RISPOSTA
DI PAOLO RUFFINI
AI DUBBj PROPOSTI GLI DAL SOCIO
GIAN-FRANCESCO MALFATTI
SOPRA LA INSOLUBILITA' ALGEBRAICA
DELL' EQUAZIONI DI GRADO SUPERIORE AL QUARTO.
Ricevuta il di 27 Giugno 1805.

Dopo di avere esposto un metodo generale (T.° 4.° Accad. di Siena) onde tentare la soluzione di tutte le Equazioni algebriche, e dopo di avere con questo scioltre non solo le Equazioni generali de' primi tre gradi, ma alcune ezianto delle Equazioni particolari di grado 5°, avea ben diritto l'illustre Geometra il Sig. Professore Gian-Francesco Malfatti di cercare lo scioglimento di alcuni suoi dubbj (T.° XI. Soc. Ital. delle Scienze) sopra un Teorema, che impossibil dichiara la soluzione algebraica delle Equazioni generali di grado superiore al 4°. Io poi, il quale con fermezza asserisco una tale impossibilità, ed a cui gli indicati dubbj vengono dal Chiarissimo Autore indirizzati, era in debito di risolverli, e di confermare così viemaggioremente la mia Proposizione. Nella presente Memoria avendo io adunque procurato di soddisfare a questo mio dovere, desidero di esservi riuscito, e di avere in tal guisa corrisposto all'onorevole invito dell'Egregio Socio il Sig. Malfatti. A lui frattanto protesto fino da questo punto i sentimenti più vivi di gratitudine si per la compiacenza, che Egli ha avuta di chiedere a me la soluzione de' suoi dubbj, si per le cortesi espressioni, con cui nel tempo stesso mi onora, espressioni, ch'io, sapendo pur bene di non meritare, riconosco siccome un puro tratto di animo gentile, e
Risposta ai dubbi proposti.

Pieno di degnavazione, si finalmente perché mi lusingo, che la risposta a tali difficoltà, e lo scioglimento di altre, che io stesso in conseguenza di sua domanda sono proposto, possa spargere più chiara luce su di questa Proposizione, e farne meglio, e più generalmente conoscere la verità.

PARTE I.

Risposta ai Dubbi del Sig. Malfatti.

Prima di prendere ad esaminarle gli accennati dubbi siamo permesso indicar brevemente il metodo, ed i principii, per cui giungo a dimostrare l'insolubilità algebraica delle Equazioni generali di grado non inferiore al 5°.

1. Esposti da prima nel (Cap. 5.° della mia Teor. delle Equazioni) le sublimi riflessioni, che il sommo Geometra Lagrange propone rapporto alle Trasformate algebrache (Réflex. sur la Résolut. algébr. des Équat. Memoir. de Berlin, pour l'an 1771), ed esposto quindi il suo metodo generale, onde scoprire a priori il loro grado, trovare il valore dei coefficienti, ed eseguire così una Trasformazione algebrica qualunque, propongo nel (Cap. 8.° della stessa Teor.) la soluzione, che lo stesso Chiarissimo Lagrange nella citata Memoria ci dà dell'importantissimo Problema: dati i valori diversi di una funzione algebrica tra le radici della Equazione proposta, determinare dipendentemente da essi i valori corrispondenti di un'altra funzione delle radici medesime.

2. In seguito considerando la soluzione algebrica di una Equazione generale determinata di un grado qualunque, dico nel (n.° 227 della Teor. delle Equazioni) con Lagrange (Réflex. etc. Sect. 4. n.° 86), che questa soluzione, non potendosi ottenere immediatamente, deve cercarsi, riducendo l'Equazion data ad un'altra di grado inferiore, o dello stesso grado, di cui ci sia nota la soluzione, e dalle radici della quale possiamo in seguito determinare le radici della proposta. Riflettendo perciò, che questa sola osservazione non è generale abbastanza, affiné di tut

"Data a risolversi un'Equazione algebraica determinata.

(F) \[x^n + Ax^{n-1} + Bx^{n-2} + \text{ec.} + V = 0, \]

"o questa è tale che può immediatamente ridursi alla forma

(V) \[(x + b)(x^{n-1} + cx^{n-2} + dx^{n-3} + \text{ec.}) = 0 \]

"oppure all'altra

(VI) \[(x + a)^m + b = 0, \]

in cui \(a, b, c, d, \text{ec.}\) siano funzioni razionali dei coefficienti della (F), o non è capace di simile riduzione. Nel la prima di queste ipotesi potremo sempre avere immediatamente uno dei valori della \(x\) soltanto con la divisione, o con l'estrazione della radice \(m\)esima; poiché; eseguita questa operazione, e trasportati i termini cogniti nel secondo membro, sarà nel primo caso \(x' = -b\); e nel secondo \(x' = -a + \sqrt[m]{b}\). Ora, prescindendo dall'indicato trasporto de' termini cogniti, osservo che tra le sei operazioni algebriche altra non ve n'ha, che praticata su di un'Equazione (F) possa da se sola darcì immediatamente un valore della \(x\), se non la divisione, e l'estrazione della radice, poiché per queste sole l'esponente della \(x\) può diventar minore; e osservo inoltre che la divisione, e l'estrazione della radice non possono immediatamente aver luogo sulla (F), e darci immediatamente la \(x\) al grado \(m\), se non quando essa (F) a corrispondentemente una delle forme (V), (VI). Dunque nell'ipotesi seconda, mentre cioè la (F) non può tosto ridursi alla forma (V), oppure alla (VI), non potremo avere alcuno dei valori della \(x\), se non che riducendo la (F) ad altra Equazione, la quale abbia per incognita la \(x\) medesima, o altra lettera, e la quale sappia risolversi, e possa in seguito colle sue radici somministrare imme-
diatamente, o mediamente alcune, o tutte le radici della proposta.
Sia

(VII) \[z^n + Mz^{n-1} + Nz^{n-2} + \text{ec.} = 0 \]
la Equazione, a cui supponghiamo in questa seconda ipotesi, che venga ridotta la (F), e dalle cui radici ottenute possansi in seguito dedurre i valori della \(x \). Questa (VII) o è capace essa pure di ricevere giusta il (n.° prem.) una delle forme (V), (VI), o non lo è; se lo è, otterremo immediatamente, nella maniera indicata uno dei valori della \(z \); e se non lo è, per avere un simil valore, converrà trasformare la (VII) in un' altra

(VIII) \[y^p + Py^{p-2} + Qy^{p-4} + \text{ec.} = 0, \]
le cui radici determinate ci possano somministrare le radici della (VII). Rinnovo sulla (VIII) lo stesso discorso, e se questa Equazione può acquistare una delle solite forme (V), (VI), allora avremo tostamente il valore di una delle sue radici, se no, per ottenerlo converrà ridurre tale Equazione ad un'altra.

(IX) \[u^q + Ru^{q-3} + Su^{q-6} + \text{ec.} = 0, \]
dalle radici della quale possansi ricavare i valori della \(u \).
Lo stesso si dice della (IX), e di tutte le altre Equazioni, che possansi ottenere successivamente.

Quindi si vede che, qualunque sia la (F), se essa non ha una delle forme (V), (VI), e se d'altronde è capace di soluzione, converrà necessariamente, che sia riducibile ad altre Equazioni (VII), (VIII), (IX), ec. l'ultima delle quali sia capace di ricevere una delle forme accennate: se ciò non fosse, dovremmo continuare la serie delle Trasformate (VII), (VIII), (IX), ec. all' infinito, e mai non giungere ad ottenere un valore algebrico determinato, per mezzo del quale si possa poscia scuopenere, ascendentemente, qualcuna delle radici della (IX), della (VIII), della (VII), e finalmente della (F).

3. Stabilisco così il principio fondamentale, a cui deve re-
cessariamente appoggiarsi qualunque metodo capace di somministre la soluzione algebrica di un'Equazione data. Nel (Cap. 12.° Teor. delle Equazioni) considero la soluzione delle Equazioni algebriche generali di 3.°, e 4.° grado, e riguardo a quella di 3.° ritrovo da prima con Lagrange a priori potersi essa benissimo ridurre ad un'Equazione di 2.° grado (prec. 1.°); determino quindi attualmente una tale Equazione, e chiamata essa \(y^4 + Sy + T = 0 \) (n° 23c. Teor. delle Equaz.), osservo non potersi dette sue radici \(y', y'' \) dedurre immediatamente i valori delle radici della Equazione proposta. In conseguenza di ciò cerco dalle \(y', y'' \) i valori di un'altra funzione \(Z \) radice di un'Equazione \(Z^4 - M = 0 \) avente il solo primo, ed ultimo termine, e dai tre valori della \(Z \) che per la natura dell'Equazione \(Z^4 - M = 0 \) possono si sempre determinare, deduco attualmente i valori delle tre radici richieste.

Rapporto alla Equazion generale di 4.° grado trovansi nel (n° 246. Teor. delle Equaz.) parimenti a priori, che può essa ridursi ad una trasformata di 3.° grado \(y^3 + Sy^2 + Ty + V = 0 \) (n° 247. Teor. delle Equaz.), e da uno qualsivoglia dei valori della \(y \) nel (n° 243. Teor. delle Equazioni) si vede potersi determinare le radici della Equazione data a due a due, e ciò per essere il suo esponente 4 numero composto.

4. Dalle Equazioni di 3.°, e 4.° grado passo a considerare le Equazioni algebriche generali in primo luogo di quinto, e poi scia di un grado qualunque (Cap. 13.° Teor. delle Equaz., Mem. della Insolubl. delle Equaz. ec. T. X. Soc. Ital. delle Scienze), e riguardo alla Equazione di 5.° nel (n° 3c. Mem.) mi esprimo come segue, "Essendo questa generale, e però prescindendo da qualunque valore particolare, e da qualunque particolare rapporto fra le sue radici, non potrà ricevere secondo il (n° 2.) né l' una né l'altra delle forme (V), (VI), né potrà avere al cun fattore razionale, e però non ne potremo avere la soluzione, se non che dipendentemente da una trasformata, dalle cui radici possansi ricavare i valori della \(x \). Tale trasformata ven-

Tomo XII. Ee Es-
Risposta ai dubbi proposti

Essendo in questa (VII) la z quella funzione dipendentemente dalla quale deggono immediatamente determinarsi le radici della Equazione data; nei (n. 31, 32 Mem.) dimostro, che l'esponente n di tal trasformata deve necessariamente esser multiplo, o uguale al cinque, e quindi, che potrà rappresentarsi con la

$z^n + Mz^{n-1} + Nz^{n-2} + \ldots + ec. = 0$,

e in conseguenza dei (n. 24, 28 Mem.) asserisco nel (n. 33 Mem.) che questa (X) non è suscettibile giusta il (n. 32.) nè della forma (V), nè dell'altra (VI). Dunque per determinare, aggiungo nel (n. 34 Mem.), il valore della funzione z, converrà ridurre la (X) ad altra Equazione, di cui conoscessi la soluzione, e dalle cui radici possansi dedurre le radici della (X). Sia la (VIII) questa nuova Equazione. Essendo la y funzione delle, $z, z', z'', ec.,$ e le $z', z'', ec.,$ funzioni delle x', x'', ec., sarà ancora la y funzione delle x', x'', ec.,. Ora distingui il caso, in cui l'esponente p della (VIII), per la natura della funzione y, risulta multiplo del cinque, dall'altro in cui non risulta tale; e nel primo di questi casi rifletto (cit. n. 34 Mem.), che ciò stesso, che si dice della (VII), ossia della (X), si applica ezioinando alla (VIII), e però quella difficoltà medesima, che incontrasi nella determinazione della z, incontrandosi ancora nella ricerca della y, la considerazione di questo caso osserva che diviene inutile.

5. Che se la y è tale, che l'esponente p non risulti multiplo di 5, dovendo sempre essere $p < 5$, oppure > 5, comincio dal supporre nel (n. 36 Mem.) $p < 5$, e però nel caso presente < 5. Ora qualunque trasformata abbiiasi dalla Equazione generale $x^p + Ax^{p-1} + ec. = 0$, le cui radici siano i valori diversi di una funzione delle x', x'', ec. x^n algebrica, e razionale, e il cui esponente sia < 5, tale trasformata, dissi, pel (n. 14 Mem., n. 276. Teor.) non può mai superare il grado 2.° Ciò dunque essendo, considerata nella (VIII) la y funzione algebrica, e razionale delle x', x'', x^n, ec., giacché se si ponesse irrazionale, questa supposizione pel (n. 244, 157, 153 Teor.) non farrebbe, che renders la trasformata corris-
pondente di un grado troppo alto, essa (VIII), per la ipotesi di $p < 5$, dovrà diventare.

(XI) $y^2 + Py + Q = 0$, oppure $y + P = 0$.

Considerando in seguito nel (n.° 37 Mem.) la prima di queste Equazioni, Dai due valori, io dico, della y quelli devono, si dedurre della z; ma $5k$ ci esprime il numero totale di questi ultimi, onde tra essi devono dipendere da y', ed altrettanti da y''. Dunque non essendo il 5 divisibile per a esattamente, e dovendo essere $\frac{5k}{a}$ un numero intero, ne viene, che supposto $\frac{k}{a} = h$, dovremo, nel cercare q' da y', necessariamente cadere in una Equazione di grado multiplo del 5, e che chiamerò $5h$. Sia

(XII) $z^{5h} + gx^{5h-1} + ec. = 0$

tale Equazione: le sue radici saranno i valori della z corrispondenti ad y', ed i coefficienti g, ec. saranno funzioni razionali di essa y'. Avertasi, che in questo caso nella Equazione (X) si considerano attualmente contenuti tutti i valori della z corrispondenti ad y', ed insieme tutti i corrispondenti ad y'', siano i primi tra questi uguali, o siano disuguali dai secondi.

6. Determinati, aggiungo nel (n.° 38. Mem.), col mezzo della y i coefficienti g, ec., riflettendo, che i modi diversi, con cui dalla (XII) può in seguito ottenersi il valore z', sono

1°) Immediatamente, volendosi, che la (XII) abbia, se è possibile, secondo il (n.° 25.) una delle forme (V), (VI).

2°) Mediatamente, essendo la (XII) riducibile ad una terza Equazione, dalla quale ricavasi poscia immediatamente il valore z'.

3°) In fine, perchè si voglia, che la terza Equazione, a cui riducesi la (XII), non possa darci il valore di z', che col mezzo di riduzioni ulteriori.

7. Per questa determinazione della z, comincio fra gli esposti.
sti tre mezzi a considerare il a^2, e poiché per questo a^2 la Equazione (XII) deve ridursi ad un'altra, la quale ci somministra immediatamente il valore z, riflesso, che quest'altra Equazione, acciocché dia immediatamente il valor, che si cerca, dovrà avere per incognita la z medesima, ed avere una delle forme (V); (VI). Ciò essendo, suppongo in primo luogo, che l'Equazione, a cuia (XII) verrà ridotta, abbia la forma (VI), cioè sia della forma $(z + a)^2 - M = o$. In tale ipotesi col mezzo dei (n. 39, 40, 41, 42. Mem.) dimostrò, che il coefficiente M della supposta $(z + a)^2 - M = o$, dovendo dipendere dai coefficienti g, ec. della (XII), e però dalla radice y' della prima delle Equazioni (XI) (n. 5), non si può in modo alcuno ottenere, se non risolvendo un'Equazione $M^6 + ec.$ = 0 priva di sill'una, che dell'altra delle sole forme (V), (VI), e priva però (n. 45, 28. Mem.) di qualunque fattore, i cui coefficienti vogliansi funzioni razionali di' coefficienti suoi, nella quale deve essere $i = 1$, oppure $= 2$ (n. 41. Mem.) Ora nei (n. 43, 44, 45. Mem.) si dimostra, che, volendosi la precedente M^6 ec. = 0 ridurre ad altra Equazione $N^6 + ec. = o$, o ad altre quante si voglino Equazioni successive $N^6 + ec. = o$, $P^6 + ec. = o$, ec., queste risultano sempre o insolubili, o inutili alla determinazione dei valori di M.

Dunque trovandosi questo coefficiente M indeterminabile (n. 47. Mem.), sarà in questo primo caso indeterminabile l'Equazione $(z + a)^2 - M = o$, a cui si vuole, che venga ridotta la (XII). Nel (1.° n. 46. Mem.) osservo poi, che l'indicato coefficiente M non può nemmeno determinarsi, allorquando si voglia, che la trasformata della (X) (n. 4, 5.) sia la seconda delle Equazioni (XI), cioè la $y' + P = o$.

3. Nel (2.° n. 46. Mem.) suppongo nella Equazione (VIII)

$p > 5$, e prosieguo, dicendo, "Essa (VIII) per (n. 34, 22, 28, " Mem.) non può avere nè l'una, nè l'altra delle forme (V), (VI), " nè può avere fattore razionale (n. 28. Mem.). Dunque affin-

ch'è possa ottenersene la soluzione, converta ridurla all'altra " (IX), dalle cui radici si possano ricavare i valori della y".

Ora
Di Paolo Ruffini.

Ora se si vuole nella (IX) l'esponente $q < 5$, dimostro, che dai valori della u non possansi ottenere quei della y, e se si vuole q non < 5, per ottenere i valori della u, è necessario ricorrere ad una quarta Equazione, sulla quale applicansi gli stessi discorsi, che sonosi fatti sulle (VIII), (IX), e così in progresso. Dunque per quanto si progredisca avanti la serie delle trasformate (VII), (VIII), (IX), cc., avendo sempre luogo le stesse conseguenze, concluso nel (n.º 47. Mem.) essere sempre impossibile la determinazione algebrica del coefficiente M nella $(z + a)^q = M = 0$.

9. Mediante in seguito i (n.º 48, 48 Mem.) dimostro che qualunque altro dei mezzi accennati nel (n.º 6) si scelga per la determinazione della z dalla (XII), sempre succede, che esso o non può aver luogo, o diviene inutile. Dunque qualunque supposizione si faccia, l'algebrica determinazione della y non può mai ottersi, né mediatamente, né immediatamente (n.º 48. Mem.).

10. In conseguenza di tutto questo asserisco finalmente nel (n.º 49. Mem.), che un Equazione generale di 5º grado è incapace di soluzione algebrica.

Difatti non possiamo, io dico, determinare il valore delle sue radici, se non determinando prima il valore di una loro funzione z (n.º 4) radice dell'Equazione (X). Ora i valori di questa z non possono pel (n.º 4) ritrovarsi se non mediante le radici di un'altra trasformata, che ho supposto essere la (VII), e le radici di questa (VIII) pel (n.º 4, 8) non sono determinabili, se non nel caso, in cui il suo esponente p sia < 5, e quindi, per quanto si è detto nel (n.º 5), in cui abbia p non > 2. Dunque la determinazione della z nella (X) non potrà cercarsi, se non dipendentemente da una quantità y' radice di una delle Equazioni (XI). Ma i valori della z dipendenti dal valore y' sono necessariamente fra loro diversi a cinque a cinque (n.º 5). Dunque nel cercare dipendentemente da questo y' somiglianti valori, dovremo necessariamente cadere in Equazioni nella forma $(z + a)^q = M = 0$, ossia $Z^q = M = 0$, fatto $z + a = Z$ (n.º 38. Mem.), oppure della forma $z^{54} + a^{54} + ec. = 0$ (comprendendosi in tali forme
eziandio la Equazione \((N + a)^5 - T = 0\), ossia, fatto \((N + a)^5 = Y\), la Equazione \(Y^5 - T = 0\), e l'altra \(N^5 + aN^{5n-1} + ec. = 0\) del \((n.° 43. Mem.)\). Ora rapporto alle Equazioni della prima forma abbiamo dimostrata sempre impossibile la determinazione del coefficiente \(M\) \((n.° 7.)\), e riguardo alle Equazioni della seconda forma abbiamo dimostrata sempre impossibile la determinazione della incognita \((n.° 9.)\). Dunque risultando sempre impossibile determinare il valore della funzione \(z\), dovremo pel \((n.° 4.)\) necessariamente concludere, essere eziandio impossibile la determinazione algebraica delle \(x^2, x^3, x^6, x^9, x^{10}\).

Inoltre nella Memoria, qualunque fosse il grado delle trasformate, non si è mai perduto di vista quanto per tutta esattezza si è indicato nel prec. \((n.° 2.)\), ossia nei \((n. 25., 26. Mem.)\); e nel \((n.° 28. Mem.)\) dimostrasi, per la generalità dell'Equazione proposta non potere una trasformata qualsivoglia avere giarrma alcuni fattore, i coefficienti del quale siano funzioni razionali de' coefficienti propri. Tanto poi nella Memoria, come nella Teoria le dimostrazioni appoggiansi tutte alle proposizioni; 1° che le radici della trasformata sono necessariamente funzioni delle radici della Equazione proposta, e però che chiamate \(x', x''\), \(x'''\), ec. le radici di questa, ed \(y\) l'incognita di quella, deve essere \(y = f(x') (x'')... (n.° 88. Teor., 1° Intr. Mem.);\) 2° che posta \(f(x'') (x')\) \(x''\)... per \((n. 241, 157, 158. Teor., 3° Intr. Mem.)\) razionale, la nostra trasformata ha necessariamente tante radici fra loro differenti, quanto è il numero dei risultati di valore tra loro di-
verso, che nascono dalla $f(x')(x'')(x'''')\ldots$ per tutte le possibili permutazioni fra le x', x'', x'''. ec. (n. 92, 99. Teor.); e 3.0 che non può ottenersi soluzione algebraica di un'Equazione generale qualsivoglia, se non seguendo o direttamente, o indirettamente il metodo accennato nel (n. 0 227. Teor.), e a tutto rigore l'accennato nei (n. 25, 26. Mem.). Ognuno poi può agevolmente vedere da se medesimo, che i raziocini, i quali dimostrano tanto le proposizioni esposte nei precedenti (n. 4, ec. 10.), come le altre, che a queste servono di base, prescindono pienamente tanto nella Memoria, come nella Teoria da qualunque argomento di analogia con le Equazioni di grado inferiore al quinto, ed ognuno finalmente può veder da se stesso, che, eccettuato il radical quinto da anteporsi alle radici dell'Equazione $Z^5-M=0$, in cui dico essere $Z=\sqrt[5]{M}$, non determino mai, né considero in alcun modo né nella Teoria, né nella Memoria, quali specie di radicali possansi, o si debbano contenere nei valori delle radici di della Equazion data, che delle trasformate, allorché tali valori vogliansi espressi per quantità note; e ciò perché in tutti i miei discorsi non riguardo le radici della data, che come determinabili unicamente da quelle di una trasformata, e non riguardo le radici delle trasformate, che nell'aspetto di funzioni delle radici della proposta.

13. Dimostrate Egli nella citata Memoria alcune proprietà del-
delle radici della unità (T. XI. Soc. Ital. pag. 58o., cc. 588.), sulle quali verrà luogo altra volta di fare qualche riflessione, espone, introducendo alcune picciole differenze non essenziali, l'elegante suo metodo generale, onde sciogliere le Equazioni, che già pubblicò Egli stesso nel Tomo 4° dell'Accademia di Siena; ed ottenuta con tal metodo la soluzione delle Equazioni generali di 2°, di 3°, e di 4° grado (pag. 589. cc. 592.), lo applica in seguito alla Equazione di 5° (pag. 592. cc.). Osservato, che da questa ultima ottenesi col suo metodo una trasformata, che Egli chiama risolvente, di 6° grado (pag. 596, 602.), soggiunge (pag. 603.), che col medesimo artiglizio da questa prima risolvente di 6° una seconda se ne ritrae di grado 20° riducibile tosto ad un'Equazione di grado 10°, e da tale Equazione osserva potersene in egual modo ricavare una risolvente terza, quindi una quarta, cc. Applica Egli trattanto il suo metodo alla soluzione dell'Equazione particolare \(x^6 + 5 \cdot 2x^3 + 5^2 \cdot 2^2 = 0 \) (pag. 599.), e indicato derivarsi da essa una risolvente

\[z^6 - 5^3 \cdot 2^4 z^3 + 8^4 \cdot 1.5^4 \cdot 2^8 z + 5^7 \cdot 1.5^1 \cdot 2^6 = 0 \]

(pag. 604.), col mezzo del valore \(-5 \cdot 2^2\), che ottenesi da simili fattore, accenna nella (pag. 606.) ricavarsi la radice \(z = \sqrt[5]{2^2} - \sqrt[5]{2^3} - \sqrt[5]{2^4} \). Divisa poscia per \(z + 5 \cdot 2^2 \) la precedente Equazione \(z^5 - 5^3 \cdot 2^3 + \text{cc.} = 0 \), e ridotta essa così ad un'altra di 5° grado, indice (pag. 605.) ottenersi da questa pure una risolvente dotata di una radice razionale, e col mezzo di questa radice determinarsi un altro valor della \(z \), cioè il valore \(z = 2^2 - 2 \sqrt[5]{2} - 2^{1/5} \cdot 2^{2/5} - 1.2 \cdot 2^{3/5} + 2 \cdot 2^{1/5} \cdot 2^{2/5} \). Se la \(z^2 - 5^2 \cdot 2^2 \cdot z^3 + \text{cc.} = 0 \), riflette Egli finalmente (pag. 605.), non fosse stata divisa per \(z + 5 \cdot 2^2 \), ma si fosse trattata col solito metodo, ne sarebbe venuta una terza risolvente, dalla cui radice ottenuta in conseguenza di un fattor razionale, sarebbe in fine ricavato lo stesso precedente valore \(z = 2^2 - 2^{3/5} \cdot 2 - \text{cc.} \).
14. Mentre l’illustre nostro Autore espone, ed applica all’Equazione $x^5 + 5.2x^4 + 5^2.2^2 = 0$ il suo metodo, e mentre eseguisce, oppure accenna semplicemente le corrispondenti operazioni, espone eziando i suoi dubbi rapporto alla impossibilità di sciogliere algebraicamente la Equazione generale di 5° grado. Tutti questi dubbi poi riguardano unicamente o i radicali, che possansi contenere nelle quantità, che si cercano (pag. 596, 597, 598, 603, 604); o i fattori razionali, che possono essere nelle successive risolventi, e la continuazione delle risolventi medesime (pag. 589, 596, 597, 603, 606, 607); o finalmente una certa analogia fra le Equazioni di 5°, e quelle di grado inferiore, da cui Egli dice essere io stato guidato nel mio discorsi (pag. 596, 597, 598).

Dopo di avere io nei precedenti (n. 2, cc. 11.) riassunte, ed accennate le proposizioni, per cui vengo a dimostrare l’insolubilità algebraica della Equazione generale di 5° grado; ora sarà necessario, che esponga specificmente le sovraindicate difficoltà del Sig. Malfatti, onde tra queste, e le mie osservazioni possa agevolmente instituirsi il dovuto confronto.

15. Cominciando pertanto dai dubbi, che da lui si promuovono sopra i radicali, che possansi contenere nelle quantità da determinarsi, e sopra la supposta analogia, veggo, che Egli, dopo di aver fatto, giusta il suo metodo $x+f^m + f^p + f^q + f^n = 0$, in cui f rappresenta una delle radici 5° immaginaria della unità (pag. 593), dopo di aver insegnato ritrovato, che in conseguenza della supposizione di $mn = g$, e di $pq = u$ (pag. 593.), deve risultare

$$m = F, n = F, p = F, q = F, u = F$$

e dopo di avere asserito dipendere il valor dell’incognita ug da un’Equazione particolare di 6° grado, come realmente appare dal (n. XIV. della sua sovrancita Memoria esistente nel T.° 4° dell’Accademia di Siena), soggiunge nella stessa (pag. 596).

"In tal caso è chiaro che al più il valore di ug non viene espresso, che con funzioni di radici cubiche di noto valore, e Tomo XII. F_f " che
che il simbolo m, e così dicasi degli altri, ha per valore una
5
\[\sqrt{\text{funzione di } \sqrt{\frac{3}{5}}} \]
Il Socio Ruffini vorrebbe, guidato dall'analogia delle Equazioni di grado inferiore al quinto, che sotto alla \[\sqrt{\frac{3}{5}} \] del valore di m vi fossero le funzioni di \[\sqrt[4]{\frac{3}{5}} \], e

quindi supponendo che tutte le forme di funzioni di \[\sqrt[4]{\frac{3}{5}} \] dovessero essere comprese in un'Equazione di 4° grado razionale, conclude, che la data risolvente di 6° grado debba avere tre radici uguali; la qual cosa non verificandosi nella generale risolvente, giudica impossibile la soluzione generale delle Equazioni di 5° grado.

16. Opporremo, Egli prosegue, due riflessioni a questa sua decisione. La prima: che vi possono essere dell'Equazioni, in cui l'incognita sia eguale a funzioni di radici quarte contenenti dentro di se radici inferiori, essendo esse Equazioni di grado superiore al quarto, senza che si possano dividere in fattori razionali di 4° grado, come avverrebbe nell'Equazione
\[E^4 = 8E^2 \text{ ecc.} \]
(pag. 597.), la quale non è divisibile né in uno, né in tre fattori razionali di quinto grado, quantunque una delle sue radici non sia altro che
\[E = \sqrt[4]{3} - \sqrt[2]{\frac{3}{2}} \]

17. Egli è ben vero, che la nostra risolvente di 6° grado non può ammettere un divisor razionale di grado duodecimo al 6° superiore; ma perché non potrebbe egli trovarsi un simile divisor razionale nella risolvente della nostra Equazione di 6° grado, che diventerebbe la seconda risolvente della nostra proposta di quinto; e non trovandosi in questa, perché, passando alla terza risolvente, non potrebbe aver luogo in essa un simile divisor, e lo stesso dicasi delle risolventi ulteriori; cosicché, ritrovato finalmente tal divisor razionale, e ascendentendo di mano in mano sino alla prima risolvente di 6° grado,
"si possa realmente ottenere il valore di z (qui si sostituisce la nuova incognita z, e ciò per la ipotesi, che fa il nostro Autore nel citato n.° XIV. della sua Memoria Accademia di Siena, di $25 \frac{5n}{3}$) che, non sia altro, che funzione di radici contenenti sotto di se altre funzioni di radici inferiori? E ciò sempre supposto, che fosse necessario sotto alle radici quinte dei valori di m, n, p, q aver funzioni di radici quarte.

18. "In secondo luogo non so vedere dalla risoluzione delle Equazioni inferiori al quinto un'analogia così imperiosa, che mi costringa ad ammettere tale necessità; prima, perché troppo pochi sono i gradi inferiori dai Geometri risolti; poi perché anche nelle Equazioni di 4° abbiamo veduto, che effettivamente la loro generale risolvente è un'Equazione di 6° grado, ciascuna delle cui sei diverse radici è idonea a dare il valor del primo fattore $x + m + r + n$ dell'Equazione di 4° grado. Questo è il nostro secondo dubbio promosso sulla dimostrazione del Socio Ruffini.

19. "Io non so vedere difficoltà alcuna nel concepire, che nel valore di $m = \frac{5}{3}$ Fz possano aver luogo funzioni di radici seste, perché derivate da Equazioni particolari, e non da Equazioni generali di sesto grado, le quali radici seste comprendano anche sotto di se funzioni di radici inferiori, e per provarne questa sua proposizione adduce il Socio Malfatti l'esempio delle Equazioni biquadratiche, nelle radici delle quali esistono funzioni di radici terze, e di radici seconda vincolate sotto i primi indici di radici quarte, e inseguito nella (pag. 599.) riporta la sovrascritta Equazione particolare $2^3 + 5.2x^3 + 5^3.2^3 = 0$, nella risolvente $2^6 - 5t, 2^t.2^3 + cc. = 0$ della quale (n.° 13) trovando per radice il valore $z = 2^\frac{3}{2} - 2^\frac{1}{2}$, col sostituirsi di tal valore della z, la quantità m diverrà, soggiunge Egli nella (pag. 604.) "eguale a $\frac{5}{2}$" di funzio-
ni di altre radici quinte, le quali nel nostro caso non ricevono
sotto di se nè indici di radici quarte, nè di terze, nè di secon-
de. Lo stesso si deve concludere per gli altri valori di n, p, q, e
ciò non ostante se libereremo dagli irrazionali l'Equazione
$x + m + n + p + q = 0$, verranno talmente cambiate tra loro,
combinate, e attempate le funzioni di radici quinte com-
prese sotto l'indice primo di radice quinta, che da ultimo non
risulterà, che l'Equazione proposta $x^3 + 5.2x^2 + 5^3.2 = 0$,
ne vi sarà alcun pericolo, che tali funzioni di radici quinte
compresse sotto il primo vincolo di radice quinta facciano
ascendere l'Equazione in x al grado più alto del quinto. Ol-
tre ciò servendoci del sovracitato valore di z, o valendoci di
ciascuno degli altri cinque, che abbraccia la risolvente in z di
6° grado, sempre ci ridurremmo allo stesso fattore $x + m + n +$
$p + q = 0$ della proposta nostra Equazione. \ddot{E} se ciò accade,
finalmente Egli dice (pag. 599.), "in un'Equazione particola-
re, sembra che il buon raziocinio a più forte ragione ciò esiga
in un'Equazione generale; e siccome per la generale essendo
di 6° grado la risolvente, deve aver luogo la radice sesta, si
rende chiaro, che sotto alla radice quinta avremo funzioni di
radice sesta, che comprendono sotto di se funzioni di radici
quinte, riuscendo nel nostro caso particolare podesta sesto
perfette quelle funzioni, che si trovano sotto l'indice di ra-
dice sesta, onde non appaiono altro che funzioni di radici
quinte.

20. Concederò di buon grado al Sig. Professore Malfatti cioc-
ché Egli dice nel (n.° 16.), concederà pur anche nel (n.° 19.),
che il valore di $m = \sqrt{5}$ potrebbe contenere funzioni di radici
sesta, mentre però la z fosse determinabile, e concessi gli
ugualmente, quanto nel (cit. n.° 19.) dice Egli rapporto all'
Equazione particolare portata ad esempio, ed al valore $z = z^5 =$
$2^{\frac{1}{5}} - \text{cc.}$, non posso poi accordarmi seco lui su quanto nel
numero medesimo si conclude. Imperocchè, se operando sopra di
di un'Equazione generale, ottenesi un certo risultato, o se accade una certa combinazione tra i suoi coefficienti, o tra le sue radici, comprendendosi da questa generale tutte le rispettive Equazioni particolari, potrà certamente concludersi, che, prescindendo da alcune speciali modificazioni, lo stesso risultato, o la combinazione medesima debbe aver luogo ezioché in una qualsunque di queste particolari Equazioni; ma allorché il risultato supposto, o la supposta combinazione succede viceversa nell'operare su di una data Equazione particolare, non veggo come si possa esiger lo stesso nella corrispondente generale. Alcune proprietà della data Equazione particolare ponno essere a lei speciali in modo, che non appartengano punto alle altre Equazioni particolari dello stesso genere; e ciò essendo, è chiaro, che simil proprietà non potranno appartenere neppure all'Equazione generale. Dunque se il risultato, o la combinazione supposta proviene nella data Equazione particolare in conseguenza delle indicate proprietà speciali, esso, od essa non potrà punto accadere nella Equazione generale. Di questo medesimo sentimento dimostrasi però lo stesso Sig. Malfatti nella (pag. 589.), ove dice: le Equazioni particolari di qualunque grado possono avere delle proprietà non comuni alle Equazioni generiche del medesimo grado, come quella di avere un divisore razionale di grado inferiore, che le generiche non potranno mai avere, e così dicasi di altre proprietà.

Nell'esempio del Sig. Malfatti la risolvente \(z^5 - 5^5 \) \(2^5 \) \(z^2 + \) ec. = 0 (n.° 13.) ha per proprietà a lei speciale il fattore \(z + 5^2 \), e in conseguenza di questo, tal risolvente, riducendosi ad un'

Equazione in \(z \) di 5° grado, ci somministra poi \(z = 2^2 - 2^3 \) \(2 \) ec. (n.° 13.); ma un fattor razionale manca in tante altre risolventi dello stesso genere, e manca nella risolvente generale (n.° 11.). Dunque dalla sola osservazione del precedente valore \(z = 2^5 \) \(2 \), \(2 \) ec non sarà licito rapporto alla risolvente generale conclude, che abbia essa radici di forma simile alla indicata.
ta, e che abbia radici, nella espressione delle quali sotto la \(\sqrt{ } \) contengansi dei radicali quinti. Come potrà poi dirsi, che nel nostro caso particolare non appariscano altro, che funzioni di radici quinte, perché riescono podestà seste perfette quelle funzioni, che si truovano sotto l'indice di radice sesta? L'equazione, che ci somministra l'espressione \(z = 2^2 - 2^3 \sqrt{2} - ec. \) non è già un'Equazione propriamente di 6° grado, ma è un'Equazione di grado 5°, quella cioè, a cui la \(z^6 - 5^4 \cdot 2^1 z^4 + ec. = 0 \) si riduce con la divisione per \(z + 5 \cdot 2^3 \).

21. Se l'illustre Socio Malfatti non sa vedere tra l'Equazione di 5° grado, e quelle di grado inferiore l' analogia che accenna nel (n.° 13.); io aggiungo di più, che qualunque analogia apparisca, non sarà mai lecito in conseguenza di questa sola asserire l' insolubilità della Equazione generale di 5° grado; come non è lecito a cagion d'esempio asserirne viceversa la solubilità, solamente perché con i metodi de' Sigg. Euler, e Bezout, e Malfatti una supposizione medesima ci può portare tanto nella Equazione di 5° come in quelle di 3°, e di 4° a delle trasformate tuttì di 6° grado; ma se tale è il mio sentimento, come lo è difatti, e se i ragioninni, che applico alla Equazione di 5° grado (Teor. delle Equaz., Mem. T.° X della Soc. It.) (preced. n. 2, ec. 11.) riguardano tutti in primo luogo l'Equazione algebraica generale di grado \(m \), quindi la generale di grado 5°, e nulla le altre; come può mai dissi, che nelle mie conclusioni, o ne miei discorsi sia stato guidato dall'analoga con le Equazioni di grado inferiore (n.° 15.), e muoversi qual dubbio alle mie asserzioni un dubbio, che riguarda l'analoga (n.° 18.)? È vero, che nel (Cap. 12° Teor. delle Eq.) sonosi applicati i principii fondamentali alla soluzione delle Equazioni di 3° e di 4° grado; ma ciò si è fatto puramente, affin di mostrare la generalità di questi principii, far vedere, che tutti i metodi di soluzione a \(p \) steriori dipendono infine da' principii medesimi, e fareci così strada a cercare la soluzione delle Equazioni di grado superiore.

22.
22. Quanto il Chiarissimo Sig. Malfatti espone nei precedenti (n. 16 cc. 19), vedesi, che lo espone affin di obbiettare a ciò, che Egli nel (n.° 15) asserisce, essersi da me pronunciato, e da cui Egli dice, che io deduco la impossibilità di sciogliere la Equazione generale di 5° grado; ma percorrendo tutti i discorsi, che faccio io tanto nella Teoria, come nella Memoria, onde determinare questa impossibilità (preced. n. 2, cc. 11.), e paragonando essi con quanto si dice nel citato (n.° 15.) volersi da me rapporto alle funzioni di \(\sqrt[4]{\cdot} \), e da me concludersi rapporto alle pretese tre radici uguali nella risolvente di 6° grado, confesso, che non so trovare qual sia tra gli indicati discorsi quello, che possa aver indotto l'illustre Malfatti ad attribuirmi quanto nel citato (n.° 15.) si contiene. Ciò non ostante, siccome parlo di Equazioni, alle quali deve ridursi la proposta di 5° grado, onde risolversi, e siccome considero la riduzione nel (1° n.° 286 Teor.) dell' Equazione in M di 12° grado, ed accenna nel (5° n.° 286. Teor.) la riduzione dell' Equazione in N di grado 6°, ad un'altra di 4° grado; sarebbe egli mai, che il nostro Autore, considerando come cosa identica il dire una quantità dipende da un' Equazione di 4° grado, e il dire una quantità è necessariamente funzione di \(\sqrt[4]{\cdot} \), abbia dall' uno, o dall' altro dei citati (1°, 5° n.° 286. Teor.) detto pretendersi da me essenzialmente esistenti le funzioni di \(\sqrt[4]{\cdot} \) sotto alla \(\sqrt[5]{\cdot} \) del valore di \(m \) (n.° 15.)? Se mai ciò fosse, prego l'illustre Socio ad osservare, che, mentre considero la riduzione dell' Equazione in M, e accenna quella dell' altra in N (1°, 5° n.° 286. Teor.) ad un' Equazione di 4° grado, non dico già, che non possansi ottenere i valori rispettivamente della M, e della N senza una tale riduzione: dico, se ame- nete, che la M, la quale dipende da un' Equazione di 12°, e la N, che dipende da una di 6° grado, non possono determinarsi, se non riducendo tali Equazioni ad altre, di cui conoscasi la soluzione. Ora tra le Equazioni, che sanno sciogliersi, avvi quella di 4°
Risposta ai dubbi proposti cc.

grado; dunque nel dimostrare l'indeterminazione delle accennate quantità, conveniva considerare questa riduzione della corrispondente Equazione in M, ed N ad altra di grado 4°. Nel tempo medesimo però, e nella medesima maniera ho considerata (1°, cc. 5° n.° 280. Teor.) eziando la riduzione della stessa Equazione in M, ed N ad un'altra di 3°, e la riduzione ad una di 2°, e la riduzione persino ad una di primo grado; e confessò, che non veggo, come possa aver lasciato luogo a credere, che sotto la del valore di m pretenda doversi contenere funzioni di piuttosto che funzioni di . Riferendomi, come si è detto finora, gl' indicati radicali alle rispettive Equazioni, a me sembra manifesto, che ne' miei raziocinii vengono questi ad esser tutti considerati egualmente, e che, come pretendo non potersi nel valore di m sotto la contenere la ; così pretendo non potervi esistere nemmeno la .

Finora ho concesso all'egregio Socio Malfatti, che una quantità, la quale dipenda da un'Equazione di 2°, o di 3°, o di 4° grado contenga nella sua espressione il radicale corrispondente; ma concedere non gli posso, che tutte le forme di funzioni di debbano essere comprese in un'Equazione di 4° grado razionale, (n° 15.), mentre col nome di forma intendasi un'espressione, nella quale si contengano le accennate funzioni, come sarebbe per esempio la precedente \[\sqrt{3} - \sqrt[3]{-2^2} \] (n.° 16.), e molto meno posso concedergli, che questa proposizione siasi da me in alcun modo pronunziata, e supposta. Mentre ho supposto di ridurre la data Equazione di 5° grado, o le Equazioni sovrasticitate in M, ed N ad altre di 4°, o di 3°, o di 2° grado, non l'ho già supposto in conseguenza della proposizione precedente, ma
Di Paolo Ruffini.

L'ho supposto soltanto, onde scuoprire, se le incognite di tali equazioni sono, o no algebricamente determinabili.

Ritrovato, che tutte le trasformate, mediate esse sianisi, od immediate, della data equazione generale di 5° grado sono od insolubili, o inutili alla mediata, od immediata determinazione della \(x (\text{not. 2, ecc. 10.}) \); quindi concluso essere impossibile lo scioglimento algebraico di tale equazione. Ciò dunque essendo, non veggo, come mai il Sig. Malfatti possa dire nel cit. \(n. 15. \), che io, concluso, che la data risolvente di 6° grado debba avere tre radici uguali, la qual cosa non verificandosi nella generale riprendente, giudico impossibile la risoluzione generale delle equazioni di 5° grado. Converrà dire, che io abbia mancato nelle mie espressioni della dovuta chiarezza, e che abbia forse indotti così i leggitori ad una falsa interpretazione; ma per amore della verità non posso dispensarmi dal protestare, che tanto nella Teoria, come nella Memoria non saprei determinare, quale delle mie espressioni possa aver dato luogo a tale errore, e che d'altronde non ho avuta giamaia intenzione di asserire, nè ho giamaia immaginato 6° grado le precedenti nella risolvente di tre radici uguali, concludendo io l'insolubilità della equazione generale di 5° grado per tutta altra cagione \(n. 10. \), che per quella, che dal Sig. Malfatti viene indicata \(n. 15. \).

23. Nell'assegnare la dimostrazione di questo Teorema, ho già avvertito \(n. 11. \), che, eccettuata la \(\sqrt[5]{M} \), non considero punto la natura degli altri radicali, che potrebbero contenersi nelle radici delle trasformate, e nei valori della \(x \), allorquando simili radicali, e simili valori fossero determinabili; ora però riflettendo che la considerazione di questi radicali può somministrare essa pure un mezzo, onde pruovere la verità del Teorema medesimo: ma riserbandomi ad eseguire ciò sull'ultimo, prenderemo presentemente ad esaminare quei dubbi \(n. 14. \), che rimangono tuttora a considerarsi, quei dubbi cioè, i quali riguardano i fattori razionali, che possono contenersi nelle successive risolventi, e la continuazione delle risolventi medesime.

Tomo XII.

G g
24. Nel precedente (n.° 17) vengono in parte espressi queste ultime difficoltà dell' Egregio Socio Malfatti, e vengono in seguito ripetute in generale nella (pag. 663, Tom. XI Soci. Ital.), ove indicata la prima sua risolvente \(z^2 - 2Mz^4 \) ec. = 0, che avea già specificamente determinata nel (n.° XIV Mem. Malfatti Tom. 4.° Accad. di Siena), soggiunge immediatamente, "" nella quale manca il secondo termine, e i simboli tra loro indipendenti non sono, che quattro, il che la esclude dal numero delle generiche, e la mette nella classe delle Equazioni particolari di 6.° grado; dal che viene avvertito il Geometra di cercare prima di tutto, se tale Equazione accetti qualche divisore razionale di grado inferiore. Al caso che ciò non succeda, parmi, che non si debba concludere essere irresoluble la proposta di 5.° grado, ma che si debba passare alla risolvente di tale Equazione di 6.°, e il divisore potrebbe in questa trovarsi; rimarrebbe con ciò risolta l'Equazione della prima risolvente, e conseguentemente l'Equazione proposta di 5.° grado. Non potendosi nemmeno in quest'ultima rinvenire tal divisore, e perchè non si sia costretto a giudicare impossibile la ricercata soluzione, senza l'esame previo delle ulteriori risolventi, che divengono poi la terza, la quarta, ec. risolvente della proposta Equazione? ""

Onde avvalorare la sua difficoltà considera qui l'illustre Autore (pag. 663, 664, 665) le risolventi, che nascono dalla Equazione particolare \(x^4 + 5 \cdot 2x + 5^2 \cdot 2^2 = 0 \), e col metodo precedentemente proposto nella guisa indicata sul fine del (n.° 13) accenna rivalersi attualmente il più volte esposto valore

\[
z = 2^3 - 2^{\frac{5}{2}} 2^2 \text{ ec.}, \quad \text{radice della risolvente prima (n.° 13)}.
\]

25. Dopo la considerazione di questo caso particolare, aggiunge nuovamente il Sig. Malfatti (pag. 666), "" egli è però, "" che per una generale Equazione in \(x \) di quinto grado, man- "" cando tal divisore nella prima risolvente, sono obbligato a cercare qualche nelle risolventi ulteriori, le quali sono tutte Equazioni particolari, e non generali, nè da quest'obbligo mi
35. mi trovo disimpegnato, se non nel caso, che siamo solidalemente dimostrata l'impossibilità di trovare tal divisore "e finalmente conclude non sembragli alla dimostrazione del nostro Teorema argomento sufficiente la necessità delle tre radici uguali nella prima risolvente in \(z \) di 6\(^{o} \) grado, e sembragli, che la dimostrazione istessa sarebbe stata più irresistibile, se si fosse raggirata sulla impossibilità di trovare non solo nella prima risolvente in \(z \) ma nemmeno nelle risolventi ulteriori un divisore di grado al 5\(^{o} \) inferiore.

26. Nulla, dirò rapporto, a quanto ripetesi nel (n.\(^{o} \) prec.) delle pretese tre radici uguali, poiché ne ho già parlato a sufficiente fine del (n.\(^{o} \) 22.), riguardo poi alla continuazione delle risolventi indicata nei precedenti (n.\(^{i} \) 17, 24), sembrami, che venga tolti qualunque dubbio da quanto è detto nei (n.\(^{i} \) 2, 7, 8). Rapporto finalmente ai fattori razionali, che possono contenersi in queste successive risolventi, e in generale in tutte le transformations successive, i dubbi dell'Egregio Socio Malfatti meritano alcune riflessioni.

27. Supponiamo, che dall'Equazione generale (F) (n.\(^{o} \) 2.), deducasi una prima trasformata, o risolvente, e tale sia la (VII). Ciò fatto osservo in primo luogo, che nel (n.\(^{o} \) 28 Mem. sopra la Insolv. ec. T. X. Soc. Ital.) si dimostra, che il primo membro della (VII) non può avere alcun fattore, i coefficienti del quale siano funzioni razionali dei coefficienti propri; ma possiamo dire in egual modo, che non può neppure contenerne alcuno, i coefficienti del quale siano funzioni razionali dei coefficienti della (F)? Si certamente, e quel discorso medesimo, che nel citato (n.\(^{o} \) 28 Mem.) ci prova la prima di queste proposizioni, ci dimostra eziando la seconda; avvertendo però, che in questo secondo caso, volendosi i coefficienti \(a, ec. t, u \) del fattore \(\alpha^{'-1} \) supposto nel (n.\(^{o} \) 28 Mem.) funzioni razionali dei coefficienti della (F), ciascuno di essi deve considerarsi, siccome funzione delle \(x', x'', x''' \), ec., e funzione per la generalità della stessa (F), tale che non cambierà di valore, qualunque permutazione

\[G \neq 2 \]
Risposta ai dubbi proposti cc.
eseguiscasi fra le x', x'', x''', \ldots, ec. medesime, e quindi nemmeno
per la permutazione, onde dalla z' producesi la $z'^{(r+1)}(u. n. 28$
Mem.). Egli è anzi propriamente da questa proposizione seconda,
che dipende il non potersi dalla (VII), acquistare, come è
indicato sul fine dello stesso (n. 23 Mem.), la forma (V).

Che se la data Equazione (F) sia particolare; allora la
(VII) potrebbe benissimo contenere un fattore $z' + az'^{r-1} +$ ec. + $tz + u$, i coefficienti del quale siano funzioni razionali
o de' coefficienti propri, o de' coefficienti della proposta, po-
tendo inallora non aver più luogo il razionamento (n. 28 Mem.).

Quando di fatti il primo membro della $z' + az'^{r-1} +$ ec. + $tz + u$
= o vi si supposta, di cui z', z'', ec. $z^{(r)}$ sono le radici, vuol diviso-
ire del primo membro della (VII), essendo l'Equazione
(F) generale; ciascuna allora delle quantità $z'' + az''^{r-1} +$ ec. + $tz', z'' + az''^{r-1} +$ ec. + tz'', ec. $z^{(r)} + az^{(r)}r-1 +$ ec. + $tz^{(r)}$
non potrà evidentemente essere di valore uguale al valore di $-u$, quando,
collocati invece de' coefficienti a ec. t, u, ed invece
delle radici z', z'', ec. $z^{(r)}$ i loro valori espressi per le x', x'', x''', \ldots, ec.,
non risultano esistendo di forma uguale alla forma dello stesso $-u$;
ma nel caso della Equazione (F) particolare, da ciascun essa delle
indicate quantità $z' + z'^{r-1} +$ ec. + $tz', z'' + az''^{r-1} +$ ec. + tz'', ec. $z^{(r)} + az^{(r)}r-1 +$ ec. + $tz^{(r)}$
potrebbe in conseguenza del valore particolare delle x', x'', x''', \ldots, ec. aversi un valore $= -u$,
quantunque, essguendo la precedente sostituzione delle x', x'', x''', \ldots, ec., ciascuna di simili quantità divenga funzione di forma
diversa dalla forma, che acquista il coefficiente $= -u$ (n. 95, 96
Teor. delle Equazioni). Ora il discorso del (n. 28 Mem.) esige
necessariamente, che le esposte funzioni non possano essere
$= -u$, quando non ne siano uguali esistendo nella forma.
Dunque ecc.

Da quanto abbiamo ora detto, vedesi, che può benissimo
esistere, come esiste di fatti, un fattor razionale nella prima ri-
sol-
solvente della Equazione \(x^3 + 5.2x^3 + 5^2 = 0 \) (n.\(^2\) 13), e nelle prime di tante altre Equazioni particolari, senza che perciò abbia esso mai luogo nella prima trasformata di un’Equazione generica. Egli è da simil fattore, che la precedente \(x^3 + 5.2x^3 + 5^2 = 0 \) riceve soluzione, quantunque sia insolubile la generale di 5.° grado; e così alcune delle Equazioni, le quali nella Memoria sopra la soluzione delle Equazioni particolari, che è inserita nel (Tomo IX della Soc. Ital.) sono considerate come insolubili, in quanto che non sono riducibili a trasformate di grado al loro inferiore, potranno, in conseguenza di un simil fattore esistente nelle trasformate medesime, realmente ammettere soluzione.

28. Ritenendo la (F) Equazione generale; vogliasi trasformare la precedente (VII) in un’altra Equazione con l’incognita \(y \). Poiché le radici di una qualsivoglia trasformata sono funzioni delle radici della Equazione, da cui deriva; ne viene, che i valori \(y’, y”, y”’ \), ecc., ossia le radici della Equazione in \(y \), danno essere funzioni delle radici della (VII), ossia delle \(z, z”, z”’ \), ecc.; ma queste \(z’, z”, z”’ \), ecc. sono per la ragione medesima funzioni delle \(x’, x”, x”’ \), ecc.; dunque funzioni di queste \(x’, x”, x”’ \), ecc. saranno ancora le \(y’, y”, y”’ \), ecc. Supposto pertanto la radice per esempio \(y’ = f(x’) (z’) (z”’) \ldots \), pongasi invece delle \(z’, z”, z”’ \), ecc. i loro valori espressi per le \(x’, x”, x”’ \), ecc., e s’indichi per \(\varphi (x’)(x”')(x”’)(x”) \ldots \) la funzione, che perciò risulta = \(y’ \). Ciò fatto, osservo che posso determinare l’Equazione, da cui dipende questa \(y’ \) in due maniere. 1.° cercando dalla (F) immediatamente la trasformata in \(y = \varphi (x’)(x”')(x”’)(x”) \ldots \); 2.° cercando non immediatamente dalla (F), ma dalla (VII) la trasformata in \(y = f(z’)(z”) \ldots \). Il primo di questi metodi quello si è, che deve sempre, ed unicamente considerarsi tanto nella mia Memoria, che nella Teoria delle Equazioni, siccome apparsce dai (n.\(^1\) 54, 59, 63, ecc. Mem., n.\(^2\) 28o Teor.), e riducendosi per esso una trasformata seconda ad essere prima, cioè ad essere una trasformata dedotta immediatamente dalla (F); ne segue, che andrà essa pure soggetta al Teorema del (n.\(^2\) 28 Mem. Tom. X. Soc. Ital.), e quindi non potrà contenere alcun divisore, i coeffi-
ficienti del quale siano funzioni razionali dei coefficienti propri, o dei coefficienti della proposta (n.° 27). Sia \(f''(y) = 0 \) l'equazione in \(y = \varepsilon(x')(x'')(x''') \ldots \) ottenuta con questo primo metodo.

29. Deduciamo ora dalla (VII) l'equazione in \(y \) considerata, giusta la seconda maniera, \(= f'(z')(z')(z'') \ldots \). Chiamata \(F(y) \) la trasformata che quindi risulta, osservando in primo luogo, che tutte le radici della \(f''(y) = 0 \) (n.° prec.) devono essere radici esponenti della \(f''(y) = 0 \). Imperciocché, se non lo fossero, essendo già tale al \(y \) (n.° prec.), e per conseguenza avendosi già dalle \(f''(y) \), \(F(y) \) il comun fattore \(y - y' \), con la ricerca del massimo divisor comune fra le stesse \(f'(y) \), \(F(y) \), si troverebbe esistere nella \(f''(y) \) un divisore, i coefficienti del quale sarebbero funzioni razionali de' suoi coefficienti contro del (n.° prec.)

30. Peri principii fondamentali delle trasformazioni (Cap. 5.° Teor.) nascondo i valori \(y', y'' \), ecc. tutti dal primo \(y = f'(z')(z'')(z''') \), per tutte le permutazioni fra le \(z', z', z'' \), ecc., ed essendoci la \(F(y) = 0 \) (n.° prec.) dedotta immediatamente dalla (VII), tutti questi \(y', y'', y''' \), ecc. saranno necessariamente radici di essa \(F(y) = 0 \). Ridotte ora tutte le quantità \(y', y'', y''' \), ecc. ad essere giusta il (n.° 28), esprimesi per mezzo delle \(x', x'', x''' \), ecc., fissiamo primieramente l'attenzione sopra le due \(y', y'' \). Avendosi già \(y'' = \varphi'(x')(x'')(x''') \ldots \), osservando se la funzione, a cui si uguaglia la \(y'' \), altrove non sia, se non che uno dei risultati, i quali nascono dalla \(\varphi'(x')(x'')(x''') \ldots = y \) per le permutazioni fra le \(x', x'', x''' \), ecc., oppure se sia una funzione, la quale non potendo nascer dalla \(\varphi'(x')(x'')(x''') \ldots \) per alcuna permutazione, sia diversa da tutti i risultati medesimi. Nel primo di questi casi la \(y'' \) pel principio delle trasformazioni sarà, ugualmente che la \(y' \), radice della \(f''(y) = 0 \) (n.° 28), ma non lo sarà nel secondo. Poiché in questo secondo caso la funzione \(y'' \) è di una forma, comunque siasi, diversa dalla forma della \(\varphi'(x')(x'')(x''') \ldots \) suppongasi \(y'' = \varphi''(x')(x'')(x''') \ldots \) con l'incognita \(y \) si cerchi dalla (F) immediatamente l'equazione che ha questa funzione ultima per radice, e si denominì essa \(f''(y) = 0 \). Giacché nei (n.° 28, 29) ab-
abbiam detto della \(f(y) = 0 \), vedesi, che si dice egualmente di questa \(f''(y) = 0 \), e vedesi inoltre, che le \(f(y) = 0 \), \(f''(y) = 0 \) non possono avere radice alcuna comune, perché se ne avesse, con la ricerca del massimo comun divisore, si troverebbe che amene le \(f(y), f''(y) \) conterebbero, contro del (n.° 23°), un fattore razionale.

31. Quanto abbiamo ora detto della \(y'' \) si applica egualmente alle altre radici \(y''' \), \(y'''' \), cc. della \(F(y) = 0 \) (n.° 29°). Imperciocché ogniqualvolta queste \(y'', y''' \), cc. espresse per le \(x', x'', x''' \), cc. (n.° 28°) non sono che tanti risultati provenienti dalle

\[
y' = \varphi(x')(x')(x'') \ldots, \quad y'' = \varphi''(x')(x')(x'') \ldots (n.° 28, 30°)
\]

in conseguenza di permutazioni fra le \(x', x'', x''' \), cc.; esse \(y'', y''' \), cc. non saranno evidentemente che tante radici delle rispettive Equazioni \(f(y) = 0, f''(y) = 0 \). Che se queste \(y'', y''' \), cc. siano funzioni delle \(x', x'', x''' \), cc. tali, che derivar non possano dalle

\[
y' = \varphi(x')(x')(x'') \ldots, \quad y'' = \varphi''(x')(x')(x'') \ldots
\]

per alcuna delle permutazioni fra le stesse \(x', x'', x''' \), cc.; allora supposta, come si è fatto nel (n.° prec.) rapporto alla \(y'' \), la \(y''' = \varphi'''(x')(x')(x'') \ldots \), la \(y'' = \varphi''(x')(x')(x'') \ldots \), ecc., cercherò immediatamente dalla (F) le Equazioni in \(y \), che hanno per radici queste funzioni fra loro diverse; e ci verranno in corrispondenza altrettante Equazioni, che dirò \(f''(y) = 0, f'''(y) = 0 \), cc., rapporto ad una qualunque delle quali paragonata con le altre, e con le \(f(y) = 0, f''(y) = 0 \), \(F(y) = 0 \) si verificherà evidentemente quanto nei precedenti (n.° 28, 29, 30°) abbian detto delle \(f(y) = 0, f''(y) = 0 \).

52. Il primo membro della \(F(y) = 0 \) nelle supposizioni de' precedenti (n.° 28, 29, 30, 31°) altro non essendo, che il prodotto degli altri primi membri \(f(y), f'(y), f''(y), f'''(y), f''''(y) \), cc., i quali tutti sono razionali; ne segue, che, allorché dedurre si voglia non immediatamente dalla (F), ma dalla (VII) una trasformata, che abbia per radice una funzione \(y = f(z)(z')(z'') \ldots \); l'Equazione, che ne risulterà, potrà benissimo contenere tanti fattori razionali; ma la \(F(y) \) che è appunto questa Equazione risulta dalla (VII) (n.° 29°) per precedenti (n.° 28°, cc. 31°) non può contenere altri fattori razionali fuorché i sovraindiciati
f(y), f'(y), f''(y), ec. provenienti tutti dal cercare immediatamente dalla (F) le Equazioni, che hanno per radici le corrispondenti funzioni
\[y = \varphi(x)(x')(x'') \ldots, \quad y = \varphi'(x')(x')(x'') \ldots, \quad y = \varphi''(x')(x')(x'') \ldots, \quad \text{ec.,} \]
le quali unicamente vertono, come si è notato nel (n.° 28), i razionini, e le conclusioni riguardanti l’irresolubilità della Equazione di 5° grado tanto nella Teoria, come nella Memoria. Dunque allorquando nella (F) si ha \(m = 5 \), e nella (VII) \(n > 2 \), essendosi esse pei (n.° 34, ec. 48 Mem, n.° 280, ec. 33 Teor., prec. n.° 10) ritrovate sempre od insolubili, od inutili alla determinazione della incognita nella (VII); ne segue, che niun vantaggio può mai risultare alla soluzione della Equazione generica di 5° grado dai fattori razionali, che possono esistere nella seconda risolvente, o trasformata \(F(y) = 0 \). Ora quei discorsi medesimi, che abbiamo presentemente eseguiti (n.° 28, ec.) sopra di questa seconda, è chiaro, che hanno luogo eziandio sopra una risolvente terza, sopra una quarta, ec.; perché, mentre si voglia
\[u = f(y)(y')(y'') \ldots \]
colti invece delle \(y', y'', y''' \), ec. i loro valori espressi per le \(x', x'', x''' \), ec., le radici \(u, u', u'' \), ec. di venendo tante funzioni esse pure delle \(x', x'', x''' \), ec. determinabili solamente per tante Equazioni, i cui primi membri sono come i precedenti \(f(y), f'(y), f''(y) \), ec., privi di fattori razionali, e le quali sono in egual modo od insolubili, od inutili allo scoppimento della \(x \). Dunque i divisori commensurabili, che possono esistere in quante si vogliono risolventi ulteriori, è che realmente possono esistere soltanto, mentre tali risolventi vengano determinate col 2° dei metodi accennati nel (n.° 28), saranno tutti inutili alla determinazione mediata, o immediata della \(x \) nella Equazione generale (F), mentre l’esponente di questa (F) pongasi \(5 \).

33. Da quanto si è detto nei precedenti (n.° 26, ec. 32) in risposta alle difficoltà enunciate nei (n.° 24, 25), e da quanto si è detto nei (n.° 20, 21, 22) in risposta ai (n.° 14, ec. 19) tutti mi lusingo, che vengano dissipati i dubbi, che il Chiarissimo Socio Malfatti si è compiaciuto promuovermi. Affine però di soddisfar
Di Paolo Ruffini.

Pienamente a quanto Egli, sul finire della sua Memoria, con termini veramente a me troppo onorevoli, e dettati soltanto dalla sua gentilezza si degna richiedermi, veggomi in dovere, prima di terminare questo mio scritto, di scegliere qualche altro dubbio, che inserger potrebbe a talumo sopra l'insolubilità della Equazione generale di 5.° grado.

Parte II.

Risoluzione di alcuni altri dubbi riguardanti l'Insolubilità algebraica della Equazione generale di grado 5.°.

34. Nella Memoria riguardante questo Teorema si è dimostrato (n. 21, 22, 24, 33, 35, 41, cc. Mem.), che, posta una funzione fra le x', x'', x'', cc. razionale (n. 1, 11), ed avente in conseguenza delle permutazioni un numero, che dirò $p > 2$ di valori tra loro diversi, l'Equazione di grado p, da cui tal funzione dipende, non può giuamai acquistare la forma (VI) (n. 2), mentre nella Equazione generale (F) abbiai m=5. Nessuna pertanto delle precedenti Equazioni $f'(y)=0$, $f''(y)=0$, $f'''(y)=c$, cc. (n. 28, 29, 31) potrà avere tal forma, mentre il rispettivo esponente sia > 2; ma quantunque ciò si verifichi in queste Equazioni, non potrebbe poi darsi, che non si verificasse nella $F(y)=c$, Equazione formata dal loro prodotto (n. 32), e che però quest'ultima potesse avere la forma $(y+a)^p+b=c$, essendo a, b funzioni razionali dei coefficienti della (F), ossia funzioni della forma Funz. $(x', x', x''$, ecc.), (n. 3, 31, 101, 105 Teor.)? Ecco un dubbio, che credo necessario risolvere, poiché un simile caso non è contemplato nella Memoria, e d'altronde potendosi sempre dalla $(y+a)^p+b=c$ ottenere per lo meno un valore y'; da questo, se fosse possibile, e mentre una delle $f'(y)=c$, $f''(y)=0$, $f''(y)=c$, cc. avesse il suo esponente > 2, potrebbe ricavarsi o immediatamente, o immediatamente il valore della x nella (F).

Supposto pertanto, che l' esponente di una delle $f'(y)=c$, $f''(y)=0$, $f''(y)=c$, cc. sia > 2, è supposto, se è possi-

Tomo XII. Heh
bile, che la \(F(y) = 0 \) nata dalla moltiplicazione fra loro di queste Equazioni acquistò la forma \((y + a) ^ e + b = 0 \), facciamo \(y + a = Q \), la \(F(y) = 0 \) derrà perciò \(Q + b = 0 \). Ritenuto che sia giusta i (n. 1 0 3, 30, 31) \(y' = \phi'(x')(x'')(x''')(x''')(x')(x') \), \(y'' = \phi''(x')(x') \) ecc. risultandoci

\[Q' = \phi'(x')(x''')(x')(x')(x')(x') = \phi'(x')(x')(x')(x')(x')(x') \]

Funz. \(f(x', x'', x'''', x'', x') \), \(Q'' = \phi''(x')(x')(x')(x')(x') \)

Funz. \(f(x', x'', x'''', x'', x') \), \(Q''' = \phi'''(x')(x')(x')(x')(x') \)

Funz. \(f(x', x'', x'''', x'', x') \), ecc., le \(Q, Q', Q'' \), ecc. cambieranno, e conserveranno il proprio valore per le permutazioni medesime fra le \(x', x'', x'''', x'', x' \), per cui lo cambiano in corrispondenza, e lo conservano le \(y', y'', y''' \), ecc. Chiamata finalmente, come nel (n. 2 1 Mem.) \(x \) una di quelle fra le radici della Equazione \(u^2 - 1 = 0 \), che con le sue successive potenze produce tutte le altre, per la natura delle radici della unità, dovrà nella \(Q + b = 0 \) ciascuna delle \(Q', Q'' \), ecc. essere \(Q' \) moltiplicata per una delle potenze \(< \rho \) della \(x \), e potrò quindi supporre \(Q'' = \alpha'^{n} Q' \), \(Q''' = \alpha'^{n} Q' \), ecc.

Ciò posto per la generalità della Equazione (F), la \(Q' \), ossia la \(\phi''(x')(x')(x')(x')(x')(x') \) deve uguagliare la \(Q' \), ossia la \(\phi''(x')(x')(x')(x')(x')(x') \) a moltiplicata per la \(x' \) indipendentemente da qualunque particolare valore, e da qualunque rapporto particolare fra le \(x', x'', x'''', x'', x' \). Ora eseguiscasi nelle \(Q', Q'' \) una stessa, qualunque sia, permutazione fra le \(x', x'', x'''', x'', x' \), e chiamarsi \(Q' \), \(Q'' \) i risultati, che ne vengono: io dico che dovrà essere \(Q' = z^Q Q' \) immiscioch'evolendo la Equazione \(Q'' = \alpha'^{n} Q' \), per quanto si è detto di sopra, verificarsi indipendentemente da qualunque particolare valore, o rapporto fra le \(x', x'', x'''', x'', x' \), essa \(Q'' = \alpha'^{n} Q' \) deve sempre essere vera, qualunque delle stesse \(x', x'', x'''', x'', x' \) pongasi corrispondentemente in una qualisvolta delle parentesi di ammedue insieme le funzioni \(Q'' = \phi''(x')(x')(x')(x')(x')(x') - a, Q'' = \phi''(x')(x')(x')(x')(x')(x') - a \).

Avendosi pertanto \(Q' = \alpha'^{n} Q' \), è chiaro, che se la \(Q' \) risulterà \(= Q' \), risulterà ancora la \(Q'' = Q'' \), se la \(Q' \) diviene disuguale dalla \(Q' \), diverrà ancora la \(Q'' \) differente dalla \(Q'' \); e così v.ecev.
sa la Q' risulterà uguale, o disuguale dalla Q', secondo che si vuole, che la Q" divenga uguale, o disuguale dalla Q". Ma ciò stesso, che si è ora detto rapporto alla Q' paragonata con la Q' nella Q" = x''Q', dicesi egualmente rapporto alle Q'', Q''', ec. paragonate ciascuna con la Q' nelle rispettive Equazioni Q''' = a''Q', Q''' = a'''Q', ec. Dunque tutte quelle permutazioni fra le x', x'', x''', x''', x''', x''' ottengonsi dalla Q' compresa la Q' medesima, di numero g saranno ancora tutti i valori diversi, che per tutte queste permutazioni, produconsi da ciascuna delle Q'', Q''', Q''', ec. compresi la stessa Q'', oppure Q''', oppure Q'''', ec.

35. Dunque tutte le Equazioni f' (Q-a) = o, f''(Q-a) = o, f'''(Q-a) = o, ec. equivalenti alle altre f''(y) = o, f'''(y) = o, f''''(y) = o, ec. (n.° 34) avranno il medesimo esponente g; ma i valori della Q, che sono composti da tutte insieme le f'(Q-a) = o, f''(Q-a) = o, f'''(Q-a) = o, ec. devon tutti essere contenuti nella Q' + b = x (n.° 34), e per ipotesi fatta nello stesso (n.° 34) l'esponente d'una delle f''(y) = o, f'''(y) = o, f''''(y) = o, ec. deve essere > 2. Dunque supposto p = gh, la Q' + b = o si ridurrà alla Q''h + b = o, in cui sarà h un numero intero, e positivo, e sarà g > 2, onde pel (n.° 14. Mem.) g non < 5.

36. Il precedente numero h deve essere > 2.

1.° Se si volesse h = 1 la Q' + b = o divenuta Q'' + b = o tutti unitamente converrebbe i g diversi valori, che per tutte le permutazioni fra le x', x'', x''', x''', x''' ottengonsi dalla Q' (n.° 34), e per conseguenza non sarebbe già il prodotto delle varie Equazioni f'(Q-a) = o, f''(Q-a) = o, ec. (n. prec.); ma soltanto una delle medesime; ora b è una funzione della forma funz. (x', x'', x''', x''', x''')

Hh 2 ed
ed è \(g > 2 \) (n. 35). Dunque, essendo quest'Equazione \(Q^g + b = 0 \) impossibile (n. 21, 22, 24 Mem.), sarà ancora impossibile, che abbia \(l = 1 \).

2.° Vogliasi \(h = 2 \), e la \(Q^e + b = 0 \) divenga perciò \(Q^{2e} + b = 0 \). Chiamati in questa ipotesi \(Q^1, Q^2, Q^3 \), ec. \(Q(\varepsilon) \) i valori diversi derivati per tutte le permutazioni fra le \(x', x'', x''' \), \(x''', x'''' \), \(x'''', x''''' \) nella funzione \(Q' \), e \(Q''1, Q''2, Q''3 \) ec. \(Q''(\varepsilon) \) i derivati nel modo istesso della \(Q'' \), cosicché le prime tra queste quantità siano le radici della \(f''(Q-a) = 0 \), e le seconde le radici della \(f''(Q-a) = 0 \), osservando che la precedente \(Q^{2g} + b = 0 \) non può essere che il prodotto di due sole delle Equazioni \(f''(Q-a) = 0 \), \(f''(Q-a) = 0 \), \(f''(Q-a) = 0 \), ec., e che per conseguenza, supposto \(Q^{2g} + b = f''(Q-a) \), i valori \(Q'1, Q'2, Q'3 \), ec. \(Q'(\varepsilon) \), \(Q''1, Q''2, Q''3 \), ec. \(Q''(\varepsilon) \) tutte saranno le radici di essa \(Q^{2g} + b = 0 \).

Ciò posto, moltiplichiamo la radice \(Q'1 \) successivamente per le potenze \(x, x^2, x^3, ec. \ x(2g - 1), x^{2g} = 1 \) della \(x \) supposta nel (n. 34); per la natura della Equazione \(Q^{2g} + b = 0 \), tutte dovranno quindi successivamente prodursi le sue radici. Ora essendo \(g \) non \(< 5 \) (n. 35), e però \(2g \) non \(< 10 \), ed essendo la \(x \) tale che l'abbiamo supposta nel citato (n. 34), io dico, che il prodotto \(x Q'1 \) nona può uguagliare delle quantità \(Q'2, Q'3 \), ec. \(Q'(\varepsilon) \), e ciò si dimostra con un discorso perfettamente uguale a quello del (n. 21 Mem.), avvertendo, che, a cagione di \(2g \) non \(< 10 \), tal discorso ha luogo eziando, allorquando nella permutazione semplice di \(n^o \), o semplice di \(2^o \) genere (3, 3 Intr. Mem.), per cui si pretende, che la \(x Q'1 \) nasca dalla \(Q'1 \), vuolci, che tutte restino implicate le radici \(x', x'', x''' \), \(x''', x'''' \). Dunque non potendo questa quantità \(x Q'1 \) essere uguale, che ad una delle \(Q''1, Q''2, Q''3 \), ec. \(Q''(\varepsilon) \), suppongiamo \(Q''1 = x Q'1 \), dovrà quindi essere pel (n. 34)

\[Q'1 = x Q'1, \quad Q'2 = a Q'2, \quad Q'3 = a Q'3, \quad ec., \quad \text{e in generale } Q''(\varepsilon) = a Q''(\varepsilon), \quad \text{essendo } n \text{ non } > g. \]

Si
Si moltiplichi presentemente la Q', per a^2; il prodotto a^2Q',
la est un po' potrà ugualizzare dei risultati, i quali provengono dalla Q';
perciò se si volesse $a^2Q' = Q'(n)$, avendo, per quanto
abbiam ora detto, $Q'(n) = aQ'(n)$, ne verrebbe $a^2Q' = aQ'(n)$,
e però $Q'(n) = aQ'(n)$, il che abbiamo veduto non poter essere. Sia
adunque $a^2Q' = Q'^2$.

Moltiplicando la Q' per a^2, il risultato a^2Q' non potrà
esse uguale ad alcuno di quelli che nascono dalla Q', perché se si
volesse $a^2Q' = Q'(n)$, avendo già $a^2Q' = Q'^2$, si
ritrasse $Q'(n) = aQ'^2$, il che nuovamente, per quanto si è detto di sopra,
è impossibile. Abbiasi pertanto $a^2Q' = Q'^n_2$.

Col moltiplicare la solita Q' per a^2, ne verrà il prodotto
al quale a niuno può uguagliarsi delle radici della
$f'(Q - a) = o$; perché se fosse $a^2Q' = Q'(n)$, a cagione di $Q'(n) = aQ'(n)$,
la avrebbe $a^2Q' = Q'(n)$, e però $Q'(n) = aQ'(n)$, il che si
è ora veduto non poter succedere. Pongasi perciò $a^2Q' = Q'^3$.

Proseguendo nella stessa maniera, si truova che nessuno
dei prodotti $a^2Q', a^2Q', a^2Q', a^2Q', a^2Q', a^2Q'$, cc. può essere uguale ad alcuna
de delle radici della $f'(Q - a) = o$, e nessuno degli altri a^2Q', a^2Q', a^2Q',
a$^2Q'$, cc. può uguagliare alcuna delle radici della $f'(Q - a) = o$,
e che perciò potremo sempre supporre $a^2Q' = Q'^3$, $aQ' =
Q'^4$, $a^2Q' = Q'^5$, cc. $a^2Q' = Q'^4$, $a^2Q' = Q'^5$, cc.

In conseguenza di questo tutte le radici della $Q'^{2a} + b = o$ si
comprenderanno nelle due serie.

Q' $= a^2Q', Q'^3 = a^2Q', Q'^4 = a^2Q', Q'^5 = a^2Q', cc. Q'(g) = a^{2(g-1)}Q', Q' = a^{2g-1}Q',
Q'^3 = a^{2g-1}Q', Q'^4 = a^{2g-1}Q', cc. Q'(g) = a^{2g-1}Q',
contenendosi nella prima le radici della $f'(Q - a) = o$,
e nella seconda le radici della $f''(Q - a) = o$.

Facciamo $a^2 = \beta$, e nella $u^{a^2} - t = 0$, facciamo $u^2 = t$; tale
Equazione diverrà $t^8 - t = 0$, e le quantità $\beta = a^2$, $\beta^2 = a^2$,
$\beta^3 = a^2$, cc. $\beta^4 = a^2$, saranno tutte le sue radici, perché per la
natura della x (in. 34.) le $a^2, a^2, a^2, cc. a^2$, e però le β, β^2, β^3, cc.
37. Nella $Q^g^h + b = o$ (n.° 35) pongasi $Q^g = R$, ne verrà $R^h + b = o$. Essendo Q, e però R, funzione delle $x', x'', x''', x'''', x''''$, (n.° 34), espressa per R una delle radici della $R^h + b = o$, e quindi supposto $R' = \phi' (x) \phi'' (x'') \phi''' (x''') \phi'''' (x''''),$ osservo tosto, che le h radici della $R^h + b = o$ non possono essere i soli diversi risultati, che provengono per tutte le permutazioni fra le x', x'', ecc., x'''' dalla sola funzione $\phi' (x) \phi'' (x'') \phi''' (x''') \phi'''' (x''''),$ perché inalora l'Equazione $R^h + b = o$ a cagione di $h > 2$ (n.° prec.) (pei n.° 21, 22, 24. Mem.) sarebbe assurda. Pongasi pertanto $R'' = \phi'' (x) \phi''' (x''') \phi'''' (x''''),$ $R''' = \phi''' (x) \phi'''' (x''''),$ ecc., e siano radici della $R^h + b = o$ i valori diversi, che per le indicate permutazioni ottengonsi da queste varie funzioni $R', R'', R''',$ ecc.; chiamato i il numero de' valori provenienti dalla R', come nei precedenti (n. 34, 35) si dimostra, che di numero i sono ancora tutti i valori diversi, che provengono da ciascuna delle altre $R'', R''',$ ecc., e però, che chiamato k il numero delle R', R'', R''', ecc., avremo $h = ik$, onde la $R^h + b = o$ diventerà $R^{ik} + b = o$. 38.
38. Posto nella \(Q^g = R \) il valore \(R' \) invece di \(R \), sia la \(Q^1 \) (n.° 36) radice della Equazione \(Q^g = R' \). Eseguiscasi tanto nella \(Q^1 \), come nella \(R' \) una delle permutazioni fra le \(x', x'', x''' \), ecc. \(x^n \), e supponiamo, che per tale permutazione la \(R' \) si conservi la medesima, e che la \(Q^1 \) acquisti un valore diverso, che dirò \(Q(a) \). In questa ipotesi io dico, che la quantità \(Q(a) \) sarà essa pure radice della Equazione \(Q^g = R' \).

Poichè per la generalità dell' Equazione (F) l'altra \(Q^1^g = R \) deve verificarsi indipendentemente da qualunque valore, e da qualunque rapporto particolare fra le \(x', x'', x''' \), ecc. \(x^n \), ne viene che per tutte quelle permutazioni fra le stesse \(x', x'', \) ecc. \(x^n \), sotto cui la funzione \(R' \) conserva il proprio valore, dovrà conservarlo ezianzi la \(Q^1^g \); ma per la permutazione, onde dalla \(Q' \) producasi la \(Q(a) \), la \(R' \) per la ipotesi non cambia valore; dunque per la permutazione medesima non dovrà cangiarlo neppure la \(Q^1^g \), e per conseguenza avremo \(Q^1^g = Q^g(a) \), perchè questa \(Q^g(a) \) essendo la potenza gesima della \(Q'(a) \), come la \(Q^1^g \) è la gesima della \(Q' \), è appunto quel risultato, che otteniamo dalla \(Q^1^g \) per l' indicata permutazione. Dunque avendosi \(Q^1^g = R' \), sarà ancora \(Q^1^g(a) = R' \), e però la \(Q(a) \) radice della \(Q^g = R' \). Dunque ec.

39. Nell' esponente della Equazione \(R^i^k + b = 0 \) (n.° 37) deve essere il numero \(i > 2 \).

1.° Sia, se è possibile, \(i = 1 \). Esprimendosi da questo \(i \) il valore, essi per tutte le permutazioni fra le \(x', x'', x''' \), ecc. \(x^n \) provengono dalla \(R = \psi'(i', i'')(x'')(x''')(x^n)(x') \) (n.° 37), ne segue. che nel caso presente volendosi \(i = 1 \), e però un solo essendo il valore della \(R' \), essa \(R' \) per tutte le accennate permutazioni si conserva sempre la medesima, essendo quindi una funzione della forma \(\psi'(i', x'', x''' \), ecc. \(x^n \) \) (n.° 3. Teor.). Dunque conservando essa \(R' \) il proprio valore per tutte quelle permutazioni,
Risposta ai dubbi proposti cc.

ni, per cui dalla Q'1 nascono le Q'2, Q'3, ec. Q'(g) (n.° 36), ritenuta, come nel (n.° prec.), radice della Q^g = R la Q'1, per lo stesso (n.° prec.) dovranno essere radici della medesima Q^g = R' ancora tutte le altre quantità Q'2, Q'3, ec. Q'(g), ma per la natura della R' = \(\Phi' (x', x'', ec. x'^n) \); e per essere \(g > 2 \) è impossibile, che tutte queste quantità Q'1, Q'2, Q'3 ec. Q'(g) siano radici dell' accennata Q^g = R' (n.° 21, 22, 24. Mem.). Dunque sarà ancora impossibile, che abbiai \(i = 1 \).

2.° Vogliasi \(i = 2 \), e siano R'1, R'2 i due soli valori diversi, che per tutte le permutazioni fra le \(x', x'', ec. x^n \) acquista la R'. Dai (n.° 40, 10 Mem.) è facile a vedersi, che sarà R'1 = \(\Phi'(x')(x'')(x''')(x''')(x') \), R'2 = \(\Phi'(x')(x'')(x'''')(x'')(x') \), e che questi due valori corrispondono ai due \(y', y'' \) del (n.° 36. Mem.). Pongasi ora R'1 invece della R', e sia Q'1 radice della Equazione Q^g = R'1. Essendo due soli i valori provenienti dalla R', una metà dei risultati, che per tutte le permutazioni fra le \(x', x'', ec. x^n \) nascono dalla Q' dovrà corrispondere al primo di questi due valori, cioè ad R'1, e l'altra metà al secondo R'2.

Ciò posto, io dico, che nel caso presente uno qualunque dei risultati della Q', il quale appartenga alla prima delle indicate metà deve essere disuguale da uno qualsivoglia appartenente alla metà seconda. Difatti se accadessero una tale eguaglianza; dipendendo essa necessariamente dalla forma della funzione Q', anche tutti gli altri risultati della metà prima sarebbero in corrispondenza uguali agli altri della metà seconda (n.° 47. Teor.); e però tutti i valori tra loro diversi della Q', cioè tutte le quantità Q'1, Q'2, Q'3, ec. Q'(g), (2.° n.° 36.), corrispondendo ugualmente alla R'1, come alla R'2, si otterrebbero coll' eseguire semplicemente sulla Q' = \(\Phi'(x')(x'')(x''')(x''')(x') \) tutte quelle permutazioni, per cui la R'1 conserva il proprio valore. Dunque essendo per ipotesi la Q'1 radice della Q^g = R'1, tali pel (n.° 38) sarebbero ancora tutte le altre Q'2, Q'3, ec. Q'(g); ma ciò pel (n.° 41, 24 Mem.) è impossibile. Dunque sarà ancora impossibile, che uno dei risultat-
tati della Q' contenuti nella prima metà corrispondente ad $R'1$ sia uguale ad uno dei contenuti nell'altra metà corrispondente ad $R'2$.

In conseguenza di ciò dovendo una metà di tutti i valori fra loro disuguali (2.° n.° 36) $Q'1$, $Q'2$, $Q'3$ ec., $Q'(g)$ corrispondere ad $R'1$, e l'altra metà ad $R'2$, il loro numero g sarà pari, e quindi supposto $g = 2l$, e supposto che $Q'1$, $Q'2$, $Q'3$, ec. $Q'(l)$ siano i valori della Q' corrispondenti ad $R'1$, che $Q'(l + 1)$, $Q'(l + 2)$, $Q'(l + 3)$ ec. $Q'(2l)$ siano i corrispondenti ad $R'2$, le prime tra queste quantità saranno radici della $Q^{2l} = R'1$, ossia della $Q^{2l} = R'1$, e le seconde della $Q^{2l} = R'2$. Avendosi poi $g > 2$ (n.° 35), sarà $l > 1$, e però l non < 5 (7° Intr., n.° 40, Mem.).

Poiché la $Q^{2l} = R'1$ contiene un numero $2l$ di radici, essa ne conterrà delle altre oltre le precedenti $Q'1$, $Q'2$, $Q'3$, ec. $Q'(l)$, ma per quanto abbiamo detto, tali non ponno essere le $Q'(l + 1)$, $Q'(l + 2)$, $Q'(l + 3)$, ec. $Q'(2l)$, e tutte le radici della $Q^{2l} = R'1$ devono evidentemente essere tanti valori delle Q, ossia devono essere tante radici della $Q^{2l} = R'1$, essendo pure per (n.° 33) saranno tutte radici della $Q^{2l} = R'1$; e tutte per conseguenza le radici di questa Equazione verranno comprese nelle due serie

$Q'1$, $Q'2$, $Q'3$, ec. $Q'(l)$,
$Q''1$, $Q''2$, $Q''3$, ec. $Q''(l)$.

Avendosi l non < 5, e però $2l$ non < 10, un discorso perfettamente uguale a quello del (2.° n. 36) ha luogo sopra queste radici, e sopra l'Equazione $Q^{2l} = R'1 = 0$. Dunque qui pure si troverà, che le $Q'1$, $Q'2$, $Q'3$, ec. $Q'(l)$ debbono essere radici di un'Equazione $Q^l = V = 0$, in cui $V = \pm Q'1 Q'2 Q'3 \ldots Q'(l)$ uguaglia una funzione delle x, x'', ec. x'', la quale corrispondente al valore $R'1$ non ha che un solo valore; ma tale Equa-

Tomo XII.

Tomo XII.

_Il zio-
zione \(Q^l - V = c \) dotata di queste proprietà a cagione di \(l \) non < 5 pei (n. 41, 24 Mem.) è impossibile. Dunque sarà ancora impossibile, che nell' esponente \(ik \) abbia \(i = 2 \), e per conseguenza dovrà essere \(i > 2 \).

Poiché nella \(R^{ik} + b = c \) abbiamo \(i > 2 \) (n. ° prec.), come nella \(Q^{gh} + b = c \) avemmo \(g > 2 \) (n. ° 35), e poiché queste due Equazioni sono di forma perfettamente simile, ne segue, che col discorso medesimo, mediante il quale si è nel (n. ° 36) dimostrato dovere nella \(Q^{gh} + b = c \) essere \(h > 2 \), si dimostrerà ancora, che nella \(R^{ik} + b = c \) si ha necessariamente \(k > 2 \).

Supposto pertanto \(R^i = S \), ed ottenuta la \(S^k + b = c \), come nei (n. 37, 39, 40) vedremo che anche l'esponente \(k \) deve essere un composto di due fattori, ciascuno dei quali sia > 2.

Chiamati questi \(q, r \), onde \(k = qr \), e nella \(S^{r} + b = c \) è fatto giusta il metodo precedente \(S^r = T \), ne verrà \(T^r + b = c \) Equazione, nella quale si troverà egualmente dover essere l'esponente \(r \) composto di altri due fattori, che dirò \(s \), \(t \), onde \(r = st \), ciascuno de' quali sarà > 2. In egual modo supposto \(T^r = U \), l' Equazione \(T^{r} + b = c \) si ridurrà alla \(U^r + b = c \), e l'esponente \(t \) sarà esso pure il prodotto di due fattori, ciascuno de' quali supera il 2. Così proseguendo all' infinito, vedesi, che si viene a formare una serie infinita di Equazioni \(Q^l + b = c \), \(R^k + b = c \), \(S^k + b = c \), \(T^r + b = c \), \(U^t + b = c \), etc., in cui avendosi \(p = gh \), \(h = ik \), \(k = qr \), \(r = st \), etc., ed essendo ciascuno dei fattori \(g, i, q, r, s, ec. \), \(h, k, s, t, ec. \), \(k, r, t, ec. \) > 2, la serie degli esponenti \(p, h, k, r, t, ec. \) sarà costantemente decrescente, cosicché \(p > h > k > r > s > ec. \), e ciascuno di essi sarà numero composto. Ora essendo \(p \) numero finito (n. ° 34), l'esistenza di questa serie infinita di esponenti è impossibile, perché col progredire innanzi tal serie, è chiaro, che giunger si deve necessariamente ad un esponente il qual sia numero primo. Dunque sarà ancora impossibile la corrispondente sovraindicata serie d' Equa-
d'Equazioni, e quindi impossibile la \(Q^f + b = 0 \); ma essendo
assurda questa \(Q^f + b = 0 \), e assurda eziandio la \((y+a)^f + b = 0\)
(n. 34). Dunque allorquando la \(F(y) \) sia il prodotto di quante-

dovogliamo funzioni \(f'(y), f''(y), f'''(y), \ldots \), e mentre il grado di
una di queste sia \(> 2 \) (n. 34), è impossibile, che la \(F(y) = 0 \) sia
della forma \((y+a)^f + b = 0\).

42. Se manchi la condizione, che il grado d'una delle \(f'(y) = 0, f''(y) = 0, f'''(y) = 0, \ldots \) ec. sia \(> 2 \); allora tutte queste

Equazioni avranno il grado 1, oppure 2 (n. 34, 35), e risultando
il numero \(g = 1 \) oppure \(g = 2 \), non avranno più luogo i precedenti
discorsi, e potrà benissimo darsi, che la \(F(y) = 0 \) acquisti la for-
ma \((y+a)^f + b = 0\); ma si rifletta, che questo caso non apporta
vantaggio alcuno alla soluzione della supposta \(F \). Se la \(y' \) può
attualmente determinarsi dalla \((y+a)^f + b = 0\), poteva già
anche determinarsi nel caso presente dalla \(f'(y) = 0 \), non supe-
randosi da questa Equazione il grado 2, e d'altronde questa \(y' \)
non avendo per tutte le permutazioni fra le \(x', x'', x'''', \ldots \)
che uno, o due soli valori, non è punto opportuna per la soluzio-
ne della Equazione generale di 5° grado (n. 4, ec. 10).

43. I discorsi de' precedenti (n. 33, ec. 42) non esigono
punto che la \(F(y) = 0 \) sia la trasformata in \(y = f(z') (z'') (z''') \ldots \)
de(n. 29) dedotta dalla (VII): in essi la \(F(y) = 0 \) si considera
come un'Equazione risultata dal moltiplicare fra loro quante si
vogliono Equazioni \(f'(y) = 0, f''(y) = 0, f'''(y) = 0, \ldots \) aventi
per incognite delle funzioni, qualunque esse siano, delle \(x', x'', \ldots \)
ecc. Dunque quanto si è concluso nei precedenti (n. 41, 42)
è sempre vero, qualunque siano le Equazioni \(f'(y) = 0, f''(y)
\ldots = 0 \), ecc. componenti la \(F(y) = 0 \).

44. Vogliasi, che una per lo meno delle \(f'(y) = 0, f''(y)
\ldots = 0 \), ecc. per esempio la \(f'(y) = 0 \) contenga non già
tutti, s'ecceome ne' (n. prec.1), i valori diversi, che per tutte le

permutazioni fra le \(x', x'', \ldots \) ecc. \(x'' \) derivano dalla \(y' = \Phi'(x')
\ldots (x'') (x''') (x'''' \ldots) \) (n. 28), ma solamente, e precisamente quel-
la metà de' medesimi, che corrisponde al primo de' due valori
\(\Phi'(x') (x') (x'') (x'''), \ldots \) supposti nel

\(1 \) \(a \)

\(2^{o} n. 39 \)
Risposta ai dubbi proposti cc.

(2° n. 39) rispettivamente = R'1, R'a. Potrà essa in questa ipotesi la precedente F(y) = o acquistare la forma \((y+a)^p + b = o\)?

Rispondo, che se il grado della \(f'(y) = o\), e però il numero dei valori della \(y\) ora supposti sia \(> 1\), ciò non è punto possibile. Chiamato difatti \(g\) questo numero, e ritenuta la supposizione di \(y + a = Q\) (n.° 34), onde le precedenti Equazioni in \(y\) riducansi, come nel citato (n.° 34.), ad essere espresse per la \(Q\), con dei discorsi perfettamente uguali a quelli de' (n.° 34, 35) si vedrà, che ancora nel caso presente le \(Q''\), \(Q'''\), cc. conservano, e cambiano il proprio valore per quelle stesse permutazioni, per cui lo conserva, e cambia la \(Q'\), e che per conseguenza il grado di ciascuna delle \(f'(Q-a) = o, f''(Q-a) = o, f'''(Q-a) = o, cc.\) è \(= g\), e ciascuna di esse contiene per radici solamente quei risultati delle rispettive funzioni \(Q', Q'', Q''', cc.,\) che corrispondono al primo valore \(\Phi'(x) (x')(x'')(x''')(x''')\). Ora chiamati, come nel (2° n.° 36) \(Q'1, Q'2, Q'3, cc.\) \(Q'(g)\) le radici della \(f'(Q-a) = o, \) ciascuno dei coefficienti di questa Equazione essendo una funzione della forma funz. \((Q'1, Q'2, Q'3, cc. Q'(g)\) (n.° 105, 3. Teor.) conserva il proprio valore, tanto per quelle permutazioni fra le \(x', x'', cc. x''',\) sotto cui conservano il proprio le \(Q'1, Q'2, Q'3, cc., Q'(g)\), come per quelle altre, sotto cui esse \(Q'1, Q'2, Q'3, cc.\) \(Q'(g)\) cangiansi fra di loro, e lo stesso dicesi pur anche dei coefficienti di tutte le altre Equazioni \(f''(Q-a) = o, f'''(Q-a) = o, cc.\) Dunque ciascuno dali coefficienti, e però anche il coefficiente \(b\) nella \(Q^p + b = o,\) non cambierà punto valore per tutte queste permutazioni, per cui non lo cambia la \(\Phi'(x') (x'') (x''')(x'''')\), ed avrà per conseguenza corrispondentemente a questa funzione un solo valore; e potendone aver un altro corrispondentemente alla \(\Phi'(x') (x'') (x''')(x'''')\) il primo di questi sarà quello, che è contenuto nella precedente \(Q^p + b = o.\)

Ciò posto, e chiamato \(h\) il numero delle \(Q', Q', Q''\), cc. sarà, come nel (n.° 35), \(p = gh\), e ridottasi la \(Q^p + b = o\) alla \(Q^{gh} + b = o\), io dico primieramente, che deve essere \(h > 1\); perché se fosse \(h = 1\) la \(Q^p + b = o\) diverrebbe \(Q^p + b = o, cc.\)
Di Paolo Ruffini.

questa è un'Equazione, la quale per esser $g > 1$, e quindi pei (n. 41, 24. Mem.) con un discorso perfettamente simile a quello del (1° n. 36) si trova impossibile.

Facciasi $Q^k = R$, onde si abbia $R^h + b = 0$. Essendo $h > 1$, con un discorso uguale a quello del (n. 37) vedremo, che in conseguenza dei (n. 41, 24 Mem.) la $R^h + b = 0$ non può avere per radici i soli risultati, che da una sola funzione R provengono per tutte le permutazioni fra le x', x'', x''' ec. x^* corrispondenti alla $\phi'(x')(x'')(x''')(x^*)$, e che deve avere per radici i risultati diversi, che per le permutazioni medesime nascono da più funzioni diverse R', R'', R''' ec. Chiamato adunque k il numero di tutte queste R', R'', R''' ec., ed i il numero dei risultati diversi, che corrispondentemente alla $\Phi'(x')(x'')(x''')(x^*)$ ottengono da una di tali funzioni, sarà quindi, come nel citato (n. 37), $h = ik$, e la $R^h + b = 0$ si ridurrà alla $R^{ik} + b = 0$.

In questa $R^{ik} + b = 0$ deve essere $i > 1$; perchè se fosse $i = 1$, la R avendo allora per tutte le permutazioni fra le x', x'', ec. x^* un solo valore corrispondente alla $\Phi'(x')(x'')(x''')(x^*)$; l'Equazione $Q^k = R$, come nel (1° n. 39) pel (n. 38), e poi (n. 41, 24 Mem.) si troverebbe assurda.

Come si è presentemente trovato, che nella $Q^{eh} + b = 0$, a cagione di $g > 1$, deve essere ancora $h > 1$; così nella $R^{ik} + b = 0$ vedesi, che essendo $i > 1$, deve eziandio risultare $k > 1$.

Facciasi $R^i = S$, e dalla $R^{ik} + b = 0$ ottenuta la $S^k + b = 0$, si applichi a questa, ed all'esponente k quanto si è detto rapporto alla $R^h + b = 0$, ed all'esponente h; vedremo quindi dover essere anche k un numero composto di altri due, che, come nel (n. 41), dirò q, r, e dover essere $q > 1, r > 1$. Col supporre $S^t = T$ ridotta la $S^k + b = 0$ alla $T' + b = 0$, si troverà parimenti dover essere ugualé ad un prodotto st, in cui $s > 1, t > 1$; e così in progresso. Dunque eziandio nel caso presente nascerà una serie di Equazioni $Q^l + b = 0$, $R^h + b = 0$, $S^k + b = 0$, $T' + b = 0$.
b = 0, ec., la quale, essendo \(p = gh, h = ik, k = qr, ec. \), ed essendo tutti i numeri \(g, i, q \) ec. \(h, k, r \), ec. \(> 1 \), potrà protraersi all'infinito, ed in cui gli esponenti \(p, h, k, r \), ec. andranno sempre decrescendo, e dovremo essere tanti numeri composti; ma essendo \(p \) numero finito, una tal serie di Equazioni, come abbiamo osservato nel \(n. 41 \), è impossibile. Dunque sarà impossibile ancora nella ipotesi del \(n. 9 \) pres., che la \(F(y) = 0 \) acquisti la forma \((y + a)^p + b = 0 \); mentre però si abbia \(g > 1 \).

Se sia \(g = 1 \), allora potrà succedere, che la precedente \(F(y) = 0 \) acquisti la forma \((y + a)^p + b = 0 \); ma le ragioni stesse, che abbiamo esposto nel \(n. 42 \), ci mostrano, che una tal forma nel caso di \(g = 1 \) è affatto inutile per la risoluzione della \(F \).

45. Questa Equazione \(F(y) = 0 \) se deve esser priva della forma \((y + a)^p + b = 0 \) \(n. 44 \); non potrebbe poi avere un qualche fattore, i coefficienti del quale siano funzioni razionali de' coefficienti propri o dei coefficienti della data o della precedente funzione \(\Phi' (x) (x'') (x''') (x''') (x''') \), e dal quale possa in seguito ricavarsi un valore della \(y \) atto immediatamente, o mediatamente allo scioglimento della \(F \)? Rispondo, che sì. Diffatti \(F(y) = 0 \) si trova con i discorsi stessi (de' n. 29, ec. 32) non avere altri fattori, i coefficienti de' quali siano funzioni razionali de' coefficienti propri, o di quelli della \(F \), o della \(\Phi' (x) (x'') (x''') (x''') (x'') \), se non che i primi membri delle Equazioni \(f' (y) = 0 \), \(f'' (y) = 0 \), \(f''' (y) = 0 \), ec. dalle quali è composta: ma le radici di queste \(f' (y) = 0 \), \(f'' (y) = 0 \), \(f''' (y) = 0 \), ec. tanto dalla Teoria delle Equazioni, quanto dalla Memoria sopra la Insolubilità, e dai precedenti \(n. 5 \), ec. 10, 44, 45) ec. sappiamo essere o indeterminabili, o inutili alla soluzione della \(F \). Dunque ec.

46. Da quanto viene concluso; e asserito nei \(n. 41, 42, 43 \) vedesi che resta pienamente scioltà la difficoltà che ci siamo proposta nel \(n. 33 \), e ciò qualunque siansi le trasformate \(f' (y) = 0 \), \(f'' (y) = 0 \), \(f''' (y) = 0 \), ec. \(n. 43 \), dalla cui moltiplicazione risulta la \(F(y) = 0 \); anzi dal \(n. 44 \) si vede, che la difficoltà medesima rimane scioltà ezziandio nel caso, in cui si voglia, che la \(F(y) = 0 \) contenga per fattori quelle parti delle trasformate, che corrispon-
pondono alla \(\psi'(x')(x')(x''')(x'''')(x''') \), parti, le quali per (n. 280, 150, 147 Teor. n. 37, 41 Mem.) sono sempre determinabili. Dal (n. 45) poi appare, che neppure in quest'ultima supposizione dalla \(F(y) = 0 \) possono avversi dei fattori opportuni, onde scuoprire nella \(F \) immediatamente, o mediamente i valori della \(x \).

47. Nel (n. 241 Teor.), e nel (3.° Intr. della Mem.) ho detto, che la funzione fra le \(x', x'', x''', x'''', x'''' \), la quale è radice di una di quelle trasformate, che deggiono immediatamente, o mediamente servire alla soluzione della \(F \), può sempre supporre razionale; perchè se si supponesse irrazionale, 1.° la trasformata corrispondente per questa irrazionalità si inalzerrebbe maggiormente di grado (n. 1. 136 Mem.), e quindi si renderebbe più difficile a risolversi; 2.° dallo stato d'irrazionalità della supposta funzione per (n. 158 Teor.) non si trae vantaggio alcuno sopra di una funzione simile razionale, mentre da tal funzione vogliansi determinare i valori della \(x \) nella \(F \), o quelli di un'altra funzione delle \(x', x'', x''', x'''', x'''' \). Supposte le due \(y' = \psi'(x')(x'')(x''')(x'''')(x''''')(x''''''), \ z' = f'(x'(x'')(x''')(x'''')(x''''')(x'''''')) \) funzioni simili (n. 4 Teor.), tali cioè, che per quelle permutazioni medesime fra le \(x', x'', x''', x'''', x'''' \), per cui la \(y' \) conserva, o cambia il proprio valore, lo conserva ancora, o cambia in corrispondenza la \(z' \), e supposta la \(y' \) irrazionale, e razionale la \(z' \), la trasformata primieramente in \(y \) sarà di un grado più alto di quello della trasformata in \(z \), e secondariamente nel cercare dalla \(x' \) il valore della \(x \), o quello di una terza funzione \(u = F(x) \), se cadiamo in un'Equazione di grado per esempio \(q \), si caderà eziandio in un'Equazione dello stesso grado \(q \), mentre questo valor della \(x \), o questa funzione \(u \) si ricerci dalla \(y' \). Egli è perciò, che tanto nella Teoria, come nella Memoria non si sono rapporto alla soluzione delle Equazioni, considerate punto le trasformate, che hanno per radici delle funzioni delle \(x', x'' \), ecc. \(x'' \) irrazionali; ma quantunque il grado dell'Equazione in \(y = \gamma(x')(x''')(x''')(x''''') \), essendo questa funzione irrazionale, sia troppo alto, non potrebbe tale equazione acquistare la solita forma \((y + a)^n + b = c \), od
od avere un fattore determinabile, da cui possa ricavarsi un valore della \(y \) opportuno immediatamente, o mediamente allo scioglimento della \(f \)? Quantunque, nel cercare dalla \(y' \) il valore di una funzione \(u \), cadasi in un'Equazione di grado \(q \) troppo alto, non potrebbe darsi, che anche in questa Equazione in \(u \) fosse determinabile un fattore atto alla soluzione della \(f \), o che fosse essa riducibile alla forma \((u + a)^q + b = c \)? Ecco altri due dubbi, cui è necessario risolvere.

48. Supposta pertanto la \(y = \varphi(x')(x'')(x''')(x'^{iv}) \) irrazionale, dal \(n. \, 135 \) Teor.) sappiamo, che la varietà de' suoi valori dipende da due ragioni, dalle permutazioni cioè, che possansi fare tra le \(x', x'', \) ec. \(x^r \), e dalla irrazionalità della funzione. Teniamo conto in primo luogo dei valori diversi, che dipendono da quest'ultima ragione, e chiamati \(y' = \varphi(x')(x'')(x''')(x'^{iv}) \), \(y'' = \varphi''(x')(x'')(x''')(x'^{iv}) \), \(y''' = \varphi'''(x')(x'')(x''')(x'^{iv}) \), \(y'''' = \varphi''''(x')(x'')(x''')(x'^{iv}) \), ec. i risultati, che ottenesi dalla \(y = \varphi'(x')(x'')(x''')(x'^{iv}) \) corrispondentemente ai diversi valori, e alle combinazioni diverse dei radicali, che vi si contengono, eseguiscasi in seguito in ciascuna delle \(y', y'', y''' \), ec. tutte le permutazioni fra le \(x', x'', \) ec. \(x^r \). Operando in simile guisa, otterremo evidentemente tutti i diversi valori della supposta \(y \), e quindi dal loro numero il grado dell'Equazione corrispondente.

Sia \(f'(y) = 0 \) l'Equazione, che contiene tutti i valori diversi, che ottenesi dalla \(y = \varphi'(x')(x'')(x''')(x'^{iv}) \) per tutte le permutazioni fra le \(x', x'', \) ec. \(x^r \), sia \(f''(y) = 0 \) l'Equazione, in cui si comprendono i valori tutti, che nel modo medesimo provengono dalla \(y'' = \varphi''(x')(x'')(x''')(x'^{iv}) \), contengansi dalla \(f'(y) = 0 \) i valori provenienti nella stessa guisa dalla \(y''' = \varphi'''(x')(x'')(x''')(x'^{iv}) \), e così in progresso, e sia finalmente \(F(y) = 0 \) l'Equazione, che tutti insieme riunisce i valori della \(y \). Questa \(F(y) = 0 \) equivalerà evidentemente al prodotto di tutte le \(f'(y) = 0, f''(y) = 0, f'''(y) = 0, \) ec.

49. È facile a vedersi, che i discorsi tutti, e però tutti i Teoremi, che sonosi esposti tanto nel Capo 13° della Teoria, come nella Memoria rapporto ai risultati provenienti da una data
Di Paolo Ruffini.

funzione razionale per tutte le permutazioni fra le x', x'', x''', \ldots, cc.; si verificano ezziandio, allorché la funzione data sia irrazionale, purché in quest'ultima ipotesi si conservi nella data funzione costante il valore, e la combinazione dei radicali, che vi si contengono. Dunque neppure tra le Equazioni $f'(\gamma) = 0, f''(\gamma) = 0, f'''(\gamma) = 0$, cc. del (n.° prec.) alcuna ve ne potrà essere, la quale, mentre abbia l'esponente > 2, possa acquistare la forma $(\gamma + a)^p + b = 0$ (n.° 22, 21, 24 Mem.), o la quale contenga alcuni fattori, i cui coefficienti siano funzioni razionali dei coefficienti propri, o dei coefficienti della data (n.° 28 Mem., prec. n.° 27).

Ora queste $f'(\gamma), f''(\gamma), f'''(\gamma)$, cc. sono evidentemente tante funzioni, l'una delle quali non proviene dall'altra per delle permutazioni fra le x, x', x'', cc. x. Dunque i razionarì di (n.° 29, ec. 43) a cagione di quanto abbian detto poc'anzi, applicansi tutti ezziandio alla $F(\gamma) = 0$ del (n.° prec.), giacché questa $F(\gamma) = 0$ proviene essa pure, siccome l'altra dei (n.° 29, 43) dal prodotto delle indicate $f'(\gamma) = 0, f''(\gamma) = 0, f'''(\gamma) = 0$, cc., e per conseguenza neppure essa $F(\gamma) = 0$ potrà acquistare la forma $(\gamma + a)^p + b = 0$, nè potrà avere alcun fattore diverso da $f'(\gamma), f''(\gamma), f'''(\gamma)$, cc. i coefficienti del quale siano funzioni razionali dei coefficienti della proposta, o dei coefficienti propri.

50. Rapporto ora alla seconda delle difficoltà proposte nel (n.° 47.), osservo, che volendo attualmente da un valore della y' determinare il valore di una funzione u, razionale essa siasi, o irrazionale, conviene ritrovare primieramente questo valore della y'; ma simil valore non è mai determinabile, se non quando la corrispondente $\phi(x')(x'')(x''')(x''') abbia per tutte le permutazioni fra le x', x'', cc. $x'\gamma$ uno, o due soli valori (n.° 14 Mem., n.° 276 Teor., prec. n.° 5). Supposto adunque, che la y' abbia dipendentemente dalle permutazioni questo solo, o questi due soli valori, poiché esso nel primo caso è della forma $\phi(x', x'', x''', x''', x''')$, e nel caso secondo i due valori fra loro diversi della y' sono i due risultati $\phi(x')(x'')(x''')(x''')(x''')$, $\phi(x')(x')(x')(x')(x')(x')(x')$ corrispondenti ai due del (n.° 39, n.° 280 Teor., n.° 40, 10 Mem.), poi-

Tomo XII. K k

ché
ch'è i coefficienti della richiesta Equazione in \(u \) degniono deter-
minarsi dipendentemente da uno dei valori della \(y' \), e poiche fi-
nalmente rapporto eziando alla \(u \) irrazionale hanno luogo le ri-
flessioni fatte nei (n.\(^1\) 48, 49); ne segue, che saranno qui pure
applicabili i raziocini dei (n.\(^1\) 21, 22, 24, 41 Mem., prec.\(^1\) n.\(^1\) 32,
ec. 43, 44, 45, 46, 49), e pero che l'Equazione in \(u \) ne può avere
alun divisore, i coefficienti del quale siano funzioni commen-
surabili de' coefficienti proprj, o dei coefficienti della data, o fun
zioni razionali del rispettivo valore della \(y' \) (n.\(^n\) 45), ne può ac-
quistare la forma \((u+a)^q + b = c\), mentre nel primo degli ac-
cennati casi abbia \(q > 2 \), e nel secondo \(q > 1 \). La supposizione
di \(q = 2 \) nel primo caso, e quella di \(q = 1 \) nel caso secondo sappia
mo essere inutile allo scioglimento della (F) (n.\(^n\) 42, 44).

La soluzione dei dubbi proposti nel (n.\(^n\) 47) ottienesi adun
que nella guisa medesima, con cui nei (n.\(^1\) prec.) sonosi sciolti
le difficolt\'e esposte nei (n.\(^1\) 24, 33, 44).

51. Tanto nella Teoria, come nella Memoria ho considerato,
che i valori della \(z \) nella (F) si ricerchino immediatamente
dai valori di una sola funzione \(Z \) (n.\(^n\) 280, 282 Teor.), oppure
\(z \) (n.\(^n\) 30 Mem.); ma se in tale ipotesi questi valori della \(z \) non
sono determinabili, come si è già dimostrato, non potrebbero poi
esserlo, mentre si cercino dipendentemente da due, o più fun
zioni combinate fra di loro in un qualche determinato modo,
qualunque esso siasi?

Per rispondere a simile dubbio, posto \(\phi(x)(x')(x'')(x''')(x''')(x''') = z,
\phi'(x')(x')(x'')(x''')(x''') = u, \phi''(x')(x')(x'')(x''')(x''') = y, ec., suppon-
ghiamo di cercare la \(x \) dalle quantità \(z, u, y, \) ec., e di ottenere
quindi la Equazione \(f(x)(x)(u)(y) \ldots = c \). Ora, o si vuole, che
ciascuna delle \(z, u, y, \) ec. conservi il proprio valore per tutte le
permutazioni semplici di 1\(^o\) genere (n.\(^1\) 256, 257 Teor., 6.\(^o\) Intr.
Mem.), che possansi eseguire fra tutte e cinque le \(x, x', x'', x'''
\ldots \), o si vuole, che qualcuna delle stesse funzioni, per esempio la \(u, \)
 cambi di valore per una delle permutazioni indicate. Nel secon-
di di questi casi la \(u \) avendo un numero di valori tra loro diver-
si non < 5 (n.\(^n\) 262 Teor., n.\(^n\) 4 Mem.), dipenderà da un'Equa-
azio-
zione di grado non minore del 5.°, della quale, come appare\n da quanto si è detto nei (n.° prec.), non si può ottenere la soluzio-\n n. Nel caso primo poi col discorso medesimo del (n.° 31 Mem.), si vede che dai valori delle \(x, x', x'' \), ecc. combinati, comunque vogliasi, fra di loro tutte dipendono in egual modo le \(x, x', x'' \), \(x', x'' \), che chiamiamini esse da tali valori ad una, ad una, oppure a due a due, oppure a tre a tre, ecc. Dunque non potendo queste ra-\n dici, che essere comprese tutte, in egual modo nella sola \(f(z) = 0 \), tale Equazione sarà di quinto grado, ed anzi sarà identica con la data. Dunque per ottenere i valori del-\n la \(x \) in questo caso, converrebbe cadere a dovere infine risolvere\n la stessa Equazione proposta, e quindi le \(z, u, y \), ecc. di verrebbe-\n no inutili. Dunque tanto nel primo, come nel secondo degli accen-\n natì casi la moltiplicità delle funzioni insieme combinate nella\n giova alla risoluzione della Equazione data di 5.° grado.

52. Quantunque non possa l'Equazione generale di 5.° gra-\n do ridursi mai ad altra Equazione, che si sappia risolvere, e dalle cui radici sappiansi poi dedurre immediatamente, o mediamente le radici della proposta, non potrebbe egli darci, che indipendentemente da qualunque trasformazione si potesse supporre, od immaginare, anche all'azzardo, una quantità, od espressione algebraica, la quale sostituita in luogo della \(x \) facesse verificare l'Equazione data?

Rispondo che no, e lo dimostro. Poiché l'accennata quantità, od espressione algebraica, la quale si vuole radice della data Equazione di 5.° grado, può, mentre esista, essere formata di\n diversi termini; chiamati questi \(P, Q, R, \) ecc., supponghiamo se è possibile, \(x = P + Q + R + \) ecc. Dovendo la \(x \), e però i termini \(P, Q, R, \) ecc. essere evidentemente funzioni degli \(A, B, C, \) ecc. coefficienti della data Equazione \((P) \), in cui \(m = 5 \).

1.° Comincio dal supporre \(P = \sqrt{b} \), in cui \(p \) sia numero\n intero, e la \(b \) sia funzione razionale degli \(A, B, C, \) ecc. In questa\n ipotesi si collochino nella \(b \) invece dei coefficienti \(A, B, C, \) ecc.
i loro valori espressi per le \(x', x'', x''', x'''' \); la \(\sqrt{b} \) diventerà perciò una funzione delle \(x', x'', x''', x'''' \), che chiamerò \(\Phi(x')(x'')(x''')(x''''')(x'') \), onde \(P = \sqrt[\Phi]{b} = \phi(x')(x'')(x''')(x''''')(x'') \), e se tal funzione risulta irrazionale, potendo corrispondentemente ai diversi valori, e alle combinazioni diverse dei radicali acquistare forme diverse, esprimiamo tali forme, come nel (n.\(^o\) 48) per le \(\Phi'(x')(x'')(x''')(x''''')(x'') \), \(\Phi''(x')(x'')(x''')(x''''')(x'') \), \(\Phi'''(x')(x'')(x''')(x''''')(x'') \), etc. In una qualsivoglia di queste funzioni, per esempio nella prima \(\Phi(x')(x'')(x''')(x''''')(x'') \) eseguiscasi tutte le permutazioni fra le \(x', x'', x''', x'''' \); sotto simile operazione io dico, che la \(\Phi(x')(x'')(x''')(x''''')(x'') \) o dovrà rimanere sempre la medesima, ed avere quindi la forma \(\Phi(x', x'', x''', x''''\, x'') \) (2.\(^o\) n.\(^o\) 3 Teor.), o dovrà acquistare due soli valori tra loro diversi, cioè i due \(\Phi'(x')(x'')(x''')(x''''')(x'') \), \(\Phi''(x')(x'')(x''')(x''''')(x'') \) corrispondenti ai due del precedente (2.\(^o\) n.\(^o\) 39.), e ai due \(y', y'' \) del (n.\(^o\) 36. Mem.). Imperciò elevando la \(P = \sqrt[\Phi]{b} \) alla potenza \(p \), abbiamo con l’incognita \(P \) un'Equazione \(P^p = b \) la quale pei (n.\(^o\) 21, 22, 24, 36 Mem., prec.\(^o\) n.\(^o\) 49, 50) non può aver luogo se non se negli indicati due casi. Ma ciò, che si è detto della \(\Phi(x')(x'')(x''')(x''''')(x'') \), dicesi egualmente della \(\Phi'(x')(x'')(x''')(x''''')(x'') \), della \(\Phi''(x')(x'')(x''')(x''''')(x'') \) (x''''')(x''), etc. Dunque non potendo ciascuna di queste funzioni acquistare per le permutazioni tutte fra le \(x', x'', \) ecc. \(x'''' \), che uno, o due soli valori differenti tra loro, esse medesime, e però la \(P \) dovranno in questa prima ipotesi non cambiare mai di valore, qualunque permutazione semplice di 1.\(^o\) genere (6.\(^o\) Int. Mem.) eseguiscasi fra tutte e cinque insieme le \(x', x'', \) ecc. \(x'''' \).

2.\(^o\) Vogliasi \(P = \sqrt[\Phi]{q(a + \sqrt[\Phi]{b})} \), in cui \(q \) sia numero intero, la \(\sqrt[\Phi]{b} \) sia quale l'abbiamo supposta nel (prec. 1.\(^o\)), e la \(a \) sia una funzione razionale dei coefficienti \(A, B, C \), ecc. della \((F) \). Sostituiti qui pure invece degli \(A, B, C \), ecc. i loro valori espressi per
per le $x', x'',$ ec. x^o, la a diverrà evidentemente una funzione della forma funz. $(x', x'', x'''', x''''', x^o$, conservandosi sempre la medesima sotto tutte le permutazioni fra le x', x'', x^o. Fat-ta poi la stessa sostituzione nella $\sqrt[p]{b}$, se questa diviene una funzione irrazionale delle x', x'', ec. x^o, prendo uno de' suoi valori $\varphi'(x')(x'')(x'''')(x^o)(x^o)$, $\varphi''(x')(x''')(x''')(x^o)(x^o)$, $\varphi'''(x')(x''')(x''')(x^o)(x^o)$ (prec. 1°) per esempio il primo, e avremo $a + \sqrt[p]{b} = \text{funzione} (x', x'', x''', x^o) + \varphi'(x')(x''')(x''')(x^o)$; ma per tutte le permutazioni fra le x', x'', ec. x^o la $\varphi'(x')(x''')(x''')(x^o)$ non può acquistare, che uno, o due soli valori differenti tra loro, quelli cioè, che abbiamo accennati nel (prec. 1°). Dunque per le permutazioni medesime dovrà in corrispondenza acquistare uno, o due soli valori tra loro diversi eziandio la funz. $(x', x'', x''', x^o) + \varphi'(x')(x''')(x''')(x^o)$. Pongasi la somma di queste due funzioni, ossia il corrispondente valore della quantità $a + \sqrt[p]{b} = c$; chiamansi c', c'' i due va-lori della c, allorquando la $\sqrt[p]{b}$ ha i due $\varphi'(x')(x''')(x''')(x^o)\varphi'(x')(x''')(x''')(x^o)$ (prec. 1°), e sia $\sqrt[p]{(a + \sqrt[p]{b})} = \sqrt[p]{c}$ $= \sqrt[p]{\text{funz.} (x', x'', x''', x^o, x^o) + \varphi'(x')(x''')(x''')(x^o)} = F'(x'')(x''')(x''')(x^o)$. Potendo di nuovo la $F'(x''')(x''')(x''')(x^o)$ risultare dipendentemente dalla $\sqrt[p]{\text{una funzione irrazionale}}$; danni qui pure, mentre ciò succeda, siccome nel (prec. 1°), con tanti apici sovrapposti alla F' i valori diversi, che per tale irra-zionalità provengono dalla $F'(x''')(x''')(x''')(x^o)$, prendiamo uno qualunque di essi, per esempio il valore $F'(x''')(x''')(x''')(x^o)$. Ora anche in questa funzione $F''(x''')(x''')(x''')(x^o)$ io dico che tutte le permutazioni fra le x', x'', ec. x^o non possono mai pro-durre, che uno, o due soli valori differenti tra loro. Impercio-c
che mentre si ha \(\sqrt[\rho]{b} = c(x, x', x'', x''', x''''}, \) risultando \(c = \text{funz.} (x, x', x'', x''', x''''}, + \psi(x')(x'(x''(x'''(x'''}(x'''')', questa \(c \) conserverà sempre il proprio valore qualunque permutazione si faccia tra le \(x', x'', \) ec. \(x''', \) e per conseguenza quello stesso, che nel (prec. 1°) si è detto, e si è concluso della \(\sqrt[b^q]{c}, \) dice si qui purc e si conclude della \(\sqrt[c]{c} \).

Quando poi la \(\sqrt[b^q]{c} \) ha i due valori \(\psi(x')(x''(x''''}, \) \(\psi(x')(x''(x''''}, \) supposto allora \(\sqrt[c]{c} = z, \) e formata l'Equazione \(z^4 = c, \) i valori della \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) corrispondenti alla \(\psi(x')(x''(x''''}, \) \(\psi(x')(x''(x''''}, \) e per \(c' \) esisteranno nella \(z^4 = c', \) e gli altri corrispondenti alla \(\psi(x')(x''(x''''}, \) \(\psi(x')(x''(x''''}, \) e per \(c'' \) si conterranno nella \(z^4 = c'' \) (n. 38); ma egli è impossibile, che in un'Equazione della forma \(z^4 = c, \) una qualunque delle sue radici, e per \(c' \) la \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) abbia per le permutazioni tutte fra le \(x', x'', x''', \) ec. \(x'''' \) più di un valore (n. 41; 24 Mem., prec. n. 49, 50). Dunque avendo la \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) corrispondenti ai soli due \(y', y'' \) del (n. 36 Mem.), ed ai due del (n. 39). Dunque, cioè che si è detto della \(F'(x')(x''(x''''}, i \) di
cindosi in egual modo di ciascheduna delle \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) \(F'(x')(x''(x''''}, \) ec. ne segue che ancora quando si abbia \(P = \sqrt[\rho]{a + \sqrt[b^q]{b}}, \) essa \(P \) ridotta a forma di funzione delle \(x', x'', \) ec. \(x'''' \) conserverà sempre il proprio valore, qualunque permutazione semplice di 1° genere faccia fra tutte e cinque le \(x', x'', \) ec. \(x'''' \).

3° Suppongasi quante, e quali si vogliono funzioni razionali dei
dei coefficienti \(A, B, C, \ldots \), che denominino \(a, a_1, a_2, \ldots, b, b_1, b_2, \ldots \), e supponendo che ci rappresenti una funzione razionale quale si voglia delle \(\sqrt[\frac{p}{n_1}] b, \sqrt[\frac{p_1}{n_1}] b_1, \sqrt[\frac{p_2}{n_1}] b_2, \ldots \), essendo \(p, p_1, p_2, \ldots \) tanti numeri interi, abbia \(P = \sqrt[\frac{q}{n}] c \), essendo anche \(q \) numero intero. Col discorso istesso del (prec. \(i^\circ \)) si truova, che ciascuna di queste \(\sqrt[\frac{p}{n}] b, \sqrt[\frac{p_1}{n_1}] b_1, \sqrt[\frac{p_2}{n_2}] b_2, \ldots \) è funzione delle \(x', x'', \ldots \), quale ne è la \(\sqrt[\frac{p}{n}] b \) colà supposta. Dunque, rinovato il razionio del (prec. \(2^\circ \)), troveremo, che qui pure la \(P = \sqrt[\frac{q}{n}] c \) ridotta a forma di funzione delle \(x', x'', \ldots \) è tale, che ciascuno de’ suoi valori dipendenti dalla irrazionalità (se mai risulta irrazionale) deve, siccome la \(F' (x') (x'') (x''') \ldots (x^n) \) del (prec. \(5^\circ \)), acquistare sotto tutte le permutazioni uno, o due soli valori differenti fra lo, o, e per conseguenza che ancora in questo caso la \(P = \sqrt[\frac{q}{n}] c \) deve, qualunque permutazione semplice di \(i^\circ \) genere facciasi fra tutte le \(x', x'', \ldots \), esse conservarsi sempre la medesima.

Se nel (precedente \(i^\circ \)) si voglia la \(\Phi (x') (x'') (x''') \ldots (x^n) \) = \(\sqrt[\frac{p}{n}] b \) razionale, e così se razionale si voglia nel (prec. \(2^\circ \)) la \(F (x') (x'') (x''') \ldots (x^n) = \sqrt[\frac{q}{n}] (a + \sqrt[\frac{p}{n}] b) \), e razionale la funzione delle \(x', x'', \ldots \), a cui si uguala a la \(\sqrt[\frac{q}{n}] c \) del (prec. \(3^\circ \)); vedesi agevolmente, che i discorsi fatti sin’ora hanno sempre luogo egualmente, ed anzi, che riescendo essi più semplici, con facilità maggiore si giunge sempre alle medesime conclusioni.

\(4^\circ \) Oltre la \(c \) del (prec. \(3^\circ \)) si formino quante altre funzioni si vogliono razionali di alcune, o di tutte le precedenti quantità \(a, a_1, a_2, \ldots \), \(\sqrt[\frac{p}{n}] b, \sqrt[\frac{p_1}{n_1}] b_1, \sqrt[\frac{p_2}{n_2}] b_2, \ldots \), e denominate queste \(c_1, \ldots \).
Risposta ai dubbi proposti cc.

c1, c2, cc., e ritenuti sempre interi gli indici de' radicali, si esprima con la lettera d una qualunque funzione razionale delle

\[a, a_1, a_2, \text{ec. } \sqrt[\rho]{b}, \sqrt[\rho]{b_1}, \sqrt[\rho]{b_2}, \text{ec. } \sqrt[q]{c}, \sqrt[q]{c_1}, \sqrt[q]{c_2}, \text{ec.} \]

e sia \(P = \sqrt[r]{d} \). Sostituiti in luogo di tutte le quantità, che formano la d i rispettivi valori espressi per le \(x', x'', \text{ec. } x^n \), poiché ciascheduna delle funzioni, che quindi risultano, non può per tutte le permutazioni fra le \(x', x'', \text{ec. } x^n \) acquistare che uno, o due soli valori tra loro diversi (prec. 1°, 2°, 3°), tale sarà ancora la funzione, a cui corrispondentemente diviene uguale la \(d \), e tale per conseguenza col discorso istesso del (prec. 2°) si troverà essere la funzione, razionale essa siasi, o irrazionale, a cui si uguaglia la \(\sqrt[r]{d} \). Dunque eziandio nella ipotesi presente, qualunque permutazione semplice di genere 1° si instituisca fra tutte insieme le \(x', x'', \text{ec. } x^n \), la \(P = \sqrt[r]{d} \) non cangierà mai di valore.

5° Se nel modo, con cui nel (prec. 4°) si è formata la \(d \), facciansi quante altre funzioni si vogliono, che dirò \(d_1, d_2 \), cc., se con la lettera e si rappresenti una funzione, qualunque siasi, razionale delle \(a, a_1, a_2, \text{ec. } \sqrt[\rho]{b}, \sqrt[\rho]{b_1}, \sqrt[\rho]{b_2}, \text{ec. } \sqrt[q]{c}, \sqrt[q]{c_1}, \sqrt[q]{c_2}, \text{ec. } \sqrt[r]{d}, \sqrt[r]{d_1}, \sqrt[r]{d_2}, \text{ec.} \), e se si voglia \(P = \sqrt[j]{e} \); con de' raziocinii eguali a quelli de' (prec. 1° cc. 4°) troveremo, che eziandio questa \(P = \sqrt[j]{e} \) è una funzione delle \(x', x'', \text{ec. } x^n \), la quale sotto tutte le permutazioni semplici di 1° genere fra tutte e cinque le indicate radici, conservasi sempre del valore medesimo.

Lo stesso vedesi facilmente, che deve accadere, anche allorquando vogliasi \(P = \sqrt[f]{g} \), essendo \(g \) una funzione qualunque ra.
razionale delle \(a, a_1, a_2, \text{ec.} \), \(b, b_1, b_2, \text{ec.} \), \(c, \), \(c_1, c_2, \text{ec.} \), \(d, d_1, d_2, \text{ec.} \), \(e, e_1, \), \(e_2, \text{ec.} \); e così in progresso.

Ora con la lettera \(P \) viene rappresentato per ipotesi un solo termine funzione algebraica de' coefficienti \(A, B, C, \text{ec.} \), e così con ciascheduna delle altre \(Q, R, \text{ec.} \). Dunque questo termine \(P \), e quindi ciascheduno degli altri \(Q, R, \text{ec.} \), dovendo, qualunque esso si siasi, uguagliarsi sempre ad una delle quantità supposte ne' (prec. 1° ec. 5°), ad una cioè delle quantità, che sonosi espresse con le \(a, b, c, d, e, g, \text{ec.} \), ne segue, che ciascuno de'medesimi \(P, Q, R, \text{ec.} \) sarà sempre tale, che, collocati in luogo de' coefficienti \(A, B, C, \text{ec.} \) i loro valori espressi per le \(x', x'', \text{ec.} x^n \), derrà sempre una funzione, la quale, qualunque permutazione semplice di genere 1° si eseguisca fra tutte queste \(x', x'', \text{ec.} x^n \), non cambierà mai di valore.

Già posto, ed eseguite attualmente invece de' coefficienti \(A, B, C, \text{ec.} \) le sostituzioni ora indicate supporgasi, che risulti
\[
\begin{align*}
P & = \Phi_1 (x') (x'') (x''') (x^{iv}) (x^n), \\
Q & = \Phi_2 (x') (x'') (x'''') (x^{iv}) (x^n), \\
R & = \Phi_3 (x') (x'') (x''') (x^{iv}) (x^n), \text{ec.}. \\
\text{L'Equazione } x' & = P + Q + R + \text{ec. supposta a principio del presente numero diventerà perciò } \\
x' & = \Phi_1 (x') (x'') (x''') (x^{iv}) (x^n) + \Phi_2 (x') (x'') (x'''') (x^{iv}) (x^n) + \Phi_3 (x') (x'') (x''') (x^n) + \text{ec.}, \\
\text{e però a cagione di } x' = x' + o (x'' + x''' + x^{iv} + x^n) & = \\
\Phi_1 (x') (x'') (x''') (x^{iv}) (x^n) + \Phi_2 (x') (x'') (x'''') (x^{iv}) (x^n) + \Phi_3 (x') (x'') (x''') (x^n) + \text{ec.}. \text{ Ora in quest'ultima Equazione, la quale per la generalità della (F) deve essere necessariamente identica, eseguisi una delle permutazioni semplici di 1° genere fra tutte le } x', x'', \text{ec.} x^n, \text{ quella per esempio per cui la } x' \text{ si cambia nella } x'', \text{ la } x'' \text{ nella } x'''', \text{ la } x'''' \text{ nella } x^{iv}, \text{ la } x^{iv} \text{ nella } x^n, \text{ e} \]

Tomo XII.
la x'' nella x', e si replichi tale permutazione finché si può. Sotto questa operazione, dovendo per l'accennata identicità conservarsi sempre l'uguaglianza, avremo

$$x' + c (x'' + x''' + x''') = \Phi_1 (x') (x'') (x''') (x'''') (x''''') +$$

$$\Phi_2 (x') (x'') (x''') (x''''') (x'''''' = \Phi_3 (x') (x'') (x''') (x''''') (x'''''''}

ma, per quanto si è dimostrato ne' (prec. 1° ec. 5°), abbiamo ancora

$$\Phi_1 (x')(x'')(x'''')(x''''') (x'''''''} = \Phi_1 (x')(x'')(x'''')(x''''') (x'''''''}

Dunque nelle precedenti cinque Equazioni risultando i secondi membri, tutti uguali fra loro, tali dovranno essere fra loro anche i primi, e per conseguenza avremo $x' = x'' = x''' = x'''' = x'''';$ ma egli è un assurdo, che le cinque radici di un' Equazione generica di 5° grado, siano uguali fra loro: dunque sarà assurda anch' ella la supposta Equazione $x' = P + Q + R + \cdots$; e sarà per conseguenza impossibile, che possa mai trovarsi; anche all' azzardo, una quantità, od espressione algebraica, la qual sia radice di un' Equazione di 5° grado generale.

53. Quanto abbia dimostrato, e concluso nel precedente (n.° 52.), vedesi, che non solo scioglie la obbiezione ivi fatta, ma inoltre serve a pronunziare l' Insolubilità della Equazione generale di grado 5°, introducendo, come si è avvertito nel (n.° 53.), la considerazione dei radicali, che dovrebbero contenersi nel valore della x', e finalmente costituisce un discorso, per cui si dimostra la Insolubilità medesima indipendentemente dalla consi-
derazione delle trasformate, o risolventi successive, e dei loro fattori.

Se vogliansi proporre dei dubbj simili ai precedenti rapporto alla Insolubilità algebraica delle Equazioni generali di grado superiore al 5°; si potranno essi in conseguenza de' (n.° 28. Mem., prec. n.° 27, n. 64, 65, 66. Mem.) risolvere con i raziocini medesimi de' (n.° prec.°).