
Rendiconti Accademia Nazionale delle Scienze detta dei XL
Memorie di Scienze Fisiche e Naturali
ISBN 987-88-548-5718-6
DOI 10.4399/97888548571864
pag. 33–52

Half adders in binary parallel multipliers

L D

. Summary

Binary parallel multipliers are composed mostly of full adders and half
adders. We show that, independently from the chosen architecture,
the half adders number must be at least N, the factor’s length. Choos-
ing then one of the simplest architectures half–adders–minimal, we
show that such minimal number of half adders, properly arranged,
can obtain properties such as: the generation of a number of non–
redundant least significant product’s digits, the correction of the row–
overflow i.e. the optimization of the total delay (treated in a previous
paper), the operation with factors in two’s complement format. The
case of the non–half minimal multipliers is also discussed, showing
the Wallace scheme as an example. It is also shown that the set of
irredundant least significant bits of the product does not cause any
delay in the final Carry Propagating Adder. Finally we present the pa-
rameters of the multipliers family that includes the schemes illustrated
in chapter III, obtained using a design tool based on a spreadsheet.

. Introduction

The design of fast binary multipliers has been the subject of numerous
researches in the past decades, originating several schemes. They are
composed of a number of full adders and half adders in networks of
different structures. The common general architecture is composed
of a first part generating the partial products usually represented in
a rhomboid array of N rows each containing the products of the
multiplicand digits by a digit of the multiplier. The product is the
value of such an array, i.e. the sum of the N rows. For reason of

 Luigi Dadda

speed such evaluation is done in two steps. In the first the number
of rows is reduced to two using carry save additions. Those two
rows represent the product in a redundant form. The final product
is obtained by adding those two rows via a Carry Propagating Adder,
usually adopting Carry–Look–Ahead structures for speed reasons.

The carry save operations are obtained with full adders and half
adders, composed in different ways, implementing a specific algo-
rithm.

Half adders, though in a rather small number if compared to the
full adders, play a number of different roles, obtaining various spe-
cific characteristics of the multipliers. As examples, the compression
phase leading to two equivalent rows can produce a number of non–
redundant least significant digits, thus reducing the length of the
Carry Propagating Adder. Moreover, the number of cascaded stages
in the reduction process can be non–optimal, due to a “row overflow”
that has been overlooked in the past and illustrated by the author in a
previous writing [], the same problem being also considered in []
with a different methodology. It has been shown that the insertion of
few half adders avoids such overflow, obtaining a faster circuit.

As a preliminary step, we will show in next chapter that in a bi-
nary multiplier there must be a minimum number of half adders,
independent of its architecture. Such a minimum is N, the size of
the factors in bit. This property is just a necessary condition for a
binary multiplier. It permits to say that a multiplier with a smaller
number of half adders cannot exist. We will show, however, that it
leads to reconsider, in general, the presentation of existing algorithms.
In particular we suggest to consider as a rule from the beginning both
the compression phase and the Carry Propagating Adder, due to their
interaction.

The notation used for representing a multiplier scheme plays an
important role. If, for example, the compression network is described
using the standard logic notation it would be very difficult to design
and to understand it, due to its size and complexity. Some form of
abstraction is needed for reducing the size and at the same time
keeping the possibility to represent the main properties. A method
widely used has been proposed in []; it represents a full adder
with two dots connected by a segment, representing the sum and
the carry. It is the dot notation. A step toward a greater compactness

Half adders in binary parallel multipliers

was shown in [] representing a set of variables (with the same binary
weight) with an integer close to a dot. A further step has been shown
in [] with the cell notation where a set of variables is represented by a
cell containing an integer. This leads to the use of spreadsheets and
to the possibility of obtaining operations on logical variables using
instructions in the language associated with spreadsheets.

In the following we will adopt the cell notation just for representing
the cell arrays, implementing the algorithms “manually” and not
through programming instructions. A design program based on a
spreadsheet , used for obtaining the data given in chapter VII, can be
downloadable from [].

. The minimum number of half adders in a binary multiplier

The preliminary result of this paper, i.e. the determination of the
minimum number of half adders in a binary parallel multiplier, is
not based on the consideration of any specific proposed scheme. It is
a very general result applicable to any scheme architecture, on the
assumption that it uses a reduction algorithm based exclusively on full
adders and half adders. The reduction algorithm starts with an array of
partial products and reduces the number of rows to two via cascaded
stages using carry save techniques. Among the proposed different
schemes we cite the Wallace scheme [], the scheme proposed in []
offering the smallest number of full adders and the scheme proposed
in [] using in a different way the same stages heights sequence of
[] and the scheme introduced in [] for solving the problem of row–
overflow.

A different approach, using signed digits, is adopted in multipliers
based on the Booth algorithm, not considered in this paper.

The determination of the minimum number of half adders in a
binary multiplier is based on the following steps, shown as an example
in a specific simple case of fig. and fig. . In the first the multiple dot
notation has been used , while in fig. the corresponding cell notation
has been adopted.

We note that a multiplier scheme in dot or in cell notation can be
considered a compact hardware scheme. Note also that in cell notation
the coordinates of each cell can be assumed as the variables names

 Luigi Dadda

(with indexes for the variables of a given cell). A for indicating a
variable or an integer for indicating a set of variables in a cell, tells
that those variables exist and their names are also the names of the
pins where the variables can be seen.

The variables feeding a full adder are not explicitly shown but are
implicitly given by the output variables in the same column in the
preceding stage(s). If the three input variables are , the same value
have the two output variables i.e. the sum and the carry. Similarly
for the two variables feeding a half adder, with a relevant difference:
if both input variables are , the sum output will be and the carry
will be , but we will denote both of them with , since both exist
in a hardware scheme. We will call the set of N output bits in the
hardware scheme a hard–product, to signify that it is the tool for
representing the product.

We can, however, consider the same scheme as an operational
scheme showing the variable’s values in the special case in which all the
input variables have value , i.e. the unsigned multiplication factors have
their maximum values.

In a hardware scheme the N product bits are denoted with but,
notoriously, the product of two N–bits factors is composed of N–
most significant bits valued , followed by N zeros and ending with a
 least significant bit. Assume now that in each of the N zero–output
columns we have a half adder (in one of the cascaded reduction stages).
Assume also that such N half adders are placed according to a valid
multiplier scheme. In fig a and fig, b schemes we have N= half
adders, placed in adjacent columns to . Correspondingly the
output of the same columns in an operational scheme will be zero,
giving therefore a correct maximum product.

We know, however, that valid multipliers exist having a number
of half adders greater than N. Such property is found in the Wallace
multiplier []. We will examine in detail such a multiplier in the next
chapter V, fig. . In such a multiplier we have in the same “zero–
output” columns a column having half adders and columns
without half adders, giving anyway the correct zero output. This
happens for the following reason. Let’s assume that in one of the
columns, i, we have two half adders in the same or in different stages.
This means that a total i + i = i+ must be subtracted from the
hard–product for obtaining the product: this means that a must be

Half adders in binary parallel multipliers

subtracted in column i + . We thus obtain a reduction in column i +
using two half adders in column i, while it could be obtained with a
single half adder in the same column i + in a half–adders–minimal
scheme.

In conclusion the minimum number of half adders is N if a single half
adder is placed in each of the columns to N + .

. The role of half adders in a specific case

We now examine the role of half adders in multipliers schemes and
for that purpose we adopt a specific scheme. Such a scheme has been
introduced in a previous paper dealing mostly with the “row overflow”
problem []. It has the following properties.

— The reduction process is implemented using only full adders
obtaining the reduction to three rows, i.e. a N : reduction (we
adopt the notation used in some programming languages, in
particular in spreadsheet languages). A reduction : is obtained
in a Last stage, using also half adders.

— A Final stage obtains the non redundant product, using a Carry
Propagating Adder, CPA.

The half adders are in this case used only in the Last and in the
Final stages. Their total number is N, i.e. the minimum.

Such a scheme is not immune from row overflow. We will show in
chapter IV the case of a half–adder–minimal multiplier immune from
row overflow.

As examples, fig. and fig. represent multipliers for N = . Fig.
A and fig. A schemes use respectively the dot notation and the cell
notation. In both schemes we have half adders: in the Last stage
and in the CPA.

The two schemes are affected by row overflow. Fig.B and fig. B
represent the same multipliers corrected for row overflow by placing
a half adder in stage . The number of compression stages is reduced
from to . The number of half adders is still .

In general the places where the half adders are situated depend on
the multiplier’s architecture. We found that the multipliers character-

 Luigi Dadda

ized by N : compression stages using exclusively full adders have the
minimum number of half adders. If we want to avoid row overflows,
half adders will be needed also in some of the N : compression
stages. This doesn’t requires an increase of the total number of half
adders, since it happens that correspondingly, in the same column,
the half adder in the Last stage is no more needed. Note that, other-
wise, we would have two half adders in the same column, with the
consequences described in the preceding chapter.

Fig. A: a x multiplier in dot notation, with row–overflow; fig.B:
with correction to avoid row–overflow.

In fig. A we notice that the first topmost row represents the partial
products (usually given as a rhomboid array of s) by the sequence
,,,,,,,,,, representing the numbers of variables in each col-
umn: such a sequence is the input vector of the compression section.

Three stages are needed for reducing the input vector to rows
with no half adders. The Last stage obtains the two–rows product
using half adder. A final Carry Propagating Adder obtains the non
redundant product, using half adders for a total of . In fig.B in stage
 we place a half adder in column for avoiding a row overflow. In
the Last stage we have a second half adder in column . The Carry
Propagating Adder is composed of half adders in columns to ,

Half adders in binary parallel multipliers

giving a total of half adders. Fig. A and B, represent the same
schemes of fig.A and B, adopting the cell notation. In such figures we
have added in two columns the decimal values of the corresponding
rows, showing how the final product (for the maximum values of the
factors) is generated. Note in fig. A the value of the product ().
The output from Last stage is = + , the last term being
the weight of the half adder Sum output of the half adder in column
. The output from the CPA is further increased due to the half
adders in CPA. In line we find the hard–product composed from all
s, valued . The product in line is obtained by subtracting from
the hard–product the value () of all the Sum outputs of the six half
adders. The last row in fig. A indicates the half adders and their
locations:

Fig.A: x multiplier using cell notation; the scheme is affected, in
stage , by row–overflow, requiring compression stages. Fig. B: the
row overflow is eliminated with a half adder in stage . Compression
stages are reduced of to . Both schemes use half adders, as shown
in bottom row: stand for st stage, m for Last stage and cpa for Carry
Propagating Adder. The lines pointing t, t, t, t tell that the pointed
bits of the product are generated at different times in the same CPA
stage.

 Luigi Dadda

The half adders can be found in the N: compression stages for
two different tasks: avoiding the row overflow and generating a
number of single least significant bits (reducing the CPA length).
Note that we had to imply the CPA because the determination of
the number and places of the half adders requires the product in
the non–redundant form. This is an important peculiarity of this
paper. A most important result is that the generation of the least
significant non–redundant product bits requires few half adders in
columns to N+, where in any case we have “native” half adders
in CPA. Those half adders accomplish “naturally” the new task.
The same result has been suggested in [] by placing a single half
adder in all the compression stages, no consideration being given
to the CPA. We notice here that such arrangement can be obtained
simply by moving the half adders from their “native” place in CPA
to the Compression stages. It can moreover be seen that the two
resulting schemes (fig. B and fig. C) are topologically identical,
i.e. the displacement of a half adder from the CPA to a compression
stage can be obtained via stretched connections. Leaving them in
the CPA or moving them to compression stages is just a matter of
taste.

The case of the half adders used to eliminate row overflow is
rather different. Placing a half adder in a compression stage for
this purpose obtains the elimination of row overflow by changing
locally the structure of the scheme, generating a different (but
equivalent) output vector. Such changes obtain in the Last stage
the elimination of the half adders in the positions where previously
the half adders were generated.

The scheme obtains the two results (elimination of rows over-
flow and generation of least significant non–redundant digits) with
no additional costs, since no changes are caused in the number of
full adders.

The Carry Propagating Adder will be represented, when needed,
in its simplest implementation, i.e. as a Ripple Carry Adder, despite
the fact that in practice, for speed reasons, a faster arry–Look–
Ahead or a Parallel Prefix scheme is adopted. For our purposes,
however, we can adopt the Ripple Carry scheme, since we are
interested here only in its basic task i.e. the parallel addition.

Half adders in binary parallel multipliers

Fig. C: derived from fig. B by displacing the half adders in columns
, and from the CPA to stages , and Last, respectively. Such dis-
placements can be effected without changing the input connections (not
shown in the figures). The row following row shows the stages where
one input of the corresponding half adder is connected.

. A second case of half–adders–minimal multiplier

We show now a second case of half–adder–minimal multiplier,
given by a scheme proposed in [] characterized by a prefixed se-
quence of stages heights: , , , , , , , , , , , [. . .] Each
of these terms offers the maximum value of N (the factors length
in bit) for a given number S of stages. We call those multiplier
N(S)–maximal multipliers. For a given N this multiplier needs the
smallest number of Full Adders if compared with other proposed
schemes.

 Luigi Dadda

Fig. The scheme for a x N–maximal binary multiplier. Stage’s
heights from bottom are: for stage (feeding the Carry Propagating
Adder), for stage , for stage , for stage , for stage , the
topmost. This contains the top of the input array columns higher than
 (and smaller than , the next stage height).

The same scheme is also immune from row overflow [], just
because each column reduction is exactly matching the output height
to a prescribed value. The scheme is derived from the original in [] by
inverting in each stage the order of the rows. The dot notation scheme

Half adders in binary parallel multipliers

shows great simplicity. It can be seen, in particular, that the scheme
has been completed with the Carry Propagating Adder in order to
generate the final non–redundant product. This starts in column ,
being preceded in the least significant columns by half adders (in
columns and). The third half adder is in column , stage . The
other half adders are in the following (in ascending order) rows. The
topmost row is composed from half adders.

The reduction algorithm differs significantly from the one used in
the preceding case. In the latter the Ni input variables in each column
were reduced as much as possible, using a number of full adders equal
to bni/c, with no reference to the heights values. In our case instead
the reduction is required for obtaining a total output column height
equal (or smaller) to the height of the following output stage.

This implies that, starting from the rightmost column, some columns,
i.e. the input columns whose heights are smaller than the output col-
umn height, will not be processed, the corresponding variables being
simply transferred to the output columns.

If instead the input column height ni is greater than the prescribed
value ns a number ne=ni−−ns of variables cannot be simply transferred.
What matters, precisely, is that their values are transferred without
violating the condition of a prefixed stage height.

This can be obtained in the following way. Let’s assume that the ne
bits “in excess” are just one. We can pair the single excess bit with a bit
of the same column in the following stage. We than feed a half adder,
placing its Sum output in the output column and its Carry output in
the next (to the left) output column. If we have instead ne = , we
do the same using a full adder. For a generic ne we need nfa = Ïni/
vfull adders and a single half adder for the case of ne odd, for a total
of nfa + carries in the next left column, to be added to the column’s
excess bits, to be treated as just described.

The above algorithm has been applied “by hand” for obtaining the
fig. scheme. The same algorithm has also been programmed in the
spreadsheet language, obtaining a program using the cell notation.

As an additional remark we note that the sequence describing
its construction doesn’t represent in general the actual operation of
the scheme. This would happen only in the case that the output
variables of each stage were stored in a set of flip–flops, obtaining
then a pipelined structure permitting very high throughput (with,

 Luigi Dadda

necessarily, a delay due to the number of pipelined stages). Assuming
that we do not adopt that structure, avoiding any pipeline step, we can
see from fig. that all stages would be reached by the input variables
simultaneously. The pipelining in this multiplier has been treated
extensively in the literature.

. Multipliers with non–minimal half adders

The Wallace multiplier [] requires a number of half adders greater
than N. The Wallace architecture is based on transforming a group of
three adjacent rows of the partial product array into two equivalent
rows obtained with an array of full adders and half adders. Fig.
shows the Wallace reduction algorithm applied to a x multiplier.
The full adders are represented by a (skewed) couple of shadowed
cells , the half adders being marked with a diagonal segment with two
arrows. The rows not grouped (or) are transferred with no change.

The above transformation is repeatedly applied until two rows only
are obtained (in rows and in fig. example).

The non redundant row product is obtained using a Carry Prop-
agating Adder in row (containing the carries) and (the sum
bits).

Row shows the number of half adders present in each column.
In row (the hard–product) we see all s. The true product can be
obtained by subtracting from it the number representing the set of the
sums outputs of all the half adders, using the weights in the bottom row.
The difference is shown in the right–low part of the figure. The result of
the difference () converted in binary gives: , i.e. th
product (of two factors valued Such result can be obtained column
by column (starting with the rightmost one). In the first ten columns
the difference of rows and is . In column we should
subtract from . We subtract just and transfer to the next left column
after dividing by . The same situation in now in column . We then
repeat the operation until a is obtained in column , generating the
correct product in row . We need half adders in the Wallace scheme
while are needed in a half–adder–minimal multiplier. It is possible to
perform on fig. the same timing analysis done on figure B scheme,
obtaining the same result.

Half adders in binary parallel multipliers

Fig. : a x Wallace multiplier

. A two’s complement multiplier

As a further variation of fig. scheme we consider a multiplier han-
dling signed factors in two’s complement form. We have considered
the problem also in [] in a different context, showing that a good
solution is obtained as in fig. B scheme with the variations (see also
[,]) depicted in figure .

All the terms in columns to N– are positive, the only negative
term is in column N (in other words the binary weight in column
N is −N). We can adopt the spreadsheet program, developed for
evaluating arrays for unsigned factors, with suitable modifications.
First of all we change the Partial Product generator replacing the
AND gates, generating the left diagonal and the bottom row, with
NAND gates.Then we modify the input vector of the spreadsheet
program by adding a new variable to the N + column and to the N
column (empty in the original program), whose negative sign will be
accounted for in the addition process.

 Luigi Dadda

Fig. : a):a multiplier array for two’s complement factors. The two s in
central column are needed for complementing the bottom row and the
leftmost diagonal. The leftmost – derives from such complementation
and generates the sign of the product when affected by the carry from the
preceding column. At the top–left we show the left diagonal and the bottom
rows extended two columns to the left to align them with the column N
where the negative weighed product sign bit lies. b): an equivalent more
convenient version.

We obtain the result by adding a new row to the input vector
generator in which we place the two terms, generated by a specific
program using the assigned N. The original row and the new row
will be added to obtain the two’s complement operation. If a standard
unsigned factors operation is desired we simply place zeros in the new
row. The compression algorithm designed for unsigned factors works
also for two’s complement factors.We found that the term in N +
column causes the number of full adders to be increased by , while
no change in the number of compression stages occurs. Note that the
additional full adder could be replaced with a special half adder as
suggested in [].

The added to the column N brings the length of the –rows
Last stage output to N columns, i.e. the product length. The final
product requires in the CPA a corresponding Nth column composed
from a half adder (whose carry will be neglected). Its Sum output (the
product’s sign bit) can be easily proved to be equal to the complement
of the Carry generated in the preceding (N −−)th column of the
CPA. In conclusion the number of half adders is unaffected, with a

Half adders in binary parallel multipliers

modification: the leftmost one is moved from column N + to column
N (where it can be replaced with an inverter). This is the only case,
among those encountered so far, in which one of the half adders is
not contiguous to the others.

The program for the design of multipliers for unsigned or two’s
complement factors can be downloaded from [].

. Parameters of a multiplier family

In the preceding chapters we have discussed the multipliers properties
using working examples with small values of N, considering also a
number of different families. We want in this chapter to consider a
single family, i.e. the one represented in fig. . The main characteristic
of this family is the adoption of the height of the first stage the value
N, the factors length. The successive stages height is equal to the max-
imum value in the output vector of the preceding stage. This is quite
a natural choice (we could call it the Standard height sequence), but
not the only one possible. We have seen, as an example the scheme
in fig., where the sequence of the successive stages heights is pre-
fixed and assumed for all the multiplier of the corresponding family.
We obtained the data using a design tool conceived for the said fam-
ily, capable of giving, in cell notation, the scheme and a number of
parameters. Table A shows the sequences of the stages heights for
≤N ≤ . The sequences marked by a star (*) are characterized for
having the maximum N for a given number of stages. They are the
only stage heights for the multipliers proposed both in [] and in [].

Another family using the standard stage heights sequence is the
one discussed in chapter V. The cells with grey background contain
height values multiple of and represent the heights of the stages in
which a row overflow is generated. The total number of half adders
needed for row overflow correction is given by the bottom cells in
italic. Note that all the columns following the ones with a star are the
only cases with no row–overflow. Table B shows for each N
(≤ N ≤) the following data:

— the number of stages of the Compressor
— the number of non redundant least significant bits

 Luigi Dadda

Table A

— the number of full adders (excluding those used in the Carry
Propagating Adder)

— the number of half adders (in this case equal to N, the factors
length)

— in an adjacent column, the number of row overflow correcting
half adders

— N the factors length in bit

In an asociated column, the number of row–overflow correcting
half adders in stage .

— The following columns (marked , , , , , , and partitioned
in two sub columns) present for each N the successive stages
heights with (when needed) the number of half adders for
row–overflow correction).

The data in the tables cover the range ≤ N ≤ . Tables for up to
N = can be found in [].

Table C shows for each N a row containing the location of the N
half adders with the symbols used in the preceding figure . Since

Half adders in binary parallel multipliers

Table B

the program can be used for two’s complement factors, two different
locations are shown for the leftmost half adder: in column N + for
unsigned factors, in column N for two’s complements factors, as
discussed in chapter VI.

We underline the fact that the main result obtained by the design
program is the scheme of the multiplier, represented in cell notation.
Such a notation generates quite a compact scheme. This is particularly
important for high values of N. The compactness is certainly very
useful, but is far from a standard logical scheme. Knowing the basic
principles of the cell notation, however, it is a good start for the design
process, permitting to master the whole project. It is not a replace-
ment of a description via languages like Verilog or VHDL. It can be
considered a preliminary description, also because it offers a coherent

 Luigi Dadda

Table C

set of variables names, given by the cells addresses. It is easier to write
the VHDL expressions for the sum and carry of the numerous full
adders and half adders. Note also that a cell could be represented
conveniently in VHDL with the Array instruction.

Last but not least the above described set of data can be considered
a first example for an adjourned presentation style of multipliers and
other similar arithmetic operators.

. Conclusion

We have shown first that a minimum number of half adders has to be
used in parallel binary multipliers, independent of their specific archi-
tectures. Two different families of half–adders–minimal multipliers
and one family of non–half–adders–minimal multipliers have been
shown.

Having chosen a specific family of half–adders–minimal multipli-
ers, we have then found that in such multipliers we can solve the
row–overflow problem and obtain the generation of a number of non
redundant least significant digits in the product, using the available

Half adders in binary parallel multipliers

minimal number of half adders, without increasing the number of
full adders. The length of the Carry Propagating Adder is therefore re-
duced accordingly. Moreover, the computation of such least significant
product bits is done in parallel with the existing compression stages,
so reducing the total time for the computation of the final product.
This last property has been so far overlooked.

We have shown that a multiplier transformed for factors in two’s
complement format requires the same number of half adders with
one of them placed in the product’s most significant sign bit and one
more full adder.

We found also essential to consider the role of the Carry Propa-
gating Adder, independently from its actual architecture. The main
reason is that a number of “native” half adders is always present in it.

In most of the examples we have adopted a cell notation, introduced
first in [] as an evolution of the know dot notation. We could draw
much more compact schemes with the possibility to handle them by
computer programs using spreadsheets. We have finally shown in three
tables a set of data for each multiplier of a specific family, obtained
from a computer program capable of generating the corresponding
schemes, in the range ≤ N ≤ .

References

[] W, C.S., A Suggestion for a Fast Multiplier, IEEE Trans. Electronic
Computers, vol. , pp.–, Feb.

[] D L., A new notation for Arithmetic Array Design and its application to
Binary Parallel Multipliers, Rendiconti Accademia Nazionale delle Scienze,
Memorie di Scienze fisiche e Naturali, ° (), Vol. XXXIII, P. II t. I,
pp.–.

——, Some schemes for Parallel Multipliers, Alta Frequenza, Vol. , pp.–,
.

[] B, A.C., S, M.I., S, E.E., Parallel Reduced
Area Multiplication, of VLSI Signal Processing, , –, .

[] D, L., Parallel Decimal Multioperand Adders: a mixed Binary and Decimal
approach, IEEE Transactions on Computers.

 Luigi Dadda

[] P, B., Computer Algorithms and Hardware Design Oxford University
Press, p. , .

[] W, S.M., S, E.E., A Reduced Complexity Wallace Mul-
tiplier Reduction, IEEE Transactions on Computers„ vol. , n., pp. –
, Aug. .

[] D. L., Spreadsheet Programs for the design of binary parallel multipliers,
ALaRI Università della Svizzera italiana, .

[] http://www.alari.ch/people/dadda/home/DirRaDatwoCpa.xlsx.

Luigi Dadda
Politecnico di Milano, Università della Svizzera italiana

Uno dei XL
luigi.dadda@polimi.it

http://www.alari.ch/people/dadda/home/DirRaDatwoCpa.xlsx
luigi.dadda@polimi.it

	Memorie
	Half adders in binary parallel multipliers
ewline AE @cftauthorfont Luigi Dadda

