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AssTrACT. — Curves defined over a finite field have various applications, such as

() the construction of good error-correcting codes,

(b) the correspondence with arcs in a finite Desarguesian plane,

(¢) the Main Conjecture for maximum-distance-separable (MDS) codes.

Bounds for the number of points of such a curve imply results in these cases.

For plane curves, there is a variety of bounds that can be considered, such as the Hasse-Weil
bound (1934/1948), the Stohr-Voloch bound (1986), as well as bounds that depend on the plane
embedding. Curves that achieve these bounds can sometimes be characterised.

Segre applied bounds for the number of points on a curve to obtain bounds on the sizes of
complete arcs. He also considered plane Fermat curves that achieve the Hasse-Weil bound.
Various of these results and their applications are surveyed.

1. - INTRODUCTION

Here are three problems.

(I) What is the size of a complete arc in PG(2, g)?
(II) How many points are there on a curve over F,?
(IIT) Is the Main Conjecture for MDS codes true?

Related to all of these, Segre wrote several influential papers.
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2. - THE NUMBER OF POINTS ON A CURVE

The problem of finding the number of points over a finite field has been studied for
many years.

Gauss (1801) solved the problem of finding the number of solutions (x,y) in the
following cases:

1. ax’> — by’ =1 (mod p) when p = 1 (mod 3);
2. ax* — by* = 1 (mod p) when p = 1 (mod 4).
To begin with a simple example, let F = X> + Y? + Z? and write the field
F,=1{0,1,2,3,-3,-2,—1|7 = 0}.
Since, in F7, an element x satisfies x> = 0,1, —1, so the zeros of F in PG (2,7) are
0,1,-1), 0,1,-2), (0,1,3),
(1,0,-1), (1,0,-2), (1,0,3),
(1,-1,0), (1,-2,0), (1,3,0).

Hence the number of zeros is N; = 9. The number of zeros of F over Fa9 is N» = 63.
If the same question is considered when F is over F», F,, F14, the numbers of zeros
are

Ny=3, N,=9, N;=0.

Tueorem 2.1 (Hasse-Weil [11, 12, 39]1): For a non-singular curve C of genus g defined
over F,, let N; be the number of its points rational over F ;. Then

eXp(ZN’T /Z) T (=D —4T)
where | € Z[T] with deg f = 2g. This implies that
Ny <g+1+2g/3q.

This last inequality can be improved.
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Tueorem 2.2 (Serre [32]):

Ny <g+1+¢g[2\/q] =S,
Tueorem 2.3 Thara [24]):

Ny Sq—l—l—%g-l—{Z(q—i-é)gz-i-(qz—q)g}%.

2.1. The Hermitian curve

ExampLe 2.4: When g is a square, the ternary Hermitian form

F= X\/z?-H + Yﬂ+1 +Z\/§+17

is unique up to a projectivity, and defines the Hermitian curve U5, = v(F). Its genus is
1 . . . . . .
g= E(q — /), and the number of its rational points is N; = ¢,/7 + 1, attaining the

Hasse-Weil upper bound.
See [21] and [27] for characterisations of U> .

Write N,(g) = max Nj, taken over all non-singular curves C of genus g over F,,.

ExampLE 2.5: A case in which N,(g) is strictly less than §, is the following. A plane
non-singular curve C* of degree 4 over F; has at most 20 points; that is, N;(3) =
=20<23=35;.

Segre studied in [30, 31] the number of zeros of varieties given by an equation
F(X1, X, ..., X)) = G(Y1, Ya, ..., Y,),
where F and G are homogeneous forms of degree # over F,, and
qg=mnt+1.

This leads to formulas for the number of zeros in the case that F is diagonal and
G = 0. In particular, as one case, if ¢ = p”, g =1 (mod 4), and ¢ is square, then the
quartic curve, given by

F =X} +a X} + a: X3,
has
Ni=gq+1+2\4, g+1=£6/3,

giving one curve among many attaining the Hasse-Weil upper bound, as well as one
attaining the Hasse- Weil lower bound.
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3. - PLANE CURVES

As an application of the Hasse-Weil theorem, there is the following result, providing
an upper bound in a form required in connection with plane arcs.

TueoreM 3.1 (Segre [311): Let a plane curve C? of degree d over F, with no linear
components have Ny non-singular points. If

Vg>d—1,
then
N0<d(q+2—d).

This can be improved subject to a further restriction.

Tueorem 3.2 (Hirschfeld-Korchmaros [191): Let C¢ be a plane irreducible curve. If
1
Vq > > d+2,
then
No<dlg+2-4d).
with equality if and only if C* is isomorphic to the Hermitian curve Uz,
For a plane curve F defined over F,, there are different definitions of the ‘number of

points’ on F. So far, the number N; has been considered. Let this number also be written
C,. Then the numbers C,, M,, M,, B, are the following:

C, = # F,-points on a non-singular model of F;
M, = # points on F in PG(2,9);
Mq = # points on Fin PG(2,4) counted with multiplicity;
B, = # branches of F centred at an F,-point.
Tt follows that
(1) C, < B, < M,;
(2) for F non-singular, C, = B, = M, = M,.

Treorem 3.3 (Stohr-Voloch [341): Let C? be a plane irreducible curve of degree d over
F, with q odd such that not all points are inflexions. Then

Cy<5dlg+1-d)=V.



Proor: Consider the number of points P = (x,7,2) on C¢ such that the Frobenius
image P7 = (x7,97,27) € {p, the tangent at P. O

1
Remark 3.4: To compare these bounds, it should be noted that, for d > 3 Vg+3,
V<SS,

4, - CLASSICAL CURVES

Let C = C” be an absolutely irreducible plane curve of degree #, which is a (possibly
singular) plane model of a projective, geometrically irreducible, non-singular, algebraic
curve X defined over F,. To each point of X there corresponds a place or a branch of C;
associated to each place is a unique tangent. If P is a place of C and a = mzp(C) is the
minimum of the intersection numbers I(P,/NC) for all lines / through P and so the
multiplicity of P on C, then a is the order of P. The tangent /p at P is the unique line for
which I(P,/p N C) > aand f = I(P, [p N C) — a is the class of P. With respect to the linear
system X of lines of PG(2,F,), a point with order sequence (0, r, 5) is viewed as a branch of
order & = 7 and class f = s — 7.

If C is not the locus of the points of inflexion, the order sequence of a generic point is
(0,1,2) and C is said to be classical for X.

If C is non-classical, then the order sequence at a generic point is (0, 1, p?), with p” > 2,
or, equivalently, the order sequence of X’ with respect to 72, the linear series cut out by
lines.

For any curve C, whether classical or non-classical, only a finite number of points have
a different order sequence from the generic one. In the case that C = U, , with degree

va+1,

©.r9) (0,1,\/g+1) for P rational,
U 0,1,./9) for P generic.

The curve C is Frobenius classical if P1 ¢ [p, apart from a finite number of places; so it
is Frobenius non-classical if P? € [p. If the order sequence at P is (0, 1,p"), then the
Frobenius order sequence at P is

(0,v) with v =1 orp".

Then C is Frobenius classical if v = 1 and Frobenius non-classical if v = p”.

Tueorem 4.1 (Stdhr-Voloch [341): Let C? be a plane irreducible curve of degree d over
F,. Then

C, < %{d(d — 3+ g+ 2)d}.

The most general form of this theorem is the following.
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TreoreM 4.2 (Stéhr-Voloch [34]): Suppose that

(a) Cis an irreducible curve of genus g
(b) % is a linear series on C of dimension n and order d;

(c) the order sequence on C is (ey, . . . , &,);
(d) the Frobenius order sequence on C is (vo, ..., v, 1).
Then

C, < %{(zg )04+ vyt) + (g 4+ md)}

TreoreM 4.3 (Hefez-Voloch [13]): Suppose that

(a) Cis a plane non-singular curve of degree d;
(b) C is Frobenius non-classical.

Th
e” C,=dlg—d+2)

An example of this is the Hermitian curve U ,.

If a projective curve over F, has affine equation /(X,Y) = 0, then / divides H(f),
where

4.1) H(f) = fx v = 2y ffy + Ay s

if and only if there exist non-zero polynomials s, 29, 21,2, € F,[X, Y] with z; not divisible
by / such that, for a power p*, with » > 1, of the characteristic p of F,,

4.2) SXYXY) = 20X, YV +0X, Y X+ X, Y)Y Y;

see [9]. For p? < g, the necessary and sufficient conditions in order that the plane curve C
with equation /(X, Y) = 0 be Frobenius non-classical are (4.3) together with (4.2), where

(4.3) X, V)FX,Y) = 20X, Y) + (X, Y) XU + %X, Y)YV

Note that if the Frobenius non-classical projective curve is non-singular, then p* < /7.

A plane curve over F, may have singular points at which the tangents do not lie over
F,. These give branch points that are not counted as F,-points on a non-singular model.
As an example, a plane cubic curve with an isolated double point has ¢ + 3 branch points
but only g + 1 points on a twisted cubic, the non-singular model. The next two theorems
give results that include such points.

THEOREM 4.4 ([20]): Let C be the projective plane curve of degree d and genus g given by
FX,Y) =0, where f(X,Y) is an absolutely irreducible polynomial with coefficients in F,.

) IffJH(f), then

4.4) B, <-{(2g—2)+ (g +2)d}.

N =



(i) Iff | H(f) and I(P,C N £p) = p*, then
(4.5) B, < 3 {2~ 2) + (g + 2)d).

Treorem 4.5 ([20]): If (a) C is Frobenius non-classical and (b) p J mp(C) for all points P
of C, then

(4.6) B, >(g—1d—(2g—2),

and equality holds if and only if every singular branch of C is centred at a point of PG(2, q).

ExampLE 4.6: Let ¢ = p®, with p an odd prime, and

gX,Y) = (X + X + (XPHL 4 1)PX — YP AL,
Then C is a projective non-singular Frobenius non-classical plane curve with ¢ = v = p,
Garcia [8]. In fact, both (4.2) and (4.3) hold for
s(X,Y) =tX,Y) =1, 20X, Y) =X + X,
2(X,Y) =X 41, (X, Y) = —Yrt,
This shows that the exceptional case (ii) in Theorem 4.4 occurs. Also, the number of
F ,-rational points of C is (p? +p + 1)(p* —p? — p + 1), by Theorem 4.3.

Now, let 7 : C — C* be the rational map defined by (1, x,y) — (20, 21, 22). Then C* is
the dual curve of C. The main properties of C* are as follows:

(i) C"isaprojective singular plane curve defined over F,, birationally equivalent to C;
(ii) C* has degree p> +2p>+2p+1=(p?> +p+1(p+1), and genus g=
= (PP +p)(p*+p—1)/2;
(iii) C* is a Frobenius non-classical plane curve with ¢ = v = p?;
(iv) C* has only one non-linear branch; it is centred at an F,s-rational point and has
order p + 1.

Applying Theorem 4.5, we obtain that
By =(p"+p+Dp+ D’ =)= (P’ +p+ D(p* +p—2)
=P +p+Dp - D@ +2p* +p—1).
In the case p = 3, this gives By; = 1222, N7 = 208.

5. - SEGRE’S THEOREM

The following four notions are equivalent for # > £:

1. (CODING THEORY) a maximum distance separable (MDS) linear code C of
length 7, dimension £ and hence minimum distance d =#» — %&£+ 1, that is, an
[1,k,n — k+ 1], code over F;
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2. (MATRIX THEORY) a £ x (z — k) matrix A with entries in F, such that every
minor is non-zero;

3. (VECTOR SPACE) a set K' of 7 vectors in V(k,g), the vector space of &
dimensions over F,, with any £ linearly independent;

4. (PROJECTIVE SPACE) an #-arcin PG(k — 1, ¢), that is, a set K of # points with at

most &£ — 1 in any hyperplane of the projective space of £ — 1 dimensions over F,,.

To show the equivalence of these four concepts, consider a generator matrix G for
such a code C in canonical form:

n
1 0 O a1l dlﬁﬂ,k
o1 ... 0 ar ... Dt
k.. o .| =G
0o 0 ... 1 arr - Olp—k

Since C has minimum distance 7z — £ + 1, any linear combination of the rows of G has at
most & — 1 zeros; that is, considering the columns of G as a set K’ of 7 vectors in V (&, ¢),
any k are linearly independent. Regarding the columns of G as a set K of points of
PG(k —1,4) means that no £ lie in a hyperplane; equivalently, any £ points of K are
linearly independent. This, in turn, implies that every minor of A is non-zero.

For given & and ¢, let M(£, g) be the maximum value of # for such a code. Then

M(k,q) = k+1 for g < k.
A suitable set of vectors in V(&,¢) is
(1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1),(1,1,...,1);
that is, for ¢ < &, every element of V' (£, ) is a linear combination of at most £ — 1 of these

£+ 1 vectors.
The Main Conjecture MC, for MDS Codes, always taking g > £, is the following.

CONJECTURE 5.1:

+2 fork=3and £#=g—1 both with 4 even,
M(k,q):{q q q

g+ 1 in all other cases.
It will be convenient to have the notation 72(k — 1,4) = M(&, q).
Since the problem involves linear dependence, the projective space setting is more

economical than the vector space setting, since the redundant scalars are factored out.
A normal rational curve in PG(r,g) is the projective image of the curve

T,={1,¢,....,¢) |t € F,U{c0}}.
Segre [28] enunciated three problems:

1. For given £ and ¢, what is the maximum value of # such that an 7-arc exists in
the space PG(£ — 1,4)? What are the #-arcs corresponding to this value of 7?
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I. Are there values of £ and g with g > & such that every (g+ 1)-arc of
PG(k —1,4) is a normal rational curve?
III. For given £and g with ¢ > %, what are the values of 7 ( < g) such that each #-arc
is contained in a normal rational curve of PG(& — 1, ¢)? In how many such curves is the 7 -
arc contained?

An n-arc is complete if it is maximal with respect to inclusion; that is, it is not
contained in an (7 + 1)-arc. Implicit in Problem III is Problem IV, which may be
expressed as follows.

IV. What are the values of # for which a complete 7-arc exists in PG(£ — 1,4)? In
particular, what is the size of the second largest complete arc in PG(k£ — 1,4)?

From above, 72(r, ) is the maximum size of an arc in PG(r, ¢); also, let 7/ (r, ) denote
the size of the second largest complete arc in PG(r, ¢). Then an #-arc in PG(r, ¢) with
n > nt(r,q) is contained in an »(r, g)-arc. This is an important inductive tool.

TueoreM 5.2 (Segre [29]): Let K be a k-arc in PG(2,q), and let K' be its dual.

() The kt = k(g + 2 — k) tangents through the points of K lie on an algebraic en-

velope I'" whose dual curve I' is of degree t or 2t according as q is even or odd.

(i) The envelope I'' contains no bisecant of K and so no pencil with vertex P in K.

(iii) For g odd, the t tangents to K through a point P of K each count twice in the
intersection of I' with the pencil %'p of lines through P. Dually, each line l of K' is a tangent
at t distinct points of I

(iv) For q odd, I'' may contain components of multiplicity two, but does not consist
entirely of double components.

(v) The arc K is incomplete if and only if I'' has a rational linear component.

This theorem enables bounds to be obtained for the size of a complete arc by
comparing the number of tangents to the arc with a bound for the number of lines in an
algebraic envelope or, equivalently, the number of rational points on an algebraic curve.
The difficulty is that the curve here is not necessarily irreducible. For details of the
argument, see [16, Chapter 10], where details of the theorems in the next section may
also be found.

6. - BounDs FOR ARCS AND MDS cODES

Tueorem 6.1 (Bose [1]):

g+1, g odd;

m(2,q) = {
7 qg+2, g even.
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THEOREM 6.2 (Segre [31]):

1 7
- =49+, odd;
M’(Z,q)é{q ity
g—va+1, q even.

TueoreM 6.3 ([7], [21, [26], [3]):

'2,9) =q—/q+1, g=2" g square, g > 4.

Equality in Theorem 6.3 is obtained by taking a cyclic projectivity T of PG(2, g), that
is, a projectivity acting as a single cycle on its points and so of order ¢* + g + 1. As

FHag+l=(G+7+Dg—7+1),

the orbits of the group (T4 have size ¢ — /4 + 1. These orbits are complete arcs
for g square with ¢ > 4.

CONJECTURE 6.4: For ¢ = p”, ¢ square, g > 9,

'2,9) =q—/q+ 1.

Apart from the case g even, Conjecture 6.4 is also true for g = 25.

TreoreM 6.5 (Voloch [37], [38]): For g = p”,

4—4+§ for g = p;
FEAAICE =P

n(2,q) < q_%@+%+1, for b odd, h>3, p>2

q—2q9+2, for h odd, h >3, p=2.

TraEOREM 6.6 ([17]): For g =p”, p > 5,
1
' (2,q) Sé]-gﬂ"‘i

Tueorem 6.7 ([181): Let g = p” with p > 3, and let g = 3% when p = 3. If g > 232
and q # 3% or 5>, then

(2,9 <q—*v'+*
Also,
g—22 when g¢g=5
g—9 when ¢g=3°
g—9 when g¢=23%
g—5 when g=19.
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Similar methods also allow a bound for #”(2, ¢), the size of the third largest complete
arc in PG(2, g).

Treorem 6.8 ([19)): For g = 2*, g square,

<qg—2\/7+6 forg>64;
m//(z»q)
=12 for ¢ = 16.

Each bound for #7/(2,4) implies a result about the Main Conjecture; see [22] for
details.

7. - GOPPA’S CONSTRUCTION OF A LINEAR CODE

Let V be an algebraic curve defined over F,. Let
P=(P,...,P)
be an ordered set of rational point points P; of V. Let
D=P + ...+P,
with P; # P, for 7 # j, be the associated divisor. Let

E= Z m;Qy,
J=1

with 72; > 0 and )~ m2; = m, be an F,, -divisor such that, with @ = {Q; |/ =1,...,s},
PNQ=0.
Let L(E) = be the space of functions associated to E. The evaluation map @ at P is
0:L(E)— (F,)",
given by
fr—=(f(Pr),-.., [(Pn)).
Now,
im 8 = C=C(D,E).

is an algebraic geometry code.
The Riemann-Roch theorem leads to the following result.

Theorem 7.1 (Goppa [10]): The code C = C(D,E) is an [n,k,d], code with in-
formation rate R = k/n and relative distance 6 = d/n. If n > m > 2g — 2, then
(i) k=m—g+1;
(i) d>n— m;
(i) n—k+1—g<d<n—Fk+1,
(iv R+6>1—(g—1)/n.
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Exampie 7.2: Let F=Z7Z and E =mP,, where P, =(0,1,0). Also, with
F,={n,...,1,},
P =((1,4,0),...,(1,2,0).

So,
n=gq, k=m+1, d=n—k+1=n—m,
and
1 1 ... 1 1
R 7 S Y/X
G=1|. . : )
Hon YT Xr,

This is a Reed-Solomon code and is MDS.

Under the equivalence of an [, £, d], code and a projective [, £] system of 7 points in
PG(k — 1,q) with at most # — d in a hyperplane, this case gives g points in PG(7z,g) on a
normal rational curve . The system can be extended to include the point (0,0, ...,0,1), the
remaining rational point on the normal rational curve, and the code can be extended to the
MDS code C’ by adding the transpose of this vector as an extra column of G. For C’,

n=g+1, k=m+1, d=n—-m=qg+2—-k=n—Fk+1.

ExampLe 7.3: Take g =4 and F = X° +Y? + Z°. With

PO (07171)7 PI (07170))7 PZZ(O717w2)7
P; =(1,0,1), Py =(1,0,w), Ps=1(1,0,0?),
Po=(1,1,0), P;=(1,,0), Ps=(1,a?,0),

let E =3Py and let P = {Py,...,Pg}. The genus g = 1 and C(D, E) has parameters
n=28 k=3 5<d<6.

Then, with the functions given evaluated at Py, ..., P,
11 1 1 1 1 1 1 1
G=10 0 1 & o 1 w o X/(Y+2)
o @ 0 0 0 1 1 1|Y/Y+2).

As the last row of G reveals a word of weight 5, so d = 5. So C(D, E) is an [8, 3,5] code.
Theorem 7.1 leads to the question of asymptotic values of R and the related question
of asymptotic values of g/z. Let
A*(g) =limsup N,(g)/g,
g—00

A (g) = ligioglf N,(g)/g
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The Hasse-Weil theorem implies that A*(¢) < 2,/g. It was shown by Drinfeld and
Vladug [5], using the zeta function, that

A+(q) S \/a - 17
with equality for ¢ square, [24], [36]. In the other direction, it is now known that
A (g) > 0;
see [6].
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