SUL CALCOLO DELLE FUNZIONI RAZIONALI DELLE RADICI DI UNA DATA EQUAZIONE QUALUNQUE ALGEBRAICA DETERMINATA

Dotate della forma \(f(x', x'', x''', \ldots, x^{(m)}) \)

M E M O R I A

Di Pietro Abbati Modenese

Presentata da Paolo Ruffini il 17 Luglio 1844.

Data una qualunque equazione finita, intiera, e razionale

\[x^n + Ax^{n-1} + Bx^{n-2} + \ldots + V = 0. \]

le cui radici siano designate mediante le \(x', x'', x''', \ldots, x^{(m)} \), siccome per la determinazione dei coefficienti di una sua trasformata qualunque, rendesi necessaria la determinazione del valore

\[f(x', x'', x''', \ldots, x^{(m)}) \]

cioè una funzione delle stesse \(x', x'', x''', \ldots, x^{(m)} \) tale per la forma, che resti sempre invariabile ad ogni loro permutazione; così per facilitarne la pratica è creduto conveniente di accennar brevemente alcune regole per giungere alla determinazione del valore

\[\Sigma x^n x'^n x''^n x'''^n \ldots \]

col mezzo dell’altro \(\Sigma x^k \), che già sappiamo rinvenire mediante i coefficienti della data equazione. (1)

PRO-

(1) Non à guari leggendo per caso il primo ed unico tomo della Società di Mantova, vidi una elegantissima dimostrazione del Sig. Paoli di una formula del Sig. Eduardo Waring con cui nella sua Miscellanea Analytica aveva già prima d’ora indicata la soluzione del nostro problema. Ora siccome la dimostrazione del Sig. Paoli poggia in gran parte sulla integrazione delle equazioni a differenze finite parziali, e può d’altronde riuscire di qualche vantaggio il conoscere delle regole per giungere alla soluzione dello stesso problema;
PROBLEMA.

Esprimere col mezzo del generale valore \(\Sigma x^k \) quello di una qualunque funzione razionale delle \(x', x'' \), ec. dotata della forma

\[f(x', x'', \ldots, x^{(m)}) \]

ossia quello di

\[\Sigma x^m x^n x^p \ldots x^n \]

senza che perciò si renda necessaria la determinazione di \(\Sigma x^m x^n \), \(\Sigma x^n x^p \), ec.

Alla soluzione del proposto problema premetto 1.° che il valore di una qualunque funzione razionale delle \(x', x'' \), ec. dotata della forma

\[f(x', x'', \ldots, x^{(m)}) \ (\S \text{3. Ruffini Teor. Equaz.}^\text{iii}) \]

potrà generalmente ridursi all’altro

\[\Sigma x^m x^n x^p \ldots x^n ; \]

imperciocchè se la data funzione sia razionale, ed intiera, la cosa è chiara per se medesima; che se essa fosse fratta, dopo di averla ridotta allo stesso denominatore, ed ai minimi termini, la chiamerò \(\frac{T'}{V'} \), ed in tale circostanza le \(T', V' \) sarebbero entrambe funzioni intiere, e razionali delle \(x', x'' \), ec. dotate della forma

\[f(x', x'', x^{(m)}) \]

e però ec. Che le \(T', V' \) siano entrambe funzioni delle \(x', x'' \), ec. della forma testè enunciata, si deduce dal considerare che in caso diverso, supposta la \(T' \) cangiarsi alle permutazioni fra le \(x', x'' \), ec. nelle \(T'', T''' \), ec. e così la \(V' \) rispettivamente nelle \(V'', V''' \), ec. sarà sempre vero, che

\[\frac{T'}{V'} = \frac{T''}{V''} = \frac{T'''}{V'''} = \text{ec.} \]

Tomo XII.
B
Ora
SUL CALCOLO DELLE FUNZIONI cc.

Ora le T', V' sono prime fra loro, dunque saranno le T'', T''', ec. multiple di T', e le V'', V''', ec. corrispondentemente equimultipie di V'; sarà per es. $T'' = XT'$, $V'' = XV'$; ma le T'', V'' altro non sono in sostanza se non che le rispettive T', V' nelle quali siasi eseguita una data permutazione fra le x', x'', ec., dunque per la stessa ragione che la T', in quanto alla forma, non a verun comun divisore con V', la T'' in quanto alla forma non avrà divisor comune con la V'', e però $X = 1$; donde $T'' = T'''$, $V'' = V'''$; e così $T'' = T'' = T''' = ec.$, $V'' = V'' = V''' = ec.$

2.° Che non mi sia disdetto di chiamar funzione, o valore del 1.° ordine il seguente $\sum x^m$, del secondo ordine l’altro $\sum x^m x^n$, ec., ed in generale funzione, o valore dell’ordine μ esimo la $\sum x^m x^n x^p x^q \ldots x^n$

allorché il numero delle m, n, p, q, ec., $u = \mu$; così di chiamar termini di una sola dimensione i seguenti $\sum x^m$, $\sum x^n$, ec., di due dimensioni gli altri $\sum x^m, \sum x^n, \sum x^{m+n}$, di tre dimensioni gli altri $\sum x^m, \sum x^n, \sum x^p, \sum x^{m+n}, \sum x^{m+n+p}$, ec., e premetto altresì nei termini di più dimensioni la distinzione di due sorta di fattori, chiamando semplici, o della prima specie i fattori di una sola dimensione come $\sum x^m, \sum x^n$, ec., composti, o della specie seconda i fattori della forma $\sum x^{m+n}, \sum x^{m+n+p}$, ec.

Tutto ciò premesso io rifletto che giungeremo senz’altro alla soluzione del nostro problema, qualora ci sia dato di stabilire le regole per la forma, segno, e coefficiente di ciascun termine del valore in questione.

Quanto alla forma dei termini egli è chiaro che questa può diversificare in più modi avuto riguardo 1.° al numero delle dimensioni, 2.° al numero dei fattori, 3.° loro specie, 4.° alle diverse combinazioni delle m, n, p, ec. nei fattori stessi.

Osservando le formule

(H) $\sum x^m x^n = \sum x^n, \sum x^m - \sum x^{m+n}$
(I) $\sum x^m x^n x^p = \sum x^p, \sum x^m x^n - \sum x^m x^{m+p} - \sum x^m x^{m+q}$

(K)
Di Pietro Abbati.

(K) $\sum x^m x^n x^r x^t = \sum x^t \cdot \sum x^m x^n x^r x^s = \sum x^r x^s x^t x^u = \sum x^u x^v x^t x^s = \sum x^v x^w x^t x^s = \sum x^w x^x x^t x^s = \sum x^x x^y x^t x^s$

cc.

(L) $\sum x^m x^n x^s = \sum x^s \cdot \sum x^m x^n x^r x^t = \sum x^r x^t x^u x^v = \sum x^v x^w x^t x^u = \sum x^w x^x x^t x^u = \sum x^x x^y x^t x^u = \sum x^y x^z x^t x^u = \sum x^z x^y x^t x^u$

cc.

(Ruffini Teoria Equazioni 1°, 2°, 3°, 4°, § 41)

con la scorta delle nostre definizioni, e sul riflesso che i valori corrispondenti a $\sum x^m x^n x^s$, $\sum x^r x^s x^t$ possono ottenersi da quello con cui viene espresso l’altro $\sum x^m x^n$ collocando rispettivamente in luogo delle n, m, le $n+p$, $m+p$; che i valori corrispondenti alle $\sum x^m x^n x^s x^t$, $\sum x^r x^s x^t x^u$, $\sum x^v x^w x^t x^u$, $\sum x^w x^x x^t x^u$, $\sum x^x x^y x^t x^u$, $\sum x^y x^z x^t x^u$, $\sum x^z x^y x^t x^u$, $\sum x^y x^z x^t x^u$ possono ottenersi da quello con cui si esprime l’altro $\sum x^m x^n x^s$ collocando rispettivamente in luogo delle p, n, m le $p+q$, $n+q$, $m+q$, cc. non sarà punto difficile di veder la ragione della seguente

REGOLA I.

"Tutti i termini del nostro valore saranno di μ dimensioni, e però la diversità, che in quanto alla forma potrà incontrarsi, passando dall’uno all’altro, dipenderà o dal numero, e specie dei fattori, o dalla diversa combinazione delle m, n, p, cc. nei fattori stessi."

Considerando poscia nelle sussese formole che il valore $\sum x^m x^n$ dell’ordine secondo ci viene espresso col mezzo di due termini formati l’uno da due fattori, l’altro da uno solo; che però il valore $\sum x^m x^n x^s$ dell’ordine terzo, qualora siasi prima ridotto ad essere espresso mediante il generale valore $\sum x^k$ di 1° ordine, sarà un aggregato di vari termini parte dei quali saranno formati di tre fattori, parte di due, e parte di un solo, che però cc., cc., chiara vedremo la ragione della seguente

REGOLA II.

"Nel richiesto valore alcuni termini saranno formati di μ fattori, altri di $\mu-1$, altri di $\mu-2$, cc., ed in generale formati B a"
SUL CALCOLO DELLE FUNZIONI ecc.

formati da un numero $\mu - r$ di fattori essendo $r = 0, 1, 2, 3, 4$, ecc., $\mu - 1$.

Nel valore per es. di $\sum x^n x^m x^k r^j r'$, ove $\mu = 6$, alcuni termini saranno composti di sei fattori come lo è

$\sum x^m x^n x^p x^q x^r x'$

altri di cinque come il termine

$\sum x^m x^n x^p x^q x'^r$

altri di quattro come i termini

$\sum x^m x^n x^p x^q x'^r r'$, $\sum x^m x^n x^p x^q x'^r r''$

altri di tre cc. cc.

Chiamiamo $X^{(\mu)}$ il complesso dei termini formati da un numero di fattori $= \mu$, $X^{(\mu-1)}$ il complesso dei termini formati da un numero di fattori $= \mu - 1$; ed in generale $X^{(\mu-r)}$ il complesso dei termini formati da un numero di fattori $= \mu - r$; in questa supposizione è chiaro, che la soluzione del problema dipenderà dallo stabilire un metodo generale per la determinazione della quantità $X^{(\mu-r)}$.

Dico termini fra loro simili nel complesso $X^{(\mu-r)}$ quelli che vengono formati da un egual numero di fattori della prima, e da un egual numero di fattori della seconda specie, essendo questi rispettivamente dotati delle stesse dimensioni, dissimili poscia chiamo fra loro quei termini del complesso $X^{(\mu-r)}$, i quali non godono delle anzidette particolarità; per esempio essendo $\mu = 6$ e $r = 2$ saranno simili di quattro fattori i termini

$\sum x^m x^n x^p x^q x'^r r'$, $\sum x^m x^n x^p x^q x'^r r''$

dissimili saranno gli altri

$\sum x^m x^n x^p x^q x'^r r'' r'''$, $\sum x^m x^n x^p x^q x'^r r'' r''' r''''$.

Unisco tutti i termini fra loro simili nel complesso $X^{(\mu-r)}$ distinguendone mediante le

$X_1^{(\mu-r)}$, $X_2^{(\mu-r)}$, $X_3^{(\mu-r)}$, ecc.

le rispettive somme così che sia

$X^{(\mu-r)} = X_1^{(\mu-r)} + X_2^{(\mu-r)} + X_3^{(\mu-r)} + \text{ecc.}$

Trattasi ora di determinare il numero delle $X_i^{(\mu-r)}$, ec. non che i termini che le compongono.
Quanto al numero delle $X_1(n-r)$, ecc. io rifletto, che posto $r = 0$, siccome in tal caso la forma dei termini composti di ν fattori non può mai supporre diversa dalla seguente

\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^p \cdot \ldots \cdot \Sigma x^m, \]

cosi per la (regola 2.) precedente un tal termine dovrà sempre rinvenirsir fra quelli, che andiamo cercando. Essendo poi la r diversa dallo zero, cioè $r = 1, 2, 3$, ecc., in tale ipotesi prima di stabilire le regole generali per la determinazione del numero delle $X_1(n-r)$, ecc. e della forma comune ai loro termini rispettivi, prendiamo un esempio onde facilitarne l'intelligenza, e farne nel tempo stesso vedere una chiara dimostrazione. Sia dunque $\mu = 6, r = 2$, così che del valore

\[\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v}. \]

dell'ordine sesto si cerchi il numero delle $X_1^{1^*}, X_2^{1^*}, \text{ecc.}$ e la forma comune ai loro termini. In tal caso io osservo che il termine

\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^z \cdot \Sigma x^s \cdot \Sigma x^{s+r}, \]

dovrà certamente rinvenirsi nell'espressione del nostro valore; mentre in caso diverso essendo per la formula (L)

\[\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} = \Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} - \Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} - \Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} - \text{ecc.} \]

ed essendo $\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} = \text{al valore con cui viene espressa la}$

\[\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v} \]

purche in essa in luogo di r costantemente si collochi $r + s$, ne verrebbe, che nemmeno il termine

\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^z \cdot \Sigma x^s \cdot \Sigma x^{s+r}, \]

potesse far parte del valore $\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v}$, e per una ragione affatto simile ne verrebbe che il termine

\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^z \cdot \Sigma x^s \cdot \Sigma x^t \]

dovesse escludersi dall'espressione del valore di $\Sigma x^n x^{m} x^{s} x^{t}$; ma ciò sarebbe contrario alla (regola 2.); dunque ecc. Nello stesso modo si dimostra che il termine

\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^z \cdot \Sigma x^s \cdot \Sigma x^{t+r}, \]

dovrà certamente ritrovarsi nell'espressione del valore in questione, d'onde concluderemo che due saranno le somme dei termini simili composti di quattro fattori nel dato valore $\Sigma x^n x^{m} x^{s} x^{t} x^{u} x^{v}$ per cui faremo

\[X^{1^*} = X_1^{1^*} + X_2^{1^*} \]

chia-
chiamando per es. X_1^{ν} la somma dei termini di forma simili al primo $\Sigma x^{\mu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu}$, ed X_2^{ν} la somma dei termini di forma simili al secondo $\Sigma x^{\mu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu} \cdot x^{\nu}$.

Generalizzando col pensiero il discorso fatto nell' esempio precedente, facilmente vedremo come in qualunque ipotesi delle μ, ν sarà sempre vero, che 1.° per la determinazione del numero delle $X_1^{(\mu-\nu)}$, ec. si potrà stabilire la seguente

REGOLA III.

"Determinate tutte le soluzioni sostanzialmente diverse di cui è suscettibile il problema: dividere il numero intero μ in $\mu-\nu$ parti intere non < 1, (1) facciasi il numero delle $X_1^{(\mu-\nu)}$, ec. uguale a quello delle anzidette soluzioni ν.

Nell’es. precedente ove $\mu = 6$, $\nu = 2$ abbiamo $X^{\nu} = X_1^{\nu} + X_2^{\nu}$

giacchè in due soli modi puossi dividere il numero 6 in quattro parti intere non < 1; primo facendo tre delle anzidette parti uguali ciascuna all’unità, e la rimanente uguale a tre. Secondo facendo due delle parti stesse uguali all’unità e le rimanenti uguali ciascuna a due.

2.° Che per la determinazione della forma comune dei termini delle rispettive somme $X_1^{(\mu-\nu)}$, ec. si potrà stabilire la

REGOLA IV.

"La forma comune ai termini delle somme $X_1^{(\mu-\nu)}$, ec. si po-

(1) Per conoscere a colpo d’occhio il numero delle soluzioni di cui è suscettibile l’indicato problema, si consuliti il capo XVI dell’*Introduction in Analysisin infinitorum* del Signor Euler, dal quale sarà facile di rilevare il modo di continuare quanto si voglia la tabella citata al § 318, e col soccorso di lei ottenere quanto si desidera.
potrà determinare col prendere, come per modulo, per ciascu-
na $X_1^{(\mu-r)}$, ec. una diversa soluzione del problema citato alla
(preced. regola 3.), e col fare in quella la forma comune ai suoi
termini composta di tanti fattori della prima specie, quante so-
nó in questa le parti uguali all’unità e così di tanti fattori
della specie seconda di due, tre, ec. dimensioni, quante sono
nella citata soluzione le parti uguali al due, tre, ec.

Determinate le forme dei termini delle rispettive somme
$X_1^{(u-r)}$, ec., osserviamo in esse cosa nasca dalla permutazione
delle m, n, p, \ldots, u fra loro. A tale effetto presa per es. la forma
$$\sum x^n \cdot \sum x^{n+p} \cdot \sum x^{n+r} \cdot \sum x^{n'+u}$$
vedo che permutando fra loro reciprocamente le due-lettere $n\,$,
p, o le due q, r avremo.
$$\sum x^n \cdot \sum x^{n+p} \cdot \sum x^{n+r} \cdot \sum x^{n'+u} = \sum x^n \cdot \sum x^{n+r} \cdot \sum x^{n+p} \cdot \sum x^{n'+u}$$
vedo che lo stesso succede permutando fra loro reciprocamente i
due fattori $\sum x^{n+p}, \sum x^{n+r}$, onde
$$\sum x^n \cdot \sum x^{n+p} \cdot \sum x^{n+r} \cdot \sum x^{n'+u} = \sum x^n \cdot \sum x^{n+r} \cdot \sum x^{n+p} \cdot \sum x^{n'+u}$$
etc.; finalmente osservo, che saranno uguali tutti i valori nati dal-
le possibili permutazioni delle s, t, \ldots, u fra loro. Ora sicco-
me per mezzo di opportuni coefficienti numerici possiamo sem-
pre unire assieme i termini uguali, e siccome possiamo qui rinovare il discorso poc’anzi fatto per istabilire la regola 3^a, e sappiamo d’altronde che il valore in quistione esser deve una fun-
zione delle x', x'', x''', ecc. $x^{(m)}$ della forma
$$f(x', x'', x''', \ldots x^{(m)})$$
cosi non tenendo conto se non se dei generalmente disuguali per
la loro determinazione stabiliremo la seguente

REGOLA V.

""Facciansi nelle rispettive forme dei termini componenti
le somme $X_1^{(u-r)}$, ec. tutte le possibili permutazioni delle μ
"" let-
SUL CALCOLO DELLE FUNZIONI etc.

"lettere m, n, p, etc. u capaci di darci dei risultati generalmente disuguali, e questi scrivansi l'un dietro l'altro col segno + fra due parentesi ."

Se, volendo esser certi di non aver omessa qualche permutazione si addomandasse il preciso numero degli indicati risultati, in tal caso chiamate a, b, etc., g delle μ - 3 parti interie del numero μ le diverse dall'unità, se con le α, β, γ, etc. esprimeremo il rispettivo numero di quelle che fra le indicate quantità assiemme si uguagliano, e supporremo

\[a + b + c + \ldots + g = h, \]

dalla teoria delle combinazioni è chiaro che l'otterremo espresso dalla formula

\[\frac{\mu(\mu-1)(\mu-2)}{1 \cdot 2 \cdot 3 \ldots 1 \cdot 2 \cdot 3 \ldots g} = \frac{(\mu-h+1)}{1 \cdot 2 \cdot 3 \ldots 1 \cdot 2 \cdot 3 \ldots β} \]

Dunque nell'es. preparatorio alla regola 3.°, essendo per la forma dei termini componenti la somma \(X_1^m \), \(μ = 6 \), \(a = h = 3 \), \(α, β \), etc. = 1 ; sarà il loro numero \(\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} = 20 \), e saranno

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

\[\sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \sum x^m, \sum x^n, \sum x^p, \sum x^{r+t+r}, \]

Determinati in tal modo i termini del nostro valore egli è chiaro, che alla completa soluzione del nostro problema altro più non resta se non se di stabilire le regole onde conoscere i segni, e i coefficienti dei medesimi.
Presa in maturo esame la formula (L) ove il valore
\[\sum \frac{m}{x^m} \frac{n}{x^n} \frac{n}{x^{n'}} \ldots \frac{u}{x^u} \]
dell'ordine \(\mu \) esimo ci viene espresso col mezzo di tanti valori tutti dell'ordine \((\mu - 1)\) esimo presi negativamente a riserva d'un solo preso col proprio segno, e moltiplicato per un altro valore dell'ordine primo, sarà facile di rilevare, fatto \(\mu = \mu - 1 \), che se riguardo ai termini della somma \(X^{(\mu - 1)\cdot r} \) si verifichi generalmente la regola, che essendo \(r \) pari abbiano essi il segno +, ed essendo \(r \) dispari abbiano il segno −, una tal regola dovrà essendo verificarsi per rapporto ai termini della somma \(X^{(\mu - 1)\cdot r} \), imperciocché quanto ai valori dell'ordine \((\mu - 1)\) esimo, ossia dell'ordine \(\mu \) esimo, i quali nella equazione (L) costituiscono fuor del primo tutti i termini del suo secondo membro, egli è chiaro, per la fatta supposizione, che ponendo \(\mu - 1 \) in luogo di \(\mu \) nella somma generale \(X^{(\mu - 1)\cdot r} \), avremo i termini della somma \(X^{(\mu - 1)\cdot r} \) dotati di segno − allor chè \(r \) sia pari, e dotati di segno + allor chè \(r \) sia dispari, ossia dotati di segno − allor chè \(r + 1 \) sia dispari, e vice versa di segno + allor chè \(r + 1 \) sia pari; fatto ora \(r + 1 = \mu \) sarà

\[X^{(\mu - 1)\cdot r} = X^{(\mu - 1)\cdot r} \]

e siccome per la formola (L) tutti i termini dell'ordine \(\mu \) esimo da noi considerati si devono prendere col segno cambiato, così si vede che cc. Per ciò poi che riguarda il primo termine del secondo membro dell'equazione (L), essendo questi un prodotto formato di due valori uno del primo, l'altro dell'ordine \(\mu \) esimo da prendersi col proprio segno, ne viene, che siccome per la fatta supposizione, posto \(\mu - 1 \) in luogo di \(\mu \) nella somma generale \(X^{(\mu - 1)\cdot r} \) abbiamo i termini tutti della somma \(X^{(\mu - 1)\cdot r} \) dotati di segno positivo o negativo, secondo che pari o dispari sarà il numero \(r \), così in grazia delle definizioni date aggiungendo il fattore di \(1.0 \) ordine avremo i termini espressi dalla somma generale \(X^{(\mu - 1)\cdot (r + 1)\cdot r} \) dotati di segno +, o − secondo che sarà pari o dispari il numero \(r \).

Tomo XII.
ossia il numero \((-1 + 1 - \nu)\); dunque supposto \((-1 + 1 - \nu) = -\nu\)
si vede che ee.

Ora supposto \(\mu = 1\) abbiamo il valor generale di 1.° ordine
\[\Sigma x^n = \pm \Sigma x^n, \]
dunque fatto col pensiero di mano in mano \(\mu = 2, 3, 4, \ldots\) ec. sarà facile di rilevare rapporto ai segni la seguitene

REGOLA VI.

"Il complesso \(X^{(\mu - \nu)}\) ossia tutti i termini formati di \((\mu - \nu)\) fattori avranno il segno positivo, o negativo secondo che il numero \(\nu\) sarà pari o dispari".

Dunque nell'esempio preparatorio alla (reg. 3.°), in cui \(\mu = 6, \nu = 2\), tutti i termini del complesso \(X^6\), ossia delle due somme \(X_1^6, X_2^6\) saranno affetti del segno +.

Finalmente per rapporto ai coefficienti io rifletto, che tutti i termini simili saranno necessariamente dotati dello stesso coefficiente, mentre in caso diverso non potendo il valore rinvenuto, generalmente parlando, addivenire una funzione delle radici della data equazione della forma
\[f(x', x'', x''', \ldots, x^{(m)}) \]
non sarebbe capace di esprimere quello di
\[\Sigma x^n x^n x^n \ldots x^n = f(x', x'', x''', \ldots, x^{(m)}) \]

Dunque tanto i segni quanto i coefficienti dovranno apparsi alle somme \(X_1, X_2, \ldots\), ed ecco il motivo per cui alla (Regola V) abbiamo suggerito di collocare i rispettivi loro termini fra mezzo a due parentesi l' un dietro l' altro col segno +.

Ciò posto, siccome alla spedita comprension delle cose meglio giovan gli esempi di tutti i discorsi astratti e generali, così chiamati \(C_1, C_2, C_3\), ecc. i rispettivi coefficienti delle somme \(X_1, X_2, X_3, \ldots\), prima di stabilire la regola generale per la loro determinazione, osserviamo alcuni casi particolari sia per fa-
facilitare l'intelligenza della nominata regola, sia per farne nel tempo stesso travedere una esatta dimostrazione. Sia dunque che del valore
\[\sum x^n \cdot x^p \cdot x^q \cdot x^r \cdot x^s \]
vogliansi determinare i rispettivi coefficienti dei termini dotati delle forme
\begin{enumerate}
 \item \[\sum x^n \cdot \sum x^p \cdot \sum x^q \cdot \sum x^r \cdot \sum x^s \]
 \item \[\sum x^n \cdot \sum x^p \cdot \sum x^q \cdot \sum x^r \cdot x^{s+r+t} \]
 \item \[\sum x^n \cdot \sum x^p \cdot \sum x^q \cdot x^{s+r+t} \]
\end{enumerate}

In tal caso per ciò che concerne quelli della prima fra le indicate forme, ossia l’equazione,
\[\sum x^n x^p x^q x^r x^s = \sum x' \cdot \sum x^n x^p x^q x^r x^s - \sum x^n x^p x^q x^r x^s + \Sigma x^n x^p x^q x^r x^s \]
\[- \Sigma x^m x^n x^p x^q x^r x^s + \Sigma x^m x^n x^p x^q x^r x^s \]
\[\Sigma x^m x^n x^p x^q x^r x^s \]
\[\Sigma x^m x^n x^p x^q x^r x^s \]
sarà facile di rilevare che essi formeranno parte del solo valore
\[\sum x' \cdot \sum x^n x^p x^q x^r x^s \cdot x^t \cdot x^{s+r+t} \]

Ora dalla stessa formula (L) abbiamo
\[\sum x^n x^p x^s x^t x^u = \sum x' \cdot \sum x^n x^p x^q x^r x^s - \sum x^n x^p x^q x^r x^s \cdot x^{s+r+t} \]

Dunque i termini dotati della forma da noi supposta sarebbero uguali al prodotto di \(\sum x' \) per una parte del solo valore \(\sum x' \cdot \sum x^n x^p x^q x^r x^s \).

Proseguendo in tal guisa giungeremo finalmente alla determinazione del richiesto coefficiente, il quale sarà \(r \).

Cosi dalla stessa formula (L), e dal valore testè rinvenuto di \(\sum x^n x^p x^q x^r x^s \) io vedo che i termini dotati della seconda forma formeranno parte dei soli
\[\sum x^n x^p x^q x^r x^s \cdot x^{s+r+t} \]
\[\sum x^n x^p x^q x^r x^s \cdot x^{s+r+t} \]
\[\sum x^n x^p x^q x^r x^s \cdot x^{s+r+t} \]

Ora queste quantità come è chiaro si possono immediatamente ottenere dal valore con cui viene espressa la \(\sum x^n x^p x^q x^r \), collo- cando rispettivamente in luogo delle \(p, q, r \), le \(p + s, q + s, r + s \); dunque chiamato \(C \) il coefficiente del termine dotato della forma
\[\sum x^n \cdot \sum x^p \cdot \sum x^q \cdot x^{s+r+t} \]

nel valore di \(\sum x^n x^p x^q x^r \), siccome sono fra loro uguali i termini
\[\sum x^n \cdot \sum x^p \cdot x^{s+r+t} \]
\[\sum x^n \cdot \sum x^p \cdot x^{s+r+t} \]
\[\sum x^n \cdot \sum x^p \cdot x^{s+r+t} \]

avremo il richiesto coefficiente uguale a
\[\frac{3 \cdot C' = (4 - 1) \cdot C}{C_2} \]

Nel-
Nella stessa maniera proveremo, che il coefficiente C' del termine dotato della forma
\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^{n+m} \]
nel valore di $\Sigma x^n \cdot x^m \cdot x^l \cdot x \cdot x$ sarà uguale a
\[(3 - 1)C'' = (4 - 3)C'' \]
essendo C'' il coefficiente del termine dotato della forma
\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^{n+m} \]
nel valore di $\Sigma x^n \cdot x^m \cdot x^l \cdot x^q \cdot x^t$.

Così finalmente proveremo che
\[C'' = (2 - 1)C'' = (4 - 3)C'' \]
essendo C'' il coefficiente del termine dotato della forma
\[\Sigma x^n \cdot \Sigma x^m \cdot \Sigma x^q \]
nell’espressione del valore di $\Sigma x^n \cdot x^m$. Ora dall’es. prec. sappiamo che $C''=1$; dunque avremo
\[(4-1)C''=(4-1)(4-2)C''=(4-1)(4-2)(4-3)C''=(4-1)(4-2)(4-3) \]
per la richiesta espressione del nostro coefficiente.

Dai precedenti esempi sarà facile di rilevare che il coefficiente dei termini dotati della terza forma da noi proposta sarà
\[= (3 - 1)(3 - 2)(3 - 1)(3 - 2) \]

Veduto il modo onde determinare il rispettivo coefficiente dei termini dotati delle tre forme da noi supposte, cerchiamo ora come si possa determinar quello di un termine dotato della forma generale
\[\Sigma x^{n+m} \cdot \Sigma x^{n+m} \cdot \Sigma x^{n+m} \]
di un dato valore dell’ordine pesimo, nella supposizione cioè che
\[a + b + c + \cdots = \mu. \]

Preso in tal caso l’equazione (formula L)
\[\Sigma x^{n+m} \cdot x^{n+m} \cdot \cdots x^{n+m} \]
\[= \Sigma x^{n+m} \cdot x^{n+m} \cdot \cdots x^{n+m} \]
\[\Sigma x^{n+m} \cdot x^{n+m} \cdot \cdots x^{n+m} \]
\[\Sigma x^{n+m} \cdot x^{n+m} \cdot \cdots x^{n+m} \]
... ecc., ecc.
primieramente io rifletto che se le \(a, b, c, \) ecc. sono tutte \(= 1 \), sarà facile di dimostrare in una maniera affatto simile a quella indicata nel 1.° esempio precedente, come in tal caso il richiesto coefficiente sarà \(= 1 \). Che se poi 2.° tutte, o porzione delle \(a, b, c, \) ecc. fossero \(> 1 \); supposto in primo luogo \(a > 1 \), facilmente si vede che il nostro termine non potrà mai far parte se non se degli \((a - 1) \) valori dell' ordine \((u - 1)\)esimo
\[
\sum x^a x^b \ldots x^{(a-b)} \quad x^{(a-1)} x^{(a-b)} x^{(a-b)} \ldots
\]
ec.
Ora questi valori possono sempre ottenersi da quello, con cui viene espresso l' altro generale dell' ordine \((u - 1)\)esimo
\[
\sum x^a x^b \ldots x^{(a-1)} x^{(a-b)} x^{(a-b)} \ldots
\]
purché in esso in luogo delle \(m, m, \) ecc. \(m^{(a-1)} \) venghino rispettivamente collocate le \(m^{(a-1)} \), \(m^{(a-1)} \), ecc. \(m^{(a-1)} + m^{(a-1)} \). Dunque chiamato \(C' \) il coefficiente del termine dotato della forma
\[
\sum x^{(a-1)} + m^{(a-1)} + \ldots + m^{(a-1)} \sum x^{(a-1)} + m^{(a-1)} + \ldots + m^{(a-1)}
\]
nell' espressione testè indicata è chiaro che l'addomandato coefficiente sarà \(= (a - 1) C' \).
Nello stesso modo vedremo che
\[
C' = (a - 2) C''
\]
essendo \(C'' = \) al coefficiente del termine dotato della forma
\[
\sum x^{(a-2)} + m^{(a-2)} + \ldots + m^{(a-2)} \sum x^{(a-2)} + m^{(a-2)} + \ldots + m^{(a-2)}
\]
nell' espressione del valor generale dell' ordine \((u - 2)\)esimo \(\sum \)
Sul Calcolo delle Funzioni ec.

\[\sum x^{a_1} x^{a_2} \ldots x^{a_{(a-2)}} x^{a_{(a-1)}} \ldots = x^{(b)}\]

Nello stesso modo, ec. ec. ec., e finalmente vedremo che
\[C^{(a-2)} = (a-2+1) \cdot C^{(a-1)} = 1 \cdot C^{a-1}\]
ove \(C^{(a-1)}\) esprime il coefficiente del termine dotato della forma
\[\sum x^{b_1} x^{b_2} x^{b_3} \ldots x^{b_{(b)}}\]
nell'espressione del valore generale dell'ordine \((a-a+1)\)esimo
\[\sum x^{a_1} x^{a_2} x^{a_3} \ldots x^{a_{(b)}}\]

Proseguendo col medesimo raziocinio nella supposizione di \(b > 1\), in quella di \(c > 1\), ec. e finalmente di \(g > 1\), vedremo che l'addomandato coefficiente verrà espresso dalla formula
\[(a-1)(a-2) \ldots (1)(b-1)(b-2) \ldots (1)(c-1)(c-2) \ldots (1)(g-1)(g-2) \ldots (1)C^{(a-1+b-1+\ldots+ec.)}\]

essendo \(C^{(a-1+b-1+\ldots+ec.+g-1+\ldots)}\)

il coefficiente del termine dotato della forma
\[\sum x^{b_1} x^{b_2} x^{b_3} \ldots\]
nell'espressione del valor generale dell'ordine
\[(\mu-a+1-b+1-\ldots-g+1)\)esimo
\[\sum x^{b_1} x^{b_2} x^{b_3} \ldots\]

Ora per la prima precedente riflessione
\[C^{(a-1+b-1+\ldots+g-1)}\]

Dunque per la determinazione del richiesto coefficiente stabiliremo la seguente

REGOLA VII.

"Essendo la formula (A) l'espressione del numero dei termini generalmente disuguali componenti una data somma
\[X_1^{(\mu-a)}\] ec. avremo la formula
(B) \[(a-1)(a-2) \ldots (1)(b-1)(b-2) \ldots (1)(g-1)(g-2) \ldots (1)\]
"per
per l’espressione generale del suo coefficiente; determinando cioè il coefficiente di una data somma $X_1^{(p-r)}$, cc. osservando la forma comune ai suoi termini, e deducendolo in modo speciale dal numero delle dimensioni dei fattori della seconda specie di cui sarà data composta, avuto però riguardo, che se questi mancassero, in tal caso il coefficiente cercato sarà $= 1$.

Dalle regole fin qui stabilite sarà facile, data una qualunque

$$\sum x^n x^r x^s \ldots x^t$$

per es. la

$$\sum x^n x^r x^s x^t$$

di determinarne il valore espresso per mezzo dell’altro generale di 1.° ordine $\sum x^b$, costruendo all’uopo una tabella simile alla seguente, nella quale appunto è cercato di epilogare le regole stesse.
\[\sum x^n x^p x^q x^r = x^o + x^p + x^q + x^r + x^s (\text{Regola II})\]

<table>
<thead>
<tr>
<th>Equazioni dedotte dalla Regola III.</th>
<th>Forma comune a' termini delle controscritte somme (Regola IV.)</th>
<th>Numero dei generalmente disuguali (Reg. V. e Formula A)</th>
<th>Segno (Regola VI)</th>
<th>Coefficiente (Regola VII)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X'') = (X''_{1})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s})</td>
<td>1</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>(X'') = (X''_{1})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r)</td>
<td>15</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>(X''') = (X'''_{1})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+1)</td>
<td>20</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>(X''') = (X'''_{2})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+2)</td>
<td>45</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>(X'''') = (X''''_{1})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+3)</td>
<td>15</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>(X'''') = (X''''_{2})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+4)</td>
<td>60</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>(X'''') = (X''''_{3})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+s)</td>
<td>15</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>(X'''') = (X''''_{4})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+s+1)</td>
<td>15</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>(X'''') = (X''''_{5})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+s+2)</td>
<td>10</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>(X') = (X'_{1})</td>
<td>(\Sigma x^n, \Sigma x^p, \Sigma x^q, \Sigma x^r, \Sigma x^{r+s}+r+s+3)</td>
<td>1</td>
<td>-</td>
<td>120</td>
</tr>
</tbody>
</table>