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ABSTRACT. — Segre-type theorems related to blocking sets of lines chosen with respect to a conic
in PG(2, g) are currently under investigation. A detailed survey on results and methods used in the
proofs is given.

1. - INTRODUCTION

In the joint paper [30], the following combinatorial characterisation of external lines
to an irreducible conic in PG(2, g) is given.

TreoreM 1.1: If every secant and tangent of an irreducible conic meets a point-set L in
exactly one point, then L consists of all points of an external line to the conic.

For even g, this has been proven by Bruen and Tras [13] independently.

In the abstract of [30], the following remark is made: “while the result admits no
analogue in the real field, a number of similar properties can be established or
investigated in any Galois geometry.” In this spirit, combinatorial characterisations of
geometric objects related to conics are Segre-type theorems.

The proof of Theorem 1.1 depends on Segre’s “lemma of Tangents” which was
the key idea in the proof of his famous combinatorial characterisation of conics of
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PG(2,q) with g odd, see [28], [29] and Lemma 8.11 in [22]. Likewise, the proofs of
the early Segre-type theorems dating back to the early Eighties, relied on Segre’s
lemma, see [1], [18].

The Jamison method, developed originally for the study of blocking sets by means of
polynomials, was also a useful tool in proving Segre-type theorems. By using the
Jamison method, Broknuis and WiLsrINK [10] were able to give a new, completely
independent proof for Theorem 1.1, see also [9]. A nice presentation of the Jamison
method is found in [12]. A recent survey on applications of polynomials in finite
geometry is BLoknuis [8] which is, in some ways, a continuation of BarL’s [5] and
Broxuurs’ [6], [7] surveys.

Some newer Segre-type theorems are related to blocking sets. Their study is a current
research area in which the usual combinatorial and group theoretic methods are made
more efficient by using algebraic curves defined over finite fields. Problems and results
are described in the following sections.

Application of results and techniques from algebraic geometry to solving problems in
finite geometry was a powerful tool in Segre’s work. Especially his ingenious idea to link
arcs to algebraic curves via Wilson’s theorem, in such a manner to apply the profound
Hasse-Weil bounds on the number of GF(g)-rational points of an algebraic curve, was
seminal as demonstrated in Szényi’s survey [33].

2. - BLOCKING SETS OF LINE SETS IN PG(2, g)

Boros, Furepr and Kann [11] relied on Theorem 1.1 to obtain the following result
concerning an irreducible conic C in PG(2, g).

The minimum size of a point set B in PG(2, g) meeting every secant and tangent of C is
g + 1, the minimum value being attained only in a few cases, namely when

(i) B consists of all points of an external line to C;
(ii) B contains 72 points from C and g + 1 — 72 points from a line £.

More precisely, in (ii), there is an abelian linear collineation group G of order 7
preserving both C and ¢ such that BNC is an orbit under G while £\ C is the
corresponding orbit on £ under G which consists of all points lying on secants of BN C.

Tt is worth mentioning that this theorem was the main ingredient in their investigation
on the minimum number of members of a maximal 4-clique, that is, a family of mutually
intersecting &-sets.

The above theorem is closely related to results of WerTL [37] and of Szonvr and
WertL [34] about (g + 1)-sets Q with the following property: for some line ¢, the point
set Q \ £is an arc and every line containing two points of Q \ £ is disjoint from £\ Q. The
same theorem was the starting point of Mazzocca’s investigation in [27] on nuclei of
(g + 1)-sets in PG(2, g).
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Similar combinatorial questions can be posed. To do this it is useful to adopt the
terminology introduced by Mazzocca in [27].

A blocking set of a line set L is any point set B in PG(2, g) blocking £, that is, meeting
every line of £. From a result of Ernos and Lovasz [17],if |£| > ¢* — g then Biis of linear
type as it derives from a line by deleting and adding a few points.

Results of this kind are viewed as stability theorems in the very recent investigation by
Szonyt and WeINErR [35].

Blocking sets of line sets chosen with respect to an irreducible conic C in PG(2, ¢) are
currently under investigation. If the line set consists of all secants and tangents to C, then
the above theorem of Boros, Furepr and Kann [11] provides a complete classification.

In [2], all point sets of minimum size blocking all external lines to C have been
determined in PG(2,9) with odd g. Apart from two sporadic cases occurring for
g =5,7, every such a point set is linear, that is, it consists of all points of a secant of
C minus the two common points of the secant and C, see Theorem 5.1. For g even the
picture is richer although no sporadic example occurs, see [19]: two more infinite series
of examples exist, namely all points of a tangent minus the tangency point and the
nucleus; for g square, all points of a Baer subplane intersecting C in a subconic Cy minus
the nucleus and the points of Cy.

For g odd, a similar classification for point sets of minimum size blocking all external
and tangent lines is given in [3]. Three cases (none of them sporadic) occur, namely all
points of a tangent minus the tangency point; all points of a secant different from its two
points on C, plus the pole of the secant with respect to (the polarity associated with) C; and
all points of a Baer subplane intersecting C in a subconic Cy minus the points of Cy, see
Theorem 6.1.

The picture is quite different for minimum size blocking sets of secants to C, since the
following procedure provide several examples in PG(2, ) with g even. Let C be given with
its (affine) equation Y = X?, that is, let C be a parabola in the affine plane AG(2,g). For
every a € GF(g),

0, X,)Y)— X +aY +d°

is a translation of the affine plane AG(2, g). The center of ¢,, viewed as an elation in the
projective closure PG(2, g) of AG(2, ¢), is the infinite point B, = (1, 4, 0). The translation
group of Cis T = {9, | a € GF(g)} and it is isomorphic to the additive group (GF(g), +)
of GF(g). Take a subgroup G = {¢, | « € H} of T where H is a subgroup in (GF(g), +),
and define I to be the set of all centers of all nontrivial translations in G. If P = (u, #?) is
an affine point in C, the orbit of P under G is 4, = {(a + u, (a + u)*) | a € H}. Then,
B(G,u) = (C\ 4,) U I' is a blocking set of secants to C. Since B(G, #) consists of ¢ points,
it is a blocking set of minimum size. In [4], it is shown that these are all minimum size
blocking sets of all secants to C in PG(2, ¢) with ¢ even.

It may be noted that the above construction is related with sharply focused sets
arising from a geometric based secret sharing used in cryptography, see [14], [15],
[16], [20], [32].
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3. - POLYNOMIALS VANISHING AT INTERNAL POINTS TO AN IRREDUCIBLE CONIC IN PG(2, ), ¢ ODD

An essential tool in the above investigation is a result on the linear system of
polynomials vanishing at every internal point to C, appeared in [2] and [3]. We
reproduce the proof in the present and the next sections.

The degree of any non-zero polynomial /(X,Y) € GF(g)[X, Y] vanishing at every
(x,7) with x,y € GF(g) is at least ¢, and equality holds if and only if /(X,Y) =
= MX7 - X) + u(Y? - Y) with /, u € GF(g), see [21] p. 87.

Given a non-empty subset Z of ordered pairs (x, y) with x,y € GF(g), one can ask for
the minimum degree d(Z) of non-zero polynomials over GF(g) vanishing on Z. By a

. . L1
classical result from projective geometry, if 571(/14—3) > |Z|, then d(Z) < n. For

n = q — 2, this shows that d(Z) < g — 2 as long as |Z| S%(qz —q) — 1.

. .1 ) .
It turns out that any point-set Z of size 5(572 —¢g) with d(Z) = g — 1 imposes the

greatest possible number of independent conditions on the polynomials vanishing on Z.
This suggests that such point-sets are rare and interesting objects.

We show that the set consisting of all internal points to an irreducible conic is of this
kind. Let AG(2, g) be the affine plane coordinatised by GF(g). Then Z can be viewed as a
point-set of AG(2,4). Also, to a non-zero polynomial f(X,Y) € GF(g)[X, Y] there is
associated the algebraic curve I" of equation f(X,Y) = 0, and the condition f(x,y) = 0
means that I passes through the point P(x, y). From now on we assume ¢ to be odd, that
is, ¢ = p? with p > 2 prime. Let C be a parabola of AG(2, ), that is an irreducible conic
tangent to the infinite line of AG(2, ¢). A point P in AG(2, q) is internal to C if no tangent

1
to C passes through P. There are 3 (47 — g) such points, and we will take 7 to be the set of

all internal points to C. The main result is the following theorem.

Tueorem 3.1: Let I’ be an algebraic plane curve defined over the algebraic closure of
GF(q) of odd g order. If I passes through every internal point of a parabola C of AG(2, q),
then the degree d of I satisfies

d>qg-1.

For the extremal case d = ¢ — 1 we are able to provide an equation for I'. To do this,
for every ¢ € GF(g), define the polynomial

1 —1
(3.1) 0, (X,Y)=1— (Y_¢X+Z¢2)"

over GF(g). Note that ¢,(X, Y) can be viewed as the characteristic function of the line 7, of
1
equation Y — £X + Zz‘z = 0. In fact, ¢,(X,Y) equals 1 at the points of 7, and it vanishes

elsewhere. Geometrically, the algebraic curve of equation ¢,(X,Y) = 0 splits into the
g — 1 nontangent lines through the infinite point Q, = (1,¢,0).
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Tueorem 3.2: If degI' = g — 1 in Theorem 3.1, then I has equation

(3.2) fXY)= > pX,Y)=0.
teGF(g)

If, in addition, I is defined over GF(q), then A, € GF(q), for any t € GF(q).

The above theorem may be rephrased using classical terminology from the theory of
linear systems, see [31], for instance.

TueorREM 3.3: The linear system of algebraic curves of degree q — 1 passing through
every internal point of a parabola of AG(2,q) has dimension g — 1. Such points impose
independent conditions on the algebraic curves of degree g — 1 which pass through them.

The proof of Theorem 3.1 is by contradiction. Let I” be an algebraic curve containing
all points of Z(C) whose degree d satisfies

(3.3) d<g-1.

The first step consists in proving the following.
Lemma 3.4: I contains each point of C.

Proor: Let O € C be any point. Consider an affine plane AG(2, g) whose infinite line
£+, is tangent to C with tangency point distinct from O and choose a frame in AG(2,¢q)
with origin O such that C has equation Y = X?. External and internal points to C can be
described analytically: a point P(x,y) in A(2,g) is external or internal to C according as
x? — y is a non-zero square or a non-square in GF(g). Therefore, for each non-square
element v € GF(g), the points P(0, —v) are in Z(C). Furthermore, for each non-square
element w € GF(g), the points of the parabola of equation Y = (1 — w)X? distinct from
the origin are also contained in Z(C). Actually, these are all points of Z(C). Note that

1 . . . . . .
d> > (g + 1), since each external line to C contains B (g + 1) internal points to C. Write
the equation of I" in the form

FXY) =) a; XY =0.

Since the collineation (X,Y) s («X,#?Y) with # € GF(g)" preserves C, the same holds
for the set of its internal points. Hence, for every nonzero element # € GF(g), the
algebraic curve I, of equation

fu(X, Y) — Z ui+2/ﬂl‘/'Xl.Y/ _ 0’
also contains each point in Z(C). Therefore, the same holds for the algebraic curve I of
equation

fEY) = Y LX)

ucGF(g)*
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Writing f'(X,Y) =Y 6;X'Y?, we have b; = ( > u”zf') aj. By Lemma 6.3 on
pg. 271 of [26], ueGF(g)*
—a; when eitheri=;=0, ori+2/=¢q—1,
(3.4) @:{ / . / /=4
0  otherwise.
This shows that
f’(X, Y) = —ago + Z b/.Xq*2/*1Y/,

1

with b; € GF(g). Since degf"(X,Y) <dandd < g—1,soboth by =0and; < =(g— 1)
2

hold. For every non-square element w € GF(g), we have

Flx,(1—w)x?) =0

provided that x € GF(g). Hence
—dgo + Zb/(l —wY =0.
Since '%~1/2 41 = 0, this yields that the polynomial
2T) = —ago + Zb/(l —TY

is either identically zero or it has the same roots as T~1/2 4 1. In the latter case,

g(T) = (T V2 1)
for a nonzero element c. Replacing T by 1 — T, we obtain

—aoo+ )T = (=T 2 4 1),

(g—1)/2

In particular, —ago = 2¢ and b(,_1);, = c( = 1) . By elimination of ¢ we get

ago + (— 1)(q71)/225(q,1)/2 =0.
Furthermore, for every non-square element v € GF(g), we have //(0, —v) = 0. Hence

—aoo + bg-12(— )2 = .

Since v9~1/2 4 1 = 0, we obtain agy = 0. Therefore, I” contains O. O

Lemma 3.5: A point O € C is either a singular point of I', or C and I have the same
tangent at O.

Proor: We use the same set-up and arguments as in the preceding proof. For each
nonzero # € GF(g),set g,(X,Y) = u '£(X,Y). Also, let (X, Y) = > ¢,/(X,Y),and
Z(X,Y) =Y b;X"Y’. Then ueGFlg)

(3.5)

—a; when either i =1, =0, or i +2/ =g,
bl] = '
0 otherwise.



This shows that
dX,Y) = —aX + Y 5XTTY

with b;€ GF(g). This time by=51=0 and /S%(q— 1), again by degg(X,Y) <d
and (3.3). Set

PX,Y)=—an+ Y 5X 7Y

Then ¢(X,Y)= XK (X,Y). For every non-square element w of GF(g), we have
b (x,(1 — w)x?) = 0 provided that x € GF(g). Arguing as in the preceding proof, this
yields that either /'(X,Y) is the zero polynomial, or

—a10+ > bT =c((1-T) "2+ 1)
for a nonzero element c. In the latter case, the linear term T is missing on the left-hand

1
side, but we have —E(q — 1)T on the other side. But this is impossible. Therefore,

aip = 0. If ag; also vanishes, then O is a singular point of I". Otherwise, Y = 0 is the
tangent line to I" at O. O

Now, assume I' to be a counterexample of minimum degree. By Lemmas 3.4
and 3.5, the intersection number I(I”,C; O) > 2 for every point O of PG(2, g) lying in C.
Since there are ¢ + 1 such points, Bézout’s theorem yields that either 2d > 2(g + 1), or
C is a component of I". By (3.3) the former case does not occur. In the latter case, I'
splits into two components, namely C and another, say 4, of degree d — 2. Clearly, 4
contains all points in Z(C). But this contradicts I” being of minimal degree. In proving
Theorem 3.3, we will also use homogeneous coordinates (X, Y, Z) in such a way that
the infinity line £, has equation Z = 0. Let Q; = (1,¢,0) be a point of £,,. As we have
noted in Section 3, the totally reducible curve of degree 4 — 1 whose components are
the lines through the point Q, different from the two tangents to C has equation
0,(X,Y) = 0 with ¢,(X,Y) defined in (3.1).

We are going to prove that any algebraic curve D of degree ¢ — 1 passing
through every point in Z belongs to the linear system X consisting of all curves
with equation

> X, Y)=0.

teGF(q)
Assume that D has equation 2(X,Y) = 0, where
d<Xa Y) = Y/0(}<7 Y) +---+ Syq—l(Xv Y) =0

and ¥;(X,Y) is a homogeneous polynomial of degree . We begin by showing that every
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-1
polynomial ¥, (X, Y) = Y ;X'Y?1~" of degree ¢ — 1 can be written as
=0

7=l

VoY) = S A )T =

teGF(q)
q—1
q_l iivg—1—i
= A — )XYy
5 8 (7 e
teGF(g) =0

for suitable 4, € GF(g). To do this, we need to show that the system of linear equations

ap = <481> Z At

teGF(g)

1
a = <q1 > Z )~z‘(_t)7

teGF(g)

-1
4q-1 = <q—l> Z A= 0",

q 1€GF(g)

has a nontrivial solution, or, equivalently, its determinant does not vanish. Apart from the

nonzero factor
gq—1
_ q—1
=10("7)

=0
this determinant is of Vandermonde type with generators 2, where / = 0,...,4 — 1 and
w is a primitive element of GF(g), which is different from 0. Therefore, (3.6) has exactly
one solution, that is there exists a unique homogeneous g-tuple (1o, A1, ..., 4,—1) with
entries in GF(g) such that
(3.7) YY) = Y LY - 07
teGF(q)

Note that the terms of degree ¢ —1 in ¢,(X,Y) are those in (Y —X)?"'. If the
polynomial a(X,Y) — > 4e,(X,Y) were not identically zero, then the curve of

equation t€GFlg)

aX,Y) = > ip,X,Y)=0
teGF(g)

would have degree g — 2 and would pass through every internal point of C contradicting
Theorem 3.1. Therefore

aX,Y)= > X, Y).
teGF(q)

It remains to show that the polynomials ¢,(X,Y) with ¢ ranging over GF(g) are linearly
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independent over the algebraic closure of GF(g). It suffices to show that the polynomials
F/(X,Y) = (Y — tX)* ! are linearly independent. Assume on the contrary that
(3.8) > MEX,Y)=0.

teGF(g)
Substituting Y= 1, X = 0 we see that _ 4, = 0, while substituting Y= 2, X = 1 we get
4y + > 4 = 0. Therefore, 1, = 0. This of course also shows the independence of the
polynomials ¢,(X,Y).

RemaRk 3.6: By the geometric interpretation of the polynomials ¢,(X, Y) it is obvious
that Z coincides with the set of all base points of the linear system X

Prorosition 3.7: No curve in X passes through all affine points of C, but there is exactly
one containing q — 1 given points from C.

Proor: Set

(3.9) pX,Y)= > hpX,Y).
teGF(q)

t#

> Z) € Cis in the curve of equation ¢(X,Y) = 0 if and only if 1, = 0.

Therefore, it is possible to ensure that (exactly) one curve in 2 passes through ¢ — 1 (but

not more than ¢ — 1) given points of C. O

The point P, =

Lemma 3.8: Let by, . .., £,—1 be g — 1 pairwise distinct nontangent lines to C through an
external point P & Ly to C. Let I be the algebraic curve of degree g — 1 whose components
are by, ..., Ly_1. Then I has equation 2,9,X,Y) + 4,0,(X,Y) = 0 with 1, + 2, = 0.

Proor: Let 7, and 7, be the tangents to C through P, and let Q, (1, #,0) and Q,(1,2,0)
be their infinite points. For any point R(x, y) in AG(2, ¢) not lying on these tangents, both
0,(X,Y) and ¢,(X, Y) vanish. This together with 4, + 4, = 0 ensure that every line ¢, is a
component of the curve of equation 4,¢,(X,Y) + 4,0,(X,Y) = 0. Since I" contains no
multiple line, the assertion follows. O

A straightforward consequence of Proposition 3.7 is the following result.

TuEOREM 3.9: Let I' be an algebraic plane curve defined over the algebraic closure of
GF(g), g odd. If I passes through every point of an irreducible conic C of PG(2,q), and
through every internal point to C, then the degree d of I satisfies

d>q.

From now on we deal with the case d = g. To write an equation for I", choose a
reference system in affine coordinates such that C is the parabola of equation Y = X2.
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Furthermore, for every ¢ € GF(g), define the polynomial

(3.10) piX,Y) = {1— (Y_l‘X*%‘Z)H} (X_é)

over GF(g). Note that the algebraic curve of equation p,(X, Y) = 0 is totally reducible, its
components being the 4 — 1 nontangent lines through the infinite point Q, = (1,#,0) and
the polar line of Q; = (1, ¢,0) with respect to C.

Turorem 3.10: Let C be the parabola of equation Y = X?. Ifdeg I = g in Theoren 3.9,
then I has equation

G.11) FXY) =Y pXY) =0.
teGF(g)

If, in addition, I is defined over GF(q), then A, € GF(q), for any t € GF(qg).

The above theorem may be rephrased using classical terminology from the theory of
linear systems, see [31], for instance.

TueoreM 3.11: The linear system of algebraic curves of degree q passing through every
point of an irreducible conic C of PG(2,q) and through every internal point of C has di-
mension g — 1. Such points impose independent conditions on the algebraic curves of degree
q which pass through them.

We are going to prove that any algebraic curve D of degree g passing through every
point of Z(C) U C belongs to the linear system X consisting of all curves with equation

> dpX,Y)=0.

t€GF(q)
Write the equation of D in the form
aX,Y) =YX, Y)+ -+ ¥, (X,Y)=0
where ¥;(X,Y) is a homogeneous polynomial of degree 7. We begin by showing that the

q o
polynomial ¥,(X,Y) = " 4;X"Y?"* of degree ¢ can be written as
i=0

X Y)= Y AXY X)) =

teGF(q)
(3.12) 1 |
- ;L,XZ(" , )(—;)’XZ'YW",
teGF(g) i=0 z

for suitable 4, € GF(qg).

In homogeneous coordinates D has equation

aX,Y,7) = WX, Y)Z0 + W (X, Y)Z¢ . 4 W (X,Y) = 0.



Since the point Q. = (0, 1,0) is the infinite point of C, we have Q. € D. Therefore
¥,(0,1) = 0 yielding 49 = 0. Hence

P, (X,Y) = [ZaX’Yq - ]

Thus, to end the proof we only need eq. (3.7).

Note that the terms of degree ¢ in p,(X,Y) are those in X(Y — X)L If the
polynomial a(X,Y)— > 4;p,(X,Y) were not identically zero, then the curve of
equation 1€GF(q)

aX,Y) = > dp(X,Y)=0
teGF(q)

would have degree ¢ — 1 and would pass through every point of Z(C) U C contradicting
Theorem 3.9. Therefore

aX,Y)= > pX,Y).
teGF(q)

It remains to show that the polynomials p,(X,Y) with ¢ ranging over GF(g) are linearly
independent over the algebraic closure of GF(g). This follows from the independence of
their homogeneous part of highest degree, which is equivalent to the independence of the
polynomials ¢,.

RemMark 3.12: By the geometric interpretation of the polynomials p,(X, Y) it is obvious
that Z(C) U C coincides with the set of all base points of the linear system X

4. - REPRESENTATION OF INVOLUTIONS OF PGL(2, ¢)

Another essential tool in the investigation of Segre type theorems related to blocking
sets is Dickson’s classification of all subgroups of PGL(2, ), see [24], [36], together with
some consequences on the geometry of a conic, as stated in [2] and [3]. For the seek of
completeness, a detailed outline is given here.

As usual, PGL(2,q) denotes the projective linear group of the projective line over
GF(q) consisting of all permutations # = (at+ b)/(ct+d) on GF(g) Uoco with
coefficients a,b,c,d € GF(g) such that ad — bc # 0. Note that # = oo for + = —d/c
when ¢ # 0, and for # = oo when ¢ = 0. Also, # = a/c for t = oo when ¢ # 0.

LemmMa 4.1: For g = p” and p odd prime, a complete list of subgroups of PGL(2,q) to-
gether with the number N of their involutions is as follows:

(D) cyclic groups of order d withd | (g +1), N = 1;

(L) elementary abelian groups of order p* with k < b, N = 0;
(IIT) dibedral groups of order 2d with d | (g + 1), N =d + 1;
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(V) groups of order p*s with s|(p*F — 1) and s|(p? — 1); they are semidirect products of
an elementary abelian group of order p* with a cyclic group of order s, N = p*;
(V) alternating group A4, N = 3;

(VD) symmetric group S4, N = 9;
(VIL) alternating group As for ¢ — 1 =0 (mod 5), N = 15;
(VII) projective linear groups PGL(2, p*) with k|h and k < b, N = p**;
(IX) projective special groups PSL(2,p*) with kb and k< h, N = 5( PP 1) for

k=21 (mod 4).

Furthermore, involutions in PGL(2, ¢) are of two types, namely

(i) ¢ = —¢+ 4u for every u € GF(g), and
(ii) ¢ = (et +4b)/(t — m) for every m, b € GF(q) with n? +4b # 0.

Note that the involution # = —¢-+4u fixes both 2z and oo, while # =
= (mt +4b)/(t — m) has either 2 or 0 fixed points depending on whether 77 + 4b is a
nonzero square or a non-square element in GF(g). From Lemma 4.1 we deduce two
results.

Lemma 4.2: Let G be any intransitive subgroup of PGL(2,q) containing at least g — 1
involutions. If some of such involutions have no fixed point, then G is a dibedral group of
order 2(g — 1).

Proor: Assume first that ¢ > 13. From Lemma 4.1, subgroups of PGL(2,q)
containing at least ¢ — 1 involutions are dihedral groups of order 2(g 4 1), the
projective special group PSL(2,g), semidirect products of order sq with s as in (IV),
and for square ¢ groups isomorphic to PGL(2, /7). The dihedral subgroups of order
2(g+ 1) as well as PSL(2,q) are transitive subgroups. Semidirect products as in (IV)
have a fixed point.

It remains to show that every involution in PGL(2, /7) has two fixed points. Since
PGL(2,¢) contains only one conjugacy class of subgroups isomorphic to PGL(2, \/7), it
suffices to show the assertion for just one subgroup G =2 PGL(2, /7). The permutations
' = (at 4 b)/(ct + d) of GF(q) U {co} whose coefficients 4,b,c,d are in GF(,/g) and
satisfy ad — bc # 0 constitute such a subgroup G. Since 7 + 4b with 7, b € GF(,/7) is
always a nonzero square in GF(g), the assertion follows for ¢ > 13.

Let ¢ =9,11. By Lemma 4.1, there is just one new entry, namely G =2 As. In both
cases, As is a transitive subgroup of PGL(2, g). Likewise, if g = 5,7 then G 22 §; and in
both cases Sy is a transitive subgroup. O

Given a subgroup G of PGL(2,q), a 2-component partition o, = L; UL, with
LN L, = 0 is G-invariant if every g € G either takes Ly to L, and vice versa (and there
is at least one g € G that does it), or it preserves both L; and L. The subgroup N of G
consisting of all elements which preserve both L; and L, has index 2.
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Lemma 4.3: If a proper subgroup G of PGL(2, q) contains at least g — 1 fixed-point-free
involutions then either g =3 (mod 4) and G = PSL(2,q), or g =11 and G = As, or
g =>5,7 and G =2 S4. If, in addition, there is a G-invariant partition with two components,
then either g = 5,7 and G = 84, or g =5 and G is a dibedral group of order 12.

1
Proor: A dihedral group of order 2(g + 1) contains at most 3 (g + 1) + 1 fixed-point-

free involutions. This number is ¢ — 1 only if 4 = 5 and the group is dihedral of order 12.
By the proof of Lemma 4.2, PGL(2, /) cannot occur. An involution in PSL(2, g) has 2 or
0 fixed points depending on whether g = 1 (mod 4) or ¢ = 3 (mod 4). Furthermore, the
subgroups of PGL(2, ¢) isomorphic to As are contained in PSL(2, g), and the same holds
for S4 when ¢ =7. Also, every subgroups of PGL(2,5) isomorphic to S4 contains 3
involutions with 2 fixed points and 6 fixed-point-free involutions. Finally, both PSL(2, ¢)
and As are simple groups, and hence they do not have any subgroup of index 2. Instead,
S4 has A4 as subgroup. O

We give a geometric representation of the involutions in PGL(2,4). As before,
AG(2,q) will stand for the affine plane over GF(g), £, for its infinite line, C for the
parabola of equation Y = X?, and Q. for the infinite point of C. Furthermore, 7, will

1
denote the line of equation Y = £X — = £, for every ¢ € GF(qg).
11
Note that 7, is the tangent to C at the point (2 t,4z‘2) and that Q, = (1,¢,0) is the

infinite point of ;. Obviously, Q; is distinct from Q.. The lines 7, together with £, are all
the tangents to C through Q;.

Now, choose any nontangent line £ to C. Then either ¢ is a vertical line of equation
X =u with u € GF(g), or its equation is Y =mX+b with m,b € GF(g) and
m? 4+ 4b # 0. Let ¢ # m. Then r, meets £ in a point R. Let # be the other tangent line
to C through R when R € C, and ¥ = », when R € C. The infinite Q’ point of # is called
the image of Q, under the axzal symmetry y, associated to £. To recover the missing value
t = m, define w,(Q,,) = Qx and W(Qu) = Q,,. Then O = Q, with # depending on ¢ as
in the same manner as in (i) or (ii). In other words, y, € PGL(2, 9).

This representation makes it possible to interpret properties of involutions in
PGL(2,g) in terms of geometric configurations of the corresponding symmetry axes. In
this paper, the following case is relevant.

Lemma 4.4: If wy, ... W1 are the noncentral involutions of a dibedral subgroup of
PGL(2,q) of order 2(qg — 1), then the corresponding symmetry axes {1, ...,L, 1 have a
common point P. Furthermore, P is an external point to C, and {1, . .., L,y together with

the two tangents to C through P form the full pencil with base point P.

Proor: For any two distinct points A, B € /., the subgroup D of PGL(2, g) which
preserves the set {A, B} is a dihedral subgroup of order 2(g — 1). The g — 1 elements
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interchanging A and B are the noncentral involutions in D while the cyclic subgroup of
D of index 2 consists of the g — 1 elements fixing both A and B. All dihedral
subgroups of order 2(g — 1) are obtained on this way. If A = Q, and B = Q, then D
consists of all involutions # = 4b/¢ together with # = ut where both 4 and « range
over GF(g)*. Note that # = —¢ is the unique central involution in D while lines which
are symmetry axes of the corresponding noncentral involutions in D have equation
Y = b. Hence they are all the nontangent lines through the point Qy showing the
assertion for this case.

If Be/l, is distinct from Qy, say B= Q,, then the affinity with equation

X,Y)— (X —5—%;{, Y +uX —1—41‘%2) preserves C and takes Qp to Q,. This shows that

the assertion holds true for the case where A = Q. and B is any infinite point distinct
from Q.

Next, let A=Q; and B=Q_;. It is easily checked that every involution
V' = (mt — 1)/(t — m) with m € GF(g) \ {1, —1} interchanges A and B. The same holds
for the involution # = — ¢. Thus these are all the noncentral involutions in D. Also, the
axis ¢ of the axial symmetry corresponding to such an involution has equation

Y =mX — % and X = 0 respectively. All these axes pass through P(O, - %) Thus they

are all the nontangent lines through the point P (0, - l) showing the assertion for this
case. 4

Finally, let A, B € £, \ {Qx} any two distinct infinite points. Since PGL(2, g) acts on
{+, as a 3-transitive permutation group, there is an element in PGL(2, g) which fixes Q
and takes Q; and Q_; to A and B, respectively. Therefore, the assertion extends to the
dihedral subgroup preserving {A, B}, and this completes the proof. O

For further results, an explicit description of the action of PGL(2, g) is needed.

Let PGL(3,4q) be the projective linear group of the projective plane PG(2,4) over
GF(g) and let C be an irreducible conic of PG(2,¢). Denote by I' the subgroup of
PGL(3, q) preserving C.

If C is the conic of equation YZ=X? then I" consists of all linear collineations
ya, b, c,d) with matrix representation x — xM, x = (X, Y, Z) and

ad +bc 2ab 2cd
M= ac P 32
bd e

where a,b,c,d € GF(g) and ad — bc # 0, see [23], Theorem 2.37.

Let PGL(2, g) be the projective linear group of the projective line £, over GF(g). As it
is well known I =2 PGL(2,9) and I acts on C as PGL(2,¢) in its sharply 3-transitive
permutation representation that is in its natural representation on £.
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If ¢ is given by Z = 0, this representation is obtained in the following way. Identify
points P = (u,4?,1) € C with points Q, = (1,%,0) € £y, and y(a, b, ¢, d) with the linear
fractional transformation

(4.1) u = (au+b)/(cu+ d).

Then I' acts on C as PGL(2, g) on /..

Let Iy be the subgroup of I consisting of all elements (4.1) with 4, b,¢,d € GF(,/q).
Clearly I'y = PGL(2, /) and I'q preserves the Baer subplane 7y of the Baer involution
(X,Y,Z) — (XV4,Y V4, 7ZV4), which is the canonical subplane PG(2, Va) of PG(2,q)
coordinatised by GF(,/7).

Every involution in I"g has two fixed points on C. In fact y(4, b, c, d) is an involution if
and only if 2 = —d. Then the point P(x, #?,1) is a fixed point of y(a, b, ¢, d) when

4.2) c? —2au—b = 0.

Since 4, b,c € GF(,/g), (4.2) has two solutions.

Note that Cy = C N 7 is a conic in 7rp. Also, a line of 7y is either a tangent or a secant of
Cy or an external line to Cy, and in the latter case the line is a secant of C.

The previous geometric representation of PGL(2,¢) in which an involution w, of
PGL(2, g) is associated to each nontangent line £ to C can be made more explicit. In fact,
w, is the restriction on C of the involutory homology 5, € I' of axis £ whose centre is the
pole of ¢ with respect to C.

Lemma4.5: Letyy, . .., w, be involutions of PGL(2,q). Then (y,, ... ,y,) is isomorphic
to <bl, e ,}JS>.

Proor: It suffices to note that the only collineation fixing C pointwise is the
identity. O

In studying (yy,...,y,) three cases are distinguished. Lemma 4.2 together with the
following two lemmas depending on Dickson’s classification will play a role.

LemmMa 4.6: Let G be any intransitive subgroup of PGL(2,q), containing at least q in-
volutions. Then every involution in G has two fixed points if and only if either
G = PGL(2,/q), q square, or G is a semidirect product of an elementary abelian group of
order g with a cyclic group of even order.

Proor: Every involution in a subgroup of PGL(2,¢) isomorphic to PGL (2, ,/7) has
two fixed points. A subgroup of PGL(2,¢4) which is the semidirect product of an
elementary abelian group of order g with a cyclic group of even order has a fixed point
hence every involution must fix two points.
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To prove the converse, assume first that ¢ > 13. By the classification of subgroups
of PGL(2,q), see Lemma 4.1, the subgroups of PGL(2,4) containing at least ¢
involutions are dihedral groups of order 2(g 4 1), groups isomorphic to PSL(2,g),
groups of order gs with s|(g — 1), which are semidirect products of an elementary
abelian group of order ¢ with a cyclic group of order s, and for square ¢, groups
isomorphic to PGL(2, /7).

From this we infer Lemma 4.6 for ¢ > 13 since dihedral subgroups of order 2(g + 1)
as well as subgroups isomorphic to PSL(2,¢) are transitive subgroups, whereas the
dihedral subgroups of order 2(g — 1) contain some fixed point free involution.

If 4 =9,11 then, G can also be isomorphic to As, see Lemma 4.1, but As is a
transitive subgroup of PGL(2, g) for g =9, 11.

Likewise, if ¢4 =5,7 then G=S; and in both cases again S; is a transitive
subgroup. O

Lemma 4.7: Ifyy, ...y, are the involutions of a subgroup G of PGL(2, q) isomorphic to
PGL(2,\/q), then the corresponding symmetry axes {1, . . ., L, are lines of a Baer subplane of
PG(2,q). Such a Baer subplane meets C in a conic Cy and {1, . . . , L, are all nontangent lines
of PG(2,./q) to Cy. In particular all the lines L, ... L, are secants to C.

Proor: PGL(2,,/7) and hence G, is generated by its involutions. According to
Lemma 4.5, let H=<bhy,...,h, > with hy,...,h, € I such that G~ H. By the
classification of subgroups of PGL(2,4) any two subgroups isomorphic to PGL(2, ,/7)
are conjugate in PGL(2, ¢). Hence, H = al'ga~" for some a € I.

Furthermore, the Baer subplane preserved by H is the image of 7 by a. Therefore, it
suffices to show the assertion for I"y. The axes of involutions in I'y are lines of 7y which
are not tangent to Cop = C N mp. Every nontangent line of Cy meets C in 2 points, and hence
the result follows. O

The following two results come from [25] where a purely theoretic approach is used.
An alternative proof using coordinates is also possible; the necessary computations can be
carried out as in the proof of Lemma 4.4.

Lemma 4.8: If wy, ..., y, are the involutions of a subgroup G of PGL(2, q) of order sq
with s|\qg — 1, then the corresponding symmetry axes {y,. .., L, have a common point P
on C.

Lemma 4.9: Let yy, . .. ,w,_y be the noncentral involutions of a dibedral subgroup G of
PGL(2,q) of order 2(q — 1). The following assertions hold.

(i) The symmetry axes by, ..., Ly1 of Wy, ... s W1 have a common point P;
(ii) P is an external point to C, and Uy, . .., L,y together with the two tangents to C
through P form the full pencil with base point P;
(iii) zhe polar line of P w.r.t C is the symmetry axes of the central involution of G.
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5. - BLOCKING SETS OF EXTERNAL LINES
The following classification theorem comes from [2].

Tueorem 5.1: Let C be an irreducible conic in PG(2, q), q odd. Let B be a point-set in
PGI(2, q) which meets every external line to C. Then |B| > q — 1 with equality occurring for
g =3andq > 9inthe “linear” case only, that is when B consists of all points of a secant r of
C minus the two common points of r and C. For g = 5,7 there exists just one more example,
up to projectivities.

The proof given here is essentially the same as in [2] and uses the results stated in the
previous sections.

Since ¢ is odd, an orthogonal polarity is associated with C. This allows us to state
Theorem 5.1 and prove it in its dual form: if a line-set £ covers the set I(C) of all internal
points to C, then |£| > g — 1, and equality only holds when £ consists of all lines through
an external point P minus the two tangents to C through P. In other words, £ together
with the tangents to C constitute the full pencil with base point P.

The first statement in the dual of Theorem 5.1 is a corollary to Theorem 3.1.
Henceforth we assume |£| =g — 1.

LemMA 5.2: At least half of the lines in L are external to C.

Proor: Assume that £ consists of 7 secants together with ¢ — 1 — 7 external lines to C.
. . .1 . .
Since each external line contains §(q+ 1) internal points to C whereas each secant
.1 . .
contains 3 (g — 1) internal points

(q_l_n)(q+1)+ﬂ(q 1)Zq(q 1)7
2 2 2
1
hence # Si(q— 1). O

We continue to work on an affine plane AG(2,g) whose infinite line £, is tangent
to C. The conic C is a parabola and we may assume C to be in its canonical position
with equation Y = X?. Let /1,...,¢,; denote the lines in £. Then ¢; has equation
LX,)Y)=Y —u;X +v; with u;v; € GF(g), and the infinite point Q; of ¢; has
homogeneous coordinates (1,#;,0). Set L(X,Y)=Li(X,Y)---L,1(X,Y). For any
t € GF(g), let Q; denote the point of homogeneous coordinates (1,¢,0). Clearly, Q;

1
is the infinite point of the tangent line 7, to C at the point P( Lt ) Note that 7, has
equation Y — X —|— t2 = 0. By Theorem 3.2, there are A, € GF(g) such that
(5.1) LX) =3 i,(l - (Y—z‘X—i—th) )

teGF(q)
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LemMA 5.3: L contains a secant of C if and only if /., = 0 for at least one t € GF(qg).

Proor: Assume that £ contains a secant of C and let P denote one of their common

1 1 1
points. Write P = (iu Zuz) with # € GF(g). Then L( 3 ): 0. Furthermore,

1— (iuz—%m‘—&- tz) =1- B(u—t)r(q Y

1
otherwise. By (5.1), 4, = 0. Conversely, if 4, = 0, then (5.1) yields thatL(Zu Zuz) 0,

is equal to 1 for # = ¢, and it vanishes

1
and hence some line in £ contains the point P = ( St ) of C. O
Set A= > 4.
teGF(q)

LemMa 5.4: The infinite point Q,, u € GF(q), is covered by some line of L if and only if
Ay = A.

Proor: Write (5.1) in homogeneous coordinates:

- 1 L, N\t
— _ 7Yy — 1 (7a-1 _ (v _ z
LIX,Y,Z) H(Y wX+u2)= 3 A,(z (Y X+t Z) )
=1 teGF(q)
The point Q, lies on some line in £ if and only if L(1,2,0) = 0. On the other hand,
L(1,2,0) = — + , since (u — 1)*"" equals 0 for # = ¢ and 1 otherwise. O

For the rest of the proof we distinguish two cases according as A vanishes or does not.

Case 4 = 0. Define 4 to be the set of all infinite points Q, covered by lines in £
together with the tangency point Q. of Z,, on C. Note that 4 does not contain all infinite
points.

As we have seen in Section 4, every line ¢; € £ defines an involution y; in PG(2,¢)
viewed as the linear collineation group of the infinite line £.

Lemma 5.5: Each involution w; preserves A.

Proor: Let Q, be the infinite point of £;. By a previous result, ; interchanges Q, with
Qoo For any point Q, # Q,, let Q, be the image of Q, by w,. If Q, = Q,, then the

assertion trivially holds. Otherwise, the tangent lines 7; and 7, are distinct and they meet in

-1
a point P(x,y) of ¢;. Hence L(x,y) = 0. Let w € GF(g). Then (y—wx—l—%wz)q

vanishes for w = ¢ and w = v, otherwise it is equal to 1. From (5.1), 4, + /4, = 0. By
Lemma 5.4, Q; € A4 yields 4, =0. Hence 1, =0, and by Lemma 5.4 the assertion
follows. 0

Lemma 5.5 implies that A is invariant under the subgroup G of PGL(2, g) generated by
the involutions 1, . .., ,_;. According to Lemma 5.2, some of these involutions have no
fixed points. Hence, from Lemmas 4.2 and 4.4 we obtain Theorem 5.1 in its dual form.
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Cask 4 # 0. This time, we define A" to be the set of all infinite points Q, covered by
lines in £. By Lemma 5.4, 4™ comprises all Q, such that 4, = 4. We will also need the set
A~ consisting of all infinite points Q, with A, = —A together with Q.

Lemma 5.6: Each involution y, takes A™ to A~

Proor: Let Q, € A7, If Q,, lies in ¢;, then y; interchanges Q, with Q. For any point
Q. & ¢; let Q, the image of Q, under y;. We show that Q, # Q,. If Q, = Q, then ¢;

1 1
contains the tangency point P(EM,ZMZ) of the affine tangent line to C through Q,.

Therefore L(%u,%zf): 0. By (5.1),

1 11\
0= il 1= = —Zut —t2> = A= (u— )T,

zeGZF(q) t ( (4 2 " 4 > terF(q) l( ( n
Since, (u — )7 ! = 1 for every ¢ distinct from #, this yields 4, = 0, a contradiction with
A # 0. So, we may assume Q, # Q,.

Now, arguing as in the proof of Lemma 5.5, 4, + A, = 0 follows. Since 4, = 4, this
yields 4, = —4 showing indeed that Q, € A~. Conversely, if Q, € A~, then the image of
Q, under y; is in A™. This has already been noted for Q, = Q. at the beginning. Also,
the preceding arguments remain valid when + and — are interchanged giving a proof for
the assertion. O

Set A = A" U A~. Then the previous lemma shows that Lemma 5.5 holds true for the
case 4 # 0. As before, this yields that A is invariant under the subgroup G of PGL(2, ¢)
generated by the involutions yy,...,y, ;.

If A is a proper subset of £, we may argue as before by using Lemmas 5.2, 4.2
and 4.4. The conclusion is that the lines of £ are those of a pencil with an external base
point P minus the two tangents to C through P. But this cannot actually occur in the
present situation by Lemma 3.8.

If A consists of all points in £, then no A, vanishes. By Lemma 5.3, every line in £ is
external to C showing that no involution v, has fixed point on C. By Lemma 4.3, we are
left with three sporadic cases, namely ¢ = 5,7 and G = §4, and ¢ = 5 and G is a dihedral
group of order 12.

Case ¢ = 5. A nonlinear example of a line-set £ covering Z(C) consists of the four
external lines to C:

b :Y =4X +4; 4, Y =3X+2; b3 Y =X+43; ly: Y =X+4.
Set
FXY)=(Y - @dX+4)Y - BX +2)((Y = (X +3)(Y — (X +4)).
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As before, let
1 .\ 4
0, (X,Y)=1— (Y—tX+Zt2>

for + € GF(5). It is straightforward to check that
f(Xa Y) = Z ;“t(p;(Xa Y)

teGF(5)
with },0 = ).2 =1and ).1 = ).3 = /14 =-—1.In particular,
A= A =—1
teGF(5)
The involutions in PGL(2,5) which correspond to the lines 41,. .., ¢, are
.t/_4t+1. .t/_3t+3. .[/_t"'z. .l‘/_t"'l
S T e A L

The subgroup G = (yy, ¥, y3,y,) is a dihedral group of order 12. In PGL(2,5), there
exist 10 dihedral subgroups of order 12, and they are pairwise conjugate under PGL(2, 5).
So, we have 10 projectively equivalent nonlinear examples. A computer aided exhaustive
search shows that no more nonlinear example exists. In particular, the possibility G 2= S,
does not actually occur for ¢ = 5.

Cast g = 7. A nonlinear example of a line-set £ covering Z(C) consists of six external
lines to C:

Y =5; b Y =2X+2; 6:Y =2X+4;
{£4:Y:2X+5; b5 :Y =5X+5; lg:Y=X+1.
Set
JX,Y) = (Y =5)(Y — X +2))(Y — (2X +4))x
x (Y = X 4+9)Y - 6X +5)(Y — (X +1)),
and

P, (X, Y)=1— (Y—¢X+:1‘t2)6

for 1€ GF(7). It is easy to check that f(X,Y)= > A (X,Y) with =

teGF(7)
= ;ul = l} = ;*6 =2 and )»2 = )v4 = /15 =5. In particular, A= Z =N = 2. The
teGF(5)
involutions in PGL(2,7) which correspond to the lines /1, ..., s are
s 2+l 242,
l//l . _tv l//2' _l‘+57 W}' _l‘+5’
, 2t+6 , St+6 , t+4
W4 t — . . t — . . t p—

t—|—5’ s . t+27 W - _l‘+6
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Furthermore, G = (wy,...,wy) = S4. In PGL(2,7), there exist 14 subgroups isomorphic
to 84, and they are pairwise conjugate under PGL(2,7). So, we have 14 projectively
equivalent nonlinear examples. As for g = 5, a computer-aided exhaustive search shows
that no other nonlinear example exists.

6. - BLOCKING SETS OF NONTANGENT LINES

The classification theorem and its proof come from [3].

TreOREM 6.1: Let C be an irreducible conic in PG(2, q), q odd and let B be a point set in
PGI(2,q) which meets every external and tangent line to C. Then |B| > q with equality
occurring in the following cases:

o BB consists of all points of a tangent to C minus the tangency point;

o BB consists of all points of a secant r of C different from the two common points of r and
C, plus the pole of r with respect to C;

o B consists of all points of a Baer subplane PG(2, \/q) intersecting C in a conic Cy of
PG(2,/q), minus the points of Cq.

As in the preceding section, Theorem 6.1 is stated and proven in its dual form: let Z(C)
be the set of all internal points of C. If a line set £ covers the set I(C) U C then |£] > ¢, and
equality holds in the following cases:

e L consists of all lines through a point P on C minus the tangent at P to C;

e L consists of all lines through an external point P different from the two tangents to
C, plus the polar line of P with respect to C;

e L consists of all lines of a Baer subplane PG(2, ,/7) intersecting C in a conic Cy of
PG(2,/q) different from the tangent lines to Co.

The first statement in the dual of Theorem 6.1 is a corollary to Theorem 3.9.
Henceforth we assume |£| = 4.

LemMA 6.2: No line in L is tangent to C.

Proor: In the preceding section, sets of ¢ — 1 lines covering all internal points to C are
classified. If £’ denotes such a set then, either there is an external point P to C such that £’
consists of all nontangent lines to C through P, or ¢ = 5,7 and all the lines of £’ are
external to C.

Now, assume on the contrary that a line £ € L is tangent to C at L. Removing £ from £
gives a set of lines £’ covering all internal points to C and all points of C different from L.
Therefore £’ consists of all nontangent lines to C through an external point P to C.

Let Py, P; be the tangency points of the tangents to C through P. Then neither P; nor
P, is covered by £, and hence both must be covered by £. But this is impossible as £ is a
tangent to C. O
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We continue to work on an affine plane AG(2, ¢) whose infinite line £, is tangent to C.
The conic C is a parabola and we may assume C to be in its canonical position with
equation Y = X?. Let 4,...,{, denote the lines in £. Then ¢; has either equation
LiX,)Y)=Y — u;X +v; =0 with #;v; € GF(g), and the infinite point Q; of ¢; has
homogeneous coordinates (1,#;,0), or ¢; has equation L/(X,Y) =X —u; =0 with
u; € GF(g) and Q4 = (0,1, 0) is its infinite point.

Set LIX,Y) = Li(X,Y) - L,(X,Y). For any ¢ € GF(g), let Q, denote the point of
homogeneous coordinates (1, ¢,0). Clearly, Q; is the infinite point of the tangent line ¢, to
C at the point P( t %z‘ ) Note that ¢, has equation Y — #X + %tz =0.

By Theorem 3.10, there are 1, € GF(g) such that

6.1) LIX,Y) = te%;(q)zt[l - <Y— ;X%ﬁ)q*l} (X—%)
Set A= 3 .
teGF(g)

Lemma 6.3: The infinite point Q,, u € GF(q), is covered by some line of L if and only if
Dy = A

Proor: Write (6.1) in homogeneous coordinates:
1 q-1 t
q-1 Z -
LIX,Y,Z) = tEGEF vy {Z ( —tX + 3 iZZ) } (X ZZ).

The point Q, lies on some line in £ if and only if L(1,2,0) = 0. On the other hand,
L(1,2,0) = — + A, since (u — 1)~ equals 0 for # = ¢ and 1 otherwise. O

Define A to be the set of all infinite points Q, covered by lines in £ together with the
tangency point Q.. of £+, on C. Note that A does not contain all infinite points.

As we have seen in Section 4, every line £; € £ defines an involution y; in PGL(2, 9)
viewed as the linear collineation group of the infinite line /.

Lemma 6.4: Each involution w; preserves A.

Proor: Let Q, be the infinite point of ;. By a previous result, ; interchanges Q, with
Q. For any point Q; # Q,, let Q, be the image of Q, by ;. It Q, = Q,, then the

assertion trivially holds. Otherwise, the tangent lines ¢, and ¢, are distinct and they meet
1
in a point P(x,y) of ¢; where x = Z(t + ). Hence L(x,y) = 0. Let w € GF(g). Then
1 q-1
(y —wx + sz ) vanishes for w0 = # and w = v, otherwise it is equal to 1. From (6.1),

B2 +au(x-2) = %(v—zm—zv) 0.
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By Lemma 6.3, Q; € Ayields A, = A. Hence also /4, = A, and by Lemma 6.3 the assertion
follows. 0

Lemma 6.4 implies that A isinvariant under the subgroup G of PGL(2, ¢) generated by the
involutions yy, . . ., y,, . If £ contains some external lines then some of these involutions have
no fixed point. Hence, from Lemmas 4.2, and 4.9, £ consists of all lines through an external
point P different from the two tangents to C, plus the polar line of P with respect to C.

Otherwise, £ consists of all secant lines to C and every involution y; has two fixed
points. Hence from Lemma 4.6, G is either a group of order gs with s|g — 1, or it is
isomorphic to PGL(2, /7). In the former case, from Lemma 4.8, £ consists of all lines
through a point P on C minus the tangent at P to C.

Finally, when G is isomorphic to PGL(2, \/7), then from Lemma 4.7 we have that £ is
the set of lines of a Baer subplane 7y minus the tangents to the conic C Ny and
Theorem 6.1 follows.
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