DISCUSSIONE SU I VARI METODI DI ELIMINAZIONE
CON IL COMPOINIMENTO DI UN NUOVO

MEMORIA

DEL SIGNOR PIETRO COSSALI.

Ricevuta li 20 Marzo 1812.

ARTICOLO I.

Metodo di uguagliamento del Newton e del Bezout.

§. I

Via dal Bezout tenuta non sicura dai fattori alteranti.

Newton fu il primo a dare nella sua Aritmetica universale
formole di eliminazione in simboli generali, e sino al quarto
grado si estese. Sebbene poi, non recandone dimostrazione,
occultato abbia il metodo, per cui ad esse giunse, credesi
cionondimeno comunemente, che servito siasi del metodo di
uguagliamento; anzi, due essendo le vie che in esso batter
si possono, pare, ignoro su qual fondamento, all'Eulero di
poter assegnar quella dal grande uomo tenuta. Questa, a
serbar l'ordine del tempi, dovrebbe essere nella esposizione
la prima: torna però meglio cominciare dall'altra, che il
Bezout scelse; ed è ciò tanto più permesso, quanto che del
cammino del Newton non si ha certezza. Date le due equa-
zioni

(I) \( Ax^3 + Bx^2 + Cx + D = 0 \)

(II) \( Px^3 + Qx^2 + Rx + S = 0 \),

nelle quali \( A, B, C, D, P, Q, R, S \) comprendono quantità
note, ed un'altra incognita \( y \) non più elevata che al terzo
grado:
grado: in breve sono funzioni al terzo grado non superiori di \( y \), ma tali che A non sia divisore di tutte tre insieme le B, C, D, né P di tutte tre insieme le Q, R, S. Sottraendo dalla (I) moltiplicata per P la (II) moltiplicata per A, si ha per l'uguagliamento, ed abbattimento dei termini primi un'equazione di secondo grado: un'altra se ne cava sottraendo dalla (I) moltiplicata per Pz + Q la (II) moltiplicata per Az + B; ed una terza se ne conseguisce sottraendo dalla (I) moltiplicata per Pz + Qz + R la (II) moltiplicata per Az² + Bz + C.


1. \( Hz^2 + Lz + G = 0 \)
2. \( Lz^2 + (C + M)z + K = 0 \)
3. \( Gz^2 + Kz + N = 0 \).

Da queste combinate a due a due, moltiplicando reciprocamente i coefficienti di \( z^2 \), e sottraendo poscia un'equazione dall'altra si traggono le tre di primo grado, che seguono

1. \( [L^2 - H(C + M)]z + GL - HK = 0 \)
2. \( (CL - HK)z + C^2 - HN = 0 \)
3. \( [G(C + M) - KL]z + CK - LN = 0 \),

dalle quali ricavasi le tre espressioni di

\[
\frac{z^2}{HK - GL} = \frac{HN - C^2}{GL - HK} = \frac{LN - CK}{G(C + M) - KL}
\]

le quali ordinatamente si rappresentin per \((a)\), \((b)\), \((c)\).

Combinandole a due a due si ottengono tre equazioni libere da \( z \), e in sola \( y \), e quantità note.

La combinazione della \((a)\) e della \((b)\) somministra

\( \phi \) \( HC^2 = HMG^2 - HG(HN + 2KL) + H^2(K^2 - MN) + HL^2N = 0 \).

La combinazione della \((a)\) colla \((c)\) porge

\( \psi \) \( LG^3 + LG(C + M) - LH(K^2 - MN) + L^3N = 0 \).

La combinazione delle due \((b)\), \((c)\) produce

\( \omega \) \( G^3 + MG^2 - G(HN + 2KL) + H(K^2 - MN) + L^2N = 0 \).

Si vede a primo colpo d'occhio che \( \phi = H(\omega) \), e \( \psi = L(\omega) \).

*Tomo XVI.*

M m
I fattori $H$, $L$ sono di quelli, che dir si sogliono superflui, inutili: io li chiamerò alteranti, riservandomi ad esaminar poi se abbiano, o no qualche utilità. Si commenda per altra parte l'esposto metodo di Bezout siccome esente da fattori alteranti, anzi siccome il migliore di quanti se ne siano sino ad ora escogitati. Ma se esso dona l'equazione finale (ω) al dovuto grado, esso medesimo ci offre eziondo le due alterate (φ), (ψ). E ciò, che più contraddice alla lode, si è, che la equazione immune da alteramento si è quella che proviene dalla combinazione della espressione prima di $z$ colla terza tratta dalla equazione terza di primo grado, che comunemente non si calcola.

E chi dubiterà che il simile non sia per produr questo metodo in equazioni più alte? Che nel crescere il numero delle finali non cresca la moltitudine delle alterate? Laonde necessario si fa il concludere, che esso metodo non è da fattori sicuro, in quanto che non n'è per ogni lato immune.

Applichiamo ora la finale (ω) alle due equazioni

(C) $z^3 - pz + y(y^2 - p) = 0$. (D) $3yz^2 + 3y^2z - q = 0$.

Sono queste le due equazioni che dalla $x^3 - px - q = 0$, trasformata in $x^3 + 3yx^2 + 3y^2x + y^3 - px - py - q = 0$ si tirano con uno spezzamento inverso a quello detto Cardanico. Paragonandosi (C) alla (I) si ha $A = 1$, $B = 0$, $C = -p$, $D = y(y^2 - p)$.

E richiamandosi (D) alla (II) con moltiplicarla per $z$, si avrà paragonando $P = 3y$, $Q = 3y^2$, $R = -q$: onde si cava $G = 3y^2(y^2 - p)$, $H = -3y^2$, $K = 3y^3(y^2 - p)$, $L = q - 3py$, $M = -3py^2$, $N = -qy(y^2 - p)$: sostituiti i quali valori nell'equazione (ω), ne proviene

$$y^9 - \frac{7}{3}py^7 + \frac{5}{3}py^5 - \frac{a}{3}p^2y^4 - \frac{3p^3q}{3}y^3 + \frac{a}{3}p^2qy^2 - \frac{4}{3}pq^2y = 0.$$  

Or tosto si vede esser questa divisibile per $y$. Ma di più si può anche divider per $y^2 - p$, e per quoziente n'esce la equazione

(N) $y^6 - \frac{4}{3}py^4 + \frac{1}{3}p^2y^2 - \frac{a}{3}pqy + \frac{1}{3}g^2 = 0$

come in altra mia Operetta fu da me trovato.
Anche dunque la finale (α), che in generale non ha fattori che l’alteri, applicata alle particolari equazioni (C), (D) riesce avvolta di due fattori $γ$, $γ^2 - p$ i quali dal grado 6.°, proprio della giusta finale di esse (C), (D); la sollevano al grado 9.°. Se ne presenterà evidente agli occhi la ragione, sotto di essi schierando le tre espressioni (α), (β), (γ) di $z$ particolari al caso nostro; e sono

$$z = \frac{3γ^2(γ^2 - p)[−q - 3γ(γ^2 - p)]}{(q - 3pq)y^4 + 3γ^4(γ^2 - p) - 3γpqy}$$

Che anzi combinando la seconda e la terza di queste espressioni, siccome per formare la generale equazione (α) combinante si sono le generali espressioni (α), (γ), pare, che provenirebbe un’equazione in $γ$ di grado 12.°; ma i termini di $γ^{12}$, $γ^{11}$ spariscano distruggendosi i loro coefficienti, e il termine $γ^{11}$ non nasce.

Ma i fattori alteranti, de’ quali esce avviluppata la finale (α) nella particolare applicazione, che si viene dal fornirne, sono ad essa imputabili? possono volgersi egli ad accusa del metodo? Sarà questo un altro punto, che diluciderà a suo luogo. A tal dilucidamento apparecchiò intanto strada con osservare, che oltre al richiamare l’equazione particolare (D) alla generale (II) con moltiplicarne, come è più in costume, essa (D) per $z$, vi ha un altro modo di applicazione, qual è di richiamare inversamente la (II) alla (D) facendo $P = 0$; con che si ha $Q = 3γ$, $R = 3y^2$, $S = −q$, sussistendo i valori $A = 1$, $B = 0$, $C = −p$, $D = γ(y^2 - p)$: con questo inverso modo di condur’ una all’altra le equazioni (II), (D) cambiati i valori di $P$, $Q$, $R$, $S$, divenuto $G = −AS = q$, $H = −AQ = −3γ$, $K = DQ = 3γ^3(y^2 - p)$, $L = −AR = −3y^2$, $M = CQ = −3y$, $N = DR − CS = 3y^3(y^2 - p) − pq$, anche le tre espressioni di $z$ si cangiano così:

$$z = \frac{3y[gy - 3γ(y^2 - p)]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[3γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[3γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) + 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$

$$z = \frac{3y^2[γy - 3γ^2(y^2 - p) - 3γpqy]}{3y[gy - 3γ(y^2 - p)]}$$
delle quali si ha una combinazione, quella cioè della seconda e terza, relativa alla generale \((a)\), che dora l'equazione \((N)\) senza verun fattore in \(y\) che ne alteri il grado; e la combinazione della prima con la seconda altera \((N)\) con il fattore \(y\); e quella della prima con la terza con il fattore di secondo grado \(y^2\); ma niuna con il fattore \(y^2 - p\).

§ II.

Via al parer dell' Eulero tenuta dal Newton producente fattori alteranti.

Eulero nella sua Memoria su la eliminazione, inserita negli atti dell' Accademia di Berlino anno 1764, espone un metodo, con il quale pare, a suo dire, che il Newton determinasse le formole di eliminazione, che primo ci diede sino alle equazioni di quarto grado, che perciò giusta al parere di Eulero io denominò Newtoniano. Consiste esso in rendere eguali per reciproca moltiplicazione i termini primi delle due equazioni, ed i termini ultimi, con che sottraendo dopo l'uguagliamento un'equazione dall'altra si avranno due equazioni di un grado più basso delle date, e replicando l'operazione ne proverà un pajo parimenti di un grado ancor inferiore, e così via via sino a giunger a due di semplice primo grado. Vediamolo nelle equazioni di terzo grado:

(I) \(A x^3 + B x^2 + C x + D = 0\). (II) \(P x^3 + Q x^2 + R x + S = 0\).  

Rendendo uguali i primi termini ne nascerà per sottrazione la stessa equazione che nel metodo di Bezout, essendo stessissimo l'operare. Avremo dunque, compiendiate come là le espressioni,

\[(1) \ H x^2 + L x + G = 0\].

Si rendano ora uguali gli ultimi termini moltiplicando la equazione (I) per \(S\), e la (II) vicendevolmente per \(D\); sottraendo questa da quella troveremo la

\[(3) \ C x^2 + K x + N = 0\],
avuta nel metodo del Bezout alla terza reciproca moltiplica
di (I) per $Pz^2 + Qz + R$, e di (II) per $Az^2 + Bz + C$. E chi
porrà un po’ d’attenzione agli effetti di quelle e di queste
moltiplicazioni ne rileverà da sè, senza che io mi dilunghi
a dimostrarla, la ragione.

Si trattino in simil modo le due equazioni (1), (3); cioè
si uguaglino prima i termini di $z^2$, e si avrà, sottraendo,
non altrimenti che nel metodo Bezoutiano per la combina-
zione medesima,

\[(b) \ (GL - HK)z + G^2 - HN = 0.\]

Ma rendendo uguali gli ultimi termini ne sortirà con la sot-
trazione un’equazione, che segnerò (d)

\[(d) \ (HN - G^2)z + LN - GK = 0.\]

Finalmente rendendo uguali i primi termini delle due equa-
zioni (b), (d) si conseguirà per finale equazione libera da $z$,
\[(HN - G^2)a + (LN - GK)(GL - HK) = 0\]
cioè svolgendo

\[(\Delta) \ G^4 - G^2(\kappa HN + KL) + G(HK^2 + L^2N) + HN(HN - KL) = 0.\]

Ecco una equazione di quarto grado in $G$, e che per conse-
guenza è certamente alterata da un fattore, poiché la fina-
la (e) del metodo Bezoutiano parimenti in $G$ è di terzo.

Eulero dice, che è divisibile per $G$, e si vede tosto che que-
sta quantità deve certamente entrare nel fattore; ma non
apparisce come essa sola esser possa il fattor tutto: soggiunge
Eulero scoprirsi ciò sviluppando l’equazione, effettuando cioè
dopo rimessi in luogo delle specie compendiose $G$, $H$, $K$ .
che io uso, i valori loro, le potenze, ed i prodotti. Ma sen-
za tutta questa pena io osservo essere $HN - KL = - MG$,
cioè

\[(BP - AQ)(DR - CS) - (CP - AR)(DQ - BS) = -(CQ - BR)(DP - AS):\]
dunque avremo

\[G^4 - G^2(\kappa HN + KL) + G(HK^2 + L^2N) - HMNG = 0,\]

dato dire

\[G \left[ G^3 - G(\kappa HN + KL) + H(K^2 - MN) + L^2N \right] = 0\]
e nel moltiplicatore del termine in $G$, in luogo di un $HN$
ponendo, $KL - MG$ verrà
Su i vari metodi di Eliminazione ec.

$G[G^3 - G(HN + KL - MG + KL) + H(K^2 - MN) + L^2 N] = 0,$

per conseguenza $(\Delta) = G(o),$ siccome nel metodo Bezoutiano
$(\phi) = H(o),$ $(\psi) = L(o).$

Presentando dunque il metodo Newtoniano l’equazione finale alterata dal fattore $G,$ egli è quindi che Eulero il riorgetta, e ne deduce la necessità di proporre il suo, che poi vedremo. Qui permesso mi sia un riflesso sul calcolo, che Eulero medesimo fa del grado dell’equazione $(\Delta),$ ommesso il fattore $G,$ che viene poi ad essere il grado della $(o).$ Dice che essendo $G$ di secondo grado, sarà l’equazione $(a)$ che monta a $G^3$ di grado $6.$$ Ma io osservo, che $G = DP - AS,$
e $D,$ $P$ possono contenere ambedue $y^2,$ e similmente contenere lo possono le due $A,$ $S$; dunque $G$ può essere di grado $6,$ e per conseguenza $G^3,$ e quindi l’equazione $(o)$ salirà al grado $18.$ Nel caso delle equazioni $(C),$ $z \ (D),$ $G = 3y^2$
$(y^2 - p)$ è di grado $4,$ e l’equazione $(o),$ che risultar dovrebbe di grado $12,$ risulta di $9$ sol perchè a ragione dei particolari rapporti delle quantità $A,$ $B,$ $C,$ $D,$ $P,$ $Q,$ $R,$ $S,$ e conseguentemente delle funzioni loro $G,$ $H,$ $K$... si annullano i coefficienti di $y^{12}, y^{10},$ e non risulta terme in $y^7.$

Se trattò dall’equazione $HN - KL = -MG$ il valore $HN = KL - MG$ s’introduca nell’equazione $(d),$ questa coinciderà con la $(c)$ del metodo Bezoutiano, e per finale equazione invece di $(\Delta)$ proverrà a dirittura la Bezoutiana $(o).$ Dunque l’equazione $(d)$ non differisce dalla $(c)$ che in aspetto, essendo in fondo la stessa, ed il metodo Bezoutiano non è in sostanza diverso da quello che sul parere di Eulero io ho chiamato Newtoniano, e non è che un’utille estensione di esso, la quale all’uguagliamento dei soli termini estremi sostituisce un ordinato uguagliamento continuo dai primi agli ultimi, e la quale moltiplica le finali equazioni, e ne produce una di giusto grado.

I tre fattori $H,$ $L,$ $G,$ i due primi dal metodo Bezoutiano prodotti, il terzo dal Newtoniano, nell’applicazione
alle due equazioni (C), (D) ricevono differenti valori secondo il differente modo di far convenire tra loro la (II), e la (D), o elevando questa, con moltiplicarla per \( z \), al grado della (II), il che porta \( S = 0 \), od inversamente abbassando (II) al grado della (D), con porre a dirittura \( P = 0 \).

**Nel primo modo**

\[
H = -3y^2; \quad L = q - 3py; \quad G = 3y^2 \cdot (y^2 - p).
\]

**Nel secondo modo**

\[
H = -3y; \quad L = -3y^2; \quad G = q.
\]

Apparisse, che sebbene in genere \( G \) sia un fattor alterante, in qualche caso particolare però, rimanendo privo di termine in \( y \), e non comprendendo che quantità nota, può perdere il carattere di fattor alterante, e la equazione (\( \Delta \)) può riuscire affatto identica alla Bezoutiana (\( a \)), e così accade nel caso delle equazioni (C), (D) applicando la (II) alla (D) nel secondo modo. Chi sa estendere le idee, e spingerle per le infinite diverse combinazioni, comprenderà di leggeri, che l’avvenimento non ristintesi al caso delle due equazioni, una di terzo, l’altra di secondo grado, ma che può averziando luogo in due di terzo. Similmente i fattori Bezoutiani \( H \), \( L \) possono convertirsi in quantità date e costanti, e perdere la forza di alterare le equazioni (\( \phi \)), (\( \psi \)), cosicché queste riescano identiche di grado alla (\( a \)). Non lasciò per questo di chiamar fattori di tal sorta alteranti, non attesi nella general considerazione i rari accidenti concorsi, ma avuto riguardo ai casi ordinari più semplici, e più estesi. Poiché (\( \Delta \)) = \( G \cdot (a) \), essa (\( \Delta \)) rispetto alle due (C), (D) darà nel primo modo di applicazione \( 3y^2(y^2 - p) \); \( y(y^2 - p)(N) \); e nel secondo \( q \cdot (N) \), che non differisce in essenza da (\( N \)), poiché \( q \), siccome quantità data, non induce alterazione.

Sin qui si son veduti gli effetti del riferire alle due (C), (D) tutto il calcolo delle due (I), (II) e del trarre la finale dell’eliminamento di \( z \) particolare dalle finali dell’elimina-
mento fatto in generale. Ma in vero essendo l'equazione (D) di secondo grado, dopo, che uguagliati i primi termini di (C), \( z(D) \), ricavata siasì, sottraendo, l'equazione di secondo grado (1), non vi ha ragione di procurarsi altra equazione di secondo grado, potendosi a dirittura dalla (1), e da essa (D) ottenere le equazioni di primo grado necessario a compiere la eliminazione. Or eguagliando i primi termini di (1), e (D), e sottraendo si ha

\[
(3yL - 3y^2H)z + 3yG + qH = 0
\]
e moltiplicando la (1) per \( 3yz + 3y^2 \), e la (D) per \( Hz + L \), giusta il metodo Bezoutiano, ovver semplicemente per \( -q \) la (1), e per \( G \) la (D), a norma del metodo Newtoniano: nell'uno e nell'altro modo, sottratto un prodotto dall'altro, si trova

\[
(Hq + 3yG)z + Lq + 3y^2G = 0
\]
dalle quali due equazioni di primo grado si cava

\[
(3yL - 3y^2H)(Lq - 3y^2G) - (Hq + 3yG)^2 = 0
\]
che, per esser \( G = 3y^2(y^2 - p) \), \( H = -3y^2 \), \( L = q - 3py \), porge svolta

\[
y^7 - \frac{4}{3} py^5 + \frac{1}{3} p^2y^3 - \frac{a}{2} pqy^2 + \frac{1}{3} q^2y = 0
\]
cioè \( y(N) \).

Dunque il fare per le due equazioni (C), (D) un calcolo particolare più ristretto ed accomodato, sia giusta il Bezoutiano, sia giusta il Newtoniano metodo, non serve ad ischivare nella finale di eliminamento ogni alterante fattore. E non è maraviglia, partendo il calcolo particolare dall'innalzamento di (D) a \( z(D) \), nel qual modo la stessa final Bezoutiana (o) produce \( y(y^2 - p) \) (N): la particolarità pertanto, è contrazione del calcolo fa sfuggire il fattore \( y^2 - p \). Ma non vi ha altra via di ottener col metodo Bezoutiano esattamente la finale (N) che di discendere dalla (II) alla (D) con fare \( P = 0 \); via, che ha del pari esito felice nel metodo Newtoniano, convertendosi per la posizione di \( P = 0 \) il \( G \) in \( q \), e la (Δ) essenzialmente nella (o), nella (N). Si renderà manifesta al-
lo sguardo tal differenza dei due distinti modi di applicare alle equazioni (C), (D) le finali (o), (Δ) con lo sviluppo che procedo a fare.

§. III

Doppio ordinato sviluppo della finale Bezoutiana (o), e doppia finale indi dedotta per il caso di due equazioni, una di terzo, l'altra di secondo grado.

Per isviluppo della equazione (o) è chiaro altro non volersi significare che lo estenderla nei coefficienti propri delle equazioni (I), (II), dalle quali fu derivata, rimettendo in luogo delle compendiose specie G, H, K .... i loro valori. Una farragine di termini ne nasce: a toglier la confusione, e rendere lo sviluppo utile conviene disporlo con qualche ordine. Primieramente io lo ordino così

\[(o') P^3 D^3 - P^3 QCD^3 + P^3 QBD^4 - P^3 A D^4 + R^3 A^2 D - S^3 A^2 \]

Il secondo ordine è di questo inverso

\[(o'') S^3 A^3 - S^3 RA^3 B + S^3 Q (AB^3 - A^3 C) + S^3 Q (AC^3 - A^2 BC) + R^3 Q ABD - Q^3 PBD^4 \]

Dal primo ordinato sviluppo fatto \(P = o\), annullandosi i tre primi membri, per finale delle equazioni

(I) \(A x^3 + B z^3 + C x + D = o\) (III) \(Q x^2 + R z + S = o\)

si trae

Tomo XVI.  N n
Su i vari metodi di Eliminazione cc.

- $Q^3AD^3 + R^3A^3D = S^3A^3$
- $Q^3RACD^3 - R^3SA^3C$
- $Q^3S(4C^3 + 2ABD^3) + RS^3A^3B$
- $QR^3ABD^3$
- $QS^3(AB^3 - 2A^3C)$
- $QRS(ABC - 3A^3D)$

che è divisibile per $A$, fattore che nel caso delle due equazioni (C), (D) è $= 1$. Intendendo questa finale divisa per $A$ la segnerò $(\Theta)$.

Dal secondo ordinato sviluppo, supposto $S = 0$, a finale delle due

(I) $Ax^3 + Bx^2 + Cx + D = 0$

(II) $Pz^3 + Qz^2 + Rz = 0$

si tira

- $R^3A^3D^3 + Q^3AD^3 - P^3D^3$
- $+ R^3QABD - Q^3PBD^3$
- $+ R^3P(2ACD - B^3D)$
- $- RQ^3ACD$
- $- RP^3(C^3D - 2BD^3)$
- $+ RQP(BCD - 3AD^3)$

che ha il fattore $D$, il quale nel caso delle due equazioni

(C) $z^3 - pz + y(y^2 - p) = 0$, $z(D)3yz^3 + 3y^2z^2 - qz = 0$

è $(y^2 - p)$. Divisa questa finale per $D$ segnisì $(\Theta')$.

Tornerranno utili queste osservazioni su i fattori alteranti, allor che di essi tratterò di proposito.

ARTICOLO II.

Metodo di continuo inserimento del Bezout, producente
o divisore inutile, o fattore alterante.

Prescrive il Bezout per il caso, che delle due equazioni date una sia di grado più basso che l'altra, una modificazione del suo general metodo, che viene ommessa nei libri di Analisi, e che io, riguardando come un metodo a parte, chiamo metodo d'inserimento, e premetto qui al me-
todo di continua divisione, avendo questi due metodi qualche cosa in che si congiungono, siccome in altro vincolo si legan quei di continua divisione e di continua condizione. Qualora pertanto le due equazioni date siano differenti di grado, l'una di grado maggiore $n$, l'altra di minor grado $m$, ordina Bezout, che dopo aver moltiplicato la seconda per $z^{n-m}$, e dopo d'aver procurato, con l'esposto metodo di uguagliamento ordinato e continuo, un numero $m$ di equazioni di grado $n-1$ si sostituisca in ciascheduna di queste il valore di $z^m$ tirato dalla men alta delle equazioni date, e si rinnovi la sostituzione sino a che in tutte le procurate equazioni $z$ si abbassi alla potenza $z^{n-1}$, con che si verrà ad avere un numero $m$ di equazioni di grado $m-1$, nelle quali considerando le potenze di $z, z^{m-1}, z^{m-2}, \ldots$ come tante incognite diverse di primo grado, si compierà con l'andamento di eliminazione usato per queste l'operazione. La rinnovata sostituzione del valore di $z^m$ tratto dalla equazione data di grado minor $m$ nelle procurate di grado $n-1$ sino ad abbassar queste al grado $m-1$ è ciò che io chiamo continuo inserimento.

Nel caso di $n=3, m=2$ ingiunge il Bezout di sostituire subito nell'equazione di terzo grado il valor di $z^3$ cavato da quella di secondo, con che essa di terzo discenderà a grado secondo, e di tornar a sostituire per deprenderla al primo: il che fatto, se traggasi da questa equazione di primo grado il valor di $z$, e si ponga nella data di secondo, la eliminazione di $z$ sarà speditamente ottenuta.

Sieno in generale le due equazioni una di terzo, l'altra di secondo grado:

(1) $Ax^3 + Bx^2 + Cx + D = 0$.  (III) $Qx^2 + Rx + S = 0$.

Inserendo nella (1) il valore di $z^2 = \frac{-Rz - S}{Q}$ tratto dalla (III),

si ha

\[ \frac{-ARx^3}{Q} + \left( \frac{A}{Q} - \frac{BR}{Q} \right) x + D - \frac{BS}{Q} = 0, \]

ed inserendo di nuovo viene
Su i vari metodi di Eliminazione etc.

\[
\left( C - \frac{AS}{Q} + \frac{BR}{Q^2} + \frac{AR}{Q^3} \right) z + D - \frac{BS}{Q} + \frac{ARS}{Q^2} = 0,
\]

onde \( z = -\frac{C - \frac{AS}{Q} - \frac{BR}{Q} + \frac{AR}{Q}}{D - \frac{BS}{Q} - \frac{ARS}{Q^2}} \)

il qual valore di \( z \) inserito nella (III) dona

\[
Q \left( D - \frac{BS}{Q} + \frac{ARS}{Q^2} \right)^2 + R \left( D - \frac{BS}{Q} - \frac{ARS}{Q^2} \right) + S = 0,
\]

che riducessi a

\[
Q \left( D - \frac{BS}{Q} + \frac{ARS}{Q^2} \right)^2 + \left( C - \frac{AS}{Q} + \frac{BR}{Q^2} - DR \right) \left( C - \frac{AS}{Q} - \frac{BR}{Q} + \frac{AR}{Q^2} \right) = 0;
\]

ed eseguito e moltiplicato per \( Q \) il quadrato, effettuato il prodotto, che gli vien dietro, scancellati i termini che si distruggono, trovasi risultare \( \frac{Q}{Q^2} (\Theta) \); dove il divisore \( Q^2 \) non reca alcun vantaggio, poiché a supporre che deprimesse il grado dell'equazione \( \Theta \), dividendone tutti i termini, converrebbe in radici supporre per \( Q \) divisibili \( R, S \), cioè l'equazione (III) alla sua più semplice espressione non ridotta. Se dopo ciascun inserimento, invece di conservare le frazioni, tolte le avessi, riuscito sarebbe \( Q^2 (\Theta) \).

ARTICOLO III.

Metodo di continua divisione promosso nella teoria.

Produce tutti insieme e diviso comunemente inutile e fattore alterante.

Il d'Alembert nella Encyclopedie all'articolo Evianuir non accenna che due metodi, uno che dir si può di alternativo paragone ed inserimento; l'altro che di continua divisione io chiamo, e di cui mi propongo ad un tempo promover la teoria, e notar il diffetto. Suppone il celebre Encyclopedista.
che le due equazioni date siano di grado differente, oppure, essendo dello stesso, che con la liberazione, e separazione delle massime potenze dell'incognita da eliminarsi, e col paragone dei valori loro, se ne sia procurata una d'inferior grado. Si dividà l'equazione di grado più alto per quella di minore data o procurata, questa per il residuo, questo trasferito di divisore in dividendo per il residuo secondo, e così via via il residuo secondo dividasi per il terzo, il terzo per il quarto ecc. sino a giungere ad un residuo senza l'incognita che si vuol eliminata, e sarà appunto tal residuo uguagliato a zero l'equazione libera da essa incognita, che si desiderava. Questo metodo, che è in sostanza quello del ritrovamento del comun massimo divisore, ha sopra quelli sinora esposti il pregio di camminare ad una più chiara luce del principio intrinseco ad un problema comprendente due incognite, ed espresso per due equazioni. Queste equazioni sono due condizioni del problema che si devono insieme avverare, così che se spongasi per $Y$ una funzione di $y$, che esprima il valore di $z$ soddisfacente al problema, sostituito $Y$ in luogo di $z$ nelle due equazioni deve render vero si l'una che l'altra. Dunque entrambe saran divisibili per $z-Y$ ossia $z-Y$ sarà comun loro divisore. Se il problema ammette diversi valori di $y$, ed altrettanti valori diversi di $z$ corrispondenti, l'equazione $z-Y=0$ darà per ciascheduno dei valori di $y$ introdotto in $Y$ il corrispondente valore di $z$; rappresenterà per conseguenza $z-Y=0$ tutte le corrispondenti soluzioni, e ritenendo per qualunque delle determinazioni di $y$ la proprietà di esser comun divisore delle due equazioni date ne sarà un comun divisore di primo grado, ma vario, o dir si voglia multipolare. Nella continuata divisione sarà esso l'ultimo divisore, ed il residuo della divisione per esso fatta, il qual sarà privo di $z$, essendo uguagliato a zero verrà ad essere l'equazione in sola $y$, che di questa determinerà i diversi valori. Se per la natura del problema ad un valore di $y$ potra corrispondere un valor doppio di $z$, il divisor comune delle due equazioni sarà un'
equazioni di secondo grado $x^2 + yz + y' = 0$; e se i valori di $y'$ possano essere più di uno, questa equazione sarà un divisore comune delle due del problema doppiamente variato, o multipollente. Così vadasi discorrendo se per natura del problema ad ogni valor diverso di $y'$ corrisponder potessero tre quattro ..., $n$ valori di $z$: il divisore comune sarà di grado $n$, e sarà esso l'ultimo divisore della continua divisione, cioè la si fermerà l'operazione del dividere, inaspettatamente e di repente da un dividendo a $z^n$, saltandosi ad un residuo senza $z$, annullandosi da lor medesimi ad un tratto tutti i coefficienti delle potenze di $z$ inferiori ad $n$.

Veggo esser mestieri, che dopo aver così, con distinguere i possibili diversi gradi dei comuni divisori, promossa la teoria del metodo, la rischiari con gli esempi. Incominciamo ad applicare esso metodo alle due equazioni.

(I) $Ax^2 + Bx^2 + Cz + D = 0$. (III) $Qz^2 + Rx + S = 0$.

Dividendo (I) per (III) sarà il residuo

$$(r') \left[ \frac{C-A}{Q} - \frac{R}{Q} \left( \frac{B}{A} - \frac{AR}{Q} \right) \right] z + D - \frac{S}{Q} \left( \frac{B}{A} - \frac{AR}{Q} \right).$$

Dividendo (III) per (I) il residuo secondo senza $z$ da porsi uguale a zero sarà

$$(r'') S - \frac{R}{Q} \left[ \frac{D}{Q} - \frac{S}{Q} \left( \frac{B}{A} - \frac{AR}{Q} \right) \right] + \frac{Q}{Q} \left[ \frac{D}{Q} - \frac{S}{Q} \left( \frac{B}{A} - \frac{AR}{Q} \right) \right] = 0.$$

Questa è a puntino la equazione, che si è veduto sortire dal continuo inserimento, e si è osservato essere $\frac{1}{Q^2} (\Theta)$. E ben penetrando si scopre la ragione dell'identico successo. Il continuo inserimento altro non è che una continua divisione complementata. Se nella divisione di (I) per (III) si disponga (I) così: $(Ax + B)x^2 + Cz + D = 0$, il quoziente del primo atto di divisione essendo $\frac{Ax + B}{Q}$, moltiplicato per (III) produce a residuo di esso primo atto di divisione l'effetto del primo inserimento, e con il secondo atto di divisione si ha il resi-
duo (r') corrispondente all'effetto dell'inserimento secondo. Similmente l'inserimento del valore di z nella (III) è un compendio della divisione di (III) per (r'). Ecco il vincolo, che io da principio accennai essere tra i due metodi.

Procediamo a determinare per mezzo del metodo di continua divisione la finale dell'eliminamento di z dalle due equazioni ambe di terzo grado.

(I) \( Ax^3 + Bx^2 + Cx + D = 0 \). (II) \( Pz^3 + Qz^2 + Rz + S = 0 \). Liscendo, e lasciando soli in un membro li cubi \( z^3 \), e paragonandone i due valori, si otterrebbe l'equazione di secondo grado

\[
\frac{1}{AP} (BP-AQ)z^3 + (CP-AR)z + DP-AS = \frac{1}{AP} (Hz^2 + Lz + G) = 0,
\]

essendo \( Hz^2 + Lz + G = 0 \), l'equazione (I) conseguita col metodo Bezoutiano, e col Newtoniano, uguagliando per la reciproca moltiplica di (I) per P, di (II) per A i primi loro termini. Serviamoci della semplice \( Hz^2 + Lz + G = 0 \). Dividendo per questa la (I) si avrà un residuo (R') simile affatto al (r') cangiato Q in H, R in L, S in G, sarà dunque

\[
(R') \left[ C - \frac{AG}{H} - \frac{L}{H} \left( B - \frac{AL}{H} \right) \right] z + D - \frac{G}{H} \left( B - \frac{AL}{H} \right),
\]

e dividendo per questo (R') la \( Hz^2 + Lz + G = 0 \), si avrà a residuo (R''), ossia ad equazione finale

\[
(R'') \left( CG - \frac{AG^2}{H} - DL \right) \left[ C - \frac{AG}{H} - \frac{L}{H} \left( B - \frac{AL}{H} \right) \right] +
\]

\[
H \left[ D - \frac{G}{H} \left( B - \frac{AL}{H} \right) \right]^2 = 0
\]

tutta con pazienza sviluppando, e confrontando si trova

\[
\frac{A^4}{H^4} (\omega) = \frac{A^4}{(BP-AQ)^4} (\omega).
\]

Ecco una combinazione di fattore alterante, e di fattore deprimente, ossia divisore. Ma egli è evidente essere il derminute \( H^2 \) inutile, se tutti i termini di \( \omega \) non sieno per esso divisibili, che è un singolarissimo caso.

Avanziamoci ad un esempio, in cui le due equazioni date
abbiano un divisor comune di secondo grado per esser il problema di tal natura, che ad ogni valor di \( y \) ne corrisponda no due di \( z \). Di si fatta indole sono le due equazioni

(IV) \( z^3 + yz^2 - yz + b - 2ay = 0 \).

(V) \( z^3 + (y-f)z^2 - yz + b - (2a-f)y = 0 \).

Avendosi qui \( A = 1 \), \( B = y \), \( C = -y \), \( D = b - 2ay \); \( P = 1 \), \( Q = y - f \), \( R = -y \), \( S = b - (2a-f)y \), e per le generali posizioni essendo \( H = BP - AQ \), \( L = CP - AR \), \( G = DP - AS \), ne verrà \( H = B - Q = f \), \( L = C - R = 0 \), \( G = D - S = -fy \), e quindi il primo divisore \( Hz^2 + Lz + G = fz^2 - fy \), ed il primo residuo

\[
(R') = \left( -y + \frac{fy}{f} \right) z + b - 2ay + y^2, \text{ vale dire } b - 2ay + y^2.
\]

Dunque l'equazione \( y^2 - 2ay + b = 0 \) sarà l'equazione finale libera da \( z \), che ci darà i valori di \( y \), e l'equazione \( fz^2 - fy = 0 \), ossia \( z^2 - y = 0 \) sarà il divisor comune di secondo grado delle due date equazioni (IV), (V), il quale per ciascun dei valori di \( y \) ci somministrerà due valori di \( z \).

Che \( z^2 - y \) sia divisor comune delle equazioni (IV), (V) si vedrà cogli occhi instituendo le divisioni: la divisione di (IV) darà per quoziente \( z + y \), e per residuo \( y^2 - 2ay + b \); e la divisione di (V) darà di quoziente \( z + y - f \), e di residuo \( y(y-f) + b - (2a-f)y \), che per la elisione dei due termini \( -fy + fy \) ricade nell'antecedente \( y^2 - 2ay + b \), il quale, essendo per ipotesi \( = 0 \), rende ambe le divisioni perfette, e dimostra \( z^2 - y \) comune divisor delle due equazioni.

Accennerò eziando la maniera di costituire in genere le forme di due equazioni di terzo grado dell'esposta natura, ammettenti cioè un comun divisor di secondo grado, qual è \( z^2 + Yz + Y' = 0 \), intendeado per \( Y \), \( Y' \), funzioni di \( y \) anche frazionarie. Supponendo le due equazioni desiderate essere

(I) \( Ax^3 + Bz^2 + Cz + D = 0 \).

(II) \( Px^3 + Qx^2 + Rx + S = 0 \).

si cerca il conveniente rapporto tra le funzioni di \( y \), \( A \), \( B \), \( C \), \( D \), \( P \), \( Q \), \( R \), \( S \).

Per render la determinazione di tal rapporto più agevole,
le, e più chiara, si supponga $A = P = 1$, e per non pre-
giudicare al tempo stesso alla generalità si concepiscono, se
piace, le altre funzioni di $y$, cioè $B, C, D, Q, R, S$ frazione-
narie. Confrontando $z^2 + Yz + Y'$ con $Hz^2 + Lz + G$, e mo-
dificando giusta l’ipotesi di $A = P = 1$ i generali valori $H, L, G$, si vedrà essere $1 = H = B - Q; Y = L = C - R; Y' = G = D - S$.

Ad esser poi $z^2 + Yz + Y'$ esatto divisore delle due equa-
zioni (I), (II), dovendo nel residuo ($R'$) annullarsi da sé il
coefficiente di $z$, ed essere l’altro termine una funzione di $y$
(che segnerò $Y''$) da potersi costituire in equazione, si avrà

$$C - Y' - Y(B - Y) = 0, \quad D - Y'(B - Y) = Y''.$$

Cinque sono le equazioni, e se le determinazioni da farsi,
onde una resta libera, ed arbitraria: scelgiamo a fare $B = Y''$;
saranno quindi

$$B = Y''; \quad C = Y' + Y(Y'' - Y); \quad D = Y'(Y'' - Y) + Y''$$

$Q = Y'' - 1; \quad R = Y' + Y(Y'' - Y) - Y; \quad S = Y'(Y'' - Y) + Y'' - Y';$
Perciò le due ricercate equazioni saranno

$$z^2 + Y''z^2 + [Y' + Y(Y'' - Y)]z + Y'(Y'' - Y) + Y'' = 0,$$

$$z^3 + (Y'' - 1)z^2 + [Y' + Y(Y'' - Y) - Y]z + Y'(Y'' - Y) - Y + Y'' = 0.$$

Il comun lor divisore sarà $z^2 + Yz + Y'$, ed il residuo di am-
be le divisioni determinate i valori di $y$ sarà $Y'' = 0$; e per
ciascun di questi valori di $y$ l’equazione $z^2 + Yz + Y' = 0$
darà due valori di $z$.

ARTICOLO IV.

Metodo di continua condizione dell’Eulero, di nuove viste,
e finali equazioni arricchito producente fattori alteranti.

Da quello del metodo di continua divisione non è diverso il fondamento del metodo dall’Eulero proposto nel volu-
me dell’Accademia di Berlino per l’anno 1764. Ma Eulero
vi aggiunge un nuovo luminoso riflesso, e ne fa un nuovo
maneggio, di cui dà un esempio in due equazioni, una di

Tomo XVI.

O o
terzo, l'altra di secondo grado. Sieno

(I) \( z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A} = 0 \)  
(III) \( z^3 + \frac{R}{Q} z + \frac{S}{Q} = 0 \)

Dovendo le due equazioni verificarsi insieme, cioè l'una e l'altra per un certo valore di \( z \), qual esprimasi per \( Y \), dovendo per conseguenza ambedue le equazioni contener a fattore \( z - Y \), d'altro non si tratta in cercare una equazione senza \( z \), e solo composta dei coefficienti \( \frac{B}{A}, \frac{C}{A}, \frac{D}{A}, \frac{R}{Q}, \frac{S}{Q} \),

che di determinare il rapporto di questi tutti in fra di loro, onde la condizione esposta abbia realmente luogo, cioè sia effettivamente \( z - Y \) fattor comune delle due equazioni. Ecco in fondo, ed in ultima analisi l'oggetto della eliminazione di \( z \): determinar l'equazione, che legghi in tal continuo rapporto i detti coefficienti tutti, che si avveri la condizione accennata; egli è di qui che io ho preso il titolo dato a questo metodo di Eulero di continua condizione.

Si ponga pertanto

(I) \( z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A} = (z^2 + gz + h)(z - Y) \).

(III) \( z^3 + \frac{R}{Q} z + \frac{S}{Q} = (z + f)(z - Y) \).

Moltiplicando reciprocamente (I) per \( z + f \), e (III) per \( z^2 + gz + h \), dovranno i prodotti riuscir uguali, siccome ambedue \( = z - Y \).

Paragonando quinci i coefficienti dei termini simili di essi prodotti, si avranno le quattro equazioni

1. \( \frac{R}{Q} + g = \frac{B}{A} + f. \)  
2. \( \frac{S}{Q} + \frac{R}{Q} g + h = \frac{C}{A} + \frac{B}{A} f. \)
3. \( \frac{S}{Q} g + \frac{R}{Q} h = \frac{D}{A} + \frac{C}{A} f. \)  
4. \( \frac{S}{Q} h = \frac{D}{A} f. \)

per mezzo delle quali, discacciate \( f, g, h \), si otterrà l'equazione desiderata: e siccome il discacciammento si fa con un continuo processo, che va continuamente legando fra loro nel rapporto alla mentovata condizion necessario i divisati coefficienti; cosi giusto mi par, che sempre meglio apparisca.
il titolo di continua condizione, onde questo metodo ho distinto. Il calcolo poi per giungere alla bramata equazione, espulse $f$, $g$, $h$, è agevole e senza ostacolo veruno, non avendosi a maneggiare che equazioni semplici. Tratta dalla 1.° la espressione di $f$, e trasportatala nella 2.°, e da questa cavata l’espressione di $h$, ed introdotte le espressioni di $f$, e di $h$ nella 3.° si troverà

$$g = \frac{B}{A} - \frac{S}{Q} \left( \frac{R}{Q} - \frac{B}{A} \right) + \frac{D}{A} ,$$

che porrò $= \frac{B}{A} - \frac{t}{u}$.

E con le medesime espressioni di $f$, ed $h$ introdotte nella 4.° proviene

$$g = \frac{B}{A} - \frac{S}{Q} \left( \frac{S}{Q} - \frac{C}{A} \right) + \frac{D}{A} ,$$

che porrò $= \frac{B}{A} - \frac{v}{z}$;

onde ne deriva

$$(\Sigma) \left[ \frac{S}{Q} \left( \frac{R}{Q} - \frac{B}{A} \right) + \frac{D}{A} \right] - \left[ \frac{R}{Q} \left( \frac{R}{Q} - \frac{E}{A} \right) - \left( \frac{S}{Q} - \frac{C}{A} \right) \right] \left[ \frac{S}{Q} \left( \frac{S}{Q} - \frac{C}{A} \right) + \frac{D}{A} \right] = 0.$$

Che se confrontisi, trovasi essere la equazione fornitaci dal continuo inserimento divisa per $A^2Q$; onde $(\Sigma) = \frac{1}{A^2Q^2} (\Theta)$.

Ommette l’Eulero la determinazione di $Y$ rappresentante il valor di $z$ soddisfacente ad ambe insieme le equazioni, giusta che il problema esige. Prendendo a supplirvi, per maggior comodo, in luogo dei coefficienti fratti sostituite delle specie intere, rappresenterò le date equazioni (I), (III) così:

(I) $z^2 + \alpha z^2 + \beta z + \gamma = 0$. (III) $z^2 + \delta z + \varepsilon = 0$.

Or si osservi che essendosi supposto

$$z^2 + \delta z + \varepsilon = (z + f)(z - Y) = z^2 + (f - Y)z - fY ,$$

si ha conseguentemente $f - Y = \delta, -fY = \varepsilon$; onde

$$Y = f - \delta = \frac{-\varepsilon}{f} .$$

Ma $f = \delta - a + g = \delta - a + \alpha - \frac{t}{u} = \delta - a + \alpha - \frac{v}{t} = \delta - \frac{t}{u} = \delta - \frac{v}{t}$.
Dunque \( Y = \frac{t}{u} = \frac{\varphi}{t} = \frac{-\varphi u}{\varphi u - t} = \frac{-\varphi t}{\varphi t - v} \).

Devesi riflettere, che \( \frac{t}{u} = \frac{\varphi (\beta - \alpha) + \gamma}{\varphi (\beta - \alpha) - (\varepsilon - \delta)} \cdot \frac{\varphi}{\varphi} = \frac{\varphi (\varepsilon - \delta) + \delta y}{\varphi (\varepsilon - \delta) + \delta y} \).

Per lo che trovasi, che la quarta espressione di \( Y \), vale dire \( \frac{-\varphi t}{\varphi t - v} \), coincide con la prima \( \frac{t}{u} \); cosicché di quattro si riducono a tre: \( Y = \frac{t}{u} = \frac{\varphi}{t} = \frac{-\varphi u}{\varphi u - t} \); e più distesamente

\[
Y = \frac{\varphi (\beta - \alpha) + \gamma}{\varphi (\beta - \alpha) - (\varepsilon - \delta)} = \frac{\varphi (\varepsilon - \delta) + \delta y}{\varphi (\varepsilon - \delta) + \delta y} = \frac{\varphi [\varphi (\beta - \alpha) - (\varepsilon - \delta)]}{\varphi (\beta - \alpha) - (\varepsilon - \delta) - \delta (\beta - \alpha) - \gamma}
\]

La terza espressione, se ben attendasi, nasce dalle due antecedenti, moltiplicando il numeratore della prima per \( \varphi \), e dal prodotto sottraendo il numeratore della seconda, con che si ha il numeratore della terza; moltiplicando il denominatore della prima parimenti per \( \varphi \), e poi sottraendo dal prodotto il denominatore della seconda, e la differenza costituisce il denominatore della terza. La ragione s'intende da una equazione, a cui ci conduce la già notata coincidenza di \( \frac{-\varphi t}{\varphi t - v} \)

con \( \frac{t}{u} \). Di qui cavasi \( \varphi u = \varphi t - v \); dunque \( \frac{-\varphi u}{\varphi u - t} = \frac{\varphi t - v}{\varphi u - t} \), cioè la struttura della terza espressione, che ho descritto. Dalla equazione \( \varphi u = \varphi t - v \) tirasi anche reciprocamente \( v = \varphi t - \varphi u \); onde \( \frac{\varphi}{t} = \frac{\varphi t - \varphi u}{t} \). Per la qual cosa essendo \( \frac{t}{u} = \frac{\varphi}{t} \)

sara \( \frac{t}{u} = \frac{\varphi}{t} \), e quindi \( t^2 = u (\varphi t - \varphi u) \).

Ecco in breve forma la finale equazione (\( \Sigma \)) costruita pella sola frazione \( \frac{t}{u} \), senza che vi entri il numeratore \( v \) della frazione \( \frac{v}{t} \).

Poichè per \( Y \) abbiamo indicato il valor di \( z \), avremo di
questa tre espressioni

\[ z = \frac{t}{u} = -\frac{\delta t - \epsilon u}{t} = -\frac{\epsilon u}{\delta u - t}. \]

Combinandole a due a due si scopre tosto che la combinazione della prima con la seconda, e quella della prima con la terza coincidono in dare \( t^2 - u (\delta t - \epsilon u) = 0 \). E la combinazione della seconda con la terza si trova produrre \( \delta \left[ t^2 - u (\delta t - \epsilon u) \right] = 0 \); laonde abbiamo da tutte e tre insieme le combinazioni

\[(\Sigma) \quad t^2 - u (\delta t - \epsilon u) = 0. \quad (\Sigma') = \delta (\Sigma).\]

L'equazione \((\Sigma)\) darà i valori di \( y \). Giusta il numero loro ciascuno delle tre espressioni di \( z \) prendrà un numero di determinazioni diverse, ma per ciascuno ciascuna la determinazione medesima, ossia il medesimo valore. Le tre espressioni di \( z \) nei primitivi coefficienti delle equazioni (I), (III) saranno

\[ z = \frac{S}{Q} \left( \frac{R \cdot B}{Q \cdot A} \right) + \frac{D}{A} = \frac{S}{Q} \left( \frac{S \cdot C}{Q \cdot A} \right) + \frac{D}{A} = \frac{S}{Q} \left[ \frac{R \cdot Q}{O} - \frac{R \cdot B}{A} \right] - \frac{S}{Q} \left( \frac{S \cdot C}{Q \cdot A} \right). \]

Applicando il trovato sin qui alle due equazioni (C), (D), si avrà

\[ t = \frac{-q + 3y(z^2 - p)}{3}; \quad u = \frac{q + 3y(z^2 - p)}{3y}; \quad \delta t = \frac{-qy + 3y^2(z^2 - p)}{3}; \]

\[ \delta u = \frac{q + 3y(z^2 - p)}{3}; \quad \delta u - t = \frac{a}{3} q; \quad \epsilon u = \frac{-q^2 - 3qy(z^2 - p)}{3y^2}; \]

\[ \delta t - \epsilon u = \frac{q^2 + 3y^4(z^2 - p) - 3pqy}{3y^2}; \quad \text{onde} \]

\[ z = \frac{1}{3} \left( -q + 3y(z^2 - p) \right) = \frac{1}{3y^2} \left( q^2 + 3y^4(z^2 - p) - 3pqy \right); \]

l'equazione
(Σ) \( \left( \frac{-q+3y(y^2-p)}{3} \right)^2 - \left( \frac{q+3y(y^2-p)}{3} \right) \left( \frac{q^2+3y^2(y^2-p)-3pq}{3y^2} \right) = 0 \).

E svolgendo si vedrà essere \( \Sigma = \frac{1}{3^2\gamma^2} (N) \) e quinici \( \Sigma' = y (\Sigma) = \frac{1}{3^2\gamma^2} (N) \).

Si può trasferire il calcolo fatto per le due equazioni (I), (III), la prima di terzo grado, l'altra di secondo alle due di terzo (I), (II), deducendo prima da esse la più volte usata di secondo grado (I) \( Hz^2 + Lz + G = 0 \).

Trasportando dunque il calcolo dalle due (I), (III) alle due

(I) \( z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A} = 0 \),

con sostituire \( \frac{L}{H} \) in luogo di \( \frac{R}{Q} \); \( \frac{G}{H} \) in luogo di \( \frac{S}{Q} \) si otterrà

\( (\Lambda) \left[ \frac{G}{H} \left( \frac{L}{H} - \frac{B}{A} \right) + \frac{D}{A} \right] \left[ \left( \frac{L}{H} - \frac{B}{A} \right) - \left( \frac{G}{H} - \frac{C}{A} \right) \right] \left[ \frac{G}{H} \left( \frac{G}{H} - \frac{C}{A} \right) + \frac{DL}{AH} \right] = 0 \),

che si uguaglia al \( (R') \), a cui il metodo di continua divisione terminò, diviso per \( HA^2 \); e perciò \( \Lambda = \frac{1}{H^3} (o) \).

Se si desiderano le tre espressioni di \( z \), esse sono:

\[
z = \frac{G}{H} \left( \frac{L}{H} - \frac{B}{A} \right) + \frac{D}{A} = -\frac{G}{H} \left( \frac{G}{H} - \frac{C}{A} \right) + \frac{DL}{AH} = -\frac{G}{H} \left[ \left( \frac{L}{H} - \frac{B}{A} \right) - \left( \frac{G}{H} - \frac{C}{A} \right) \right]
\]

La combinazione della seconda con la terza espressione dona

\( \Lambda' = \frac{1}{H} (\Lambda) = \frac{L}{H^4} (o) \).

Ma cerchiamo la finale di eliminamento per le equazioni

(I) \( z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A} = 0 \),

(II) \( \frac{Q}{F} z^3 + \frac{R}{F} z^2 + \frac{S}{F} z + \frac{T}{F} = 0 \),

applicando loro il metodo di Eulero immediatamente.
A maggior comodo però si faccia

\[
\frac{B}{A} = B', \quad \frac{C}{A} = C', \quad \frac{D}{A} = D', \quad \frac{Q}{P} = Q', \quad \frac{R}{P} = R', \quad \frac{S}{P} = S'
\]

onde sieno

(I) \( z^3 + B'z^2 + C'z + D' = 0 \). (II) \( z^3 + Q'z^2 + R'z + S' = 0 \).

E si ponga inoltre \( D' - S' = C' \), \( B' - Q' = H' \), \( C' - R' = L' \).

Dopo ciò concepirasi

(I) \( z^3 + B'z^2 + C'z + D' = (z^2 + gz + h)(z - Y) \).

(II) \( z^3 + Q'z^2 + R'z + S' = (z^2 + ez + f)(z - Y) \),

si avrà per conseguenza

\[
(z^3 + B'z^2 + C'z + D')(z^2 + ez + f) = (z^3 + Q'z^2 + R'z + S')(z^2 + gz + h).
\]

Eseguiti i prodotti, il paragone dei coefficienti di ciascuna podestà di \( z \) nell'uno e nell'altro somministrerà le cinque equazioni

1.\(^a\) \( B' + e = Q' + g \).

2.\(^a\) \( C' + B'e + f = R' + Q'g + h \).

3.\(^a\) \( D' + C'e + B'f = S' + R'g + Q'h \).

4.\(^a\) \( D'e + C'f = S'g + R'h \).

5.\(^a\) \( D'f = S'h \).

dalla 1.\(^a\) ricavasi \( e = - H' + g \);

dalla 2.\(^a\) \( f = - L' + B'H' - H'g + h \);

dalla 3.\(^a\) \( H'h = C'H' - G + B'(L' - B'H') - (L' - B'H')g \);

dalla 4.\(^a\) \( g = B' - \frac{D'H' + G'(L' - B'H')}{{L'} - {B'H'}} \) che porrò \( B' = \frac{t}{u} \),

dalla 5.\(^a\) \( g = B' - \frac{D'H'L' - G'(C'H' - G')}{D'H'H' + G'(L' - B'H')} \) che porrò \( B' = \frac{u}{t} \); onde

\( t^3 - uv = 0 \).

È cosa degna di osservazione, che se invece di trarre dalla 3.\(^a\) equazione il valor di \( h \), si tragga quello di \( g \), e poi dalla 4.\(^a\) e dalla 5.\(^a\) si cavino due valori di \( h \), e dal loro confronto si derivi l'equazion finale, riece essa

\[
\frac{L' - B'H'}{H'}(t^3 - uv) = 0.
\]

Di fatto dalla 3.\(^a\)

\[
g = \frac{C'H' - G' - H'h}{L' - B'H'} + B',
\]
dalla 4. 

\[ h = \frac{C'H' - G'}{H'} + \frac{(L' - B'H') \left( D'H' - B'G' + \frac{L'G'}{H'} \right)}{L'(L' - B'H') + H'(C'H' - G')} = \frac{C'H' - G'}{H'} + \frac{\left( \frac{L' - B'H'}{H'} \right) t}{u} \]

dalla 5. 

\[ h = \frac{C'H' - G'}{H'} + \frac{(L' - B'H') \left( D'L' - C'G' + \frac{G'}{H'} \right)}{D'H' + G'(L' - B'H')} = \frac{C'H' - G'}{H'} + \frac{\left( \frac{L' - B'H'}{H'} \right) v}{t} \]

Dunque uguagliando, proviene \( \left( \frac{L' - B'H'}{H'} \right) \left( t^2 - uv \right) = 0 \).

Si scorge, che la via migliore, vale dir conducente ad una finale più semplice, è quella, che più ritarda le frazioni di denominator complesso.

Farò osservare che \( v = \frac{L}{H} t - \frac{H}{G} u, \) onde \( \frac{v}{t} = \frac{Ht - Gu}{H} \) e quindi l’equazione \( \frac{t}{u} = \frac{v}{t} \), dalla quale fu inferito \( t^2 - uv = 0 \).

si converte in \( H^2a - u \left( Lf - Gx \right) = 0 \).

Dal supposto \( z^3 + Bz^2 + Cz + D' = (z^2 + gz + h)(z - Y) = z^3 + (g - Y)z^2 + (h - gY)z - hY \) si traggono tre espressioni di \( Y \)

\[ Y = g - B' = \frac{h - C'}{g} = \frac{-D'}{h}. \]

Abbiam veduto sopra cavarsi dalla terza equazione la relazion di \( g, h \), cioè \( H'h = C'H' - G' + B'(L' - B'H') - (L' - B'H')g \). Secondo i due valori di \( g \) si tireranno i due corrisponenti di \( h \)

\[ h = \frac{1}{H} \left( C'H' - G' \right) + \frac{1}{H} \left( L' - B'H' \right) \cdot \frac{t}{u}; \]

\[ h = \frac{1}{H} \left( C'H' - G' \right) + \frac{1}{H} \left( L' - B'H' \right) \cdot \frac{v}{t}. \]

Distinguendo i due valori di \( g \) per \( g, g' \), e i due corrispondenti di \( h \) per \( h, h' \), sei pare che ne dovrebbero provenire le espressioni di \( Y \); ma la sesta \( \frac{-D'}{h} \) coincide con la prima \( g - B' \), onde ristregnonsi a cinque

\[ Y = g - B' = \frac{h - C'}{g} = \frac{-D'}{h} = g' - B' = \frac{h' - C}{g'}. \]
Rimettendo in luogo delle specie accentate $B', C', D'\ldots$ i coefficienti fratti $\frac{B}{A}, \frac{C}{A}, \frac{D}{A}\ldots$ si troverà $G' = \frac{D}{A} - \frac{S}{P}$;

$$\frac{DP - AS}{AP} = \frac{G'}{AP}; \quad H' = \frac{H}{AP}, \quad L' = \frac{L}{AP},$$
e la compendiosa equazione

$$t^2 - uv = 0,$$

si stenderà nella

$$(\Omega) \left[ \frac{DH^2}{A} + G \left( L - \frac{BH}{A} \right) \right] - \left[ L \left( L - \frac{BH}{A} \right) + H \left( \frac{CH}{A} - G \right) \right] \left[ \frac{DH}{A} + G \left( \frac{CH}{A} - G \right) \right] = 0$$

la quale è $\frac{H^3}{A^2} (R') = H(\omega)$,

l'altra equazione

$$\frac{t^2 - uv}{H} (L' - B'H') = 0$$
diverrà

$$\left( L - \frac{BH}{A} \right) (\Omega) = \left( L - \frac{BH}{A} \right) (\omega): \text{segnisi } (\Omega').$$

Le cinque espressioni di $Y$, e conseguentemente di $z$, saranno

$$z = Y = -\frac{\frac{DH}{A} + G \left( L - \frac{BH}{A} \right)}{L \left( L - \frac{BH}{A} \right) + H \left( \frac{CH}{A} - G \right) + \frac{G}{A} \left( \frac{CH}{A} - G \right)} =$$

$$= \frac{\left( \frac{DH}{A} + \frac{CL}{A} - \frac{BG}{A} \right) \left( L - \frac{BH}{A} \right) - \left( CH \right)}{\left( CH \right) - \left( CH - G \right)} - \frac{\left( \frac{DH}{A} + \frac{CL}{A} - \frac{BG}{A} \right) \left( L - \frac{BH}{A} \right) + \left( CH \right)}{\left( CH \right) - \left( CH - G \right)}.$$

La combinazione della prima, e della quarta dona la equazione $(\Omega)$; e la combinazione della prima con la terza produc- ce la equazioni $(\Omega')$: poichè la espressione prima è la $g - \frac{B}{A}$,
con cui si è notato coincider la \( \frac{-D}{A} \) per tal motivo qui ommessa; e la terza è la \( \frac{A}{h'} \); dunque la combinazione della prima con la terza è quanto prendere \( \frac{-D}{A} \times \frac{A}{h'} = \frac{-D}{h'} \); donde \( h' = h'' \), che è l'uguagliamento, da cui si cavò sopra la \((Q')\). È chiaro che il numero delle combinazioni delle cinque espressioni di \( z \) a due a due monta a 10, ed altrettante offrirannosi equazioni finali. È di più a riflettersi che similmente dall’equazione

\[ z^2 + Q' z^2 + R z + S - (z^2 + ez + f)(z - Y) = z^2 + (e - Y) z^2 + (f - eY) z - f' Y \]

si possano trarre cinque diverse espressioni di \( Y \), ossia di \( z \); e per conseguenza altre 10 finali equazioni. Che anzi congiungendo queste cinque nuove espressioni con le altre cinque, il numero delle combinazioni di tutte e dieci fra loro a due a due, e del pari il numero delle finali equazioni ascenderà a 45. Io non mi prenderò la pena di formarle, e sott’occhio stenderne la schiera. Bastano al mio scopo le due \((Q)\), \((Q')\) rendendosi per esse a sufficienza palese che questo metodo di Euler, scorto da una luminosa considerazione su l’ultimo oggetto dell’eliminamento, non gode però il pregio dall’esimio Autore creduto, di schivare i fattori alteranti; che anzi la finale \((Q')\) recò seco un fattore più complesso, che qualunque altro, da cui affetta presentata si sia la finale di qualsivoglia dei metodi superiori.
ARTICOLO V.

Metodo di prodotto non producente che divisorsi, ma comunemente inutili.

§. I.

Fondamenti del metodo per l' Euler. Calcolo di lui.
Cose desiderate alla perfezione di esso.

Se bella e profonda idea su l'intento della eliminazione, e l'uffizio dell'equazioni finale produsse l' Euler nel volume dell' Accademia di Berlino per l' anno 1764, belle e profonde viste sul rapporto delle due equazioni a due incognite premesse avea nel volume per l' anno 1748, e metodo più felice aveane ordito. L' argomento della Memoria non è espressamente l' eliminazione, ma un argomento affine, e porta essa il titolo: Démonstration sur le nombre des points, ou deux lignes des ordres quelconques peuvent se couper. Ciò che vi è d' incidente, divenendo l' essenziale al mio proposito, è ciò che io debbo estrarne. Sieno le equazioni

\[(\xi) \quad z^{m} + a z^{m-1} + \beta z^{m-2} + \gamma z^{m-3} + \delta z^{m-4} \ldots + \theta = 0\]

\[(\alpha) \quad z^{n} + a' z^{n-1} + \beta' z^{n-2} + \gamma' z^{n-3} + \delta' z^{n-4} \ldots + \tau' = 0\]

le quali faccia mestieri combinar di modo, che ne risultino una, la quale non contenga più la lettera \(z\). Si comprende tosto che il valor di \(z\) risultante da una di codeste equazioni deve essere uguale al valore di \(z\) risultante dall' altra. Dunque se l' una e l' altra equazione dia più valori di \(z\), le due equazioni proposte potranno sussistere insieme, se un valore qualunque di \(z\) dato dall' una sia uguale ad un valore qualunque di \(z\) dell' altra. Supponiamo che tutte le radici della prima equazione sieno \(a, b, c, d, \ldots\) al numero \(m\), e le radici dell' altra sieno \(a', b', c', d', \ldots\) al numero \(n\): egli è chiaro, che l' una e l' altra delle due equazioni proposte avrà luogo in tutti i casi, che una delle radici della prima equazione (\(\xi\)) sarà uguale ad una dell' altra (\(\alpha\)).
Esse due equazioni si possono rappresentare così:

\[(\xi) (z-a)(z-b)(z-c)(z-d) \ldots = 0\]
\[(K) (z-a')(z-b')(z-c')(z-d') \ldots = 0\]

E da tal rappresentazione rendesi manifesto, che se \(a = a'\), il valor \(z = a = a'\) soddisferà all'una e all'altra equazione, e che accadrà lo stesso se \(a = b'\) od \(a = c'\), od \(a = d'\) ....
Similmente il valor \(z = b\) soddisferà all'una ed all'altra se \(b = a'\), se \(b = b'\), se \(c\) .... ed il valor \(z = c\) soddisferà ad ambidue le equazioni se \(c = a'\), se \(b = b'\), se \(c = c'\), se \(d = d'\) ....
Ed è evidente, che tutte queste combinazioni insieme raccolte rappresentano tutti i casi possibili, ne' quali le due proposte equazioni possono sussistere ad un tempo.

Poiché dunque l'equazion, che si cerca per mezzo dell' eliminamento, comprende deve tutti i casi possibili, ne' quali un medesimo valore posto in luogo di \(z\) soddisfa ad un tempo all'una ed all'altra equazione, egli è palese dover essa contenere tutti i casi notati, e perciò sarà ella composta di tutti questi fattori,

\[
\begin{align*}
(a - a')(a - b')(a - c')(a - d') & \\
(b - a')(b - b')(b - c')(b - d') & \\
(c - a')(c - b')(c - c')(c - d') & \\
(d - a')(d - b')(d - c')(d - d') & = 0, \text{ cc.}
\end{align*}
\]

E poiché in questa equazione non si trova più \(z\), dunque essa stessa sarà la equazion cercata per l'eliminazione, racchiudente tutti i casi, ne' quali le due equazioni proposte possono avere una radice medesima.

Avendo pertanto supposto

\[(K) z^n + \alpha z^{n-1} + \beta z^{n-2} + \gamma z^{n-3} + \ldots + \varepsilon = (z-a)(z-b)(z-c)(z-d) = 0\]

Sostituendo successivamente in luogo di \(z\) nell'uno, e nell' altro membro \(a\), \(b\), \(c\), \(d\) .... avremo, siccome dal secondo la serie dei fattori esposta, così dal primo questa

\[
\begin{align*}
(a^n + \alpha a^{n-1} + \beta a^{n-2} + \gamma a^{n-3} + \ldots + \varepsilon) & \\
(b^n + \alpha b^{n-1} + \beta b^{n-2} + \gamma b^{n-3} + \ldots + \varepsilon) & \\
(c^n + \alpha c^{n-1} + \beta c^{n-2} + \gamma c^{n-3} + \ldots + \varepsilon) & \\
(d^n + \alpha d^{n-1} + \beta d^{n-2} + \gamma d^{n-3} + \ldots + \varepsilon) & = 0, \text{ cc.}
\end{align*}
\]
che saranno in numero $m$ giusta il numero delle radici della prima equazione ($ξ$), e il cui prodotto comporrà parimenti la cercata equazione finale dell'eliminamento.

Egli è altresì evidente, che siccome scambiando le equazioni inverte si può calcolo; così la stessa equazione finale rappresentar si può sotto la forma del prodotto

$$
(α^m + αa^m−1 + βa^m−2 + γa^m−3 + δa^m−4 + \ldots + θ) \\
(β^m + ab^m−1 + βb^m−2 + γb^m−3 + δb^m−4 + \ldots + θ) \\
(γ^m + ac^m−1 + βc^m−2 + γc^m−3 + δc^m−4 + \ldots + θ) \\
(δ^m + ad^m−1 + βd^m−2 + γd^m−3 + δd^m−4 + \ldots + θ)
$$

Il numero dei fattori essendo $n$, quale il numero delle radici $α$, $β$, $γ$, $δ$... dell'equazione ($K$). Sciogliasi ad effettuare il prodotto primo. Vi nasceranno varie potenze, e varie combinazioni delle sconosciute radici $α$, $β$, $γ$, $δ$... moltiplicate fra loro. Ma per la teoria delle equazioni si ha

$$
- α = a + b + c + d \\
- β = ab + ac + ad + bc + bd + cd \\
- γ = abc + acd + bcd \\
- δ = abcd
$$

E per mezzo di $α$, $β$, $γ$, $δ$... si troverà di poter esprimere le somme delle altre potenze, o degli altri prodotti di esse sconosciute radici, come il dimostreranno gli esempi. S'incomincia da due equazioni di secondo grado

**le radici supposte**

$$
z^2 + az + β = 0
$$

**le radici supposte**

$$
z^2 + az' + β' = 0
$$

dunque per esser $m = n = 2$, l'equazione, a cui l'eliminamento condur deve, sarà

$$(α^2 + α'a + β')(β^2 + α'b + β') = 0$$

che sviluppata darà

$$α^2b^2 + α'aβb + β'(α^2 + b^2) + α^2aγ + α'aβ'(α + b) + β^2 = 0.$$
Su i vari metodi di Eliminazione e c.

Le radici supposte
\[ z^3 + az^2 + \beta z + \gamma = 0 \]
\[ z^3 + a'z^2 + \beta' z + \gamma' = 0 \]

L’equazione cercata priva di \( z \) sarà
\[ (a^3 + a'z^2 + \beta' z + \gamma') (b^3 + ab^2 + \beta' b + \gamma') (c^3 + ac^2 + \beta' c + \gamma') = 0 \]
che per lo sviluppo diverrà
\[ a^3b^3c^3 + a'a'b'^2c(c + a'bc + b + c) + \beta ab(a^2b^3 + a^2c^3 + b^3c^3 + b^3c) + \gamma(a^3b^3 + a^3c^3 + b^3c^3) \]
\[ + a^2b^2c^2(c + a'bc + b + c) + \beta' ab(a^2b + a^2c + c + b + c) + \gamma(a^3b^3 + a^3c^3 + b^3c^3 + b^3c) + \beta' abc(a^2 + b^2 + c^2) + \gamma(a^2b^2 + a^2c^2 + b^2c^2) + \beta' abc(a + b + c) + \gamma'(a^2 + b^2 + c^2) = 0 \]

Intorno al quale bisogna osservare che \( a + b + c = -a \); \( ab + ac + bc = \beta \); \( abc = -\gamma \); e le altre espressioni si trovano formate degli stessi coefficienti \( a, \beta, \gamma \) nella guisa che segue
\[ a^2 + b^2 + c^2 = a^2 + 2\beta \; a^2 + ab^2 + a^2c + ac^2 + b^2c + bc^2 = -a\beta + 3\gamma \; a^2 + b^2 + c^2 = a^2 + 3a\beta - 3\gamma \; a^2 + ab^2 + a^2c + ac^2 + b^2c + bc^2 = a^2 - a\gamma - 2\beta \; a^2 + a^2c + b^2c = \beta - 2a\gamma \; a^2 + a^2b + a^2c + ac^2 + b^2c + bc^2 = -a\beta + 2a\gamma + 2\beta \; a^2 + b^2c + b^2c = \beta - 3a\beta \gamma + 3\gamma^2 \]

Applicando il tutto alle due

(I) \[ z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A} = 0 \]

(II) \[ z^3 + \frac{Q}{P} z^2 + \frac{R}{P} z + \frac{S}{P} = 0 \]

con fare
\[ a = \frac{B}{A}, \; \beta = \frac{C}{A}, \; \gamma = \frac{D}{A}, \; a' = \frac{Q}{A}, \; \beta' = \frac{R}{P}, \; \gamma' = \frac{S}{P} \]

si trova
\[ \frac{z^3 + \frac{B}{A} z^2 + \frac{C}{A} z + \frac{D}{A}}{2} \]

Mi sono dal principio ristretto a dire ordito questo metodo da Eulero. Perché 1.° si desidera in esso una teoria sugli effetti del prodotto, la quale insegni a trovarli con certo ordine perspicuo, senza la meccanica moltiplica, e senza avvolgersi in una farragione di termini; 2.° perché vi si desiderano le formule generali per ridurre ad essere espresse con
i coefficienti \( a, \beta, \gamma, \delta \ldots \) le somme delle potenze, e dei prodotti varj delle supposte radici \( a, b, c, d \ldots \). Prima che io vi supplisca vediamo i tentativi del Cramer.

§. II.

Calcolo del Cramer
mancante di una esatta general dimostrazione.

Il Cramer dando l’anno 1750 in luce la sua preclara opera *Introduction à l’analyse des lignes courbes algebriques*, vi aggiunse un’appendice per esporre un nuovo suo artificio, ad isfuggire nella eliminazione i troppi imbarazzi, la lunghezza laboriosa de’calcoli, e la soverchia altezza dell’equazione finale. Comincia dal presentare sotto una nuova forma le funzioni di \( y \), che fanno da coefficienti ai termini delle due date equazioni ordinate per le potenze di \( z \). Ecce come

(V) \( z^m + [1] z^{m-1} + [n] z^{m-2} + [1^3] z^{m-3} + [1^4] z^{m-4} \ldots + [1^n] = 0 \)

(W) \( a^0 + (1) a^1 + (2) a^2 + (3) a^3 + (4) a^4 \ldots + (n) a^n = 0 \)

significando cioè con \( 1, 1^2, 1^3 \ldots \) chiusi tra le parentesi quadrate le funzioni razionali di \( y \), che moltiplicano a modo di coefficienti le potenze di \( z \) in una delle equazioni date (V), corrispondendo i numeri posti in capo all’1 ai numeri sottratti da \( m \), ossia co’ quali vanno abbassandosi le potenze di \( z \); e significando con i numeri progressivi \( 0, 1, 2, 3 \ldots \) chiusi tra le parentesi rotonde i coefficienti delle potenze corrispondenti \( c^0, 1^1, 2^1, 3^1 \ldots \) di \( z \) nell’altra equazione (W). Suppongansi ora \( a, b, c, d \ldots \) le radici in numero \( m \) dell’equazione (V). Trasportata ciascuna nell’equazione (W) ne nasceranno numero \( m \) equazioni

\[
\begin{align*}
\text{(a)} & \quad a^0 + (1) a^1 + (2) a^2 + (3) a^3 + (4) a^4 \ldots + (n) a^n = 0 \\
\text{(b)} & \quad b^0 + (1) b^1 + (2) b^2 + (3) b^3 + (4) b^4 \ldots + (n) b^n = 0 \\
\text{(c)} & \quad c^0 + (1) c^1 + (2) c^2 + (3) c^3 + (4) c^4 \ldots + (n) c^n = 0 \\
\text{(d)} & \quad d^0 + (1) d^1 + (2) d^2 + (3) d^3 + (4) d^4 \ldots + (n) d^n = 0
\end{align*}
\]
il prodotto delle quali costituirà l'equazione finale di eliminazione. La prova che Cramer ne adduce, non è che un ristretto della dottrina dell'Eulero sopra recata. Ma qual sarà il contenuto di tal prodotto? come assegnarne senza l'attuale moltiplica l'effetto? Ciò è in che si adopera il Cramer.

Si distinguano in ogni termine del desiderato prodotto il fattore primario, ed il fattore secondario, intendendo per fattore primario il prodotto dei coefficienti (c), (1), (2) ... e per fattore secondario il prodotto delle radici a, b, c ... 

In quante maniere possono combinarsi a due, a tre, a quattro ec. le potenze da 1 ad m dei coefficienti (c), (1), (2), (3) ... con legge, che il prodotto sia sempre del grado m, tanti saranno i fattori primari.

A determinar con ordine queste combinazioni si comincia dal prender la potenza massima del coefficiente (c) scrivendola così (c^m); si combini poi la sua potenza m-iesima con ciascun altro coefficiente scrivendo (c^{m-i_1}), (c^{m-i_2}) ... indi si combini la potenza m-2iesima di esso con due qualunque degli altri in questo modo (c^{m-2-i_2}, (c^{m-2-i_3}) ... così sino a non restarvi tra le parentesi che un o combinato con un numero m-1 degli altri coefficienti. Si passa man mano a far il simile su ciascun altro coefficiente con ordine, avvertendo di omettere le combinazioni già avute in altra serie. A ciascun fattore primario corrisponderà il suo secondario, poiché supponendo farsi la moltiplica delle numero m equazioni, ogni coefficiente nell'andare a combinarsi o seco lui, o con qualunque altro da una in altra equazione, e dal prodotto di due in una terza, e così via via, porta seco la potenza corrispondente della radice a, b, c ... a cui fa da coefficiente. Accio meglio s'intenda, sia m=n=3. Il fattore primario (0.0.1) avrà seco unito il secondario a^1b^0c^0 + a^0b^1c^0 + a^0b^0c^1 = a + b + c. Al fattore primario (1.2.2) sarà accoppiato il secondario a^1b^1c^2 + a^1b^2c^1 + a^2b^0c^1; e per il fattore primario (1.2.3) sarà moltiplicato il secondario a^1b^2c^3 + a^2b^1c^3 + a^3b^0c^3 + a^0b^2c^3 + a^0b^3c^3. Ma come espel-
esprimere generalmente le sconosciute radici \( a, b, c, d \ldots \) constituenti nelle varie combinazioni delle potenze loro i fattori secondari? Rifletta primieramente Cramer che, essendo per ipotesi \( a, b, c, d \ldots \) le radici dell'equazione (V), per la teoria delle equazioni ne segue essere \( a + b + c \ldots = [1] \) coefficiente di \( x^{n-1} \) in essa (V), cioè il fattore secondario del primario \( (o^{m-1}) = [1] \); il fattor secondario del primario \( (o^{m-2}1.1) = ab + ac + ad \ldots + bc + bd \ldots + cd \ldots = [1^2] \); il fattor secondario del primario \( (o^{m-3}1.1.1) = abc + abd \ldots + acd \ldots + bcd \ldots = (1^3) \), e così di seguito, in modo che ottengasi immediatamente e senza calcolo per i coefficienti dell'equazione data (V) tutti i fattori secondari che hanno a primari loro non altro che la potenza \( o^{m-n} \) ed un numero di volte \( h \) l'1. Dopo di che l'Autore insegna ad ottenere con ordine per i medesimi coefficienti le espressioni degli altri fattori secondari tutti col mezzo di un teorema che spiega con un esempio.

Sia da trovarsi il fattor secondario del primario \( (o^{m-3}1.2.3) \); si scomponga questo in due parti, una delle quali sia \( (o^{m-2}2) \) fornita di una sola cifra significativa, qual è 2 minore di una unità della massima 3, che vi ha nel proposto fattor primario; l'altra parte sia \( (o^{m-3}1.1.2) \), che da esso non differisce se non in quanto la massima cifra 3 è cangiata in 1; onde ne viene, che la somma delle cifre significative nelle due parti, cioè 2 + 1 + 1 + 2 riesce uguale alla somma delle cifre significative 1 + 2 + 3 del fattor primario proposto. Prendendo ora i fattori primari per indici dei secondari rispettivi si avrà l'equazione
\[
(o^{m-3}1.1.2) \times (o^{m-2}2) = (o^{m-2}1.1.4) + (o^{m-3}1.2.3) \times 2 (o^{m-4}1.1.2.2)
\]
il cui vero senso è: il prodotto dei due fattori secondari dei primari \( (o^{m-3}1.1.2) \), \( (o^{m-2}2) \) è uguale al fattor secondario del primario \( (o^{m-3}1.1.4) \), più il fattor secondario del primario \( (o^{m-3}1.2.3) \), più due volte il fattor secondario del primario \( (o^{m-4}1.1.2.2) \). Il numero de'fattori primari nel secondo membro dipende dal numero delle qualunque cifre

\textit{Tomo XVI.}
diverse, che sono nel fattor primario multiplicando del primo membro: distinguendo con tal nome quello de’ due di esso membro, al quale date si sono tante cifre significative, quante ne aveva il fattor primario proposto; e chiamando quello, a cui attribuita se n’è una sola, fattor primario moltiplicatore. Nell’esempio recato il moltiplicando è \((c^{-3}1.1.2)\), in cui vi sono tre cifre diverse 0, 1, 2; perciò tre sono nel secondo membro dell’equazione i fattori primari. Per ogni cifra di esso moltiplicando se ne determina uno accrescendola del 2, che è la cifra unica significativa del moltiplicatore \((c^{-2})\), ed accoppiando essa cifra così accresciuta alle altre o semplici o iterate del moltiplicando lasciate nell’esser loro. La cifra 2 accresciuta di 2 dona 4, che associata alle due 1,1 del moltiplicando forma il primo fattor primario del secondo membro \((c^{-3}1.1.4)\); aggiungendo 2 alla cifra del moltiplicando 1 ne viene 3, ed accoppiandolo all’altro 1 ed al 2 di esso moltiplicando si ha il secondo fattor primario \((c^{-3}1.2.3)\); l’aggiungere 2 alla cifra del moltiplicando o rende 2, il cui associamento alle cifre di esso 1,1,2 porta una replica del 2, e produce il terzo fattor primario \((c^{-3}1.1.2.2)\). Questo vien preso due volte, ossia moltiplicato per 2, perché contiene duplicata la cifra 2, che nel moltiplicando è semplice. E generalmente se nel moltiplicando vi fosse numero K di volte una cifra, e riuscisse numero K + 1 di volte in uno dei fattori primari del secondo membro formati nel modo esposto, dovrebbe questo fattor primario moltiplicarsi per K + 1. Il secondo dei fattori primari del secondo membro è, come si sarà di già avvertito, il fattor primario proposto, di cui si cercava il fattor secondario; e così ben penetrando la regola comprendesi dover sempre avvenire, cioè che tra i fattori primari del secondo membro dell’equazione vi cada il fattor primario, di cui fu proposto trovare il fattor secondario. Trasportandolo solo da una parte si avrà l’intento, come nell’esempio:

\[
(n)(c^{-3}1.2.3)=(c^{-3}1.1.2)\times(c^{-4}1.2)-(c^{-3}1.1.4)-2(c^{-4}1.1.2.2).
\]
Il significato della quale equazione è: il fattor secondario del primario \((c^{m-3}1.2.3)\) è eguale al prodotto dei due fattori secondari spettanti ai due primari \((c^{m-3}1.1.2)\), \((c^{m-1}2)\), meno il fattor secondario del primario \((c^{m-3}1.1.4)\), meno in oltre il doppio del fattor secondario, cui per primario compete \((c^{m-4}1.1.2.2)\). Nel caso, ad esempio, di \(m=3\) sarà

\[
ab^2c^3 + a^2bc^3 + a^3bc^3 + ab^3c^3 + a^2b^3c + a^3b^2c =
\]

\[
(abc + ab^2c + a^2bc)(a^2 + b^2 + c^2) - (a^2bc + ab^4c + abc^4),
\]

essendo la serie dei prodotti nel primo membro il fattor secondario del primario \((1.2.3)\), a cui riducesi in tal caso di \(m=3\) il generale \((c^{m-3}1.2.3)\); essendo l’aggregato \(abc + ab^2c + a^2bc\) il fattor secondario attinente al primario \((1.1.2)\); \(a^2 + b^2 + c^2\) il secondario del primario \((c.0.2)\); e l’aggregato \(a^4bc + ab^4c + abc^4\) il fattor secondario relativo al primo \((1.1.4)\). Il termine \(-2(c^{m-4}1.1.2.2)\) non ha luogo posto \(m=3<4\), e si vede chiara la ragione, richiamando a memoria la generazione di esso termine formata coll’aggiunta del 2 cifra unica significativa del moltiplicatore \((c^{m-2})\) alla cifra o del moltiplicando \((c^{m-3}1.1.2)\), la qual cifra o da esso moltiplicando sussiste nel caso di \(m=3\) restando solo \((1.1.2)\). Che l’equazione sia vera, si toccherà con mano eseguendo la moltiplica e la sottrazione, che nel secondo membro sono indicate. Mi è piaciuto di scelgere a prova della verità dell’equazione \((u)\) questo esempio in luogo dell’esempio, a cui l’Autore l’appoggia, affine che dal termine omesso apparisse la regola da tener-si in casi simili. Conformemente a ciò, che si è fatto sul fattor primario \((c^{m-3}1.2.3)\) operando su qualunque altro, del quale si desideri il fattor secondario, cominciando dal fattore primario più semplice, e ordinatamente procedendo ai più composti, si determineranno tutti i fattori secondari, e si verrà a capo di ottenere l’equazione finale dell’eliminamento. Ma non cercando Cramer del suo teorema una general dimostrazione, il suo calcolo manca di un matematico sostegno, ed ha bisogno di essere esso pure perfezionato;
per la qual cosa non è per ogni parte idoneo a perfezionare quello dell' *Eulero*.

§. III

*Calcolo composto*

*di quelli di Eulero e Cramer perfezionati*.

È dimostrato comunemente dietro il *Newton* il Teorema seguente

**Teorema I.** Data l'equazione

\[(M) \quad A z^m + B z^{m-1} + C z^{m-2} + D z^{m-3} \ldots + O = o,\]

o dividendo per \(A\)

\[(M) \quad z^m + \frac{B}{A} z^{m-1} + \frac{C}{A} z^{m-2} + \frac{D}{A} z^{m-3} \ldots + \frac{O}{A} = 0\]

se le sue radici suppongansi \(a, b, c, d\) e si faccia

\[\Pi^{(1)} = a + b + c + d\]
\[\Pi^{(2)} = a^2 + b^2 + c^2 + d^2\]
\[\Pi^{(3)} = a^3 + b^3 + c^3 + d^3\]

generalmente \(\Pi^{(r)} = a^r + b^r + c^r + d^r\)

sarà \(\Pi^{(r)} = -\frac{B}{A} \Pi^{(r-1)} - \frac{C}{A} \Pi^{(r-2)} - \frac{D}{A} \Pi^{(r-3)} \ldots - \frac{O}{A}\)

intendendo per \(\frac{F}{A}\) il coefficiente del termine \(z^{m-r}\) sino a tanto che \(r < od = m\), poiché al di là, divenendo cioè \(r > m\) la formula finirà da sé in \(\frac{0}{A} \Pi^{(r-m)}\).

Da questo Teorema si tira

**Teorema II.** Se per \(\Pi^{(r, t)}\) si concepisca rappresentata la somma \(a^r b^t + a^r b^t + a^r c^t + a^r c^t\ldots\).

Sarà \(\Pi^{(r, t)} = \Pi^{(r)} \cdot \Pi^{(t)} - \Pi^{(r+t)}\). Poiché moltiplicando \(\Pi^{(r)}\) cioè \(a^r + b^t + c^t\ldots\) per \(\Pi^{(t)}\) vale dire per \(a^2 + b^2 + c^2\ldots\) ne proveranno tutti i termini della forma \(a^r b^t\), e tutti quelli della \(a^r b^t\): dunque rimane dimostrato il Teorema.

È facile vedere che nel caso di \(s = t\) i prodotti saranno
a due a due uguali, cioè \( a^t b^t = a^t b^t, a^t c^t \ldots \) dunque non volendosi che la somma dei prodotti dissimili, si dovrà dividere il provento di \( \Pi(t) \cdot \Pi(t') - \Pi(t+t') \) per \( 2 \).

E se per \( \Pi(t, t, u) \) si rappresenti la somma

\[
\begin{align*}
a^t b^t c^u + a^t b^u c^t + a^t b^t c^u + a^t b^u c^t + a^t b^u c^t + a^t b^t c^u + a^t b^t c^u + \ldots + a^t b^t c^u \ldots
\end{align*}
\]

sarà

\[
\Pi(t, t, u) = \Pi(t) \cdot \Pi(u) - \Pi(t+t, u) - \Pi(t, t+t, u) - \Pi(t, t, t) - \Pi(t, u, u) - \Pi(t+t, u, t).
\]

Poiché dal prodotto \( \Pi(t) \cdot \Pi(t') \cdot \Pi(t) \) ne nasceranno i termini delle cinque forme \( a^t + b^t + u, a^t + b^u + t, a^t + b^t + u, a^t + u + b^t, a^t + b^u + c^t \); dunque ec.

Se \( s = t \) saranno i prodotti uguali a due a due, \( a^t b^u c^t = a^t b^u c^t \), \( a^t b^u c^t = a^t b^u c^t \ldots \) onde il provento della formula, desiderando quello solo dei prodotti dissimili, si dovrà divider per due.

Che se sia \( s = t = u \) saranno i termini uguali a sei a sei, \( a^t b^u c^t = a^t b^u c^t = a^t b^u c^u = a^t b^u c^u = a^t b^u c^u = a^t b^u c^u \); per lo che volendo ristabilir il provento ai soli prodotti dissimili si dovrà divider per 6.

Si comprende già il progresso di questa bellissima specie di formole, che diede Waring nelle sue Miscell. Anal. e Medit. Alg. Probl. III. Or \( \Pi(t) \cdot \Pi(t', t), \Pi(t', t, u) \ldots \) rappresentano in genere quelli che il Cramer chiama fattori secondari. Ecco pertanto il modo di perfezionare il metodo dell'Euler con il calcolo del Cramer perfezionato. Date le due equazioni

\[
\begin{align*}
(1) & \quad A z^m + B z^{m-1} + C z^{m-2} + D z^{m-3} \ldots + O = 0 \\
(2) & \quad P z^n + Q z^{n-1} + R z^{n-2} + S z^{n-3} \ldots + U = 0,
\end{align*}
\]

si esprimano i coefficienti delle potenze di \( z \) nella equazion (II) alla maniera di Cramer dando ad essa equazione la forma

\[
(0) \quad z^0 + (1) z^1 + (2) z^2 + (3) z^3 + (4) z^4 \ldots + (n) z^n = 0.
\]

Si formino in ordine i fattori primari cominciando dal prendere la potenza \( m \) esima del coefficiente \( (0) \), poi combinando la sua potenza \( m - 1 \) esima con ciascun degli altri coefficienti, indi combinando la potenza sua \( m - 2 \) esima con tutti i possibili ambi degli altri ec.; il simile facciasi successivamente su ciascun degli altri coefficienti, ma con rigettare le combina-
zioni già antecedentemente avute, e notate, notando le sole nuove, il numero delle quali si andrà mano mano scemando sino a ridursi l'operazione combinatoria su l'ultimo coefficiente \( (n) \), alla sola combinazione di esso seco lui numero \( m \) volte, cioè alla sua potenza \( m^{\text{esima}} \). Adoperando per rappresentare i fattori secondari in genere le specie \( \Pi(\gamma), \Pi(s, t), \Pi(s, t, u) \ldots \) si particolarizzino per i numeri dei primari fattori i generali indici \( r, s, t, u \ldots \), e ad ogni fattor primario si accoppja la specie per esso particolarizzata e-sprimente il suo fattor secondario. Finalmente per i due esposti, e dimostrati teoremi si determini qualunque delle particolari \( \Pi(r), \Pi(s, t), \Pi(s, t, u) \ldots \), e l'equazion finale di eliminamento desiderata sarà formata.

Sia \( m = n = 3 \), cioè sieno le due equazioni date di terzo grado

\[
(1) \quad A\zeta^3 + B\zeta^2 + C\zeta + D = 0 \quad (2) \quad P\zeta^3 + Q\zeta^2 + R\zeta + S = 0
\]

la seconda delle quali cangiati i coefficienti alla maniera del Cramer si espona così:

\[
(\Pi) \quad (c) \quad \zeta = (1) \quad (1) \quad (a) \quad (z) \quad \zeta^3 = (2) \quad \zeta^3 = (3) \quad \zeta^3 = 0.
\]

La schiera ordinata dei fattori primari, uniti i rispettivi secondari espressi colle specie che ho assegnato, sarà

\[
(c.o.o.o) \rightarrow (c.o.o.o) \Pi(\gamma) \rightarrow (c.o.o.o) \Pi(s, t) \rightarrow (c.o.o.o) \Pi(s, t, u) \rightarrow (c.o.o.o) \Pi(\gamma, s, t) \rightarrow (c.o.o.o) \Pi(\gamma, s, t, u)
\]

È evidente potersi invertire; il che sarebbe l'effetto di un ordine di combinazioni rovescio. Per la teoria generale delle equazioni si hanno tosto

\[
\Pi(\gamma) = -\frac{B}{A} \quad \Pi(s, t) = \frac{C}{A} \quad \Pi(s, t, u) = -\frac{D}{A}
\]

Per il primo Teorema si trova

\[
\Pi(\gamma) = \frac{B^2}{A^2} - \frac{aC}{A} \quad \Pi(s, t) = -\frac{B^3}{A^3} + \frac{3BC}{A^2} - \frac{3D}{A} \ldots
\]
Bisogna giungere sino a $\Pi^{(9)}$, quantunque nell’equazione non vi sia più che $\Pi^{(9)}$; ma $\Pi^{(9)}$ è necessario per determinar con l’uso del Teorema secondo il $\Pi^{(3,3,3)}$ . . . Similmente per esso secondo Teorema fa d’uopo premettere il calcolo di pa-recchi casi, che non entrano propriamente nell’equazione, ma che servono per la determinazione di quelli che vi entrano. Sarebbe troppo lungo ed inutile lo stender qui intero il giro delle determinazioni tutte, e ausiliarie, e principali. Basta offrir queste a’ luoghi loro

\[(c_o.c) \rightarrow (c_o.1) \left( \frac{-B}{A} \right) \rightarrow (1.1.1) \left( \frac{-D}{A} \right) \rightarrow (3.3.3) \left( \frac{-D^3}{A^3} \right)\]

\[\rightarrow (c_o.2) \left( \frac{B^2}{A^2} - \frac{2C}{A} \right) \rightarrow (1.1.2) \left( \frac{BD}{A^2} \right)\]

\[\rightarrow (c_o.3) \left( \frac{-B^2}{A^2} + \frac{3BC}{A^2} - \frac{3D^3}{A} \right) \rightarrow (1.1.3) \left( \frac{2CD}{A^2} - \frac{B^2D}{A^3} \right)\]

\[\rightarrow (0.1.1) \left( \frac{C}{A} \right) \rightarrow (1.2.2) \left( \frac{-CD}{A^3} \right)\]

\[\rightarrow (0.2.2) \left( \frac{C^2}{A^2} - \frac{2BD}{A^3} \right) \rightarrow (1.3.3) \left( \frac{-C^2D}{A^3} + \frac{2BD^3}{A^3} \right) \equiv 0\]

\[\rightarrow (0.3.3) \left( \frac{C^3}{A^3} - \frac{3BCD}{A^2} + \frac{3D^4}{A} \right) \rightarrow (1.2.3) \left( \frac{BCD}{A^3} - \frac{3D^3}{A^2} \right)\]

\[\rightarrow (c_o.1.2) \left( \frac{-BC}{A^2} + \frac{3D}{A^3} \right) \rightarrow (2.2.2) \left( \frac{D^2}{A^2} \right)\]

\[\rightarrow (c_o.1.3) \left( \frac{B^2C}{A^3} - \frac{2C^2}{A^2} - \frac{ED}{A^3} \right) \rightarrow (2.2.3) \left( \frac{-D^2}{A^3} \right)\]

\[\rightarrow (0.2.3) \left( \frac{-BC^2}{A^2} + \frac{2B^2D}{A^3} + \frac{CD}{A^2} \right) \rightarrow (2.3.3) \left( \frac{CD^2}{A^3} \right)\]

Rimettendo in luogo degli ausiliarj coefficienti (o), (1), (2), (3) i dati $S$, $R$, $Q$, $P$, e così in luogo di (c_o.o.o) prendendo $S^3$, in luogo di (c_o.o.1) $S^3R$ ecc., si troverà questa equa-zione, che segnerà ($\Lambda$) convenir con lo sviluppo ($\sigma''$) della

Bezoutiana ($\sigma$) diviso per $A^3$, cioè essere ($\Lambda$) = $\frac{1}{A^3} (\sigma)$. 
§. IV

Calcolo del La Grange corretto e semplificato:

Il celeberrimo *La Grange* nel volume dell’Accademia di Berlino per l’anno 1769, sebbene dell’avviso che *Eulero*, *Cramer*, *Bezout* fossero tutti ben riusciti a dare dei mezzi per evitare nella eliminazione l’inconveniente di una equazione finale oltre il dovere elevato; cionulladimo si accinse egli pure ad esercitare intorno al medesimo oggetto l’esperienza sua analitica industriosa, assumendosi di offrire un metodo godente il vantaggio di ridurre l’eliminazione a delle formole generali e semplissime, quali potessero con facilità gli analisti adattare al bisogno. Lo spirito del suo metodo è questo. Si diano alle date equazioni le seguenti forme

$$(\mathfrak{S}) \quad 1 + ax + bx^2 + cx^3 + \ldots + \theta x^m = 0$$

$$(\lambda) \quad 1 + \frac{a'}{x} + \frac{b'}{x^2} + \frac{c'}{x^3} + \ldots + \frac{\gamma'}{x^m} = 0.$$ 

Supponga che $1 - ax$, $1 - bx$, $1 - cx$, $1 - dx$ sia al numero di $m$ siano i fattori dell’equazione $(\mathfrak{S})$, di modo che

$$\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}, \ldots$$ al numero $m$ siano le sue radici. Dunque

$$(\mathfrak{S}) = (1 - ax)(1 - bx)(1 - cx)(1 - dx) \ldots,$$ e sostituendo ciascuna delle medesime radici nell’equazione $(\lambda)$ ne provveranno le numero $m$ equazioni

$$(f) \quad 1 + a'a + b'a^2 + c'a^3 + \ldots + \tau a^m = 0$$

$$(g) \quad 1 + a'b + b'b^2 + c'b^3 + \ldots + \tau b^m = 0$$

$$(h) \quad 1 + a'c + b'c^2 + c'c^3 + \ldots + \tau c^m = 0$$

$$(i) \quad 1 + a'd + b'd^2 + c'd^3 + \ldots + \tau d^m = 0$$

Segnando il prodotto di queste tutte $(\Gamma)$ sarà

$$(\Gamma) = (f) (g) (h) (i) \ldots = 0$$

l’equazione finale di eliminamento.

Questo, che è il fondo del metodo dell’*Eulero*, quello si è pure, su cui il suo alza il *La Grange*. La diversità consiste...
siste nel modo di formare il prodotto \((\Gamma)\). Appoggia il \textit{La Grange} il calcolo suo ad una formula logaritmica, che per comoda citazione in seguito porrò io qui sotto il titolo di Lemma.

\textit{Lemma.} \(l(1 + x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 \ldots\)

Facendo successivamente \(x = -az, = -bz, = -cz \ldots\) si troverà

\[ l(\mathcal{I}) = l(1 - az) + l(1 - bz) + l(1 - cz) + l(1 - dz) \ldots \]

\[ = -z(a + b + c \ldots) - \frac{1}{2} z^2(a^2 + b^2 + c^2 \ldots) - \frac{1}{3} z^3(a^3 + b^3 + c^3 \ldots) - \frac{1}{4} z^4(a^4 + b^4 + c^4 \ldots) \]

compendiando in \(\lambda\) la somma \(a + b + c \ldots\), in \(\mu\) la somma \(a^2 + b^2 + c^2 \ldots\), in \(v\) la somma \(a^3 + b^3 + c^3 \ldots\) ec.

Sarà similmente

\[ l(f) = -\lambda' a - \frac{1}{2} \mu' a^2 - \frac{1}{3} v' a^3 - \frac{1}{4} \xi' a^4 \ldots \]
\[ l(g) = -\lambda' b - \frac{1}{2} \mu' b^2 - \frac{1}{3} v' b^3 - \frac{1}{4} \xi' b^4 \ldots \]
\[ l(h) = -\lambda' c - \frac{1}{2} \mu' c^2 - \frac{1}{3} v' c^3 - \frac{1}{4} \xi' c^4 \ldots \]
\[ l(i) = -\lambda' d - \frac{1}{2} \mu' d^2 - \frac{1}{3} v' d^3 - \frac{1}{4} \xi' d^4 \ldots \] ec.

intendendo per \(\lambda', \mu', v' \ldots\) delle somme analoghe alle \(\lambda, \mu, v \ldots\), le quali è evidente dover essere riguardo a tutti li \(l(f), l(g), l(h) \ldots\) le medesime, avendo le \((f), (g), (h) \ldots\) tutte la costituzione medesima, e diverso solamente il simbolo della incognita, che in \((f)\) è \(a\), in \((g)\) è \(b\) \ldots

Per lo che essendo \(l(\Gamma) = l(f) + l(g) + l(h) + l(i) \ldots\) sarà

\[ l(\Gamma) = -\lambda'(a + b + c \ldots) - \frac{1}{2} \mu'(a^2 + b^2 + c^2 \ldots) - \frac{1}{3} v'(a^3 + b^3 + c^3 \ldots) - \frac{1}{4} \xi'(a^4 + b^4 + c^4 \ldots) \ldots \]

\[ = -\lambda' - \frac{1}{2} \mu' v' - \frac{1}{3} v' v' - \frac{1}{4} \xi' v' \ldots = 0 \]

Ponendo il secondo membro \(= -\phi\) si avrà \(l(\Gamma) = -\phi\), donde \((\Gamma) = e - \phi\), supposta \(e\) la base dei logaritmi iperbolici; e risolvendo in serie la quantità esponenziale,

\[ (\Gamma) = 1 - \phi + \frac{1}{2} \phi^2 - \frac{1}{2} \cdot 2 \phi^3 \phi^4 \ldots = 0 \]

Per determinar le somme \(\lambda, \mu, v \ldots\) \(\lambda', \mu', v' \ldots\) una via spedita somministra il calcolo differenziale; poiché essendo \(l(\mathcal{I})\) cioè \(l(1 + az + bz + cz \ldots) = -\lambda z - \frac{1}{2} \mu z^2 - \frac{1}{3} v z^3 - \frac{1}{4} \xi z^4 \ldots\), variando \(z\) sarà

\textit{Tomo XVI}.
Su i vari metodi di Eliminazione etc.

\[ \frac{a + \beta z + \gamma z^2 + \delta z^3 \ldots}{1 + \alpha z + \beta z^2 + \gamma z^3 + \delta z^4 \ldots} = -\lambda - \mu z - \nu z^3 - \xi z^5 \ldots \]

Onde, tolta la frazione, e paragonati i termini si ricaverà
\[ \lambda = -a \]
\[ \mu = a^2 - 2\beta \]
\[ \nu = -a^3 + 3a\beta - 3\gamma \]
\[ \xi = a^4 - 4a^3\beta + 2\beta^2 - 4a\gamma - 4\delta \]

Similmente differenziando qual più piaccia delle equazioni di \( l(f), l(g), l(h) \ldots \) con far variare quella delle radici \( a, b, c, \ldots \), che le serve da incognita, si troverà
\[ \lambda' = -a' \]
\[ \mu' = a'^2 - 2\beta' \]
\[ \nu' = -a'^3 + 3a'\beta' - 3\gamma' \]
\[ \xi' = a'^4 - 4a'^3\beta' + 2\beta'^2 - 4a'\gamma' - 4\delta' \]

Sarà dunque
\[ \phi = aa' + \frac{1}{2} (a^2 - 2\beta) (a'^2 - 2\beta') + \frac{1}{2} (-a^3 + 3a\beta - 3\gamma) (a'^3 - 3a'\beta' - 3\gamma') + \frac{1}{2} (a^4 - 4a^3\beta + 2\beta^2 - 4a\gamma - 4\delta) (a'^4 - 4a'^3\beta' + 2\beta'^2 - 4a'\gamma' - 4\delta') \ldots \]

quindi si formeranno \( \phi^2, \phi^3 \ldots \) e si determinerà \( \Gamma \).

È però a riflettersi, che essendo fondamentalmente \( \Gamma = (f)(g)(h)(i) \ldots \) in ognuna delle quali equazioni cadauno dei coefficienti \( a', \beta', \gamma', \delta' \ldots \) non vi è, che nello stato semplice; e non potendo perciò nel prodotto di esse equazioni al numero di \( m \) montare ciascuno che alla potenza \( m \), o formare tra loro che un prodotto di grado \( m \); per conseguenza si dovranno dalla serie del valore di \( \phi \) rigettare come incompetenti quei termini, ne' quali i coefficienti \( a, \beta, \gamma, \delta \ldots \) salgono a podestà, o prodotti di grado superiore al \( m \). Ed istessamente rigettari si dovranno i nuovi termini contenenti podestà o prodotti di essi coefficienti oltre il grado \( m \), che verranno a nascere formando \( \phi^2, \phi^3 \ldots \). Se si invertisse il calcolo tutto, cioè, se immaginando che le radici dell'equazione \( \lambda \), si trasportassero nell'equazione \( \Theta \), ed ottenute altrettante equazioni, al numero \( n \), se ne formasse il prodotto, si perverrebbe ad una equazione finale.
(Γ') = 1 - φ' + \frac{1}{2} φ'' - \frac{1}{3} φ''' + \frac{1}{4} φ'''' + ... 

E per esser (Γ') il prodotto di un numero n di equazioni, in ciascuna delle quali avrebbero i coefficienti α, β, γ, δ...; sebbene semplice, si dedurrebbe non poter essi nel prodotto ascendere, che a potenze, o prodotti di grado n al più, e perciò dovessi da φ', φ'', φ'''... rigettare tutti quei termini, che comprendessero potenze, o prodotti de' medesimi coefficienti al grado n superiori. Ma l'effetto di questo calcolo inverso coincider debbe con l'effetto del calcolo primiero, la stessa stessissima equazion finale debbe uscirne, siccome la cosa in se medesima contemplata dà divedere, e siccome all'occhio apparisce dal determinarsi nell'uno, e nell'altro calcolo le somme λ, μ, ν... λ', μ', ν'... alla stessa maniera; dunque identificandosi φ' con φ, (Γ') con (Γ), possiamo ne' simboli φ, (Γ) concentrazione delle due finali equazioni, ed unendo le due conclusioni formare la regola, che segue.

Regola. Dall'equazione (Γ) = 1 - φ + \frac{1}{2} φ'' - \frac{1}{3} φ''' + ... rigettar si debbono tutti quei termini, che contengono potenze o prodotti de' coefficienti α, β, γ, δ... al grado n superiori, o de' coefficienti α', β', γ', δ'... reciprocamente potenze e prodotti superiori al grado m. E in altra forma di parlare: nella finale equazione (Γ) le potenze o prodotti de' coefficienti di una delle date equazioni non debbono in termine alcuno oltrepassare il grado dell'altra equazione.

Si stimerà forse sconvenevole l'uso del calcolo differenziale in un argomento, che è tutto dell'analisi finita. Io l'ho trascelto per primo tra i due modi, co' quali il La Grange determina le somme λ, μ, ν... λ', μ', ν'... siccome il più spedito, intendendo a risparmiar la complicazione del calcolo nell'atto di dilucidarne i principj, a fine che la mente del leggitore meno occupata da intricate di formole con più di agevolezza potesse chiaro penetrare l'essenza del metodo. Or che spero ottenuto l'intento, ecco anche l'altro modo dall'Autore adoperato il primo, e dal Lemma derivato.
Dell’equazione
\[ \ell(\mathfrak{S}) \text{ ossia } \ell(i + a\varepsilon + b\varepsilon^2 + c\varepsilon^3 + d\varepsilon^4 \ldots) = \ell(i - a\varepsilon) + \ell(i - b\varepsilon) + \ell(i - c\varepsilon) + \ell(i - d\varepsilon) \ldots \] si è già per mezzo del Lemma svolto il secondo membro, e ritrovato
\[ \ell(i - a\varepsilon) + \ell(i - b\varepsilon) + \ell(i - c\varepsilon) + \ell(i - d\varepsilon) \ldots = -\lambda z - \frac{1}{2} \mu z^2 - \frac{1}{3} \nu z^3 - \frac{1}{4} \xi z^4 \ldots. \]
Si svolga di presente con l’aiuto dello stesso Lemma ezian-dio il primo membro, facendo \( x = a\varepsilon + b\varepsilon^2 + c\varepsilon^3 + d\varepsilon^4 \ldots = z(a + b\varepsilon + c\varepsilon^2 + d\varepsilon^3 \ldots) \): si troverà
\[ \ell(i + a\varepsilon + b\varepsilon^2 + c\varepsilon^3 + d\varepsilon^4 \ldots) = z(a + b\varepsilon + c\varepsilon^2 + d\varepsilon^3 \ldots) - \frac{1}{2} z^2(a + b\varepsilon + c\varepsilon^2 + d\varepsilon^3 \ldots) + \frac{3}{2} z^3(a + b\varepsilon + c\varepsilon^2 + d\varepsilon^3 \ldots)^3 \ldots \]
Si eseguiscano le precedere qui indicate, si raccogliano in uno i coefficienti di \( z \), quelli di \( z^2 \) poi si paragoni termine a termine questo svolgimento immediato di \( \ell(\mathfrak{S}) \) con lo svol-gimento della somma logaritmica de’ suoi fattori, e si otter-ranno le determinazioni binate di \( \lambda, \mu, \nu \ldots \) per simili maniera sviluppando una qualunque delle equazioni di \( \ell(f) \), \( \ell(g) \), \( \ell(h) \ldots \) per esempio quella di \( \ell(f) \), e ponendo lo sviluppo \[-\lambda a - \frac{1}{2} \mu a^2 - \frac{1}{3} \nu a^3 - \frac{1}{4} \xi a^4 \ldots \] si determineranno \( \lambda', \mu', \nu' \ldots \) Il calcolo però riesce laborioso.

Ma che sono in fine, dico io, le \( \lambda, \mu, \nu \ldots \), e le \( \lambda', \mu', \nu' \ldots \)? Sono \( \lambda, \mu, \nu \ldots \) le somme delle semplici quantità, dei quadrati, dei cubi, delle più alte potenze di \( a, b, c, d \ldots \) denominatori delle supposte radici dell’equazione \( \mathfrak{S} \); supposto essendosi in essa \( z = \frac{\lambda}{a}, = \frac{\mu}{b}, = \frac{\nu}{c}, \)

\[ = \frac{\lambda}{a} \ldots \]

Or da questa ipotesi stessa si tira \( \frac{\lambda}{a} = a, = b, = c, = d \ldots \) Se dunque facciasi \( \frac{\lambda}{a} = z' \) sarà \( z' = a, = b, = c, = d \ldots \) e dividendo l’equazione \( \mathfrak{S} \) per \( z'^m \), e poi in luogo di \( \frac{\lambda}{a} \) so-stituendo \( z' \), ne nascerà l’equazione inversa, o reciproca
\( \mathfrak{S}' \)

\[ z'^m + a z'^{m-1} + b z'^{m-2} + c z'^{m-3} + d z'^{m-4} \ldots = 0, \]

che avrà per sue radici \( a, b, c, d \ldots \), delle quali \( \lambda \) sarà la somma, e \( \mu, \nu \ldots \) le somme dei quadrati, de’ cubi \ldots
Per la qual cosa, richiamando il simbolo generale superiormente nel metodo del Cramer introdotto II+1 sono le $\lambda$, $\mu$, $\nu$, ..., le $\Pi^0$ relative all'equazione $(S')$, reciproca alla data $(S)$.

Di simil guisa comprenderesi dover essere le $\lambda'$, $\mu'$, $\nu'$, ..., le $\pi^0$ relative a qualsivoglia delle reciproche delle $(f)$, $(g)$, $(h)$, $(i)$ ..., relative cioè a qualsivoglia delle

$$
1 + \alpha' \cdot \frac{1}{a} + \beta' \cdot \frac{1}{a^2} + \gamma' \cdot \frac{1}{a^3} + \delta' \cdot \frac{1}{a^4} \ldots = 0
$$

$$
1 + \alpha' \cdot \frac{1}{b} + \beta' \cdot \frac{1}{b^2} + \gamma' \cdot \frac{1}{b^3} + \delta' \cdot \frac{1}{b^4} \ldots = 0
$$

$$
1 + \alpha' \cdot \frac{1}{c} + \beta' \cdot \frac{1}{c^2} + \gamma' \cdot \frac{1}{c^3} + \delta' \cdot \frac{1}{c^4} \ldots = 0
$$

$$
1 + \alpha' \cdot \frac{1}{d} + \beta' \cdot \frac{1}{d^2} + \gamma' \cdot \frac{1}{d^3} + \delta' \cdot \frac{1}{d^4} \ldots = 0 \text{ ec.}
$$

le quali tutte vengono rappresentate dalla

$$(\lambda') 1 + \alpha' \cdot \frac{1}{z} + \beta' \cdot \frac{1}{z^2} + \gamma' \cdot \frac{1}{z^3} + \delta' \cdot \frac{1}{z^4} \ldots + \epsilon' \cdot \frac{1}{z^5} = 0$$

o sia

$$z^n + \alpha_1 z^{n-1} + \beta_1 z^{n-2} + \gamma_1 z^{n-3} + \delta_1 z^{n-4} \ldots + \epsilon' = 0.$$

Ecco dunque a che riduco io il metodo del La Grange. In luogo delle due equazioni

$$(S) 1 + \alpha z + \beta z^2 + \gamma z^3 + \delta z^4 \ldots + \theta z^m = 0$$

$$(\lambda) 1 + \alpha' \frac{1}{z} + \beta' \frac{1}{z^2} + \gamma' \frac{1}{z^3} \ldots + \epsilon' \frac{1}{z^5} = 0,$$

si prenda a considerare il paio di equazioni

$$(S') z^n + \alpha z^{n-1} + \beta z^{n-2} + \gamma z^{n-3} + \delta z^{n-4} \ldots \theta = 0$$

$$(\lambda') z^n + \alpha' z^{n-1} + \beta' z^{n-2} + \gamma' z^{n-3} + \delta' z^{n-4} \ldots + \epsilon' = 0.$$

Si cerchino le $\Pi^0$ relative alla $(S')$ per mezzo della formula

$$\Pi^0 = -a \Pi^{(r-1)} - \beta \Pi^{(r-2)} - \gamma \Pi^{(r-3)} - \delta \Pi^{(r-4)} \ldots - r \xi,$$

intendendo per $\xi$ il coefficiente del termine $z^{n-r}$, sinché $r < od = m$; poiché al di là, cioè divenendo $r > m$, la formula finirà da sé in $\theta z^{r-m}$. Similmente si cerchino le $\pi^0$ relative alla $(\lambda')$ per la formula

$$\pi^0 = -a' \pi^{(r-1)} - \beta' \pi^{(r-2)} - \gamma' \pi^{(r-3)} - \delta' \pi^{(r-4)} \ldots - r \xi.$$

Se ben però si attenda alla regola di escludere dalla equazion
finale tutti i termini, nei quali le potenze, od i prodotti de’ coefficienti di un’equazione sorpassino il grado dell’altra, deducessi potersi risparmiar la fatica di una particolar ricerca delle $\pi^t$. Poiché, supponendo $m < n$, determinate tutte le convenienti $\Pi^t$, nelle quali conservato si debbono tutti i termini non eccedenti il grado $n$, si tireranno da esse le convenienti $\pi^t$, trasegliendo i soli termini non eccedenti il grado $m$, e cangiando in essi i coefficienti $a, \beta, \gamma, \delta$,... negli $a', \beta', \gamma', \delta'$.... E nel caso di $m = n$ non si avrà che a cangiare gli unici coefficienti negli altri in tutti i termini.

Generalmente dunque il calcolo tutto si riduce alla determinazione delle $\Pi^t$; e la regola medesima assegna ad esso calcolo il limite. Al giunger ad una $\Pi^t$, la cui $\Pi^{t-m}$ già trovata non abbia termine veruno di grado $n - 1$, si tralasci di determinarla; poiché essendo ogni più basso termine di $\Pi^{t-m}$ del grado $n$, il prodotto $\theta \Pi^{t-m}$ ultima parte, e la più bassa di $\Pi^t$ salirebbe oltre il grado $n$. Per un altro risparmio di calcolo, in luogo di determinar le $\Pi^t$ intere, riservandosi a purgarle poscia dei termini incompetenti, si purghino a dirittura tra via, di mano in mano che si van formando, poiché purgate le inferiori minor si renderà il numero de’ termini di eccedente grado nelle superiori, e più spedita, quanto più contratta, riuscirà la successiva formazione loro.

Vediamo un esempio nel caso di $m = n = 3$, cioè di due equazioni di terzo grado. Avremo, rigettati passo passo i termini al terzo grado superiori,

$\Pi^t = -a$

$\Pi^t = a^2 - 2\beta$

$\Pi^t = a^3 + 3a\beta - 3\gamma$

$\Pi^t = 4a^2\beta + 4a\gamma + 2\beta^3$

$\Pi^t = 5a^2\gamma - 5a\beta^2 + 5\beta\gamma$

$\Pi^t = 12a\beta\gamma - 2a^3 + 3\gamma^2$

$\Pi^t = 7a^2\gamma - 7\beta^3$

$\Pi^t = 8\beta\gamma$

$\Pi^t = -3\gamma^3$
È nopo osservare, che le $\Pi(2)$, $\Pi(3)$ hanno ambedue un sol termine, e così le due $\pi(2)$, $\pi(3)$; onde ingannerebbe a partito chi arrivando ad una $\Pi(2)$, che purgata essendo, restasse con un sol termine, la prendesse per l’ultima delle convenienti, e stimasse di non dover andare con il calcolo più oltre. In questo inganno è caduto lo stesso La Grange alla pag. 315 del citato volume dell’Accademia di Berlino nel determinare con il calcolo differenziale le somme che io qui esprimei per $\Pi(2)$, ommettendo egli la determinazione della $\Pi(3)$: omission che rende difettoso tutto il calcolo da lui tessuto per formar la finale equazione di eliminamento, ed in questa stessa produce la mancanza di un termine. Ciò che dapprima non sospettando io, e con piena fiducia seguendo le vestigia dell’esimio Autore, in faticosi iterati calcoli mi avvolsi, in pena ed imbarazzo nel confrontare essa finale equazione con quelle dagli altri metodi ottenute, sinché con più seria riflessione ai principj, e diligente esame delle operazioni dell’errore mi accorsi.

Le $\Pi(2)$, $\pi(2)$ o per loro stesse, o per il rigetto già libere dei termini incompetenti, cioè al dovuto grado superiori, chiaminsi le $\Pi(2)$, $\pi(2)$ purgate. Moltiplicando con ordine ciascuna corretta $\Pi(2)$ con sua simile corretta $\pi(2)$, prendendo intero il prodotto $\Pi(1)\cdot\pi(1)$, la metà del prodotto $\Pi(2)\cdot\pi(2)$, $\frac{1}{3}$ del prodotto $\Pi(3)\cdot\pi(3)$, $\frac{1}{4}$ di $\Pi(4)\cdot\pi(4)$, ... la somma costituirà $\phi$, cioè sarà

$$\phi = \Pi(1)\cdot\pi(1) + \frac{1}{2}\Pi(2)\cdot\pi(2) + \frac{1}{3}\Pi(3)\cdot\pi(3) + \frac{1}{4}\Pi(4)\cdot\pi(4) + \ldots$$

Formando il quadrato $\phi^2$, ed il cubo $\phi^3$ nasceranno nuovi termini incompetenti, e da rigettarsi perchè contenenti po-desta o prodotti di $\alpha$, $\beta$, $\gamma$ ... o di $\alpha'$, $\beta'$, $\gamma'$ ... al grado terzo superiori. La quarta potenza $\phi^4$ si vede manifestamente essere da omettersi interamente, poichè riuscirebbe tutta di termini incompetenti composta. L’equazion finale si ristringera dunque alla seguenti

$$(1) \quad - \phi + \frac{1}{2} \phi^2 - \frac{1}{3} \phi^3 =$$
Su i vari metodi di Eliminazione etc.

\[ 1 - aa' - \frac{1}{2}(a^2 - 2\beta)(a^2 - 2\beta') - \frac{1}{3}(-a^3 + 3a\beta - 3\gamma)(-a^3 + 3a\beta' - 3\gamma') - \frac{1}{4}(-4a^2\beta + 4a\gamma + 2\beta') - \frac{1}{2}(-5a^2\beta + 5a\beta' + 5\beta') - \frac{1}{2}(-12a\beta - 2\beta' + 3\gamma) - \frac{1}{2}(-7a\gamma - 7\beta'\gamma) - \frac{1}{2}(-8\gamma^2) - \frac{1}{3}(3\gamma^3) - \frac{1}{3}(a\alpha' + 2\beta' + 3\gamma\gamma')^3 + (\beta\alpha' + 3\gamma\beta')(\beta\alpha' + 3\gamma\beta') + (a\alpha' + 2\beta' + 3\gamma\gamma') - (\beta\alpha' - 3\gamma\beta' - \alpha^2\beta' - 3\beta\gamma + \frac{1}{2}a^2 + 3\alpha \beta a' + 3\gamma + 4\gamma\alpha' + 2a\beta') + (2a\gamma' + 2\alpha'\beta' + 3\gamma + 5\beta\gamma' + \frac{1}{2}\gamma^2) \]

\[ = \frac{1}{s,3} (a\alpha' + 2\beta' + 5\gamma\gamma')_3 \]

Il termine, che manca nella equazione finale calcolata dal La Grange si è il \(-\frac{1}{3}(-3\gamma^3)(-3\gamma'),\) che dona \(-\gamma^3\gamma'.\) Ad applicare codesta finale alle due equazioni (1), (II) e confrontarla con le finali per gli altri metodi conseguite, primamente si pongano le (I), (II) sotto l’aspetto delle (3), (3') cosi

(I) \(1 + \frac{C}{D} z + \frac{B}{D} z^2 + \frac{A}{D} z^3 = 0.\) (II) \(1 + \frac{Q}{P} z + \frac{R}{P} z^2 + \frac{S}{P} z^3 = 0.\)

Indi in luogo di queste considerando

(1) \(z^3 + \frac{C}{D} z^2 + \frac{B}{D} z + \frac{A}{D} = 0.\) (II') \(z^3 + \frac{Q}{P} z^2 + \frac{R}{P} z + \frac{S}{P} = 0.\)

corrispondenti alle due (3'), (3'), e paragonando si avrà

\[ \alpha = \frac{C}{D}, \beta = \frac{B}{D}, \gamma = \frac{A}{D}; \alpha' = \frac{Q}{P}, \beta' = \frac{R}{P}, \gamma' = \frac{S}{P}. \]

E sostituendo nella finale (1') diverrà essa la finale spettante le due equazioni (I), (II). Trovasi pertanto

\[ 1 - \frac{QC}{PD} \]

\[ - \frac{1}{2} \left( \frac{C^2}{D^2} - \frac{2B}{D} \right) \left( \frac{Q^2}{P^2} - \frac{2R}{P} \right) \]

\[ - \frac{1}{3} \left( -\frac{C^2}{D^2} + \frac{aBC}{D^2} - \frac{3A}{D} \right) \left( -\frac{Q^3}{P^3} + \frac{3QR}{P^2} - \frac{3S}{P} \right) \]

\[ - \frac{1}{4} \left( -\frac{GBC}{D^2} + \frac{4AC}{D^2} + \frac{aB^2}{D} \right) \left( -\frac{4QR}{P^2} + \frac{4QS}{P} + \frac{2R^2}{P^2} \right). \]
\[- \frac{5AC^2}{D^3} + \frac{5B^2C}{D^3} + \frac{5AB}{D^3}\left(- \frac{5QR}{p^3} + \frac{5RS}{p^3}\right)\]

\[- \frac{7ABG}{D^3} - \frac{aB^3}{D^3} + \frac{3A^2}{D^2}\left(- \frac{1aQR}{p^3} - \frac{1aR^3}{p^3} + \frac{3S}{p^3}\right)\]

\[- \frac{7A^2C}{D^3} - \frac{7AB^3}{D^3}\left(- \frac{7Q^2}{p^3} + \frac{7R^2}{p^3}\right)\]

\[- \frac{8A^3}{D^3} \left(- \frac{8RS^3}{p^3}\right)\]

\[- \frac{2A^3}{D^3} \left(- \frac{3S^3}{p^3}\right)\]

\[\frac{1}{2}\left(\frac{CQ}{DP} + \frac{aBR}{DP} + \frac{3AS}{DP}\right)^3 + \left(\frac{DQ}{DP} + \frac{3AQK}{DP}\right)\left(\frac{CR}{DP} + \frac{3BCS}{DP}\right) + \left(\frac{CQ}{DP} + \frac{aBR}{DP} + \frac{3AS}{DP}\right)^3\]

\[\frac{4ACQS}{D^3P^3} + \frac{aB^3QS}{D^3P^3} + \frac{aACR^3}{D^3P^3} + \frac{B^3R^3}{D^3P^3} + \frac{5ABRS}{D^3P^3} + \frac{4A^2S^2}{D^3P^3}\]

\[= \frac{1}{3}\left(\frac{a}{a}\right)\]

Segue questa equazione (\(\Xi\)).

Eseguendo i prodotti, ordinando la farragine de' termini, e riducendo, si troverà riuscirc in ultimo

\[(\Xi) = \frac{1}{D^3P^3}(\sigma)\]

Stando al calcolo del La Grange vi mancherebbe il termine
\[\frac{A^3S^3}{D^3P^3}\]
dato da \[- \frac{1}{9}\left(- \frac{3A^3}{D^3}\right)\left(\frac{3S^3}{P^3}\right)\]. La gloria di un si grand' uomo è tanto splendida, che un'omissione non può spargerì intorno nebbia veruna; ed io era in dover di notarla.

**Confronto generale.**

Raccogliendo, le finali equazioni che dalle due equazioni (I) \(A^3 + B^3 + C^3 + D^3 = 0\). (II) \(P^2 + Q^2 + R^2 + D = 0\) eliminando per i diversi metodi sino ad ora inventati \(z\), pro-Tomo XVI.
Su i vari metodi di eliminazione etc.

duconsi, sono
Per il metodo di uguagliamento Bezoutiano tre
1.° piú semplice (a)
della quale vedi Art. I, § III lo sviluppo in doppio modo
ordinato
2.° \((BP - AQ) (a)\) 3.° \((CP - AR) (a)\).

Per il metodo di uguagliamento Newtoniano
\((DP - AS) (a)\).

Per il metodo di continua divisione
\[ \frac{A^2}{(BP - AQ)^2} (a) \]

Per il metodo di \textit{Eulero} di continua condizione a tutta sua
ampiezza recato, e per tutti i suoi lati svolto 43, delle quali
le due piú ovvie
1.° \((BP - AQ) (a)\) ... 2.° \(\left(\frac{CP - AR}{A}\right) \frac{B(BP - AQ)}{A} (a)\).

Per il metodo di prodotto dell’\textit{Eulero} stesso giusta il calco-
lo lungo e di ordinatrici regole privo di lui
\[ \frac{x}{A^2p^2} (a) \]

Giusta il calcolo del \textit{Cramer} di esatta teoria corredata, o piut-
tosto a nuova forma trasferito
\[ \frac{x}{A^2} (a) \]

Giusta il calcolo del \textit{La Grange} semplificato, e corretto
\[ \frac{x}{D^2p^2} (a) \]

Tutti i metodi si fondano sul concetto, che lo \(z\) ad una
delle due equazioni soddisfacente soddisfacia all’altra ezian-
dio; ma il metodo di uguagliamento non considera tal prin-
cipio che alla prima fronte, passano ad internamente con-
templarlo i metodi di continua divisione, e condizione, e si
profonda all’ultima analisi di esso il metodo di prodotto. Le
diverse operazioni che nei diversi metodi, e nel metodo stes-
so secondo le combinazioni diverse occorrono, generan o i
fattori alteranti, o i divisorì. Rispetto a questi, ciò, che sul semplice divisore \( \frac{1}{Q^2} \) al fine dell’Art. II, o sul composto \( \frac{1}{(BP-AQ)^2} \) verso la metà del III ho già detto basta ad esempio di ciò che pensar se ne dee in generale; riman dunque a dire dei fattori alteranti.

**Dei fattori alteranti.**

A trattare con chiarezza l’argomento giova incominciare dal particolare, e dei lumi, che usciranno da esso, farsi scorta al generale. Si richiamiamo pertanto qui dall’Articolo I la equazione

\[
x^3 - px - q = 0,
\]

tutta la sostituzione di \( z + y \) in luogo di \( x \), ed il trasformamento quinci di essa in

\[
z^3 + 3yz^2 + 3y^2z + y^3 - pz - py - q = 0,
\]

lo spezzamento di questa al consueto contrario nelle due

(C) \( z^3 - pz + y(y^2 - p) = 0 \) (D) \( 3yz^2 + 3y^2z - q = 0 \),

la precisa final equazione dell’eliminamento di \( y \)

\[
(N) y^6 - \frac{3}{2}py^4 + \frac{5}{3}p^2y^2 - \frac{2}{3}pqy + \frac{1}{3}q^2 = 0,
\]

ed i fattori alteranti verso il fine del §. II schierati

\[
H = -3y^2, \quad \text{ovvero} \quad q = -3y; \quad L = q - 3py, \quad \text{ovvero} \quad -3y^2; \quad G = 3y^2(y^2 - p).
\]

Se donisi l’essere di equazione all’uno, o all’altro dei due valori di \( H \), o al secondo di \( L \), o se costituendo in equazione \( G \) si ripeta il verificamento di \( 3y^2(y^2 - p) = 0 \) da \( 3y^2 \), in tutte e quattro le supposizioni ne segue \( y = 0 \). Per il qual annullamento di \( y \) la equazion (C) riducesi ai due termini \( z^3 - pz = 0 \), nell’equazione (D) diviene \( -q = 0 \), e quinci l’equazione stessa \( x^3 - px - q = 0 \) ristrignesi ad \( x^3 - px = 0 \), cangiata l’equazione \( z + y = x \) in \( z = x \). Rendesi dunque vani la sostituzione, si perde ogni frutto dell’artificio, distrut-
to il termine noto \( q \) dalla contemplazione di una equazion di terzo grado cadessi in una di secondo, al qual si abbassa \( z^3 - pz = 0 \), o \( x^3 - px = 0 \), dividendo per \( z \), o per \( x \).

Costituisca ora in equazione il primo valore di \( L \) con porre \( q - 3py = 0 \). Avremo \( q = 3py \), sostituito il qual valore di \( q \) nell'equazione (D) prende questa la riduzione \( z^2 + yz - p = 0 \), donde si trae \( y = \frac{p - z^2}{z} \); e trasferito questo valor di \( y \) nell'equazion (C) risulta

\[
\left[ \left( \frac{p - z^2}{z} \right)^2 - p \right] = 0,
\]

la qual divisa per \( z^2 - p \), rimane \( z - 1 \)

\[
\left[ \left( \frac{p - z^2}{z} \right)^2 - p \right] = 0,
\]

ovvero \( z^2 - (\frac{p}{z} - z)^2 + p = 0 \), ed eseguito il quadrato del secondo termine finalmente trovasi divenire \( -p + 3z^2 = 0 \), che porge \( z = \pm \sqrt{\frac{1}{3} p} \). Quindi

\[
y = \frac{p - z^2}{z} = \pm \sqrt{\frac{1}{3} p}, \quad e \quad q = 3py = \pm 6p \sqrt{\frac{1}{3} p}.
\]

Si avrà dunque l'equazione

\[x^3 - px = 6p \sqrt{\frac{1}{3} p} = 0,
\]

di cui sarà radice \( x = z + y = \pm \sqrt{\frac{1}{3} p} \pm 2 \sqrt{\frac{1}{3} p} = \pm 3 \sqrt{\frac{1}{3} p} \),

e la chiameremo la radice prima; nota la quale rendesi facile, dividendo l'equazione per \( x = 3 \sqrt{\frac{1}{3} p} \), trovare le altre due. Saranno pertanto le tre radici

\[x = \pm 3 \sqrt{\frac{1}{3} p}, \quad x = \pm \frac{3}{4} \sqrt{\frac{1}{3} p} + \frac{1}{2} \sqrt{-5p}, \quad x = \mp \frac{3}{4} \sqrt{\frac{1}{3} p} - \frac{1}{2} \sqrt{-5p}.
\]

Essendo \( q - 3py \) moltiplicatore dell'equazione (N), bastando per altra parte a rendere effettivamente il prodotto \( (q - 3py) (N) = 0 \) la posizione \( q - 3py = 0 \), nasce dubbio, se stante tal posizione ritenga o perda (N) il suo diritto di equazione, passando, reciprocamente che \( q - 3py \), allo stato di merà quantità? Ad acquistar lume su questo dubbio, pongasi che ritenga di fatto (N) il suo essere di equazione, e vi si introduca il valor di \( q = \pm 6p \sqrt{\frac{1}{3} p} \) effetto della posizione \( q - 3py = 0 \). L'aspetto particolare che prenderà (N) sarà
(N') \( y^6 - \frac{3}{2} py^4 + \frac{1}{3} p^2 y^3 = \frac{a}{3} rp^2 \sqrt{\frac{1}{3}} p + \frac{a^2}{3} p^3 = \sigma \).

Or questa equazione trovasi divisibile per \( y = 2 \sqrt{\frac{1}{3}} p \), risultandone a perfetto quoziente \( y^5 \pm 2y^4 \sqrt{\frac{1}{3}} p + \frac{1}{3} p^2 y = \frac{3}{2} p^2 \sqrt{\frac{1}{3}} p \).

Concordano dunque fra loro le posizioni \( q - 3p\sigma = \sigma \), (N') = \sigma, e fatta la prima posizione, non vi ha che osti a conservar contemporaneamente (N) = \sigma, purchè si dia a q quella modificazione, che la prima posizion importa.

Se inversamente, senza punto pensare alla posizione \( q - 3\sigma = \sigma \), ad arbitrio formata si finga l'equazione

\[ x^3 - px \pm 6p \sqrt{\frac{1}{3}} p = \sigma, \]

sara, sostituendo \( z + \sigma \) in luogo di \( x \), la trasformata

\[ z^3 + 3yz^2 + 3y^2 z + y^3 - pz - py = 6p \sqrt{\frac{1}{3}} p = \sigma, \]

e le due (C), (D) provenienti per spezzamento al consueto contrario saranno

(C) \( z^3 - pz + y(y^3 - p) = \sigma \) (D') \( 3yz^2 + 3y^2 z = 6p \sqrt{\frac{1}{3}} p = \sigma, \)

e la risultante dall'eliminamento di \( z \) precisa trovarsi

(N') \( y^6 - \frac{3}{2} py^4 + \frac{1}{3} p^2 y^3 = \frac{a}{3} rp^2 \sqrt{\frac{1}{3}} p + \frac{a^2}{3} p^3 = \sigma \),

ed il fattor alterante \( q - 3\sigma = \pm 6p \sqrt{\frac{1}{3}} p - 3\sigma \).

Per lo che avendo (N') a suo divisore \( y = 2 \sqrt{\frac{1}{3}} p \), conseguentemente a radice sua \( y = \pm 2 \sqrt{\frac{1}{3}} p \), si ricade, trasferendo, in \( \pm 6p \sqrt{\frac{1}{3}} p - 3\sigma = \pm 6p \sqrt{\frac{1}{3}} p = \pm 6p \sqrt{\frac{1}{3}} p = \sigma \); laonde per ogni parte confermarsi la contemporaneità di \( q - 3\sigma = \sigma \), ed (N) = \sigma, posto \( q = \pm 6p \sqrt{\frac{1}{3}} p \).

Nella II. delle mie Lettere apologetiche dell'analisi stampate l'anno 1783 nei num. XV, XIX, XX del Giornal Letterario di Venezia intitolato Dai confini d'Italia, ho addottata la metafisica ragione, perchè spezzandosi la trasformata

\[ z^3 + 3yz^2 + 3y^2 z + y^3 - pz - py = q = \sigma, \]

pel modo usitato nelle due

(A) \( z^3 + y^3 = q = \sigma \) (B) \( 3z^2 y + 3y^2 z = pz - py = \sigma, \)

la risultante dell'eliminamento di \( z \)

(E) \( y^6 - qy^3 + \frac{a}{3} p^3 = \sigma \) riesce di sesto grado.

In commendio la ragion è, perchè 1.° sostituendo \( z + \sigma = x, \)
tal sostituzione non spetta più ad una che alle altre due radici dell'equazione \( x^3 - px - q = 0 \), onde necessariamente spetta del pari a tutte e tre, e virtualmente racchiude tre sostituzioni, così che distinte per \( x', x'', x''' \) le tre radici di
\[ x^3 - px - q = 0, \]
e per \( z', y' \) le parti di \( x' \), per \( y'' \), \( y''' \) le parti di \( x'' \), per \( z''' \), \( y''' \) le parti di \( x''' \), la sostituzione sola \( z + y = x \) equivale alle tre \( z' + y' = x', z'' + y'' = x'', z''' + y''' = x''' \), e tutte insieme le comprende. 2.° Perché essendo le equazioni (A), (B) similmente costituite riguardo a \( z \) e \( y \), di modo che cambiando \( z \) in \( y \) e reciprocamente non nasce in (A), (B) cambiamento vero, per conseguenza non vi ha ragione che la risultante contenga piuttosto i valori di \( y \), che di \( z \), onde a comprendere tutti e tre quelli di \( y \), e tutti e tre insieme quelli di \( z \) prende il sesto grado. Questa metafisica ragione è intenere per uguale modo applicabile alle due equazioni (C), (D) di spezzamento al consueto contrario, e quincli intendesi, perché la finale (N) riesca di sesto grado. Di questa verità ci procura una conferma di fatto, ed oculare il caso di \( q = \pm 6p \sqrt[3]{p} \). Si esperimenti, e si troverà esser (N') non solo divisibile per \( y = 2 \sqrt[3]{p} \), ma del pari per \( y = \sqrt[3]{p} \), sebbene sia propriamente \( \pm \sqrt[3]{p} \) il valore, che, posto in (D') \( y = \pm 2 \sqrt[3]{p} \), risulta per \( z \); a tal che si appalesa
\[ (N') = (y = \mp 2 \sqrt[3]{p})(y = \sqrt[3]{p})(y^4 \pm 3y^3 \sqrt[3]{p} + py^2 \pm yp \sqrt[3]{p} + \frac{1}{3}p) = 0. \]

E che è la equazione di quarto grado? Non resta più luogo a dubitare, che siccome la equazione di secondo
\[ (y = \pm 2 \sqrt[3]{p})(y = \pm \sqrt[3]{p}) = y^4 = 3y^3 \sqrt[3]{p} + \frac{1}{3}p = 0, \]
contiene sotto il simbolo \( y \) a radici sue le parti reali \( y' = \pm \sqrt[3]{p} \), \( z' = \pm \sqrt[3]{p} \) di \( x' \) reale; così la equazione di quarto grado sotto lo stesso unico simbolo \( y \) comprende a radici sue le almeno due immaginarie parti \( y'', z'', y''', z''' \) di \( x'', x''' \) immaginarj.

Mi sono alquanto diffuso sul fattore alterante \( q - 3py \); potrò trascorrer celere su l'altro \( y^4 - p \), lasciando al leggitori d'applicare i riflessi. Costituito questo alterante fattore
in equazione \(y^2 - p = 0\), si ha tostamente \(y = \pm \sqrt{p}\), ed annientato nell’equazione (C) l’ultimo termine, ridotta essa ai termini \(z^3 - pz = 0\), divisa per \(z\), si ottiene \(z = \pm \sqrt{p} = y\), onde, sostituendo nell’equazione (D), trovasi \(q = \pm 6p\sqrt{p}\) . Quindi la equazione \(x^3 - px - q = 0\), si modifica in
\[x^3 - px = 6p\sqrt{p} = 0,\]
la cui prima radice \(x = \pm \sqrt{p} \mp \sqrt{p} = \pm 2\sqrt{p}\), e le altre due, dividendo per \(x = 2\sqrt{p}\), si trovano
\[x = \mp \sqrt{p} \mp \sqrt{2p} \quad x = \mp \sqrt{p} \mp \sqrt{2p},\]
là equazion (N) riceve la modificacione
\[(N') y^6 - \frac{3}{2} py^4 + \frac{3}{2} p^2 y^2 = \frac{a^2}{3} yp^2 \sqrt{p} + \frac{1}{3} p^3 = 0,\]
che rinvienesi
\[=(y = \sqrt{p})^2 \left(y^4 \pm 2y^2 \sqrt{p} + \frac{3}{2} py^2 \pm \frac{3}{2} yp \sqrt{p} + \frac{3}{2} p^2\right).\]

Del rimanente coedesti calcoli fondati su le posizioni \(q = 3py = 0\), \(y^2 - p = 0\), longi è che dir si possano calcoli di scioglimento dell’equazione \(x^3 - px - q = 0\) per la (N), determinando per \(p\), e \(q\) le parti \(z, y\) di \(x\); che anzi dir si debbono inversamente calcoli di fabbrica dell’una, e dell’altra, determinandosi per le parti \(z, y\) di \(x\) sapute pría il valor di \(q\); e ben di fabbrica particolare, fissandosi per \(q = \pm 6p \sqrt{\frac{3}{2} p}\), \(q = \pm 6p \sqrt{p}\) tra \(q\), e \(p\) dei rapporti particolari lontani da quella generalità, e indipendenza tra loro, che poteasi prima in essi contemplare. Egli è anzi a riflettere, che l’artificio dello spezzamento a l’uso verso contrario nelle due (C), (D), avendo per oggetto di consegui per tal via sotto reale aspetto le parti \(z, y\) di \(x\), che per lo spezzamento consueto della trasformata nelle due (A), (B) produconsi sotto aspetto immaginario, suppone percì \(\frac{1}{2} q^2 < \frac{2}{3} p^3\). Or le equazioni \(q = \pm 6p \sqrt{\frac{3}{2} p}\), \(q = \pm 6p \sqrt{p}\), dando la prima \(\frac{1}{2} q^2 = 3p^2\), la seconda \(\frac{1}{2} q^2 = 9p^2\), fassi evidente quanto escan fuori di esso supposto, nel contrario \(\frac{1}{2} q^2 > \frac{2}{3} p^3\) gettandosi, e trascorrendo. Propriamente dunque le posizioni \(q = 3py = 0\), \(y^2 - p = 0\) ci rimovono dallo scopo, a cui s’intende, ed altrove ci trasferiscono. Per le quali cose tutta,
al più, l’utilità, che loro donar si può, sì è di averci condotto ad una conferma di fatto, che l’equazione (N) contiene non solo i tre valori di $\gamma$, ma sotto questo simbolo medesimo i tre ben anche di $z$. Dico al più, poiché, senza trasmutar in equazioni i fattori alteranti $q - 3\eta\gamma$, $\eta^2 - p$, si potevano e si possono di capriccio fingere simili equazioni in numero infinite, istituire simili calcoli, e lumi simili conseguire.

È già tempo di procedere a considerare i fattori alteranti in generale. Dirigiamo l’attenzione ad $H(\alpha) = 0$. Ci si presenta tosto questo punto di ricerca.

1° Per la teoria generale delle equazioni la equazione $(\omega)$, che è la prima Bezoutiana, concepir deesi composta di un numero di fattori: rappresentiamoli per $F^\prime$, $F^\prime\prime$, $F^\prime\prime\prime$, ..., si chiameranno questi a differenza del fattore $H$ legittimi? Ma per lo appunto, qual ragione di si diverse denominazioni? Qual è il carattere che li distingua? Fattore alterante appellarsi deve quello, che non abbraccia tutti i coefficienti $A$, $B$, $C$, $D$, ..., $P$, $Q$, $R$, $S$, ..., o da essi tutti quanti non dipende; e che costituito in equazione induce mutazioni nel problema. Esempiglia il fattore $H = BP - AQ$ non racchiude che i quattro coefficienti $A$, $B$, $P$, $Q$, e nulla affatto dipende dagli altri. E si osservi non essere la medesima cosa contenere tutti i coefficienti, e contenere la incognita nella eliminazione salvata $\gamma$ con tutte le quantità note: il fattore particolare $q - 3p\gamma$ contiene egli la incognita $\gamma$, e le quantità note $p$, $q$, che sono le sole, che nelle equazioni $(C)$, $(D)$ unitamente ad $\gamma$ compongono i coefficienti, e ad onta di ciò egli è un fattore alterante, perché non è un risultato dipendente da tutti insieme i coefficienti, come il debbon essere, ed esser si troverebbero i fattori legittimi dell’equazione (N). Ritornisi col pensiero alla dottrina dell’Eulero nel suo metodo da me appellato di continua condizione. La equazione finale di eliminamento altro non ha per oggetto che di fissare il rapporto di tutti insieme i coefficienti $A$, $B$, $C$, $D$, ..., $P$.,
P, Q, R, S ..., si che ad un tempo verificar si possano le due equazioni date (I), (II), i fattori, legittimi dell’equazione finale, che la rendon ciascuno effettivamente = 0, debbono essere conformemente a tal rapporto costrutti, e per conseguenza racchiudere una dipendenza da tutti i coefficienti in generale. Abbastanza, io credo, del primo carattere dei fattori alteranti. La mutazione poi per essi indotta nel problema, dando loro la natura di equazione, può esser varia, esser può di distruzione, ed esser può di modificacion soltanto. Ne abbiamo veduto dell’uno, e dell’altro caso gli esempi nel particolare: si trovò per alcuni fattori alteranti allo stato di equazione recati distruggersi la quantità data q; per altri modificarsi il suo valore con metterla in un rapporto determinato con l’altra quantità nota p.

2° Qual è egli dunque il naturale essere degli alteranti fattori? Quello di mere funzioni di y insignificanti.

3° E egli però lecito trasferirli all’ufficio, al senso di equazione? Se sieno quelli, che a tale stato tradotti producono annichilamento della incognita y, distruggimento di alcune delle quantità date, no certamente. Se sieno di quelli, che in equazione costituiti non fanno che produrre tra quantità supposte note un rapporto particolare e determinato, è mestieri distinguere. Poichè se il problema sia generale, e le quantità supposte note sieno indeterminate, allora il rapporto particolare indotto tra loro si potrà riguardare come una modificacion del problema generale, come un caso particolare nella generalità compreso, la equazione arbitaria del fattore alterante formata non incluirà ripugnanza, ed introdotto il particolar rapporto per essa determinato nella natural equazione (o), andranno l’una con l’altra d’accordo, come sopra particolarmente si è veduto. Ma se le quantità note sieno date in valor numerico, il nuovo rapporto tra esse dall’arbitaria equazione voluto, potrà ai loro numerici valori ripugnare: cosi se a p, q valori numerici suppongansi, avvenir potrà di leggeri, che ad essi ripugnino

_Tomo XVI._
il rapporto \(q = \pm 6p\sqrt[3]{p}\), e l'altro \(q = \pm 6p\sqrt[3]{p}\) dalle arbitrarie equazioni \(q - 3py = 0\), \(y^2 - p = c\) nascenti. Che se le quantità note non siano no in numerici valori date, ma però nell'oggetto del calcolo si concepiscano astratte ad una legge di rapporto, e l'arbitraria equazione rovesci la legge, e le trasporti ad un rapporto di legge contraria, defraudì l'oggetto del calcolo, e tragg a il calcolatore suo malgrado nel caso opposto: come abbiamo osservato appunto fare le due test à citate equazioni, trasferendo \(q, p\) dalla legge \(\frac{1}{3}q^3 < \frac{1}{3}p^3\), alla diametralmente contraria \(\frac{1}{3}q^3 > \frac{1}{3}p^3\), in tal evento l'arbitraria equazione riceve il carattere di ripugnanza oggettiva, cioè rispetto all'oggetto di già prefisso.

4. Può egli tornar utile il dare lo stato di equazione ad un fattor alterante? Per l'intento della diretta soluzione, alla quale si mira, nulla del tutto. Può al più esser modo a scorgere col fatto addentro nella finale equazione (\(\sigma\)), e conoscerne experimentalmente la struttura.