Una quantità di
prove indirette si uniscono a comprovare la consentanei-
tà, e la ragionevolezza di questa opinione. Si osserva in
fatti, che l'acqua passando per qual siasi qualità di terreno,
e molto più pe' concimi, si tinge d'un colore più o me-
no carico; sicchè facendola pura svaporare, lascia per resi-
duo principale il carbonio. Si osserva in oltre, che le ra-
dici de'vegetabili sono attissime a succhiare unitamente all'acqua anche le sostanze in essa disciolte; come appare dalle
belle ed esatte sperienze di Bonnet, Duhamel, e de la Baiss-
se, i quali avendo innaffiati degli arboscelli con liquori colora-
tili, videro che il sugo tinto di colore ascendeva a tutte
le parti del sistema. Si osserva in fine che le piante, gene-
ralmente parlando, crescono tanto più rigogliose e vivaci,
quanto più pungui sono i terreni, vale a dire, quanto mag-
gior quantità di carbonio essi contengono. Contuttociò di
questo fatto ci mancavano tuttavia delle prove dirette e concluenti; di quelle prove, che sono atti da per se a portare la convinzione nello spirito, e a trionfare sovrannamente di tutte le obbiezioni in contrario. Gli sperimenti, che ho praticati, e che ora vengo ad esporre, mi sembrano esser tali: al colto Pubblico si converrà esclusivamente il decidere.

Da un ammasso di terreno e di concio, mescolati intimamente insieme in guisa che formavano una sostanza da per tutto uguale omogenea ed uniforme, ne ho estratte due eguali porzioni, onde riempierne due vasi; in uno de' quali ho poscia seminato un grano di Lupino, Lupinus Sylvesteris, e nell'altro un grano di sorgo-turco, ossia di Maiz, zea Maiz. Prima però di eseguire la detta semina, volli analizzare il terreno stesso, per conoscere la qualità, la proporzione, e la dose delle sue parti componenti. Non è raro, che alcuni terreni contengano delle sostanze saline: versai perciò a tale oggetto sopra una porzione del detto terreno una data quantità di acqua distillata. I sali, se ve ne sono, restano disciolti; si decanta allora l'acqua, la si fa evaporare a secco, e dal residuo si conosce la quantità e la natura del sale: ma avendo tutto ciò praticato col terreno, che aveva fra le mani, il trovai privo di qualunque sostanza salina. Presi allora 20,000 grani del detto terreno (**), già prima perfettamente rasciugato per non commettere errore nello scandaglio; cominciando dal versarvi sopra dell'acqua pura in abbondanza, mescolando ogni cosa insieme, ad oggetto di rilevare la quantità della terra vegetabile in esso mescolio contenuta (**). Dopo un qualche

(*) Grani 20,000 fanno libbre 3. onc. 5. grani 115, del peso sottile Veneto, del quale mi sono servito nel corso de' miei sperimenti. Ma in vece di esprimere le quantità secondo le frazioni ordinarie di libbre, di oncie, di dramme, ec. le quali cagionerebbero della confusione, e dell' imbarazzo, feci uso del numero dei grani; de' quali mi servirò d'ora in poi: avvertendo, che una libbra sottile Veneta è composta di 5820 grani; l'uncia per conseguenza, ch'è la duodecima parte della libbra, contiene grani 481/2; e la dramma, ch'è l'ottava parte dell'uncia, è composta di grani 60 1/2.

(**) La terra vegetabile risulta dalla deorganizzazione, ed dal dischiogimento delle sostanze animali, e vegetabili.
tempo di replicati mescolamenti, e di successivi riposti, la
terra vegetabile più fina va a tingere l'acqua d'un colore
più o meno carico, e la parte più grossolana di essa, attesa
la minore sua specifica gravità, occupa la parte superiore
di tutta la deposizione terrosa. Decantai dunque l'acqua cost
tinta, e separai in seguito con cautela le parti grossolane
della terra vegetabile rimaste alla superficie della deposizio
ne, già pienamente discernibili pel loro colore oscuro; giri
randole entro all'acqua stessa già decantata. Replicai più
volte questa operazione, finché l'acqua se ne rimase chi
ara; ed unendo poscia l'acqua di tutte queste decantazioni,
la feci lentamente svaporare, ed il residuo, ridotto a sec
co, mi offri la porzione della terra vegetabile, che nel mes
cuglio era contenuta, la quale fu di grani 7433.

Per entro il residuo terroso, rimasto dopo la separa
zione della terra vegetabile, scorgeasi anche a sola stima
d'occhio un mescuglio di argilla, di silice, e di calce, od
a meglio dire di carbonato calcare (*). Per separare adun
que la porzione calcare dalle altre sostanze, versai sopra il
detto mescuglio una dose dieci volte maggiore di acido aceti
tico, ch'è uno de' più accorte reattivi a questo riguardo.
La calce, la quale ha maggiore affinità con l'acido acetico,
di quel che sia con l'acido carbonico a cui trovasi uni
ta, abbandona questo il quale si sviluppa in forma di gas,
si unisce all'acido dell'aceto, e forma un acetito di calce,
che si separa con la semplice inclinazione del vaso, rimai
nendo al fondo le altre sostanze, che non sono di natura
calcare. Per rilevare la dose della calce discolta dall'aceto,
v'infusi del carbonato di potassa allungato: questo fece pre
cipitare al fondo la calce, la quale dissecata fu di grani
2016. Per separare in fine l'argilla dall'arena, che furono
due sostanze rimaste dopo la separazione del carbonato.

(*) L'argilla è una terra compo
sta per la massima parte di allu
mina, con più o meno quantità
di silice, di calce, di magnesia,
di ossido di ferro cc. La silice è
una terra primigenia indissolubile
agli acidi, eccettuato che all'aci
do fluorico, e mediante un gran
fuoco solubile altresì dagli alcali,
con cui si forma il vetro. Il car
bonato calcare è un mescuglio di
calce, di carbonio, e di ossigeno.
di calce, feci bollire il mescuglio entro un vaso di vetro con una sufficiente quantità di acido solforico allungato con acqua distillata: il liquore disciolse la parte argillosa, formando un solfato di allumina, del quale in seguito feci precipitare l'argilla, coll'infondervi similmente del carbonato di potassa allungato. L'argilla ridotta a siccità fu di grani 7497. L'ultimo residuo, dopo la separazione dell'argilla, fu l'arena silicea, già indissolubile agli acidi mentovati, la quale raschiata fu di grani 3043. Unendo insieme il peso di queste differenti sostanze, ne risultò il peso totale dell'intero mescuglio terreo, come appare nella seguente Tavola, a riserva della dispersione di soli 11 grani; dispersione, ch'è affatto inevitabile in questo genere di sperimenti.

<table>
<thead>
<tr>
<th>TAVOLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delle quantità delle sostanze contenute nel terreno analizzato.</td>
</tr>
<tr>
<td>In Gran 20,000 del detto terreno si contengono</td>
</tr>
<tr>
<td>Di terra vegetabile ... Grani 7433</td>
</tr>
<tr>
<td>Di Argilla Grani 7497</td>
</tr>
<tr>
<td>Di Arena silicea Grani 3043</td>
</tr>
<tr>
<td>Di Calce Grani 2016</td>
</tr>
<tr>
<td>Dispersi nell'operazione ... Grani 11</td>
</tr>
<tr>
<td>Somma totale Grani 20,000</td>
</tr>
</tbody>
</table>

Certificato della qualità, e della dose delle sostanze componenti il terreno, che avea destinato all'uso de'miei sperimenti, ne posi 20 libbre, cioè 116,400 grani in ciascuno de' due vasi, avendolo ben disegato all'ombra prima di pesarlo, a scasso d'ogni errore. Indi in essi ho seminato le due piante sopra mentovate di Lupino, e di Maiz. Chiusi in appresso l'apertura superiore de' vasi con una lastra di piombo, otturandone attorno attorno anche le com-
messure, in guisa che ne rimanesse tolto onnicamente ogni adito all’acqua non meno che all’aria, a riserva di due soli fori che ho praticati; l’uno al centro della lastra, pel quale doveva passare il fusto della pianta, e che io andava anche di tratto in tratto dilatando, a misura che il gambo aumentava in grossezza; e l’altro ad un lato, ad oggetto d’innaffiare per via di esso il terreno entro al vaso, quando occorreva, il qual foro si chiudeva poscia esattamente a tenuta d’aria con un coperchio di piombo. I vasi, entro cui pongasi delle piante a vegetare, sogliono avere, come a tutti è ben noto, anche al loro fondo inferiore, un piccolo foro, per dare scolo all’acqua sovverchia, che altrimenti nuocerebbe alla pianta. Io apriva dunque il detto foro, allora soltanto che faceva d’uopo di abbeverare le piante, lasciandolo aperto finché l’acqua avea finito di sgocciolare, e fuori di tali incontri il tenne sempre chiuso, per impedire l’ingresso a qualunque sorta o di animale, o di altro. Ma siccome l’acqua, che scola dal detto foro, trae seco quasi sempre qualche porzione di terra, così io avea l’attenzione di raccogliere la detta acqua fino all’ultima stilla, della quale poi mi serviva per adacquare in seguito la pianta dello stesso vaso, d’onde era sortita; e ciò ad oggetto che tutta l’intera quantità del terreno si avesse a conservare, senza che la più minima briciola di esso ne andasse al di fuori dispersa.

Io non niego, né credo che alcuno sarà tentato a negarlo, che i vegetabili non sieno atti ad assorbire, e che effettivamente non assorbano l’acido carbonico, che trovasi molte volte sparso sotto forma di gas nell’atmosfera, o di cui per avventura n’è imbевuta l’acqua, che serve al loro nutrimento. Di ciò ne sbbiamo delle prove troppo chiare e manifeste, qualor ci piaccia osservare, che le piante, tutte le altre cose d’altronde uguali, crescono con maggiore energia alle falde dei Vulcani, ed in vicinanza alle fornaci da calce, ed intorno alle abitazioni ed alle popolose città, ove da una immensa serie di operazioni naturali, o meccaniche si sviluppa a torrenti del gas acido carbonico. Quello soltanto che mi proposi di esaminare, ed a cui sono dirette le mie prove si è: se non essendo l’acido carbonico, che trovasi o sparso per l’atmosfera o mescolato
con l'acqua di vegetazione, in tal dose sufficiente che basti in ogni tempo in tutti i luoghi ed in ogni circostanza ad alimentare i vegetabili, se il terreno stesso, in cui essi vegetano, sia desso la sorgente primaria atta a somministrare questo loro necessario principio.

A tal fine una delle prime mie attenzioni fu quella di operare in maniera che le due piante da me coltivate non avessero per verun modo ad attraere d'altronde la minima porzione di Carbonio, fuor solamente quello che potea esser loro somministrato dal terreno. Per questo oggetto collocai primieramente i due vasi in un sito lontanissimo affatto da tutti que' luoghi, d'onde è solito svilupparsi del gas acido carbonico, vale a dire discosto da qualunque siasi combustione, dalla respirazione degli animali, dalle fermentazioni, putrefazioni, effervescenze, ecc. Per maggior cautela il sito trascelto era per ben novanta due piedi al di sopra del pian terreno, alla quale elevazzione il gas acido carbonico, attesa la maggiore sua specifica gravità, sicuramente non giunge. Ma ciò non bastava ancora. Le piante in vegetazione hanno bisogno di essere di tratto in tratto abbeverate; e l'acqua, di cui ci serviamo, è molte volte pregna di gas acido carbonico, che può essere assorbito dalle piante stesse. Per essere dunque certo, che l'acqua da me adoperata nell'innaffiammento del vasi non contenesse per verun conto gas acido carbonico, ne facea prima di volta la prova con l'acqua di calce; nè di essa me ne serviva, se non quando non dava il minimo indizio d'intorbidamento. Per quattro mesi continuai seguitai ad aver cura delle due piante, cioè fino alla compiuta loro vegetazione; durante il qual tempo la pioggia in varie volte caduta fu di 8. pollici, e 4. linee. Questa pioggia non potea sicuramente entrare ne' vasi, perché erano esattamente ricoperti dalla lamina di piombo; ma potea bensì aspergerne i rami, e le foglie; e quindi se ella avesse contenuto del gas acido carbonico potea comunicarlo alle piante stesse. Io era ben lontano dal persuadermi, che a quell'altezza ove erano i vasi, l'acqua di pioggia contenesse di questo gas, almeno in dose rimarcabile: ne feci varie volte la prova, e la trovarsi del tutto priva. Pure per una sovraffondanza di cautela, e per essere su di ciò pienamente tranquili...
quello, io copriva di volta in volta le piante stesse prima del cader della pioggia. In tal guisa rimasi con la piena e total sicurezza, che esse non si aveano appropriato altro Carbonio, se non se quello, ch’era loro somministrato dal terreno de’ vasi.

Un’ altra avvertenza credetti necessaria dover essere praticata rapporto all’ adattamento delle due piante. Premeami infinitamente, che il terreno entro ai due vasi non venisse per qual siasi cagione né accresciuto, né diminuito; ad oggetto di poter così autorevolmente decidere, se egli soffrisse o no alcun decremento per motivo della sola vegetazione delle piante. Ora l’ acqua, di cui ci serviamo per l’inaffiamento, tiene quasi sempre in dissoluzione delle parti terree, le quali depositandosi nel terreno de’ vasi avrebbero potuto aumentarne la quantità ed il peso. Per evitare dunque tale inconveniente, io faceva passar l’ acqua, prima di servirme, per un filtro di panno denso e triplicato. L’ acqua così filtrata deponeva ogni straniera sostanza sul filtro, e riducevasi al peso specifico dell’ acqua distillata; come più volte me ne sono assicurato col mezzo della bilancia idrostatica.

Compiti questi sperimenti, la cui malagevolezza nell’ eseguirli solo può essere rimarcata da chi con una lunga assuefazione ne abbia acquistata la pratica; un’ altra carriera ben intralciata e difficile mi rimaneva tuttavia per giungere al termine, che mi era prefisso. Io era certo, che in tutto il tempo in cui i due vasi rimasero esposti, non era in essi entrata, né da essi era sortita la minima porzione di terreno; ma erami altresì necessario indagare, se in grazia della sola vegetazione il detto terreno si fosse diminuito di peso; quali delle sue parti componenti fossero quelle, che avessero sofferta diminuzione; qual dose di Carbonio avesse acquistata ciascuna delle due piante; e se la diminuzione del peso del terreno fosse in qualche modo analoga alla quantità del Carbonio acquistato dalla pianta. Sradicai dunque dai vasi le due piante, ma con tale attenzione e cautela, che tutte anche le più minute loro barbatelle ne fossero divelte; con l’ avvertenza però che allo stesso tempo non vi rimanesse attaccato alle radici stesse il minimo granellino di terreno. In una parola operai in guisa, che tut-
to ciò che apparteneva alla pianta fosse scrupolosamente separato da ciò, ch'era terreno. Il peso della terra riposta in ciascuno de'vasi era, come dissi, di grani 116,400; ora avendola ridotta a secco, e di nuovo pesata, trovai che quella, in cui avea cresciuto il gambo di Lupino, se ne restò di grani 113,490; e quindi la sua diminuzione fu di grani 2910. Quella poi che servì alla vegetazione del Maiz, si ridusse a grani 113,005; e la sua diminuzione fu perciò di grani 3395.

Dall'analisi precedentemente istituita aveva rilevato, che il terreno di cui feci uso era un mescuglio di terra vegetabile, di argilla, di arena, e di carbonato di calce. Sicché volendo riconoscere a quale di questi quattro componenti appartenesse il decremento del peso già rimarcato, mi convenne ripetere la stessa analisi sopra il terreno di ciascuno de' due vasi. Avendo dunque rifatta questa laboriosa operazione, seguendo il metodo già sopra descritto, ne ottenni i seguenti risultati. 1. Che l'argilla e l'arena in amendue i vasi se ne rimasero identiche, senza avere sofferta alcuna diminuzione sensibile del loro peso primiero. 2. Che la terra vegetabile ed il carbonato di calce furono le due sostanze, che restarono diminuite. 3. Che la diminuzione della terra vegetabile in amendue i vasi fu maggiore in confronto della diminuzione del carbonato di calce. 4. Che nel vaso, in cui vegetò il Lupino, la terra vegetabile restò diminuita di grani 2546, ed il carbonato calcare di grani 364, che in tutto formano la totale diminuzione di grani 2910. 5. Che nel vaso, in cui vegetò il Maiz, la perdita del peso della terra vegetabile fu di grani 2971, e quella della terra calcare di grani 424, che uniti insieme formano l'intera diminuzione di grani 3395.

In vista di questi risultati sorgerà forse il desiderio d'intendere il motivo, per cui le due terre vegetabile e calcar soltanto diminuiscano di peso, e non così l'argilla, né l'arena. Io potrei render di ciò una ben giusta e soddisfacente ragione, se non fossi sicuro, che il Leggittore a quest'ora mi ha già prevenuto colle sue riflessioni. Egli è certo, che tutto quello che può somministrare il terreno alle piante, se si eccetta una piccola porzione di terra, di potassa, di ferro, ec. non è che il solo Carbonio, o tutto
al più il Carbonio combinato coll'ossigeno. Egli è certo altresì, che nè l'argilla, nè la sabbia non contengono da per se questo principio. Egli è certo in fine, che la terra vegetabile n'è doviziosissima; e che la calce attrae per affinità, e si unisce all'acido carbonico: dal che ne segue, ch'essendo il solo Carbonio quello che dal terreno se ne passa in nutrimento delle piante, la diminuzione del peso nato in grazia della vegetazione dee unicamente riscontrarsi in quelle sostanze che lo contengono, quali sono appunto la terra vegetabile e la calce.

Dalle esposte premesse noi possiamo dedurre vari corollari utilissimi per la pratica. 1. Che quando un dato fondo non constasse che di pura argilla, o di pura sabbia, oppure da un composto di queste due sostanze, essendo in tal guisa spoglio affatto di Carbonio, riuscirebbe anche del tutto sterile, ed incapace di servire alla vegetazione. 2. Che in questi casi il mezzo più acconcio, per rendere fecondi tali terreni, è quello di frammisciarvi, come suole comune mente praticarsi, altre terre pregne di questo principio, e specialmente dei concimi animali e vegetabili. 3. Che siccome alcune specie di piante esigono di lor natura per proprio nutrimento una copia più abbondante di Carbonio in paragone di alcune altre; così esse sfruttano ed impoveriscono maggiormente i terreni; i quali hanno perciò bisogno di essere più abbondantemente, e più di frequente conciati. 4. Che quelle piante all'opposto, le quali richiedono minor quantità di Carbonio, provano meglio nelle terre cretose e calcaree, il cui Carbonio è più discretamente dosato, di quel che sia ne' terreni pinguì, ne' quali siffatte piante lussureggiano con eccessivo rigoglio di rami e di foglie, ma ne rimane ad un tempo deteriorato il loro prodotto. 5. Che esistono ancora alcune specie di piante, le quali abbisognano di si piccola dose di Carbonio, che vegetano eziando ne' terreni affatto sterili, ed entro ad ampolle riempite semplicemente di acqua; bastando al loro nutrimento al solo Carbonio, che a stento vanno attratto dali' atmosfera, o che assorbono dall'acqua stessa, entro cui pescano le loro radici. 6. Finalmente, che in veggendone che le piante di quest'ultima classe vegetano eziando nei terreni sterili, ed entro a vasi ripieni di acqua, non possiamo...
rettamente conchiudere, che dunque tutte le piante possono con egual felicità prosperare senza aver bisogno di attrarre il Carbonio del terreno: a quella guisa stessa, che in veggendolo la pecora pascersi di poco fieno, male si verrebbe a conchiudere, che dunque anche tutte le altre specie di animali possono vivere di poco fieno.

Conosciuta la minorazione del peso sofferta dal terreno in grazia della vegetazione delle piante, dovetti in oltre intraprendere una serie di laboriosi e diluiti sperimenti, diretta a rintracciare la quantità del Carbonio contenuto in ciascuna delle due piante di Lupino e di Maiz, per indi paragonarla col decremento del Carbonio riscontrato nel terreno de' rispettivi vasi. A tale oggetto mi feci costruire un fornello rappresentato dalla figura prima della Tav. 3. La cassetta cilindrica A chiusa da ogni parte, eccettuato che alla parte superiore, è di ferro e serve di cenerario. Ad un lato di essa vi sta inserito il tubo B, pel quale deve essere introdotta l'aria necessaria a mantenere la combustione, mediante l'agitazione del mantice C. Sopra il cenerario se ne sta appoggiata la grata D, destinata a sostenere il combustibile, cui si unisce tosto il fornello conico pur di ferro, le cui pareti EE si erano alquanto divergenti fino ad un pollice in distanza dell'estremità superiore, ove prendono una direzione perpendicolare. A questa apertura superiore adattasi il coperchio FF, il quale chiude il fornello pel di fuori a tenuta di aria; e dal mezzo del coperchio stesso parte il cannello di vetro GHI unito a mastice, e destinato a dare uscita all'aria, che ha servito alla combustione ed ai prodotti aeriformi della combustione stessa.

Avendo per tanto disecche le due piante, collocai quella di Lupino minutamente tagliuzzata entro al fornello sopra la grata D; con un pò di fosforo e di zolfo vi diedi fuoco, chiusi l'apertura superiore del fornello col coperchio FF, indi cominciai ad agitare il mantice C per introdur l'aria entro al fornello, e mantenere così la combustione. Una delle principali avvertenze dee esser quella, che l'aria introdotta dal mantice sia affatto libera da qualunque mescolanza di gas acido carbonico, il quale renderebbe incerti i risultati delle nostre esperienze. Si sa, che nella combustione delle sostanze che contengono dell'idrogeno e del
Carbonio, come sono appunto i vegetabili, una porzione
dell'ossigeno dell'aria si unisce all'idrogeno del combustibile,
e formasi dell'acqua; che l'altra porzione del detto
ossigeno si combina col Carbonio, e ne risulta del gas acido
carbonico; e che il gas azoto, che forma i tre quarti
in circa dell'aria atmosferica, se ne esce identico senza soffrire
alcun cambiamento. Nell'atto dunque, che stavasi
operando la combustione del Lupino entro al fornello; pel
tubo superiore GHI se ne usciva necessariamente una
mescolanza di tre sostanze diverse, cioè, di acqua in vapore,
di gas acido carbonico, e di gas azoto unito forse ad una
piccola porzione di gas ossigeno che non potè combinarsi
coll'idrogeno della pianta nell'atto della combustione. Era
perciò necessario, che io separassi l'una dall'altra queste
tre sostanze, per avere la precisa quantità del Carbonio contenuto nella pianta. Ad oggetto pertanto di separare l'acqua,
che si andava formando in vapore, feci ripiegare il
tubo GHI, nella guisa che si vede rappresentato dalla figura,
sicchè scendendo egli perpendicolarmente andasse ad immergersi entro alla tinozza KK dell'altezza di alquanti piedi
e ripiena di acqua fredda, e mettese indi capo entro alla bottiglia L vuota, e chiusa a mastic alla sua apertura:
dalla quale poi partendo l'altro tubo MNO, fermato
esso pure a mastic al collo della stessa bottiglia, se ne sale per entro all'acqua stessa della tinozza. Passando in
tal guisa i fluidi aeriformi pei detti tubi raffreddati dall'acqua
circostante, erano costretti a lasciar precipitare i vapori acquosi, che teneano in dissoluzione, i quali condensati
in gocce raccoglievansi in fondo alla bottiglia L; ed i gas
cosi disimbarazzati d'ogni umidità, continuavano ad ascendere lungo il tubo MNO. Per separare poi il gas acido
carbonico dal gas azoto; dopo che il medesimo tubo si era convenientemente innalzato al di sopra dell'acqua della
tinozza, gli feci prendere in N una posizione quasi orizzontale, un po' inclinata, ed il condussi entro a varie bottiglie PP, poste successivamente l'una dopo l'altra, piene a due terzi di potassa in liquore, spoglie del tutto di gas acido carbonico, e di cui ne avea prima esattamente determi-}
{no il peso. Nella figura ne sono disegnate solamente
due di siffatte bottiglie; ma per operare esattamente se ne ri-
chiedono parecchie altre. Il gas acido carbonico passando per entro alla potassa viene da essa interamente assorbito, ed il gas azoto continua a passarsene più oltre lungo il tubo Q R, il quale, quando piacca, si può raccogliere entro all'apparato pneumatico-chimico.

Finita questa operazione, trovasi che la potassa in liquore, la quale era prima del peso di grani 14850., in grazia del gas acido carbonico assorbito giunse al peso di grani 23692.; e quindi l'aumento di grani 8842. era interamente dovuto al gas acido carbonico, che le si era combinato. Ma poichè l'acido carbonico è un composto di Carbonio e di ossigeno, di cui il solo Carbonio era quello che cercava di determinare, perciò uopo era distinguere il peso di queste due sostanze per avere quello del Carbonio proveniente dalla pianta. Ciò ottenni facilmente con un calcolo de' più comuni. Egli è ormai dimostrato dall'esperienze de' primi Chimici, che cento parti, in ragion di peso, di acido carbonico risultano dalla combinazione di parti 72 di ossigeno, e parti 28. di Carbonio. Per le quali cose, seguendo questa medesima analogia, i grani 8842. di acido carbonico somministrati dalla combustione della pianta di Lupino devono contenerne 2475. grani di Carbonio, poichè 100 : 28 : 8842 : x = 2475.

Oltre al Carbonio il terreno somministra alle piante anche qualche porzione di terra, di potassa, cc., che per mezzo delle radici unitamente all'acqua di vegetazione va ad insinuarsi per entro al tessuto delle piante stesse, e che po- scia si riscontra nelle ceneri, dopo la loro combustione. Raccolte dunque le ceneri, che si erano formate dalla com- bustione del Lupino, giunsero queste al peso di grani 168, i quali uniti ai grani 2475. del Carbonio già ottenuto dalla pianta stessa, fanno grani 2643. La perdita totale fatta dal terreno, che nodri questa pianta, fu, come dissi, di grani 2910.; ma convien farsi risovvenire, che una parte di questa perdita, che fu di grani 2546., appartiene alla terra vegetabile; e l'altra parte di grani 364. è dovuta alla terra calcare. Deesi in oltre riflettere, che i grani 2546. perduti dalla terra vegetabile furono di puro Carbonio; dove che i grani 364., di cui mancò la terra calcare non possono essere altrimenti, che di acido carbonico, ossia di Carbonio.
combinato all' ossigeno. Che si separi dunque da questi 364 grani il peso del puro Carbonio, il quale stando alla sua espressa proporzione di 28. a 100. deve essere di grani 102; che si uniscano questi 102 grani di puro Carbonio ai grani 1546. perduti dalla terra vegetabile; che si confronti la somma, che ne risulta, con la quantità del Carbonio acquistato dalla pianta; e rimarremo sorpresi d' una approssimazione si vicina, che non ci saremmo mai aspettata; mentre la differenza non consiste che in soli 5. grani, cosa affatto trascurabile, trattandosi di una serie di operazioni ardue complicate e difficili, nelle quali non è possibile giungere ad una precisione matematica.

Da quanto ho finora esposto, rimane comprovato, e per quanto a me sembra', d' una maniera affatto decisiva, che quantunque i vegetabili possano assorbire, ed effettivamente assorbano del gas acido carbonico si dall' atmosfera, che dall' acqua di vegetazione; pure siccome queste sorgenti non sono che meramente casuali e fortuite, vale a dire, che non contenedo nè tutte le acque nè tutti i siti dell' atmosfera del gas acido carbonico, od almeno non contenedone in tal quantità, che sia sufficiente ad alimentare il vasto regno de' vegetabili; ne segue, che la sorgente primaria, costante, universale, perenne, d' onde traggono essi un tale principio, non è nè può essere altrimenti che il solo terreno. Imperciocchè egli è un fatto incontrastabile, che le due pianta, che ho prese per soggetto de' miei esperimenti, conteneano assolutamente, come tutte le altre ne
contengono, del Carbonio, che ho già riscontrato medianti la loro analisi. Egli è un fatto incontestabile, che questo Carbonio non potè loro derivare nè dall'acqua onde furono innaffiate, perché ebbe la massima attenzione che ne fosse del tutto priva; nè dall'aria circostante, perché le tenni situate in luogo affatto rimoto da qualunque processo atto ad ingenerarlo; nè in fine dallo sviluppo stesso del loro germi, come ad alcuni venne in pensiero di sospettare, perché il Carbonio contenuto in ciascuna delle due piante superava per ben cinquecento volte il peso del Carbonio de' loro grani seminali. Rimane dunque deciso, che il detto Carbonio sia stato somministrato unicamente dal terreno. Ciò, che serve di validissima conferma a questo fatto, si è: che il terreno stesso, dopo di aver concorso alla vegetazione delle piante, perdette del suo peso primiero; che questa perdita di peso non fu proveniente da qualche casuale dispersione di esso terreno al di fuori de' vasi, poiché ne fu gelosissimamente custodito; che questa perdita di peso si trovò appartenere a quelle sole parti componenti, che sono naturalmente prese de' Carbonio, cioè alla terra vegetabile, ed al carbonato di calce; che questa perdita di peso in fine fu perfettamente uguale alla quantità del Carbonio, unitamente alle ceneri, acquistato da ciascuna delle due piante. Dietro una serie di sperienze si decisive e concluenti deggiono naturalmente cadere da se stesse le grandiose ed agitatissime quistioni, onde altre volte e Filosofi illustri, e Fisici di sommo rango sosteneano, che la sola acqua fosse sufficiente al nutrimento delle piante; che la terra non servisse tutto al più, che di semplice sostegno alle radici, e per intertenerne l'umido delle pioggie; che il concime fosse limitato al solo uso di fomentare il calore attorno alla pianta, e nulla più: assensioni del tutto vane, precarie, gratuite, insussistenti, come i principj cui stavansi appoggiate.

Ma questo Carbonio, mi si dirà, passa egli dal terreno alla pianta così solo ed isolato, come vogliono gli Autori Francesi; oppure, vi entra in istato di combinazione coll'ossigeno, come piace meglio ad altri Scrittori Italiani? Non siamo si facili ad architettare dei sistemi, senza averne prima stabiliti i fondamenti; non isforziamo la Natura...
ad operare a norma de' nostri capricci; osserviamo d'un occhio instancabile le sue operazioni; ne pronunziamo il nostro giudizio, prima di avere strappato il velo onde cuopre i suoi misteriosi lavori. Che le piante ricevano dal terreno il Carbonio, questo è fuori d'ogni contrasto, dietro l'esperienze che venghiamo ora dal rapportare. Che esse lo ricevano, o sempre in istato semplice o sempre in istato di combinazione coll'ossigeno, non abbiamo per anche alcun fondamento certo, onde poterlo asserire. Sembra anzi tutto affatto probabile, che siccome i terreni talor sono pregii di Carbonio solo, e talor di acido carbonico ossia di Carbonio combinato; così le piante possano attrarre questo principio, e realmente lo attraggano in amendue le maniere, secondo le varie attuali circostanze. La scelta degli alimenti, che negli animali è un atto spontaneo, nelle piante è un lavoro che dipende dalle leggi invariabili della Natura. L'affinità de' corpi, quell'affinità, per cui le parti costituenti di diverse sostanze agiscono a vicenda le une verso le altre; che in realtà non è che un effetto della universale attrazione, modificata dalle attuali ricorrenze ed in ispecie dalla varia figura delle medesime parti; l'affinità, da cui dipendono tanti e si portentosi fenomeni che si rinnovellano tutto giorno sotto a' nostri occhi medesimi, e la cui forza resta ad ogni tratto accresciuta, variata, o distrutta dalle sopravvenienti circostanze di temperatura o di avvicinamento di altre materie atte ad avvivare o ad estinguere l'impuolo; ella è altresì la causa dell'assorbimento, che fanno le piante, de' loro nutritivi principi. Dietro a queste tracce sembraci essere autorizzati a poter credere, che se i principi attualmente esistenti nella pianta in vegetazione, e segnatamente alle sue radici, sieno tali, che posseggano una prevalente affinità verso l'acido carbonico in preferenza all'azione di altre sostanze contigue, la pianta debba tirare a se il Carbonio combinato all'ossigeno, quando questo vi esista nel terreno, come vi esiste nelle terre calcari. Per l'opposto allorché una qualche altra sostanza, supponiamo il calorico e la luce solare, dispiegasse un' affinità più vigorosa verso l'ossigeno di quel che sia nell'ossigeno stesso verso il Carbonio, allora in forza di questa superiore affinità.
affinità, abbandonato il Carbonio dall' ossigeno dovrebbe passarsene solo in nutrimento della pianta.

Il mio scopo principale in queste ricerche fu quello d' indagare l' origine, d' onde principalmente ritraggono le piante il loro Carbonio; del resto seguendo il metodo, che ho tracciato, e valendoci dell' istruimento sopra descritto, possiamo giungere a formare una compiuta analisi d' ogni sorta di vegetabili. Questi esseri organizzati sono essenzialmente composti di Carbonio, d' idrogeno, e di ossigeno, con la mescolanza di un pò di alcali, di terra, cc.; ma non tutte le loro specie diverse contengono la medesima quantità e la medesima dose di questi principj. Ad aumentare per tanto il deposito delle nostre cognizioni, interessantissima cosa sarebbe l' istituirne una serie di sperimenti comparativi ed esatti, onde conoscerne la quantità precisa, che ogni specie di pianta contiene di ciascuno dei detti principj. Con questo mezzo noi saremmo al fatto d' una quantità d' istruzioni, che tuttavia ci mancano, e che potrebbero influire ai vantaggi della società. Noi verremmo in allora a conoscere, che quelle piante le quali contengono una maggior quantità di Carbonio, siccome esse più delle altre sfruttano ed isteriliscono il terreno, così per la ottima loro coltura esigono de' fondi pingui e molto concimati: che rapporto a quelle piante, che scarsaggiano di questo principio, possiamo nel coltivarle risparmiare una quantità di concio, che per esse è superfluo e sarebbe quindi inutilmente gittato: che quei vegetabili i quali più abbandono d' idrogeno, per uso di combustibile sono atti a dar molta fiamma e poche bragie, in confronto di quelli che sono più doviziosi di Carbonio, i quali danno minor fiamma e bragie più consistenti: che per oggetto di costruzione e di fabbrica dobbiamo scegliere que' legnami, che in confronto degli altri abbandano di Carbonio; per la ragione, che essendo questo elemento il più fisso degli altri, forma, dirò così, l' ossatura e lo scheletro del vegetabile, e lo rende di maggior durata.

La maniera di eseguire questa interessante analisi non differisce molto da ciò, che ho suggerito per la combustione delle piante del Lupino e del Maiz. Darò qui un esempio per somministranne qualche idea. Presi un pezzo di legno
minutamente tagliuzzato, il quale era del peso di 3000 grani; ed il posi entro al fornello EE. Vi accesi la fiamma, e cominciò ad agitarne il mantice finché fu del tutto consumato. L'acqua che raccolsi in seguito entro la bottiglia L, fu di grani 2800, ed essendo l'acqua, come oramai a tutto è noto, un composto di 15 parti d'idrogeno contro 85 di ossigeno, l'acqua raccolta in questa operazione dovette contenere 420 grani d'idrogeno e grani 2380 di ossigeno. Similmente l'acido carbonico, che raccolsi nelle bottiglie PP riempie a due terzi di potassa, fu di grani 8080; e perciò trovandosi il Carbonio rapporto all'ossigeno in ragione di 28 a 72, il Carbonio dovette essere di grani 2262, e l'ossigeno grani 5818. Pesai in fine le ceneri che si erano raccolte, le quali furono di grani 162; sicché unendo insieme il peso di tutte queste sostanze, formano la somma di grani 11042. Ma posciaché, quando l'operazione è eseguita a dovere, il peso che avea il vegetabile prima della sua combustione deve riscontrarsi precisamente nella somma delle sue parti componenti, perciò l'eccesso, ove la somma de' grani 11042 supera il peso del vegetabile che'era di grani 3000, è interamente dovuto all'ossigeno precipitatosi dall'aria nell'atto della combustione. E siccome nella composizione del legno che ho analizzato, oltre il Carbonio l'idrogeno e le ceneri, non ci si doveva riscontrare altro fuorché l'ossigeno, non essendo di quelli che contengono anche dell'azoto; così tutto ciò, che rimase oltre al peso delle indicate sostanze per compiere l'intero peso del vegetabile, non dovette essere che il peso dell'ossigeno posseduto dal vegetabile stesso; come appare nel seguente schema.

Sostanze ricavate dall'analisi di un pezzo di legno del peso di 3000 grani.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acqua grani</td>
<td>2800. composa di</td>
<td>Idrogeno grani 420.</td>
<td>Ossigeno grani 2380.</td>
</tr>
<tr>
<td>Ceneri grani</td>
<td>162.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somma grani</td>
<td>11042.</td>
<td></td>
<td>Somma grani 11042.</td>
</tr>
</tbody>
</table>

C 2
Sostanze componenti il medesimo legno
del peso di 3000 grani.

<table>
<thead>
<tr>
<th>Sostanza</th>
<th>Grani</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idrogeno</td>
<td>420</td>
</tr>
<tr>
<td>Carbonio</td>
<td>2362</td>
</tr>
<tr>
<td>Ossigeno</td>
<td>156</td>
</tr>
<tr>
<td>Ceneri</td>
<td>162</td>
</tr>
<tr>
<td>Somma</td>
<td>3000</td>
</tr>
<tr>
<td>Ossigeno precipitatosi dall’aria</td>
<td>8042</td>
</tr>
<tr>
<td>Somma</td>
<td>11042</td>
</tr>
</tbody>
</table>

Progredendo di questo passo, con quanta mai facilità possiamo entrare al fatto di que’ sorprendenti fenomeni, che riguardavansi per l’addietro come del tutto inesplicabili? Qual ampio spazioso campo non ci si apre ora alle nostre perquisizioni, dopo l’introduzione delle moderne chimiche teorie? Qual carriera immensa non verrà a compiere sotto a’ nostri occhi medesimi la Fisica animale e vegetabile? Quai rapidi avanzamenti non si preparano allo spirito umano in tutti i rami delle utili cognizioni? Pieno di questo consolante riflesso io faccio voti, affinché ognuno si applichi alla ricerca di quelle verità, che hanno un influenza diretta sull’incremento delle scienze e sui vantaggi dell’uomo.