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Asstract. — In the talk I give a survey on polar actions and generalizations of isoparametric
hypersurfaces in space forms to more general ambient spaces.

1. - INTRODUCTION

In this talk we will give a brief survey on generalizations of isoparametric hypersurfaces
to submanifolds with higher codimension in various types of ambient spaces. We will also
discuss the question when such submanifolds are homogeneous and introduce the
isometric actions which have them as orbits.

A hypersurface M” of a Riemannian manifold V! is called isoparametric if M” is
locally a regular level set of a function £ with the property that both || grad f || and 4f are
constant on the level sets of f. One can show that M” is an isoparametric hypersurface of
V71 if and only if M” and its parallel hypersurfaces have constant mean curvature.

The term ‘isoparametric hypersurface’ is due to Levi-Civita ([37]) and refers to the
fact that || grad £ ||* and Af were at the time called the first and the second differential
parameter of f respectively.

If the ambient space V”*! is a real space form, then M” can be shown to be an
isoparametric hypersurface if and only if it has constant principal curvatures; see [9]. This
characterization does not hold in more general ambient spaces; see [60] where
counterexamples are given in complex projective spaces.

Beniamino Segre proved the following theorem in [48]: let M” be an isoparametric
hypersurface in R”™. Then M is a piece of a plane, of a sphere, or of a round cylinder. In
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particular it follows that M” is homogeneous if it is complete. Conversely, it is clear that
homogeneous hypersurfaces of R”™ are isoparametric.

The case # = 2 of the theorem of Segre was first proved by SomicLiana ([49]) and
later reproved in [47] and [37].

Cartan classified isoparametric hypersurfaces in hyperbolic spaces in [9] which also
turn out to be homogeneous. He then turned to isoparametric hypersurfaces in spheres,
see [10], [11], and [12], and noticed that the problem is much more difficult there than in
the other real space forms. In [11] he asked three basic questions on isoparametric
hypersurfaces in spheres. One of this questions was whether isoparametric hypersurfaces
in spheres are homogeneous. A negative answer to Cartan’s question was only given much
later by Ozexr and Takeuctr in [42] who found inhomogeneous isoparametric hypersurfaces
in spheres. These examples were later generalized by Ferus, Karcrer and MONzNER in [24].

Twillnot try to go further into the rich and beautiful theory of isoparametric hypersurfaces
in spheres and refer to [58] for further information. Still I would like to mention the two
highlights of the theory after the work of Cartan. The first are the papers [39] and [40] of
Miinzner where it is shown that the number g of principal curvatures of such a hypersurface
can only be 1, 2, 3, 4 or 6. All of these numbers are known to occur. The second is the
paper [50] of Stolz in which the possible multiplicities of the principal curvatures are
determined. The contributions of Miinzner and Stolz are important steps on the way to a full
classification of isoparametric hypersurfaces in spheres, which is still an open problem.

2. - POLAR ACTIONS

In this section we will discuss polar actions. The geometry of their principal orbits will
serve us as a motivation in the generalizations of isoparametric hypersurfaces that we will
present in the later sections.

Let V be a complete Riemannian manifold and let G be a Lie group acting on V' by
isometries. One says that the action is polar if there is a complete immersed
submanifold 2 in V' which meets all orbits of G in such a way that all intersections
between X and orbits are perpendicular. The submanifold X is called a sectzon of the
action. It is rather easy to see that a section is totally geodesic; see [44] and [45], p. 95.
The action is called hyperpolar if the section is flat.

One should think of a section as a set of canonical forms for the polar action as will be
clear in the examples.

ExamprE 2.1:
(i) Any isometric action with a hypersurface as an orbit is polar since a geodesic
which meets one orbit orthogonally meets all orbits orthogonally.
(ii) Let V be the linear space Sy(#) consisting of real symmetric # x #-matrices with
zero trace endowed with the scalar product

(X,Y) = trace (XY).
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Let G be the group SO(#) acting on V' by conjugation. We let 2 denote the diagonal
matrices in V. Then we know from linear algebra that every matrix X in V' can be con-
jugated into X by an element of G. It is now an easy calculation to show that the inter-
sections of conjugacy classes of matrices in V with X are all perpendicular. The action is
therefore hyperpolar.

(iii) Let V be a compact connected Lie group G with a bi-invariant Riemannian
metric acting on itself by conjugation. Let X be a maximal torus in G. The theorem on
maximal tori says that all conjugacy classes in G meet 2. An easy calculation shows that the
intersections between conjugacy classes in G and 2 are all perpendicular. It follows that
the action is hyperpolar since X is flat.

(iv) We now show how the examples (ii) and (iii) fit into the theory of symmetric
spaces.

A symmetric space is a Riemannian manifold V such that for every point p in V there is
an isometry g, of V fixing p and reversing the directions of the geodesics through p. We
refer to the book [33] for what we will need from the theory of symmetric spaces. It is
easy to show that symmetric spaces are homogeneous with respect to the isometry group.
We can therefore write V = G/K where G is the identity component of the isometry
group of V and K is its isotropy group at some fixed point pg in V. Such a pair of groups
(G,K) is called a symmetric pair.

Let 2 be a maximal flat and totally geodesic submanifold passing through p¢ in the
symmetric space V. Then the action of K on V is hyperpolar with X as a section; see [32].
This example generalizes the one in (ii) since a compact connected Lie group K with a bi-
invariant Riemannian metric is a symmetric space with a maximal torus as a maximal flat
and totally geodesic submanifold. We can identify K with K x K/A4(K) where A(K) is the
diagonal in K x K and it turns out that conjugation in K corresponds to the action of A4(K)
on K x K/AK).

One can generalize the action of K on the symmetric space V = G/K as follows.
Assume that (G, K;) and (G, K3) are symmetric pairs. Then one can show that the action
of Kj on V = G/K; is hyperpolar. This example was introduced by HermanN in [34] and
we will refer to it as a Hermann action (*). One gets concrete examples of this kind by
considering Grassmann manifolds G,(C”) = SU(z + 1) /K, where K} is the stabilizer of
C* in C". Then the actions of the groups Kj, ..., K,_; on G4(C") are all hyperpolar.

Now the action of K on V induces an action of K on the tangent space Tj,V which is
called the zsotropy representation of the symmetric space V. This isotropy representation is
hyperpolar with T, 2 as a section. The example in (ii) is a special case and corresponds to
the symmetric space V = G/K, where G = SL(#,R) and K = SO(#). One clearly has the
following direct sum decomposition

3l(n,R) = 30(n) ® So(n)

(*) Hermann proved in [34] that his examples are variationally complete and not that they are
hyperpolar. The relationship between the two concepts will be explained at the end of this section.
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into skew and symmetric matrices, and this decomposition is invariant under Adg(K).
Hence one can identify T}, V with Sy() and the scalar product on Sy(#) in (ii) extends to
G-invariant Riemannian metric on V. The action in (ii) now corresponds to the isotropy
representation of SL(,R)/SO(n).

(v) We finally give an example of a polar action which is not hyperpolar. Welet V be
the complex projective space P”(C) endowed with the Fubini-Study metric which is in-
variant under the action of SU(# + 1). Now let T” be the maximal torus in SU(#z + 1)
consisting of diagonal matrices. Then it is not difficult to see that the action of T on P*(C)
is polar with P”(R) as a section. This action is of course not hyperpolar since any two
sections of a polar actions are isometric and there can therefore not be a flat section.

The complex projective space P”(C) with the Fubini-Study metric is an example of a
rank one symmetric space. Polar actions on compact rank one symmetric spaces were
classified in [46]. It turns out that the sections are always real projective spaces if their
dimension is at least two.

The following two theorems show that some of the examples above describe in fact
the most general situation. We will need the concept of orbit equivalent actions in the
statement of the theorems. Let K; act isometrically on V; and let K, act isometrically on
V5. Then the actions of K; and K are said to be orbit equivalent if there is an isometry
f: Vi — V; such that f(Kip) = K, f(p) for all p in Vi, ie., the orbits of K; and K,

correspond under f.

TreoreM 2.2 (Dadok [17]): Let K be a compact group acting in a polar fashion on a
Euclidean space V. Then the action of K is orbit equivalent to the isotropy representation of
some symmetric space.

The cohomogeneity of an action is the minimal codimension of its orbits. Eschenburg
and Heintze gave in [21] a proof of Dadok’s theorem under the assumption that the
cohomogeneity is at least three. Their proof does not use the classification of compact Lie
groups. Lists of polar representations that are not isotropy representations of symmetric
spaces can be found in [4], [20], and [25].

Tueorem 2.3 (Kollross [36]): Let V = G/K be a compact irreducible symmetric space
and let H be a subgroup of G which acts in a hyperpolar fashion on V with cobomogeneity
at least two. Then the action of H on V is orbit equivalent to a Hermann action.

Kollross also classifies in [36] all cohomogeneity one actions on compact irreducible
symmetric spaces V. The classification of such actions on spheres was already carried out
in [35].

We now discuss the principal orbits of polar and hyperpolar actions from the point of
view of submanifold geometry. This will serve as a motivation for the generalizations of
isoparametric hypersurfaces in the later sections.
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Let G be a Lie group acting by isometries on a Riemannian manifold V. A principal
orbit of the action of G on a manifold V is by definition an orbit Gp with the property that
there is a neighborhood U of p such that there is a G-equivariant map from Gp to Gg for
all g in U. If Gp is principal, then p is said to be regular. The set of regular points is open
and dense in V. Now let & be an element of v,(Gp) where v(Gp) denotes the normal
bundle of Gp. Then &(gp) = dg,(&y) is a well defined normal vector field if Gp is principal.
We call such a normal vector field equivariant.

For a proof of the following proposition, see [45], p. 95-96, or [5], p. 44.

ProrosiTionN 2.4: Assume that the action of G on V is polar. Then the equivariant
normal vector fields along a principal orbit Gp are parallel. In particular, the normal bundle
is flat and bas trivial normal holononzy.

The next property of the principal orbits of polar actions that we would like to present
has to do with focal points. Let M be a submanifold of the Riemannian manifold V and
assume that y is a geodesic that starts in M, ie. (0) lies in M, and that y'(0) is
perpendicular to M. Suppose 7,(#) is a smooth variation of y = y, such that y,(0) € M
and y/(0) is perpendicular to M for all s. Now let | be the variational vector field

0

- E s=0 yj (l‘)

J(#)

of 7,. We call such a variational vector field an M-Jacobi field along y. One can show that
the M-Jacobi fields along y form a vector space. A point y(¢y) is called a focal point of M
along y if there is a nonvanishing M-Jacobi field | with J(¢)) = 0. The dimension of the
space of M-Jacobi fields vanishing in ¢ is called the mzultiplicity of the focal point y(¢y).

PrOPOSITION 2.5: Assume that the action of G on 'V is polar and let M be a principal orbit
of G. Let & be a parallel normal field along M. Then the distances to the focal points and
their multiplicities along the geodesic starting in direction E(p) does not depend on p.

If V is a Euclidean space then the focal points of M are determined by the principal
curvatures. Let & be a normal vector field along M and X a tangent vector of M at p. We
let Dx¢ denote the directional derivative of ¢ in direction X and denote the tangent
component of —Dx¢& by A:(X). It turns out that the map A¢ : T,M — T,M that sends X
to A¢(X) is a selfadjoint linear endomorphism that depends only on the value of ¢ at p.
One calls A¢ the shape (or Weingarten) operator of M in direction &,. The eigenvalues of
Ap are called the principal curvatures of M in direction &,.

Now if &, is a normal vector of M at p and 4 is a nonvanishing principal curvature in
direction &,, then p+(1/4)&, is a focal point of M along the line y(#) = p + £,
Conversely if p + (1/24)¢, is a focal point of M along y(¢) = p 4 &, then 7 is a principal
curvature in direction &,.
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We can therefore reformulate Proposition 2.5 as follows if the ambient space is
Euclidean. Notice that a polar action on a Euclidean space is hyperpolar since the sections
are affine subspaces.

ProposiTion 2.6: Let V be a Euclidean space on which a Lie group acts in a polar fashion.
Let M be a principal orbit of G and let & be a parallel normal field along M. Then the
principal curvatures in direction &, do not depend on p.

Before we end this section we would like to mention two classes of actions that are
closely related to hyperpolar actions.

Variationally complete actions were introduced by Borr in [6]; see also [7]. By
definition an isometric action of a Lie group G on a Riemannian manifold V is called
variationally complete if the following holds for all orbits M of G: let | be an M-Jacobi
field along y(#) which vanishes at some point #y. Then ] is the variational vector field of a
variation of the type ¢ (y(#)) where ¢, is a one-parameter subgroup of G. In other words, |
is the restriction of a Killing field induced by the action of G to 7.

Conlon proved in [16] that a hyperpolar action on a complete Riemannian manifold is
variationally complete. A partial converse was proved in [27]: a variationally complete
action on a compact symmetric space is hyperpolar. It was previously proved by D1 Scara
and Ormos in [18], see also [25], that variationally complete representations are polar.
Lytchak has conjectured that variationally complete actions on compact Riemannian
manifolds with nonnegative sectional curvature are hyperpolar.

Variationally complete actions were introduced in [6] and [7] to study the Morse
theory of geodesics on complete Riemannian manifolds and in particular on compact
symmetric spaces. We next briefly review one of the main results of these papers.

Let M be a properly embedded submanifold of a Riemannian manifold V and p some
point in V. We let P =P(V,p x M) denote the space of absolutely continuous paths
y:[0,1] — V that start in p and end in M and for which the so-called erergy

1
E() = j 15/(6) |12 de
0

is finite. Then P is in a natural way a Hilbert manifold and E is a smooth functional on P,
see [43], whose critical points are the geodesics starting in p and meeting M
perpendicularly. If p is not a focal point of M, then the energy functional E is a Morse
function in the sense that it has only nondegenerate critical points. We say that the
submanifold M is taut if the energy functional is perfect, meaning that the number of
critical points of index £ of E in P is equal to the £-th Betti number of P with respect to
Z,-coefficients, or equivalently, that the Z,-Morse inequalities of E on P are equalities;
see [56]. An isometric action is called taut if all of its orbits are taut.

One of the main theorems of Borr and Samerson in [7] can now be phrased in our
terminology by saying that variationally complete actions are taut.
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A taut action does not have to be variationally complete. It is proved in [25], [26],
and [28] that there are precisely three irreducible taut representations of compact groups
which are not variationally complete. These three representations happen to be precisely
the cohomogeneity three representations which are not variationally complete.

3. - ISOPARAMETRIC SUBMANIFOLDS OF EUCLIDEAN SPACES

Isoparametric submanifolds in Euclidean spaces with higher codimension were first
introduced by Harte in [29]. Carter and West independently introduced and studied
such submanifolds with codimension three in [13] and [14]. Terng then dealt with the
case of general codimension in [52].

According to [52] a complete and connected submanifold M” in R"™* is called
isoparametric if its normal bundle is flat and if the principal curvatures in the direction of
any (locally defined) parallel normal vector field are constant. It is proved in [52] that the
normal holonomy of M” is trivial. A locally defined parallel normal curvature vector can
therefore be extended to a globally defined one.

It is proved in [52] that a noncompact isoparametric submanifold is the product
embedding of a compact isoparametric one with a Euclidean space. We will therefore
always assume compactness in the following. A compact isoparametric submanifold is
contained in a round hypersphere; see [52]. We can always assume that M” is not
contained in any proper affine subspace. Such submanifolds are called fu/l. An
isoparametric submanifold is said to be zrreducible if it cannot be nontrivially written
as the product embedding of two isoparametric submanifolds.

Propositions 2.4 and 2.6 imply that principal orbits of polar representations are
isoparametric. Conversely, Palais and Terng proved in [44] that a homogeneous
isoparametric submanifold is such an orbit. One can show that an isoparametric
hypersurface M” in $”*! is isoparametric in R”". The inhomogeneous examples of
Ferus, Karcrer and MUNzNER in [24] that we already mentioned in the introduction
therefore give us a further class of examples. All known examples of irreducible
isoparametric submanifolds in Euclidean spaces belong to one of these two classes of
examples.

Terng developed a beautiful structure theory of isoparametric hypersurfaces in [52].
We would like to mention some of these results since they have been a paradigm in the
generalizations.

Let M” be an isoparametric submanifold in R”** and let & be a parallel normal field
along M”. The end-point map in direction & is the map n: : M" — R "+ one gets by setting
1:(p) = p + &,. It turns out that the image of M” under #; that we denote by M is either a
submanifold of dimension 7 or one of a lower dimension. We call M the parallel
submanifold of M" in direction &. If the dimension of M is equal to that of M”, then M is
also isoparametric and 7; is a diffeomorphism between M” and M. If the dimension of
M is smaller than that of M”, then M consists of focal points of M” and #; is a fibration
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from M” onto M. In this case we will call M a focal submanifold. One can show that the
set F of focal points of M” is precisely the union over the focal submanifolds of M”.

It is easy to see with help of Proposition 2.4 that if M” is homogeneous and hence a
principal orbit of a polar representation, then the parallel submanifolds are nothing but
the other orbits of the representation.

If M” is isoparametric, then F = {M; | ¢ parallel along M”} is a family of disjoint
submanifolds that covers the whole ambient space R*™. It is not difficult to show that the
isoparametric submanifolds in F foliate R”™ \ F, the complement of the focal set F of
M?". One can in fact show much more than this: F is a singular Riemannian foliation in the
sense of Molino. This is a consequence of a much more general result of ToBEN in [59]
that we will explain in the last section; see also [45], Corollary 8.5.6.

Terng associated in [52] a Coxeter group to an isoparametric submanifold M as
follows. Let v,M be the normal space of M at p considered as an affine subspace of R™*
and consider the set F, = F N v,M of focal points contained in v,M. Then F, is a finite
union over hyperplanes in v,M and the reflections in this hyperplanes generate a finite
Coxeter group W that leaves the set F, invariant. It then follows that the orbit of p under
W is the intersection M N v,M. The Coxeter group is implicit in Cartan’s work for the
codimension two case M” C ! € R"*! since he proved that the focal points on the
normal great circles to M” in §”*! are equidistant. In the codimension three case the
Coxeter group was already found by Carter and WesT in [13].

The following theorem proved in [57] shows that isoparametric submanifolds come
close to characterize principal orbits of polar representations.

THEOREM 3.1: Let M” be an irreducible, full and compact isoparametric submanifold in
M with k> 3. Then M” is a principal orbit of a polar representation.

Theorem 3.1 combined with Dadok’s Theorem 2.2 gives a classification of irreducible
isoparametric submanifolds with codimension at least three. The examples of Ferus,
Karcher and Miinzner are inhomogeneous with codimension £ = 2. If the codimension is
k& =1, then the round spheres are the only examples.

A new proof of Theorem 3.1 was given by Ormos in [41] using his theory of the
normal holonomy of submanifolds; see also [5], Section 7.3. A further proof was given by
Hemtze and Liv in [30] as a byproduct of a proof of an analogous theorem in Hilbert
spaces that will play a role in the next section. Eschenburg gave a proof of the theorem
in [19] that uses Lie triple products.

4. - EQUIFOCAL SUBMANIFOLDS
In the paper [55], equifocal submanifolds of compact symmetric spaces were

introduced and their basic theory developed as a generalization of isoparametric
hypersurfaces in spheres and an analogue of the isoparametric submanifolds in
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Euclidean spaces. For symmetric spaces see reference [33] and the remarks in
Example 2.1 (iv) above.

The definition of an equifocal submanifold is based on the properties of principal
orbits of polar actions in Propositions 2.4 and 2.5.

Let M” be a compact submanifold of a compact symmetric space V"%, We say that
M?" is equifocal if the following three conditions are satisfied:

(i) The normal bundle of M” is flat and has trivial holonomy.

(ii) If £ is a parallel normal vector field and 7:(po) = exp ({(po)) is a multiplicity &
focal point of M” for some pg in M”, then 77:(p) = exp (&(p)) is a multiplicity £ focal point of
M" for all p in M”. (In other words, the focal data of M” are invariant under normal parallel
translation.)

(iii) The image exp (v,(M")) of the normal space v,(M”) of M” at p is contained in
some flat of V”** for all p in M”.

Principal orbits of polar actions satisfy conditions (i) and (ii) in the definition above,
and all three conditions are satisfied for principal orbits of hyperpolar actions.

The third condition is of course always satisfies if M” is a hypersurface. It follows
from [31] that a hypersurface M” in a compact symmetric space V**! is equifocal if and
only if it is isoparametric in the sense of the definition given at the beginning of this
paper. One can of course define equifocal hypersurfaces in more general ambient
spaces than symmetric spaces; see the next section. If the ambient space has nonpositive
sectional curvature one should take into account that there might be focal points
‘beyond infinity’; see [22]. It is not to be expected that such generalizations are
equivalent to the concept of an isoparametric hypersurface if the ambient space is
not symmetric.

In [55] we show that if the compact symmetric space V"' is irreducible, then an
equifocal hypersurface M” in V”*! has the property that any geodesic meeting M” is
closed. If V7*1 is simply connected, then one can show that the number of focal points on
such a normal closed geodesic is an even number that we will denote by 2g. If V"*1 is a
sphere, then g is the number of principal curvatures of M” which can only be one of the
numbers 1, 2, 3, 4, and 6 as was proved by Miinzner; see the introduction. One can now
ask which values g can assume in general irreducible symmetric spaces, and what the
possible values of the multiplicities of the focal points are; see [51] and [23] where this
question is studied for rank one and two symmetric spaces.

One can prove more generally that the image of a normal space v,(M) of an equifocal
submanifold M” in an irreducible compact symmetric space V"** is a torus T#; see [55].
One can associate to M” an affine Coxeter group as follows. Let F denote the set of focal
points of M” in T* and let F be the preimage of F in the universal cover R* of T*. Then F
is a union of hyperplanes which are precisely the mirrors of an affine Coxeter group W
acting on R* and leaving F invariant.

The next theorem which is analogous to Theorem 3.1 gives a characterization of the
principal orbits of hyperpolar actions as equifocal submanifolds.
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TraeoreM 4.1 (Christ [15]1): Let M” be an equifocal submanifold in an irreducible
compact symmetric space V"*. Then M” is the principal orbit of a hyperpolar action if
k>2.

The theorem does not hold for £=1 since the inhomogeneous isoparametric
hypersurfaces in spheres are equifocal.

Theorem 4.1 and the results from [55] that we have been explaining are proved with
the help of a generalization due to Terng of the theory of isoparametric submanifolds in
Euclidean spaces to Hilbert spaces; see [53]. We end this section with a short explanation
of this method.

Let V"** be a compact symmetric space that we write as a coset space V*** = G/K
where (G,K) is a symmetric pair. Let g denote the Lie algebra of G and set
H = L2([0,11,g), the Hilbert space of [*-paths in g. Then there is a Riemannian
submersion ¢ : H — V"** such that a submanifold M” is equifocal in V”** if and only
if the preimage M = ¢~ (M”) is isoparametric in . The main point is that it is easier to
work in H than in V**! since H is linear, although infinite dimensional.

To define the Riemannian submersion ¢, we need to introduce certain path spaces in
G. Let Bbe a subset of G x G and let P(G, B) denote the space of absolutely continuous
paths 7 : [0, 1] — G such that (y(0), (1)) € B and such that the integral ||y" || is finite.
Here we assume G to be endowed with a bi-invariant Riemannian metric such that the
projection 7 : G — V”** is a Riemannian submersion. Then P, = P(G, e x G) is the
space of paths in G starting at the identity e without a restriction on the end point.

Now it turns out that the map that sends a path y in P, to y™ 'y in H is a
diffeomorphism. Let E : H — P, denote the inverse of this diffeomorphism. Now we
can define a map w : H — G by setting w(«) equal to the endpoint of the curve E(x),
ie. w(u) = E(u)(1). It is proved in [55] that y is a Riemannian submersion. Now we
define ¢: H — V"** asp=moy.

If H is a subgroup of G then P(G, H x K) is an infinite dimensional Hilbert Lie group
which acts on H by setting

yru=yuy ' —yy!

for yin P(G, H x K) and « in H; see [54] where it is proved that the action of H on V7 +*
is hyperpolar if and only if the action of P(G,H x K) is polar on H. It is also proved
in [54] that the principal orbits of P(G, H x K) are isoparametric if its action on H is
polar.

A very important result of Hemtze and Liu in [30] is that an irreducible isoparametric
submanifold in an infinite dimensional Hilbert space is the principal orbit of a polar
action if its codimension is at least two. This result of Heintze and Liu is one of the main
steps in the proof of Theorem 4.1. The method of proof also works in finite dimensions if
the codimension is at least three and can be used to prove Theorem 3.1.

One can also use the Hilbert space H to prove that an action on a compact symmetric
space is hyperpolar if it is variationally complete; see [27] and Section 2. One shows that
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the action of a subgroup H of G is variationally complete (resp. hyperpolar) on V7 +* if
and only if the action of P(G, H x K) on H is variationally complete (resp. hyperpolar).
One has now reduced the problem to an affine action on the linear space H and can argue
in a similar way as as in [18].

5. - SUBMANIFOLDS IN RIEMANNIAN MANIFOLDS

In this last section we would like to mention some recent generalizations to
Riemannian manifolds.

The orbits of a connected Lie group acting by isometries on a Riemannian manifold
give an example of a singular Riemannian foliation in the sense of Molino; see [38],
p. 189. By definition, a partition F of a Riemannian manifold V into connected immersed
submanifolds, called Jeaves, is said to be a singular Riemannian foliation if the following
two conditions are satisfied:

(i) The tangent space T,M for every M in F and every p in M is generated by
{X,| X € Z#} where 5+ denotes the module of smooth vector fields on V' that are tangent
to the submanifolds in F.

(ii) A geodesic that meets one leaf M in F perpendicularly, meets the leaves per-
pendicularly for all parameter values.

The leaves in F of maximal dimension are called regu/ar and those of lower dimension
singular.

If only the first condition is satisfied then one calls F a singular foliation. A singular
foliation is a foliation in the usual sense if the leaves are all regular. The second condition
means that the leaves are equidistant.

If F consists of the orbits of an action, then condition (ii) is satisfied since the vector
fields it induces are contained in Zr and condition (ii) is satisfied if the action is
isometric.

Alexandrino studies singular Riemannian foliations that admit a section in [2], where
a section is defined as for polar actions. Previously such foliations were studied by
BouaLem in [8]. Let F be such a singular foliation in a Riemannian manifold V/, let L be a
singular leaf in F, and let T be a tubular neighborhood of L that is a union over leaves in
F. Ttis then proved in [2] that the foliation consisting of the intersections of the leaves of
such a foliation F with the connected component of exp (v,(L)) N T containing p is
diffeomorphic to an isoparametric foliation in an open neighborhood of 0 in R* where £
is the codimension of L in V. This generalizes the slice theorems for polar actions and
isoparametric submanifolds; see [45]. A further result of [2] is that the regular leaves of
singular Riemannian foliations with a section have parallel focal structure, see also [59]
for a different proof. Submanifolds with parallel focal structure were studied by Ewgrr
in [22]. They generalize equifocal submanifolds in a similar way as polar actions
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generalize hyperpolar actions, see [59] for a precise definition. Tében gives in [59] a
necessary and sufficient condition for a submanifold with parallel focal structure and
finite normal holonomy to give rise to a singular Riemannian foliation with the leaves
being parallel submanifolds. In [59] an action on the sections of a singular Riemannian
foliations by a group called transversal holonomy group is introduced. This action
generalizes the Weyl group action of polar actions.

In [1] Alexandrino studies transnormal maps. These are by definition maps from a
Riemannian manifold into a Euclidean space with the property that its restrictions to
sufficiently small neighborhoods of regular level sets are Riemannian submersions such
that the normal spaces of the fibers form an integrable distribution on the neighborhood.
The main result of [2] is that the level sets of an analytic transnormal map on a real
analytic Riemannian manifold give rise to a singular Riemannian foliation with sections.

Further results along these lines can be found in [3].
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