
Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Scienze Fisiche e Naturali
127° (2009), Vol. XXXIII, P. II, t. I, pp. 47-62

LUIGI DADDA*

A new notation for arithmetic array design

and its application to binary parallel multipliers

I - INTRODUCTION

The design of arithmetic operators (binary or decimal multi-operand adders,
multipliers) is often done by using some kind of arithmetic array. The design
process starts with an initial array composed from a number of rows that is then
processed in a sequence of stages in which the number of rows is gradually
reduced, until an array of two rows is obtained. The process performed in each
stage is done via carry-free addition, and a single carry propagating addition
obtains the final result. This is called the reduction process.

A known notation for such task is the dot notation introduced in 1965 [1]. It
has been used by other authors [4, 6-8]. In 2005 a variant of such notation, the
compact dot notation has been proposed and used [2, 3]. It leads to an array of rel-
atively small numbers and consequently to the adoption of spreadsheets for the
implementation of design algorithms.

In the reduction process it happens that in some stages the number of output
rows is slightly greater than the one expected, leading to an increase of the total
number of stages of the reduction process, consequently to a greater total delay. We
will examine the origin of this row overflow showing that it happens in the reduc-
tion algorithm when some peculiar values of the involved parameters, not easily
perceivable, occur. The scope of this paper is to analyze such problem and to show
a solution.

The method will be applied to a notable example, the binary parallel multi-
plier.

Since we will adopt a notation not commonly used, we present first a short
survey of the existing notation, as an introduction to new proposed notations.
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II - DOT NOTATION, COMPACT DOT NOTATION, CELL NOTATION, SPREADSHEET

The Dot Notation is used in fig.1a for representing the addition of 10 bit of
same weight, i.e. a column of 10 bit.

In fig. 1b the same problem is shown with a different representation, the Com-
pact Dot Notation. A single dot, associated with an integer N is used to represent a
column of variables, N=10 in the figure. A single full adder associated with an inte-
ger F, represents F full adders. The second stage in fig.1a is composed with 3 full
adders; in fig. 1b with a single full adder associated with 3.

Note that, for practical reasons, the associated number is reproduced twice,
close to the Sum and to the Carry full adder’s outputs. Note that a single full adder
can be represented without number or with an associated 1. It is clear from fig. 1b
why this method was named Compact Dot notation. 

In fig. 1a the basic rule is: partition the input dots (10) in triplets and feed
each full adder in the next stage with a triplet; transfer with no processing the
remaining dot(s).

In fig. 1b the rule is: divide the number of the input dots by 3 and place the
integer quotient close to the Sum and to the Carry outputs of a full adder in the
second stage; the remainder, if any, being represented by a dot (with a 2 if the cor-
responding remainder is 2). An integer quotient of N/3 can be written as õN/3Õ

and the remainder as NMOD3. A third stage is needed to obtain two rows, using two
full adders.

The non-redundant final binary number is obtained via a Carry Propagating
Adder, represented in the figure by a thick line joining all the output Sum bits.

It is important to understand that the above schemes represent the hardware
composition of a circuit generating four bits representing the number of inputs
valued 1. The scheme doesn’t represent the numbers themselves. 

Fig. 1c represents an adder of 10 binary numbers of 4 bit. The most important
difference from fig.1a is the handling of carries. We need 6 stages instead of 3. Note
also that the scheme has an interesting property: 3 of the final 7 bit result are already
computed in the stages preceding the output stage. The length of the binary carry
propagating adder is composed from 4 stages only (note that the most significant bit
is represented by the carry from the fourth stage of the parallel adder).

A third method for designing such a system is represented in fig. 2a, where we
use an array composed by the “multiplicity factors” of the various groups of variables
of fig. 1b, avoiding the explicit graphical symbols for the full (or half) adders. We can
operate on such an array as in the case of Compact Dot schemes. The numerical
operations are executed “by hand”, as in the compact dot-notation scheme.

In fig. 2b the fig. 1b scheme is represented on a spreadsheet. For addressing
each cell on a spreadsheet it is used a method based on alphabetic letters to indi-
cate a column and on decimal integers to indicate a row. As an example cell, AW67
contains a 3. 

The operations on such an array are performed via programs written in the
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spreadsheet language. We show in fig. 2b the expressions to be used for imple-
menting the first stage of the reduction algorithm.

The arrays seen in the above two schemes are identical. Note that each reduc-
tion stage is composed from 4 rows.

Fig. 2c is the spreadsheet representation of the compact dot scheme of fig. 1c.
The equation of fig. 2b are repeated for each column and stage of fig. 2c.

II - THE ROW OVERFLOW GENERATION AND DETECTION IN COMPRESSION SCHEMES

In order to describe the row overflow problem we can consider it in a simple
situation, i.e. the addition of a small number if columns, as shown in fig. 3A where
we consider the addition of numbers composed from 7 bit and represented with
columns of different height: 5 for the three least significant bits in columns 1, 2, 3;
4 bit in column 4 and 3 bits in column 5, 6, 7. The first stage of their addition is
shown in fig. 3A (see fig. 2c). The stage output is in row 5: 2223443. The output
value n1i in column i is:

n1i=
õn0i//3Õ+õn0i-1//3Õ+ n0imod3 (1)

n0i and n0i-1 being the input values in column i and i-1.
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Fig. 1. Examples of dot-notation: adding 10 bit; a) in simple dot-notation; b) in compact dot-nota-
tion; c) adding 10, 4bit binary numbers, in Compact dot-notation.



The same can be said for fig. 3B.
Let’s consider now the case of fig. 3C. Row 1 values change from 6 to 5 (in

column 4), to 4. A value, 5 is noticed in column 4, row 5. This value is generated
in the transition from a column input of 6 (creating in column 4 a carry valued 2)
and a column input of 5, creating in column 4 a quotient 1 and a remainder of 2
for a total output of 5 in column 4 row 5.

Such a value is higher than any other value in the same row 5, an abnormal sit-
uation if compared with the two preceding cases. This could require an additional
stage in the reduction process.

Thing can be, anyway, corrected. We can feed a half adder (represented in fig.
3C, row 4, with the usual symbol) with the remainder 2 in row 4. The 2 in column
4 is then replaced with a 1 (the output Sum of the half adder), while the 1 in
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Fig. 2. Cell schemes for same problem of fig. 1b. a) written by hand; b) represented on spread-
sheet, operations being done by a program; c) on spreadsheet, same problem of fig. 1c.



column 5 (output from the Carry ) is increased by 1, see row 6 in same figure. We
get in the output row 7 the corrected value of 4 in column 4 and 5.

In fig. 3D we see a case similar to fig. 3C: more precisely it can be derived
from fig. 3C by adding 3 to all input values The correction is the same.

The case in fig. 3E differs from the one in fig. 3C for having two adjacent
input columns valued 5.

This leads to a correction requiring two half adders.
In fig. 3F we have three adjacent columns with input values 5 and therefore

three half adders will be needed. We can obtain successive similar cases.
Note that the cases to be considered are only those of columns adjacent to the

maximum in the respective row, since if the columns have smaller heights, an over-
flow from them will not generate a row overflow in the stage.

Taking care of all the relevant cases, the Rule for identifying and correcting the
row overflows in each stage of a compression array can be expressed as follows:

Obtain the maximum input value(s) nmax (more than one maximum could be
found).

If nmax >5 and is a multiple of 3, look at the next column input.
If its value is nmax-1 the remainder (valued 2) is fed to a half adder, whose Sum

output is written in the same column, in the 4rh row, while the Carry output is
placed in next column, in a new 5th row. See fig. 4A.

If more than one adjacent columns are valued nmax-1 a corresponding group of
correcting half adders is needed, as in fig. 4B and fig. 4D examples.

Note in fig. 4 that he 5th row contains only the carries of the correcting half
adder.

The application of the Rule doesn’t therefore require to generate the row
affected from row-overflow and then to correct it, as done in fig. 3. We instead
generate directly the correct row, immune from row overflow, as shown in fig. 4.
The Rule permits to decide if a column is a source of row overflow and to provide
its correct composition: a “regular” one in case of no-row overflow, a column with
a half adder if it is needed to avoid row-overflow: see fig. 4 examples.

The Rule has been written in the spreadsheet programming language and used
in file A.xlsx, that can be downloaded from [10].

IV - DESIGNING A BINARY MULTIPLIER IMMUNE FROM ROW-OVERFLOWS

We consider a preliminary problem: deciding if the number of rows generated
from a stage is not affected by overflow. We need a method that must be as simple
as possible. For example, we could compare the number of rows effectively gener-
ated in a given scheme with the number of rows from an “ideal” or “standard”
stage that, due to its architecture, cannot generate overflow rows. We propose to
consider as a standard stage the one that is composed by a very large number of
columns, ideally infinite. We can easily simulate such a stage, implementing a single
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Fig. 3. A and B: two cases with no row overflow. C and D: two cases of overflow requiring a single
half adder for correction; E: a case requiring 2 half adders. F: a case requiring 3 half adders.



column and feeding it with carries identical to the carries generated from the
column itself. A stage where the columns are identical cannot generate overflow
rows due to the over flow generation mechanism requiring a suitable difference
among adjacent columns, as seen in the preceding chapter. In other words, the
anomaly of row-overflows in such a case is simply impossible.

The input N to a standard scheme will be reduced to an output of n1 rows.
From N we compute the integer quotient õN/3Õ and the remainder of N/3, i.e. the
value of Nmod3. The n1 output is:

n1 = 2* õN/3Õ+Nmod3 (2)

The n2 rows output from a second stage, is given by the above relation in
which N is replaced with n1. A sequence of such ni values is obtained until the
value 2 is reached.

In fig. 5 we show the design of a 9�9 bit multiplier reduction stage in two
versions: in the first, fig.5a, the design was done ignoring the Rule just given for
obtaining a row-overflow-free scheme. In fig. 5b instead such Rule has been
applied. The first scheme is composed from 5 stages, the second from 4 stages. 

Note that in fig. 5 we adopt the method for addressing a cell described for fig.
2b. We will develop cases of reduction by executing the required operation “by
hand”, not by programs written with the spreadsheet language.

Row 1 in scheme 5a is filled by digits 1,2,...8,9,8,…2,1 for representing the
partial product array of a 9�9 multiplier. The first reduction stage can be filled
column after column starting from the rightmost column, applying the fig. 2a algo-
rithm. Row 5 is the output of the first stage. It is also the input to the second stage,
whose output is in row 9. The third stage output is in row 13, followed by the
fourth stage whose output is in row 17. Note that its maximum value is 3. This
means that the following is the final stage, whose output is composed from values
1 and 2. Note that the max values of the output rows of the various stages are: 7,
5, 4, 3, 2.
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Fig. 4. Compression stages immune from row-overflow for cases A, B, C (see fig. 3).



Note also that in fig. 5a we use in each of the first 4 stages a single half adder
for reducing to 1 the input value 2 in the right part of the array. This reduces the
length (and therefore the cost) of the final Carry Propagating Adder, see [1, 8]. 

The values given by (2) are: 6, 4, 3, 2. i.e. we should have one less stage. Con-
sequently we see that in fig. 5a we must have a row overflow, the cause of the
unwanted stage. In order to show the procedure of building an array with no over-
flow we repeat the exercise in fig. 5b. Looking in first row, the input row, we notice
in column I the value 9 followed by 8 in next column H. According to the Rule, we
know that the remainder in the column with input 8, which is 2 in fig. 5a, must be
fed to a half adder, whose Sum output in row 4 is represented in column H by 1,
and the Carry output is also represented by a 1 in row 5 in next column G, see
figure 5b.

Row 6 contains the sum of rows 2, 3, 4, 5: it is the output of the first stage and
the input to the second stage, built with the same algorithm. We notice that the
maximum in such a row is 6, in three columns. Starting from the right, we have the
first 6 in column J, followed by 5 in next column I. We have therefore an overflow
in column I, avoided with a half adder represented by two 1s: the first in row 9,
column I, the second (the carry) by a 1 in row 10, column H, i.e. in cell H10.

In row 6 we notice two more adjacent 6, in columns H and G, followed by 4
in column F: this last value tells that there will not be row-overflow. 

The third and the fourth stages don’t show any overflow, because the max
values of their inputs are smaller than 6. 

We notice in fig.5a scheme, in column R some “service” cells. In R2, R6, R10,
R14 and R18 we find the number of full adders used in the corresponding stages.
The counting can easily be performed automatically in spreadsheet.

Same kind of cells is used in fig. 5b.

Design tools

Using spreadsheets, we have designed and implemented tools permitting the
automatic design of multipliers fo N in range 3<N<67. It is not the scope of this
writing to illustrate in detail such designs, but rather to use them for a comparison
of three different architectures. We invite the interested reader to download such
programs from [10].

Two programs generate schemes similar to those of fig. 5, giving also a set of
parameters at the basis of the comparison developed in next chapter. 

File A.xlsx permits the design of multiplier schemes of fig. 5b type, i.e.
immune from row overflow.

File B.xls generates schemes of fig. 5a type, i.e. affected by row overflow. It
will be used here only for comparing the results with the preceding tool, in the said
range of N. (In reality, this has been the first program developed, that allowed us
to realize the existence of the row-overflow problem)
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Fig. 5. Reduction schemes for a 9�9 bit multiplier: a) ignoring the row overflow problem, 5
stages; b) adopting the no-row-overflow generation rule, 4 stages.



File C.xlsx implements multipliers according to a rather different architecture,
proposed first in [1] based on a prescribed set of “stage heights” (2, 3, 4, 6, 9, 13,
19, 28, 42, 63, 94,…., the reference sequence) and offering the smallest number of
full adders of all the binary multipliers so far proposed. It is immune from row
overflow since its compression algorithm is not aimed at using as many full adders
as possible (as in cases A and B), but only those needed to reach a prescribed
column height, namely a reference height. 

It will be of some interest to compare the performances of the three architec-
tures. 

From the examples of fig. 5 we can notice that a characteristic of the algo-
rithms implemented in them is to use in each stage as many full adders as possible
in each column: in effect the remainders are all smaller than 3. We can then say
that the reduction from N (the number of rows of the Partial Product Array) to 3
rows has an optimal solution.

The Final stage, for obtaining the 2-rows output can be done with different
architectures and it involves necessarily a number of half adders.

An architecture of this kind (characterized also by the adoption of the refer-
ence height sequence), has been proposed by Bickerstaff, Schulte and Swartzlander
in 1995 [8]. They have called such an architecture as Reduced Area Multipliers,
since it has the smallest area of all schemes so far proposed.

The final stage output is composed from 2 rows. The product is then repre-
sented in a 2-redundant digits format. The product in non redundant form requires
a Carry Propagating Adder, usually a carry-look-ahead adder for speed reason. In
order to reduce its length and therefore its cost, it is important to generate the final
2-redundant result with a number of least significant digits in non redundant form,
i.e. with a single bit per column. 

Such a result was first shown in [1] as a variation of the Wallace multiplier, by
adopting a small number of half adders for reducing to 1 a column composed from
2 bits only. The same result has been shown possible in the Reduced Area Multiplier.

Such a variation has been adopted in our design tools, which gives also the
number of non-redundant least significant bits of the generated product, the final 1s.

The case of two’s-complement factors

It is well known [9] that a multiplier for factors in two’s complement format
cn be obtained by a transformation of the partial products array as shown in fig.
6a) example. The terms of the bottom row and of the leftmost diagonal are com-
plemented; two 1s are added in the central column; a 1 is placed at the column to
the left of the leftmost column (composed from a single term). The complementa-
tion of the terms is done in the partial product generator; the addition of the two 1s
in the central column is a task for the compression stage; the single most significant
1 involve the final Carry Propagating Adder.
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We consider here the second task, suggesting a simple solution, easy to imple-
ment in the Partial Products Compression. We first add the two 1s in central
column, see fig. 6b). The result is a single 1 in the next (to the left) column. We
increase by 1 the corresponding term in the input to the first compression stage. In
fig. 5b the term in cell H1 is increased from 8 to 9.

In such an example, the full adders in column H will become 3 (instead of 2);
the correcting half adder will not be anymore needed (due to the Rule). All the rest
of the stages will not be affected. The total effect on the hardware will be: the addi-
tion of a full adder and the removal of a correcting half adder.

This solution, valid for all cases, has been tested by simulation.

V - COMPARISON

Using the above mentioned tools, we have drawn Table I, and Table II, the
first containing data on the three multipliers A, B, C just commented. For each
multiplier Table I shows in each row:

– In column 1: N, the factor’s length, in bit: 3<N<67, selected values.
– In columns 2, 3, 4: the number of stages stg for A, B, and C multiplier

respectively.
– In columns 5, 6, 7: the numbers of full adders, fa, and half adders, ha , in

two sub-columns for B and C, in three sub-columns for A, the third one, hac, for
the number of correcting half adders (included in ha).

– In column 8, two sub-columns A-B and A-C for the differences of (fa+ha/2)
in the corresponding multipliers. (fa+ha/2) is assumed as an acceptable approxi-
mation of the area of the Compression stage. We assume fa+ha/2 as “equivalent
full adders”.

In Table II we have more detailed data concerning the A multiplier, precisely:
– In column N, the factors length, in bit: 3<N<67, selected values. In the

associated sub-column: the number of correcting half adder in the 1st stage 
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Fig. 6. a) multiplier array for two’s-complement factors. The two 1s in central column are needed
for complementing the bottom row and the leftmost diagonal; the leftmost 1 derives from such
complementation and generates the correct sign for the product when affected by the carry from
the preceding column; b) an equivalent more convenient version.



– In column 2: the height of the 2nd stage and in the associated sub-column,
the number of the correcting half adders, if any.

– In columns 3 to 10: data as in column 2 for the corresponding stages.
– In column hac: the total number of correcting half adders for each N.
– In columns stg and 1s: the number of stages and the number of final 1s

respectively. 
Some properties of the described multipliers can be read from the given

tables.
In few cases, no correction is required for row overflow (hac = 0). This hap-

pens for N = 4, 5, 7, 10, 14, 20, 29, 43, 64. In those cases N is 1 more than the
value characterizing the reference sequence adopted in C multipliers and in the RA
multipliers [8]. 

From the number of stages stg we can derive the delay in the compression
stages by multiplying it with the full adder Sum delay. We note in Table I that in a
number of cases, precisely in those written in italic, 20 in total, the delays of the
three multipliers are equals. In those cases the correction for row overflow is there-
fore ineffective. We note also that in multipliers A and B the numbers of full adders
and of half adders are identical. However, such multipliers are different due to the
corrective half adders present only in A.

In most of the cases, 43 over 63, A and B have different number of stages. The
correcting half adders are effective, reducing the total delay of the compression
process in multiplier A. The number of such correcting half adders in shown in
column hac in Table II for multiplier A. Table I, column 8, sub-column A-B shows
the differences of the equivalent full adders in the two circuits. In all cases the dif-
ference is -1: the corrected circuit A uses fewer full adders than B. In other words
the correcting half adders induce a reduction of full adders, though very small.

Note that in B half adders are present in the right side of the compression
stages and in the final stage, while in A additional hac half adders are placed in the
central part of the compression stages. 

In all cases, the first correcting half adder appears in the column at the left of
the central column of the Partial Product arrays. Subsequent half adders (if any)
appear in the following stages in adjacent columns at the right of the first one.

Multiplier C in smaller in all cases, though by a rather small amount. Multi-
plier C has only a single final 1 in its product. Multipliers A and B have a number
of final 1s, as shown in Table II: such a number is smaller by 1 for multiplier A:
this is due to the fact that it has 1 less stages in most cases and that in each stage
we cannot obtain more than 1 column with a single output bit.

We can also compare the results presented here with similar published results.
A specific case is given in [8]. In addition to what has been already said in chapter
IV, we note that the Reduced Area scheme described in such a paper is similar, but
not identical to our scheme. For each stage the reduction is obtained using as many
full-adders as possible. A half adder is used in each stage, at the rightmost column
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containing a 2, in order to obtain a final 1 in the product. This is what we do in fig.
5a. Moreover, a number of half-adders are placed in a stage when required to
reduce the stage height to the values prescribed in the reference sequence. Such a
choice implies that the first stage height is, for a number of the cases, higher that
the heights of the columns generated from the assigned N, except for N values
equal to one of the reference values.

In our scheme, instead, the reference height sequence is used only for N equal
to a reference value, i.e. only in a few cases.

In Reduced Area schemes, consequently, row overflow can happen without
being noticed. Fortunately, however, they migrate in the following stages where
they can be noticed and corrected by half adders. With such a procedure, the
Reduced Area scheme can be considered immune from row overflow. An interest-
ing result, obtained in a time when row overflow was ignored. 

In our scheme, we, instead, place few half-adders in order to avoid the birth
of row overflow. The reference stage height sequence is used only for the cases
characterize by N equal to values belonging the reference sequence (63,43,28,29,
13,9,6). Note that in Table II the reference stage height sequence is affected by a
row overflows requiring a relatively high number of half adders. We have chosen to
adopt in each case an height sequence derived by the corresponding N in order to
implement in each stage a tight control on the row-overflows. 

The comparison of the full adders and half adders numbers in RA with the
corresponding values in our schemes shows that they are identical for the three
cases given for RA schemes, (N = 8, 12, 16), confirming that the two schemes are
very similar. We could transfer to our scheme most of the properties underlined in
[8] for the RA scheme.

Looking at Table II we note that the cases corresponding to the reference
sequence of stages (63, 42, 28, 19, 13, 9, 6,….) correspond to a local maximum of
correcting half adders hac. Moreover the corresponding N is the maximum for a
given number of stages. This can justify the adoption in [8] of the reference
sequence of stages. 

As previously said the cases 64, 43, 29, 20, 14, 10, 7), i.e. those following the
reference cases, don’t need any row overflow correction, i.e. hac = 0. As shown in
Table II hac increases gradually with N, reaching a maximum when the next refer-
ence value is reached.

For obtaining a multiplier for two’s-complement factors it is suggested in [8]
to adopt fig. 6a) scheme. For the addition of the two 1s in the central column of
the partial product array it is proposed to use a couple of half adders introduced
previously. 

Such half adders are first transformed into special half adders generating an
output equal to the one of a normal half adder plus 1. This is possible since a half
adder is a non-saturated counter.
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We have tested on our design tool A.xlsx and found that the requested half
adder exist (for the row overflow correction) in a majority of cases, but not all of
them can satisfy the need of the described two’s-complement solution. In particu-
lar it would not be possible to apply such a method for those cases, that don’t need
overflow correction (7 cases over 66).

The method for handling two’s-complement factors, described in chapter IV,
can be applied to all cases, requiring also a smaller increase of the hardware.
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Table I. Parameters of multipliers A. B and C.



CONCLUSION

We have presented an extension of the known dot-notation, for the represen-
tation of arithmetic arrays, intended to obtain more compact schemes, proposing
multiple-dots and cells, consequently spreadsheets.

An overlooked problem, i.e. the generation of row overflow, causing unwanted
delay, can be identified and solved. Finally we have shown how a class of binary
multiplier, immune from row overflows, can be implemented, comparing it to
known design algorithms.

The design methodology and the related tools presented in this paper is
derived from the dot notation methodology. It is helpful in the conception and in
the first development phase of arithmetic problems requiring the evaluation of
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Table II. Stages and row overflows correcting half adders in scheme A multiplier.



large arrays. It is necessarily followed by the use of languages like VHDL or Ver-
ilog for obtaining a final layout. For this reason we are working in the development
of methods and tools for obtaining the transcription of spreadsheet results into the
above languages.

Abstract - In the design of multi-operand adders and of multipliers it is useful to rep-
resent the array of the addends or of the partial products in a synthetic way for an easier
description of the algorithms for obtaining their evaluation through carry free addition. We
recall the known dot notation, showing the usefulness of a more compact representation
with the adoption of dots associated to a number of logical variables. Adopting a cell instead
of a dot, it is easier to execute the calculations for implementing any algorithm. A further
step is the adoption of the spreadsheet. In dealing with operation on partial product arrays
of binary multipliers the carry free addition reveals an unwanted behavior due to the gener-
ation of “overflow” rows that cause additional delay. The scope of this paper is also to clar-
ify the origin of such overflow and to propose a method for their identification and elimina-
tion of their effects. As an example we present a program for designing parallel binary mul-
tipliers not affected by row overflows.
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