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AssTrACT. — Let 17 be a finite projective plane admitting a large abelian collineation group. It is
well known that this situation may be studied by algebraic means (via a representation by suitable
types of difference sets), namely using group rings and algebraic number theory and leading to
rather strong nonexistence results. What is less well-known is the fact that the abelian group (and
sometimes its group ring) can also be used in a much more geometric way; this will be the topic of
the present survey. In one direction, abelian collineation groups may be applied for the construction
of interesting geometric objects such as unitals, arcs and (hyper-)ovals, (Baer) subplanes, and
projective triangles. On the other hand, this approach makes it sometimes possible to provide
simple geometric proofs for non-trivial structural restrictions on the given collineation group,
avoiding algebraic machinery.

1. - INTRODUCTION

A projective plane is a geometry consisting of points and lines such that any two lines
meet in exactly one point, any two points are on exactly one common line, and there are
four points no three of which are collinear. We usually denote the set of points and the set
of lines by P and L, respectively. A standard reference for projective planes is Hughes and
Piper [66]; for finite geometries in general, see Dembowski [26] and Beth, Jungnickel
and Lenz [7].
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In the case of a finite projective plane, it can be shown that the number of points (and
also the number of lines) is 72 4+ # + 1 for some # > 2 which is called the order of the
plane. Moreover, each line has # + 1 points, and each point is on 7 + 1 lines.

The classical examples are the Desarguesian planes PG(2,q) (also called the classical
planes), where g is a prime power: points and lines are the 1- and 2-dimensional subspaces of
the vector space GF(g)’, respectively, and a point is incident with a line if and only if it is a
subset of the line. The smallest example is the unique plane of order 2, the so-called Fano plane:

4

0 » 3
1

HereP =77 and £L = {D + x: x € 77}, where D = {0,1,3}. One writes /7 = devD
for examples of this type.

Projective planes of order 7 have been constructed for all prime powers 7, but for no
other values of 7, which motivates the longstanding conjecture that # is necessarily a
prime power (prime power conjecture - PPC). The nonexistence of a projective plane of
order 7 is known for all # = 1 or 2 mod 4 which are not the sum of two squares (Bruck-
Ryser theorem [18]), for # = 10 (see Lam, Thiel and Swiercz [84]) and for no other
values of 7. Trying to prove the conjecture in general seems hopeless with the present
methods of mathematics; thus, it is natural to add extra assumptions. In view of the
general philosophy proposed in Felix Klein’s Erlanger Programm, we will require the
existence of a nice collineation group.

Recall that a collineation of a projective plane IT is a permutation of the point set
mapping lines to lines. The set of all collineations of I7 forms a group Aut I7 under
composition. Any subgroup of Aut I7 is called a collineation group of II. Let us mention
what is probably the most celebrated result concerning planes with a nice collineation
group, namely the seminal Ostrom-Wagner theorem proved in 1959 [90]:

TreoreM 1.1 [Ostrom-Wagner theorem]: Let IT be a projective plane of order n ad-
mitting a doubly transitive collineation group G. Then I is desarguesian, and PSL(3,n) is a
subgroup of G.



If we weaken the hypothesis of the Ostrom-Wagner theorem somewhat and only
require a flag-transitive group, the result should be much the same as before, with two
further examples appearing: G may act regularly on flags (and thus be a Frobenius group)
for # € {2,8}. Unfortunately - in spite of much effort over several decades - this
conjecture still remains open (*).

In the present survey paper, 1T will be a projective plane of order » admitting a large
abelian collineation group G in the sense that

1
|G| > 5(142 +n+1).

It is well known that this situation may be studied by algebraic means (via a representation
by suitable types of difference sets, as in the small example above), namely using group
rings and algebraic number theory and leading to rather strong nonexistence results. This
is quite technical and has been surveyed by the authors before [47].

What is less well-known is the fact that the abelian group (and sometimes its group
ring) can also be used in a much more directly geometric way, which will be the topic of
this survey. On one hand, abelian collineation groups may be applied to the construction
of interesting geometric objects such as unitals, arcs and (hyper-)ovals, (Baer) subplanes,
and projective triangles. On the other hand, this approach makes it sometimes possible to
provide simple geometric proofs for non-trivial structural restrictions on the given
collineation group, avoiding algebraic machinery. We will provide nice examples for
both types of phenomena in this survey. We shall draw freely on our previous
survey [47], but present the material from the rather different point of view just outlined,
strongly emphasizing the geometric aspects.

2. - PRELIMINARIES

We first recall some geometric notions, starting with the most natural subobjects of
projective planes, namely subplanes. Let S be a subset of the point set V of a projective
plane IT = (V, £) with line set £. The lines of IT induce a line set on § as follows:

Ll = {LnS:LecL, |LnS| >2}.

The incidence structure X' = (5, £|¢) - and, by abuse of language, also § itself - is said to
be a subplane if it is itself a projective plane.

In view of the following result of Baer [1] and Bruck [15] a subplane of order 7z of a
projective plane of square order # = #7? is called a Baer subplane.

(") In the case not yet excluded, G would again act regularly on flags, 2 would be divisible by 8
but not a power of 2, #> + 7 + 1 would be a prime p and IT = dev D, where D consists of the #-th
powers in 7. We refer the reader to the excellent survey by Koen Thas [110] for more information
and references. We note that the resolution of this case recently claimed in [92] contains a mistake,

which unfortunately seems to be beyond repair.
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Proposition 2.1: Let X be a subplane of order m of a projective plane IT of order n,
where m < n. Then n = n® or n > n? + m. Moreover, n = 2 if and only if each point of
IT\ X is on a unique line of X and dually.

It should be noted that 7 is a power of 7z in all known examples of subplanes. For a
concrete example, consider the projective plane PG(2,4) over the Galois field GF(g),
where ¢ is a proper prime power; then the points and lines with homogeneous coordinates
in a prescribed subfield of GF(g) form a subplane. In particular, GF(g) induces a Baer
subplane PG(2, 9) of PG(2,4).

Let IT be a projective plane. A subset A of IT is called an arc if

[ANL| <2 for each line L.

Sharpening previous results by Bose [13] and Seiden [103], Qvist proved in [98] the
following bounds.

Lemma 2.2: Let A be an arc in a projective plane of order n. Then

4 < {ﬂ+2 for # even
n+1 for # odd.

The (7 + 1)-arcs are usually called ovals, whereas the (z+ 2)-arcs are called
hyperovals. We refer the reader to Hirschfeld [58] for background.

The study of ovals and hyperovals in (not necessarily Desarguesian) projective planes
has for many years been a topic of considerable interest in finite geometry. For the
Desarguesian case, only even orders ¢ need to be considered, as any oval in PG(2,g), ¢
odd, actually is a conic, by the following famous theorem of Segre [100]: O

TraeoreM 2.3: The only ovals in PG(2,q), g odd, are the conics.

Theorem 2.3 is one of the most celebrated theorems of this great mathematician in
finite geometry - an area where his pioneering work is still inspiring a lot of research. We
like to mention here, in this paper written for Segre’s centennial, at least the third volume
of his selected papers [101] were the interested reader can find the full list of his papers,
books and lecture notes which, being mainly in Italian, probably are not as well known to
the general public as they ought to be.

In the case of even orders, any oval O can be completed to an hyperoval: we may adjoin
its nucleus, that is, the common point of intersection of all the tangents of O. The
classification of hyperovals in PG(2,g), g even, is a famous (and very difficult) open
problem; we refer the reader to the survey by Cherowitzo [22]. For the non-Desarguesian
case, let us just mention a few references, namely the classification of hyperovals in the
translation planes of order 16 [21] and the existence of ovals or hyperovals in the Figueroa
planes [20,31], the Hughes planes [99], in commutative semifield planes [40, 68], and in
the Coulter-Matthews planes [30].
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Let IT be a projective plane of order ¢. A (£, n)-arc A in IT is a non-empty proper
subset of £ points in I7 such that some line of 17 meets A in # points, but no line meets A
in more than 7 points. Clearly (£, 2)-arcs are the arcs defined above. A (&, #)-arc in a
projective plane of order g satisfies £ < 1+ (¢ + 1)(z — 1) = gn — g + n with equality if
and only if every line intersects the arc in 0 or # points; see Barlotti [4]. Arcs realizing the
upper bound are called mzaximal arcs; the parameter 7 is usually called the degree of the
maximal arc. Equality in the bounds implies that 7z divides gor v =g+ 1. If 1 < 7 < g,
then the maximal arc is said to be #on-trivial. The known examples of non-trivial maximal
arcs in PG(2,4) for #n = 2 are the hyperovals; for » > 2, and ¢ even, Denniston [29]
constructed in 1969 maximal arcs in PG(2, g), for every divisor of ¢, starting from a pencil
of conics. Apart from an infinite family constructed by Thas [107, 109], these were
the only known examples until 2002, when Mathon [88], generalizing Denniston’s
construction, gave several classes of new examples, again only for ¢ even. Further
examples as well as results on the geometric structure and collineation stabilizers were
also given in [54] and [55]. In the recent paper [56] this construction method is used to
give maximal arcs that are not of Denniston type for all # dividing ¢, 4 < # < ¢/2, g even.

For odd ¢, it was conjectured in 1975 ([108]) that maximal arcs do not exist. In [108]
this was proved for (1,4) = (3,3%). The special case (3,9) was settled earlier by
Cossu [24]. Only in 1997, Ball, Blokhuis and Mazzocca [2] could prove this long-
standing conjecture; however, the methods used were difficult to follow and the
arguments quite long. Subsequently, a considerably simpler and shorter proof was given
by Ball and Blokhuis [3]; this uses only elementary properties of polynomials and is one
of the most striking examples of the power of the “polynomial method” in Galois
geometry. See, for instance, [58] for more background on maximal arcs. For later use, we
include the following well-known result.

ProrosiTion 2.4: Let A be a maximal arc of degree n in a projective plane II of even
order q. Then the exterior lines to A (that is, the lines disjoint to A) form a maximal arc of
degree q/n in the dual plane IT".

Another interesting geometric application which we shall mention concerns projective
triangles. We recall that a projective triangle of side k in a plane of order 7 is a set B of
3(k — 1) points with the following properties:

e B contains a distinguished triangle oxy.
e On each side of oxy, there are exactly £ points of B.
e If the points ¢ € ox and » € oy belong to B, then gr N xy also belongs to B.

We will be interested in projective triangles forming small blocking sets. Recall that
a blocking set is a set of points meeting every line but not containing any line; a
blocking set is called nzznimal if no proper subset is again a blocking set. Blocking sets
have been extensively studied; see Hirschfeld [58, Chapter 13] or Blokhuis [8] for
background.
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Next, we define some classes of combinatorial designs which will appear in this
survey; see [7] for more background. A (v, &, 1)-design is an incidence structure D with v
points, such that each block contains £ points, and any two distinct points are in exactly 4
blocks. In case A = 1, one also speaks of a Steiner system; then the notation S(2, £, v) is
rather common.

Following Gronau and Mullin [51], a design is said to be super-sinple if any two
distinct blocks intersect in at most two points. If it is possible to partition the block set of a
design into parallel classes (that is, the blocks in each parallel class partition the point set),
the design is called resolvable.

By Fisher's inequality [35], a design with & > 2 has at least as many blocks as points; in
the case of equality, one speaks of a symmetric design. The symmetric designs with 4 = 1 are
exactly the projective planes; thus their parameters take the form (#? + 7 + 1,7 + 1, 1).

A partially symmetric design (as introduced by Hughes [65]) is an incidence structure
D with as many points as blocks such that each block contains & points and any two
distinct points are in either 4; or 4, blocks; compared to symmetric designs, one allows
two different joining numbers. Partially symmetric designs for which one of these two
numbers equals 0 are especially interesting. In particular, one speaks of a divisible
semisymmetric design if there is a partition of the point set into 7z point classes of equal size
¢ such that two distinct points in the same class are not joined, whereas points in distinct
point classes are joined by exactly A blocks; and dually. Briefly, such a design is referred to
as a divisible (722, ¢, &, /.)-SSD. For ¢ = 1, this notion reduces to symmetric designs, and for
A =1 to divisible semiplanes (also called elliptic semiplanes).

Finally, we turn our attention to an important method used to describe geometries
with a regular group. For the time being, we shall just consider the prototypical case. A
(v, k, A)-difference set (for short a (v, &, 1)-DS) in a group G of order v is a £-subset D of G
such that every element g # 0 of G has exactly A representations g = d — dp with d1, d> in
D, di # d>. The parameter n = & — 1 is called the order of the difference set. This
definition also applies if G is written multiplicatively. A difference set D is called cyclic,
abelian etc. if G has the respective property.

For example, the set D = {0,1,3} in G = Z; - already considered in the previous
section - is a (7,3, 1)-DS. If D # () is any subset of a finite group G, then the incidence
structure

devD = (G,B,e) with B = {D+g:g€G}

is called the development of D. Obviously devD = dev (D + a) for all 4 € G.

The development of a (v,%4,A)-DS in a group G is a symmetric (v, £, 1)-design
admitting G as a regular (i.e. sharply 1-transitive) automorphism group. Conversely,
every symmetric (v, £, 1)-design with a regular automorphism group may be represented
in this way. The reader is referred to [7] and [67] for further details.

Difference sets were introduced by Singer [104]; their systematic study, however,
only started with the fundamental papers of Hall [53] who considered cyclic difference
sets with 4 = 1 and introduced the important concept of multipliers and Bruck [15] who
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started the investigation of difference sets in general groups. The study of difference sets
has developed into a beautiful and quite advanced theory by now; a comprehensive
introduction to this area can be found in Chapter VI of Beth, Jungnickel and Lenz [7].

There are several generalizations of the concept of a difference set which allow us also
to describe projective planes with other types of abelian groups (not acting regularly):
relative difference sets, direct product difference sets, and neo-difference sets. We shall
explain these notions later, as they will become necessary.

One of the most important tools in investigating difference sets and their
generalizations is the use of the integral group ring 7.G of G. One advantage of this
approach is that subsets and even lists (or submultisets of G) can be represented just as
elements of the group ring; more important is the fact that it allows one to use algebraic
techniques to prove nonexistence results. Indeed, the amazing strength of the approach
using various types of difference sets and the machinery of integral group rings was the
recurrent theme stressed in our previous survey [47]. But even in the present context,
where we emphasize geometric over algebraic aspects, group rings will occasionally be
handy.

In order to work with group rings, we have to write G multiplicatively. Then

7G = {Zagg tag € Z}

geG

is the free Z-module with G as basis, equipped with the multiplication

(Z agg> . (Zbﬂo) - Y b

geG heG g2,heG

We will use the following conventions. For X = " a,¢ € ZG, we write |X| = > 4, and
[X], = a, (the coefficient of g in X). For » € Z we write  for the group ring element 71,

and for § C G we write, by abuse of notation, § instead of Y g. If a: G — H is any
g€s
mapping of G into a group H, we extend a to a linear mapping from the group ring ZG

into the group ring ZH:

X' = Zagg“ for X = Zagg.

In the special case G = H and a: g — ¢’ for some ¢ € Z, we write X instead of X%, so

that X =" a,¢'. In particular, S~V = 3~ g7!. Using these conventions, we imme-
ges
diately obtain the following simple but fundamental lemma.

Lemma 2.5: Let G be a multiplicative group of order v, and let D be a k-subset of G.
Then D is a (v,k, A)-difference set of order n =1k — A if and only if the following
equation holds in 7.G:

(2.1) DDV = » +G.
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We shall also need another trivial observation, which shows how to compute
intersection sizes using the group ring ZG.

LemmA 2.6: Let A and B be subsets of a finite group G. Then
|ANBg| = [B“VA],.

3. - THE SEMINAL CASE: SINGER GROUPS

A difference set for a projective plane of order 7 - thatis, an (#* + n 4+ 1,z + 1,1)-DS
- is called a planar difference set of order n. As explained in the preceding section, the
projective planes admitting a regular collineation group are equivalent to planar
difference sets. In view of the following seminal result proved by Singer [104] in 1938,
the regular group is usually called a Sinzger group.

TreoreM 3.1 [Singer’s theorem]: The classical projective plane PG(2, q) admits a cyclic
regular collineation group; hence it may be represented by a cyclic planar difference set of
order q.

One of the central conjectures in finite geometry asserts that the converse of Singer’s
theorem also holds: a finite projective plane with a Singer group is necessarily classical (at
least in the cyclic case). In 1960, Bruck [16] proved that all cyclic planes of order # or 7>
with 7 <9 are indeed desarguesian. The best general result towards the converse of
Singer’s theorem is as follows [91, 601:

TreoreM 3.2 [Ott-Ho theorem]: A finite projective plane I is desarguesian if and only
if it admits two distinct abelian Singer groups Gi # Gy. In other words, if there exists a
Singer group which is not normal in the full collineation group Autll, then II is de-
sarguesian.

The representation of a projective plane with a Singer group by a planar difference set
D exhibits a regular group of automorphisms; but, of course, the plane may have more
automorphisms besides. For instance, the full automorphism group of a desarguesian
projective plane is transitive on quadrangles; in particular, it is 2-transitive on the set of
points. It is often possible to find some of these other automorphisms in terms of the
difference set representation using the notion of multipliers. In the abelian case, a
multiplier of D can be defined as an automorphism a of the Singer group G which induces
an automorphism of 4 =devD. If G is cyclic, then every multiplier is a numerical
multiplier, i.e., it is of the form a : x+ ¢x for some integer ¢ coprime to |G]; then the
condition for # to be a multiplier is D = D + g for some g € G. For example, t =2 is a
multiplier for the Fano difference set: 2 - {0,1,3} = {0,2,6} = {0,1,3} + 6.
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The importance of the concept of multipliers lies in the fact that very often just the
parameters of a hypothetical abelian difference set D force the existence of numerical
multipliers, which then may be used to help with either the construction of D or a
nonexistence proof. These fundamental ideas are due to Hall [53] who considered
them in the special case of cyclic planar difference sets; his result (and proof) admits
a rather straightforward generalization to symmetric designs due to Chowla and
Ryser [23]. We only state the planar case; a simple proof can be found in our previous
survey [47].

TreoreM 3.3 [Multiplier theorem]: Let D be an abelian planar difference set of order n.
Then every divisor of n is a multiplier of D.

Actually, one may assume D to be fixed by all its multipliers #, so that always D = D.
The following major result on planar abelian difference sets with an znvolutory multiplier
(that is, with a multiplier of order 2) is due to Blokhuis, Brouwer and Wilbrink [9]. We
shall include its proof, as it provides a striking example of a situation where a simple
geometric proof may be given for a non-trivial structural restriction, avoiding algebraic
machinery.

Tueorem 3.4: Let D be a planar difference set in an abelian group G. If D admits a

multiplier t of order 2, then n is a perfect square, say n = i, and necessarily t = 2.

Proor: Define subgroups A and B of G as follows:
A={geG:g=—g} and B = {ge G: 1g=g}.

Then the mappings a and B defined by g% = (g—#g)/2 and ¢ = (g+1g)/2 are
homomorphisms from G to A and B, respectively, and ANB = {0} and g = ¢* + ¢/
for each g € G; thus G = A @ B. By assumption, # induces an involutory collineation t
of the projective plane IT = dev D. Thus 7 is either an elation (with 7 + 1 fixed points),
a homology (with 7 + 2 fixed points), or a Baer involution (with 77 + #z + 1 fixed
points, where 7 = 7%); see Hughes and Piper [66]. Since the order of B divides that of
G, the last case must occur, and B is the point set of a Baer subplane I, of I1. Thus
n=m? is a square, B has order #? +m +1, and A has order #? —m + 1. As
ged(#? —m + 1, #? +m+1) =1, G has unique subgroups of these two orders;
therefore any multiplier of order 2 leads to the same representation G = A & B and
acts on A and B in the same way as # does. The result now follows, since D admits the
multiplier 72 and hence also the multiplier 72> of order 2, by Theorem 3.3. O

Theorem 3.4 allows some nice geometric applications to sub-objects of the plane
IT = dev D associated with a planar difference set D of order # = 7% in an abelian group
G. A first application is contained in the proof of Theorem 3.4, where we noted that I7
contains a Baer subplane B. Using the notation in that proof, the cosets of B also yield
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Baer subplanes. Thus one can say a lot more, as observed by Bruck [16] for the cyclic case
and by the second author [72] in general:

COROLLARY 3.5: IT admits a partition into Baer subplanes which is invariant under the
Singer group G.

In a similar manner, the subgroup A appearing in the proof of Theorem 3.4. also has
an interesting geometric meaning: it constitutes an arc in /7. More precisely, we have the
following result:

COROLLARY 3.6: IT admits a partition into arcs of size n® — m + 1, which are complete
(that is, none of them is contained in any arc of larger size) for m # 2.

Proor: We have to show that any line D + x intersects A at most twice. Assume that 2
is some point of intersection, say @ = d + x; then #(d + x) = —d — x by the definition of
A.If b = d’' + xis a second point of intersection, we also have #(d’ + x) = —d" — x. These
two equations yield &' — d = td — td’ and hence d' = ¢d, since D is a difference set with
J = 1. This shows that 4 is uniquely determined by g4, establishing that A is indeed an arc.
Then the translates A + b, where b € B, partition the point set of I7 into arcs. Using
counting arguments, one can show that these arcs are complete whenever 7z > 4; the case
m =3 allows the same conclusion, but needs special arguments. O

Corollary 3.6 is due to Blokhuis, Brouwer and Wilbrink [9]; the cyclic case was
obtained earlier by Fisher, Hirschfeld and Thas [34] and Boros and Szényi [11] who only
considered the special case IT = PG(2,4?). In this case, the arcs in question had been
constructed previously using different methods by Kestenband [81] who, however, did
not note their completeness. This completeness is of particular interest, since it shows that
a bound of Segre on the size of a complete arc in PG(2, 4?) for g even is best possible; see
Hirschfeld [58, Theorem 10.3.3]. We also remark that, more generally, Storme and Van
Maldeghem [105], Szonyi [106] and Ho [59] studied the question under which
conditions the orbit of a subgroup of a Singer group is an arc.

We now come to a third interesting application of the proof of Theorem 3.4. For this,
recall that a polarity of a projective plane of order 7% with exactly 7 + 1 absolute points
is called a unitary polarity.

COROLLARY 3.7: IT admits a unitary polarity.

Proor: We use the notation introduced in the proof of Theorem 3.4. As noted before,
we may assume that D is fixed under the multiplier # = #2. It is easily checked that the
correspondence

(3.1) n:g—D—1g
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defines a polarity 7 of IT. Clearly g is an absolute point of 7 if and only if 2¢® = g + #g € D.
Since A is the kernel of f, the set U of absolute points of 7 is given by
U={a+b:a€A2bcDNB}, and therefore 7 has exactly (72 —m+ 1)(m+ 1) =
= 2 + 1 absolute points. O

By a theorem of Seib [102], any unitary polarity of IT induces a unital U, that is, a
resolvable Steiner system S(2,7 + 1,7 + 1). The point set of U is the set U of the
m® + 1 absolute points of 7, and the lines are the intersections U N L, where L is a non-
absolute line of 7; all such intersections have cardinality 7z + 1. Moreover, the 7? non-
absolute points on an arbitrary absolute line determine a resolution of the line set of I
into parallel classes; see [7, Theorem VIIL.5.26] for details. A brief historical survey on
unitals, including a listing of important papers with short abstracts, may be found in the
appendix of the thesis by Barwick [6].

Corollary 3.7 implies that IT contains unitals - a result due to Bose [14] for
IT = PG(2,4?), see also Ghinelli [42], and to Blokhuis, Brouwer and Wilbrink [9] in
general - and its proof gives an explicit description of the point set U of the unital ¢/
associated with the polarity (3.1). Using Corollary 3.6, this proof shows even more: U can
be partitioned into arcs of 17, namely the translates A + 4 with 26 € D N B. On the other
hand, using translates of U, one also sees that each of the complete arcs in Corollary 3.6. is
the intersection of two unitals contained in /7.

Finally, Blokhuis, Brouwer and Wilbrink [9] used their difference set approach to
prove the following beautiful characterization of the classical Hermzitian unitals, that is,
unitals induced by a unitary polarity which can be described by a Hermitian matrix. The
proof is considerably more involved than the ones for the preceding corollaries; it exploits
the fact that the 7,-code spanned by the lines of /7 is nothing but the ideal generated by
the difference set D in the group algebra 7,G.

TueorReM 3.8: Let U be a unital embedded in IT = PG(2,4%), where g = p’. Then U is
Hermitian if and only if it is contained in the 7,-code spanned by the lines of II.

We have now seen that the structural restriction on planes with an abelian Singer
group obtained in Theorem 3.4. by geometric means leads to a (probably unexpected)
wealth of geometric applications, uniting and generalizing results on the classical planes
which were originally obtained by completely different methods. On the other hand,
Theorem 3.4. also yields important further structural restrictions, as we shall explain
now.

First of all, it implies that the search for a possible counterexample to the PPC for
planes with an abelian Singer group can be restricted to non-square orders. To see this,
we once more return to the proof of Theorem 3.4. Obviously, B is a Singer group for the
Baer subplane I1y; actually one may even assume that I1; is represented by the planar
difference set D N B. This establishes the following result due to Ostrom [89] in the cyclic
case and to Jungnickel and Vedder [78] in general.
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COROLLARY 3.9: Assume the existence of a planar abelian difference set of order n =
in G. Then there also exists a planar difference set of order m in a subgroup H of G
associated with a Baer subplane of dev D.

A second application of Theorem 3.4. was first noted in [47]: one immediately
obtains the planar version of the so called Mann test for abelian difference sets due to
Mann [87]. The usual proofs first establish the Mann test for difference sets in general
and use non-trivial algebraic arguments: either the group ring approach is combined with
ideas from algebraic coding theory [85, 94], or a purely computational proof within the
group algebra is given [77]. The subsequent specialization to the planar case then also
requires some algebraic number theory; see [7, S VL6]. In contrast, the geometric
approach here is considerably simpler and much more elegant.

TreoreM 3.10 [Mann test]: Let D be a planar abelian difference set of order n in G.
Then either n is a square or every multiplier of D has odd order modulo the exponent u of G.
Proor: Let s be a multiplier which has even order modulo #, say 25. Then ¢ = 5

is a multiplier of order 2, and the general assertion is an immediate consequence of
Theorem 3 4. d

The Mann test yields some powerful existence criteria for non-square orders 7. The
following consequence of Theorem 3.10. was proved in [78]; its proof just needs a few
standard facts from elementary number theory; see [7, Theorem VI1.7.8] for details.

CorOLLARY 3.11: Let p and q be prime divisors of n and of v = n* + n + 1, respectively.
Then each of the following conditions implies that n is a square:

o D has a multiplier which has even order modulo g;

o p is a quadratic non-residue modulo g,

e n=40r6(mod 8);

e n=10r2(mod 8) and p =3 (mod4),

o 1= morn? (modw? +m+1) and p has even order (mod w? + m + 1).

We conclude this section with some results concerning the application of abelian
planar difference sets to the construction of ovals, hyperovals, and maximal arcs. Here the
seminal result is the observation by Bruck [17] that —D is an oval whenever D is a cyclic
planar difference set. The following more general result is due to Jungnickel and

Vedder [78].

Tueorem 3.12: Let D be a planar difference set in an abelian group G. Then the sets
Ay = —D+ gwith g € G are ovals in the plane I1 = dev D, and the lines D — 2d + g with
d € D are tangents to A, (with —d + g as the tangency point).
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Proor: We first show that any line D + x intersects A, at most twice. Assume that 4 is
some point of intersection, say

a=d+x=-d +g hence d+d =g—x,
with d,d" € D. If b is a second point of intersection, we similarly obtain
b:e+x:—e’+g> hence €+g’:g—x,

with e,¢ € D. From these two equations, d — ¢ = ¢ — d’ follows, therefore d = ¢’ and
d = e, since D is a difference set with A = 1. This shows that 4 is uniquely determined by
a, proving that D + x intersects A, at most twice. So, A, is an arc (and, hence, an oval) in
the plane 17 = dev D. Since we may always rewrite d + x = —d' + gasd' +x = —d + g,
it is obvious that the line D + x intersects A, in two points unless = d’. Thus D + x is
the (unique) line in /7 tangent to A, at the point —d + g if and only if 4 = &', hence
x=—-2d+g. O

Theorem 3.12. has two interesting consequences also obtained in [78].

CoroLLary 3.13: The sets A, = —D+g with g€ G are ¢ +q+ 1 ovals which
pairwise intersect in a unique point; thus they form the lines of another projective plane
(which is isomorphic to IT) on the point set G.

CorOLLARY 3.14: Let n be even. Then the sets (— D + g) U {g} are hyperovals of D.

Proor: We may assume 2D = D. Then the tangents to —D + g are thelines D — d + g
with 4 € D, which obviously intersect in the point g. O

Remark 3.15: By Segre’s theorem 2.3, the ovals above are conics for I7T = PG(2,¢)
provided that ¢ odd. As noted by Peter Cameron (see [78]), the oval —D is actually the
conic with the equation xz — y* + 22 = 0 (in suitably chosen homogeneous coordinates),
and this also holds for even orders 4.

The ovals and hyperovals associated with planar difference sets give rise to some
reasonably interesting classes of designs; the following three constructions come
from [30] and [78]. The first of these results is immediate from Corollary 3.13:

ProrosiTioN 3.16: Let IT be a projective plane associated with a planar difference set D of
order q in an abelian group G. Then the lines D + g and the ovals —D + g together yield a
super-simple design with parameters

v=g +q+1, k=g+1and ) =2.

ProrosiTion 3.17: Let D be a planar difference set of even order g in an abelian group G,
and assume, without loss of generality, 2D = D. Then the hyperovals (— D + g) U {g} form
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a partially symmetric design with parameters
v=F +q+1, k=q+2, Jh=1and jy =2

admitting G as a regular automorphism group.

Proor: We use the group ring to prove the desired result; thus we switch to
multiplicative notation for G, so that the hypothesis 2D = D turns into D® = D.
(Note that this hypothesis is justified in view of Theorem 3.3. and the subsequent
remarks.) Then the assertion follows from a short computation (using Lemma 2.5.)
involving the group ring element H =1+ D"V (which corresponds to the initial
hyperoval —D U {0} in the additive setting):

HH"Y = 1 +D"")1+D) = (g+ 1)+ G+ (D+D).

Now note that 1 ¢ D which, together with D'?’ = D, implies that D and D'~V are disjoint
subsets of G. O

For the third example, it is simpler to actually state (not only to check) the
construction in terms of group rings; we shall omit the proof.

Prorosition 3.18: Let D be a planar difference set of even order q in an abelian group G
(written multiplicatively), and assume, without loss of generality, D® = D. Then the
element S =1(D* — D) € Z.G gives rise to a partially symmetric design with parameters

_qlg+1)

5 )vlzéﬂﬂd},z— 4

glg+1)
2

v=q"+q+1, k=

admitting G as a regular automorphism group.

As a fourth application to designs, we mention the following result from [32]; the
proof is a little more difficult and will be omitted; we just note that it also involves an
argument using the ovals associated with the difference set in question.

THEOREM 3.19: Assume the existence of a planar difference set S of order n in an abelian
group G, where n = 1 mod 3. Then there exists a partially symmetric design with para-
meters

v=0+n+1)/3, k=n—1,2 =1and )y =3

admitting G as a regular automorphism group.

Next we present a new construction which is inspired by a similar result obtained
in [30] (see Theorem 6.5). By Proposition 2.4, the exterior lines to a hyperoval H in a
projective plane I7 of even order g form a maximal arc of degree ¢/2 in the dual plane IT*.
It is well-known that planes with an abelian Singer group are self-dual; hence, the
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existence of hyperovals in IT for even orders ¢ also implies that of maximal arcs of degree
q/2 in I1. The following result gives an explicit description of such a maximal arc in terms
of the underlying planar difference set D (using group ring notation).

THEOREM 3.20: Let IT be a projective plane of even order g = 2° admitting an abelian
Singer group G, and let D be an associated planar difference set. Write G multiplicatively and

assume, without loss of generality, that D is fixed by the multiplier 2. Then the element
M € 7.G defined by

(3.2) M = G—%(DZJrD)

is a maximal arc of degree 2=V in II.

Proor: We first check that M indeed defines a subset of G, that is, that M has
coefficients 0 and 1 only. For d, e € D with d # e, the element g = de = ed € G appears
with coefficient 1 in % (D? + D), as de = d'¢ implies dd) ! =¢e !, and thus ¢ = d and
d' = ebecause of A = 1. For d € D, the elements d? appearing in D? form a permutation
of the elements of D, as D® = D by hypothesis; hence the elements of D also appear with
coefficient 1 in %(D2 + D).

It remains to verify that M is a maximal arc; thus we have to show that each line of 17
either is an exterior line or meets M in exactly 2°~! = ¢/2 points. We can apply

Lemma 2.6. to compute the intersection sizes with lines, using Lemma 2.5. and the
obvious fact GD"V = GD = (¢ + 1)G:

MDY — Gp-Y _%(qug)(DJrl) = g(G—D— 1).

Thus the exterior lines to M are precisely the lines Dg with g € D U {1}, whereas all other
lines of IT intersect M in ¢/2 points. O

Finally, we mention a result due to Pott [95] which solves a conjecture of Assmus and
Key concerning the code generated by the hyperovals of PG(2,¢). Its proof makes
essential use of the fact that the code C may be viewed as the ideal generated by the
associated difference set D in the group algebra 7, G and that —D yields a hyperoval, as
above. In addition, it needs some arguments involving characters.

Tueorem 3.21: Let II be a projective plane of even order with an abelian Singer
group G. Then the hyperovals in I generate the dual of the 7,-code C determined by the
lines of II.

4. - Tue DEMBOWSKI-PIPER CLASSIFICATION

Let I7 be a projective plane of order # with a guasiregular collineation group G, that is,
a group inducing a regular action on each orbit: each group element fixes either none or
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all elements in the orbit. Clearly, this condition is satisfied in our case, where G is assumed
to be abelian: it is easy to prove that all permutation representations of a group G are
quasiregular if and only if every subgroup of G is normal. If a quasiregular group G is
large in the sense that

1
|G| > §(n2 +n+1),

then there are unique faithful point and/or line orbits; see [26], p.181. Let us also recall
that the number of point orbits of a collineation group agrees with the number of line
orbits by the orbit theorem; see [66, Theorem 13.4]. Dembowski and Piper classified
planes of this type into the following eight cases.

Tueorem 4.1 [Dembowski-Piper theorem]: Let G be a collineation group acting
quasiregularly on the points and lines of a projective plane of order n, and assume
|G| > $(n? + n + 1). Let t denote the number of point orbits, and let F be the incidence
structure consisting of the fixed points and fixed lines. Then one of the following holds.

(a) |G|=n*+n+1, t=1, F=0. Here G is transitive.

(b) |G| =n?, t =3, F is a flag, that is, an incident point-line pair (00, Ly,).

(0) |G| =n?, t =n+2, Fiseither a line and all its points or, dually, a point together
with all its lines.

(d) |G| =n? — 1, t =3, Fis an antiflag, that is, a non-incident point line pair (0o, L).

(e) |G| =n? —/n, t =2, F = . In this case one of the point orbits is precisely the set
of points of a Baer subplane Iy of I1.

(f) |G| = #? —n, t =5, F consists of two points, the line joining them, and another
line through one of the two points.

(8) |G| =n? —2n+1, t =17, F consists of the vertices and sides of a triangle.

(h) |G| =2 —/u+17, t=2n+1, F=0. In this case there are t — 1 disjoint
subplanes of order \/n — 1 whose point sets constitute t — 1 orbits, each of length

n—n+1

Case (c) - translation planes and dual translation planes - is atypical and of no interest
in the present context. In our previous survey [47] we presented most known results
concerning the remaining cases (a), (b), and (d)-(h), concentrating on the status of the
PPC for planes of these types. In all these cases, one has - as for the case (a) of Singer
groups - a sort of difference set associated with the plane. We now recall the relevant
definitions.

A k-subset D of an additively written group G of order v = mzc is called a relative
difference set with parameters (1, ¢, &, A) (for short, an (2, ¢, &, 1)-RDS ) provided that the
list of differences (d — d':d,d" € D,d # d') covers every element in G\ N exactly 4
times, and the elements in N \ {0} not at all; here N is a specified subgroup of G of order
¢, usually called the forbidden subgroup. A relative difference set D is called cyclic or
abelian if G has the respective property. If ¢ = 1, the relative difference set becomes a
difference set in the usual sense.



Relative difference sets first appear in the work of Bose [12], although he was only
concerned with a special case and did not use this term which was introduced by
Butson [19]. The first systematic investigations are in Elliott and Butson [33] and
Lam [83]. For further results and references see the excellent survey on relative
difference sets by Pott [97]. There is also a close connection to balanced generalized
weighing matrices; see [75, 76].

The main motivation for studying relative difference sets is provided by the fact that
the existence of an (1z,c,k,A)-RDS in G is equivalent to the existence of a divisible
semisymmetric design with the same parameters admitting G as a regular automorphism
group. As in the special case of difference sets and symmetric designs, the group G is
called a Singer group for the SSD. The following basic result is due to the second
author [69].

THEOREM 4.2: Assume the existence of an (m,c,k, A)-RDS D in a group G relative to a
subgroup N. Then the incidence structure

devD = (G,B,€) with B = {D+g:g€ G}

is a divisible (m, c, k, 1)-SSD admitting G as a Singer group, where N acts as the stabilizer
of the point class of 0. Moreover, any SSD with a Singer group G may be represented in
this way. Finally, N is a normal subgroup of G if and only if it acts regularly on each point
class of devD.

The reader is referred to Ghinelli [43, 44, 45, 46], Hughes [65] and Jungnickel [69]
for more details on semisymmetric designs and relative difference sets. For our purposes,
G is abelian; hence N is normal and thus acts as a class regular automorphism group of
devD.

Four of the eight cases in the Dembowski-Piper theorem are connected to relative
difference sets with 2 = 1, as shown by Ganley and Spence [39]. If we are in one of the
cases (a), (b), (d), and (e) of Theorem 4.1, then the faithful point and line orbit of G form
a divisible semiplane 4, and if p and L are a point and line in these orbits, respectively,
thenD = {g € G: pé € L} isan (,c, %, 1)-RDS and 4 = dev D; of course, D depends on
the choice of the base point p and the base line L. More precisely, [39, Lemma 2.2] gives
the following cases:

e Type (a) Here D is a planar difference set of order #, and 4 = II.

e Type (b) Here D has parameters (1, #, #, 1), and the forbidden subgroup N is the
pointwise stabilizer of the fixed line Ly,. The associated divisible semiplane 4 is a special
case of a symmetric net; see [7] for background on such structures.

e Type (d) Here D has parameters (z + 1,7 — 1,7, 1), and the forbidden subgroup
N is the pointwise stabilizer of the fixed line L. ; one usually calls D an affine difference set
of order 7. The associated divisible semiplane 4 is sometimes called a bzaffine plane of
order 7.
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e Type (e) Here D has parameters (7 + /z + 1,#* — \/n,1,1), and the forbidden
subgroup N is the stabilizer of a Baer subplane 7. The associated divisible semiplane A4 is
often called a Baer semziplane of order n. The only known abelian example for this case
occurs when 7z = 4, and it is conjectured that there are no further examples; hence we shall
ignore this case.

As noted before, integral group rings are an important tool for investigating relative
difference sets. Using the convention introduced in Section 2, we obtain in this case the
following lemma.

Lemma 4.3: Let G be a multiplicatively written group of order mc, let N be a normal
subgroup of G of order ¢, and let D € 7.G. Then D is an (m, c,k, 2)-RDS in G relative to N
if and only if the following equation holds in 7.G:

(4.1) DDV = k+ UG~ N).

Later we will also require two variants of relative difference sets in order to deal with the
types (f) and (g); these will be defined below. Once a difference set condition is translated
into a group ring equation, such as (4.1), these objects can be studied in a purely algebraic
setting, which was the main theme of our previous survey [47]. There is also a similar
approach for case (h), and this has been used to show that this case is truly sporadic, even
for quasiregular groups in general: the only example occurs when 7 = 4, by a result of
Ganley and McFarland [38].

Planes of type (f) may be represented by the direct product difference sets (DPDS)
introduced by Ganley [37]. Using group ring notation, a DPDS of order # may be
defined to be a subset D of a group G of order 7(7 — 1) with two normal subgroups A and
B of orders # and # — 1, respectively, which satisfies the equation

(4.2) DDV = n+G-A-B

in ZG. Thus every element not in the union of the two forbidden subgroups A and B
has a unique “difference representation” from D. Note that G =A x B under our
assumptions.

Finally, planes of type (g) are represented by the abelian neo-difference sets of
order # considered by the authors in [48, 49, 50]. We note that this type of difference
set was first introduced by Hughes [62, 63, 64]; in his terminology, it is a partial
difference set for a partially transitive plane of type (3). Using group ring notation, a
neo-difference set of order n may be defined to be a subset D of a group G of order
(n — 1)* with three pairwise disjoint subgroups X, Y, and Z of order #» — 1 which
satisfies the equation

(4.3) DDV = w4+ G-X-Y-Z

in ZG; thus every element y not in the union N of the three forbidden subgroups X, Y, and
Z has a unique “difference representation” y = de~! with ,¢ € D.



5. - AFFINE SINGER GROUPS

In this section I7 will denote a plane of type (d), that is, a projective plane with an
abelian automorphism group G of order #?> — 1 fixing an antiflag (0o, L) and with
three point (and three line) orbits. By omitting from I7 the line L, with all its points and
the point oo with all the lines through it, we obtain a biaffine plane A: the n> — 1 points
of 4 splitinto 7 + 1 point classes of 7 — 1 points each given by the lines through oo, and
a line class consists of the lines through a point on L. Note that 4 is the structure
consisting of the faithful point and line orbits, hence the group G is a Singer group for
A. Therefore 4 may be represented by an affine difference set D of order 7, as explained
in Section 4. Conversely, given in an abelian group G of order 7> —1 an affine
difference set D relative to the subgroup N, we can construct a projective plane I7
from D as follows:

1. Adjoin an element 0o ¢ G.

2. Take as lines all D 4 g and all (N + g) U {o0}.

3. This gives an affine plane X of order 7, which may be completed to a projective
plane, as usual.

We note that planes of type (d) are (0o, Lo )-transitive for the antiflag (co, L), that is,
for any two points p, p’ # oo and p,p’ & L., on a line through oo there is a collineation ¢
fixing 0o and L, pointwise such that ¢(p) = p’. In other words, the forbidden subgroup
N is always a group of (0o, Ly )-homologies.

A fundamental result of Bose [12] provides the classical example, namely AG(2, ¢)
punctured in its origin (0, 0): that is, 4 = AG(2,4) \ {(0,0)} with the 7 + 1 lines through
(0,0) deleted. We note that the special choice of the origin does not affect the result of
puncturing, as AG(2, g) has a point-transitive group.

TueoreM 5.1: The classical projective plane PG(2, q) admits a cyclic collineation group
G of order ¢ — 1. This is a cyclic Singer group for AG(2,q) punctured in its origin. Thus
there exists an affine difference set of order q in Z.p_y for every prime power q.

The proof of Theorem 5.1 is analogous to the standard proof of Singer’s
Theorem 3.1 [104]. This result of Bose [12] was the starting point for the investigation
of cyclic affine planes, that is, those affine planes of order # which admit a cyclic group of
order #> —1; they have been studied extensively beginning with the work of
Hoffman [61] who already stated the PPC for this case. The two papers of Bose [12]
and of Hoffman [61] started the theory of affine difference sets in much the same way as
the work of Singer [104], followed by that of Hall [53], started the theory of planar
difference sets. Interestingly, the results - and to a considerable extent also the methods -
for both the affine and the planar case of the PPC are quite parallel. A systematic study of
affine difference sets was given by Jungnickel [74] who concentrated on nonexistence
results giving some evidence for the validity of the PPC.
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As with planar difference sets, multipliers are a central tool in the theory of affine
difference sets. Hoffman [61] proved the affine analogue of Hall’s multiplier theorem for
planar difference sets: every prime divisor p of 7 is a multiplier of every cyclic affine
difference set of order #. This result remains true for abelian affine difference sets, as a
special case of the multiplier theorem of Elliott and Butson [33] for relative difference
sets. Using the group ring setting, we presented in [47] a very simple and transparent
proof. There also is an affine analogue of the Mann test (see Theorem 3.10.), but it seems
that a geometric proof similar to the one given for that result is unfortunately not possible.
Hence we will not even state the affine result and refer to [47] instead.

We proceed to discuss geometric applications of affine difference sets; some
interesting families of ovals and hyperovals can be obtained also in this case. Again,
planes of even order yield the most interesting configurations. In [70] the second author
obtained the following theorem; its proof is analogous to that of Theorem 3.12.

THEOREM 5.2: Let D be an affine difference set in an abelian group G. Then the sets
—D + gare n-arcs in the plane I1 associated with dev D; each of these arcs extends to an oval
O, by adjoining .

Remark 5.3: In the classical case, the oval —D U {oo} can be obtained as the affine
conic with the equation

P 4y? +xy+x=0,

where x? 4+ x + d is a primitive polynomial over GF(g).
The following (more involved) result was proved by the second author in [73].

Proposition 5.4: Let IT be a projective plane of type (d) associated with an affine
difference set D of even order n in an abelian group G, and assume 2D = D. Then the sets
O, = (—D+ g U {g} with g € Gare n® — 1 ovals with common nucleus oc which can be
partitioned into n + 1 families of n — 1 ovals each such that any two ovals from different
families meet in exactly one point, whereas the ovals in any of the n + 1 families partition
the point set of the divisible semiplane A, that s, the set of affine points # oc.

Moreover, the group G splits into a direct sum G = H @ N for a suitable subgroup H of
order n+1, as (n—1,n+1) = 1. The n — 1 sets H+ b with b € N constitute a further
family O(H) of n — 1 ovals with common nucleus oo which partition the set of affine points
other than 0o. The group H acts regularly on each of these ovals, and N acts regularly on O(H).

6. - SEMIREGULAR DIFFERENCE SETS
In this section 17 will denote a plane of type (b), that is a projective plane of order 7 with

an abelian automorphism group G of order #? fixing a flag (0o, L.,) and with three point
(and line) orbits. By omitting from I7 the line L, with all its points and the point oo with all
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the lines through it, we obtain a symmetric net 4: the 7 points of 4 split into # point classes
of # points each given by the lines through oo, and a line class consists of the lines through a
point on L. As A1is the structure consisting of the faithful point and line orbit, the group G
is a Singer group for 4. Therefore 4 - and hence IT - may be represented by a relative
difference set D with parameters (72, 2, 72, 1), as explained in Section 4.

Conversely, given in an abelian group G of order #° a semiregular difference set D of
order 7 (i.e. an RDS of parameters (7,7,7,1), relative to a subgroup N), we may
construct a projective plane IT from D by taking as lines all D + g and all N + g, and
by completing the resulting affine plane.

We note that planes of type (b) are (0o, Lo )-transitive for the flag (oo, L), that is, for
any two points p,p’ € Ly, on a line through oo there is a collineation ¢ fixing L
pointwise such that ¢(p) = p’. In other words, the forbidden subgroup N is always a
group of (00, Ly, )-elations.

The classical example is given by discarding one parallel class from AG(2,4). More
generally, semifields and planar functions also give rise to planes of type (b).

Loosely speaking, a proper semifield may be thought of as a (not necessarily
commutative) field with non-associative multiplication. To be precise, a finite senzfield
is a finite set S on which two operations, addition and multiplication (-), are defined with
the following properties:

(S1) (§,+) is an abelian group with identity 0.

(S2) a-b+c) =a-b+a-c and (a+b)-c = a-c+b-c
forall ¢, b, c € 5.

(83) There is an element 1 # O with 1-a =4 =4 -1forallz € S.

(S4) Ifa-6=0,thena=0o0rb=0.

A proper semifield - that is, a semifield which is not a field - of order ¢ = p” exists if
and only if » > 3 for p # 2 and r > 4 for p = 2, even if we require the multiplication to be
commutative; see [26, p.244]. For a detailed discussion of semifields, we refer the reader
to Dembowski [26] and Hughes and Piper [66], where the term division ring is used
instead.

In order to construct a (¢, ¢, ¢, 1)-RDS associated with the projective semifield plane
IT of order ¢ = p” determined by S, we need an explicit description of the corresponding
affine semifield plane 2; see Hughes and Piper [66]. The points of X are the pairs (x, y)
with x,y € §, and the lines are all point sets

[m,k] = {(x,9) :mx+y=~Fk} withmkes
and all
(k] = {(k,y):y €S} withkeS.
The divisible semiplane 4 is obtained by deleting the parallel class of lines [£] which
corresponds to the special point oo on the line L., of IT. Then the 4? bijections
(6.1) Ogp: (%,9) — (x+a,y+ax+b) witha,beS
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are collineations of 2; indeed,
A m, Bl v [m—a, b+ ma+b—a] and [k] — [k+al.

These collineations form a group G acting regularly on the points and lines of 4, as
OubOgty = Ogia pitivaa- L0 simplify notation, we identify a,, with the ordered pair (a, b)
and consider G to be defined on § x § by

(6.2) (a,0) % (d,b) = (a+d,b+b +da).

Note that G is abelian if and only if § is a commutative semifield; we now assume this to be
the case. Using (6.2), it is easy to show by induction on 72 that

(6.3) (a,0)” = (ma,mb —&—@az) in (G, *).
Thus (a, b) has order p for all (a,5) # (0,0) if p is odd; and for p = 2, the element (a, b)
has order 2 whenever @ = 0 and 4 # 0 and order 4 for a # 0.

Finally, we write down a corresponding (¢, ¢, ¢, 1)-RDS D explicitly. To do so, we
choose the point (0,0) as base point and the line {(x, x): x € R} = [ — 1,0] as base line.
By (6.1), the unique element of G mapping (0,0) to (a, 5) is a,; hence

(6.4) D = {(x,x):x€S8} Cc G.

The preceding observations lead to the following theorem essentially due to Hughes [64];
see also Dembowski [26] and Jungnickel [69] for more details.

THEOREM 6.1: Let S be a semifield of order g = p”. Then the set S X S together with the
operation (6.2) is a group G which acts as a quasiregular group of type (b) on the semifield
plane associated with S, and a corresponding (g, q,q,1)-RDS is given by (6.4). Moreover, G
is abelian if and only if S is commutative; in this case, G is elementary abelian if p is odd, and
a direct product of cyclic groups of order 4 tf p = 2.

By the results of [36] and [10], an abelian relative difference set with parameters
(n,n,n,1) exists if and only if 7 is a prime power; see also [47, §4] for an exposition of this
result. If 7 is odd, all known abelian (72, 7, 7, 1)-RDS occur in elementary abelian groups,
and we have just seen an abundance of examples. On the theoretical side, the results
of [10] only guarantee that G has rank at least 4 + 1, where 2 = p? for the odd prime b. It
would be very nice if one could show that G has to be elementary abelian.

As far as we are aware, the only known examples of planes of even order with an
abelian collineation group of type (b) are those defined over a commutative semifield of
even order; it is an interesting (but probably rather difficult) problem to decide if there
are any other examples. In the odd order case, the situation is different. To see this, we
require the notion of a planar function as introduced by Dembowski and Ostrom [27].

Let H and K be additively written (for our purposes, abelian) groups of order 7. A
planar function of order n is a mapping f: H — K such that for every h € H \ {0} the
induced mapping £, : x — f(h + x) — f(x) is a bijection. Every planar function gives rise to



a projective plane; this is due to Dembowski and Ostrom [27]. We mention in passing
that planar functions on cyclic groups have important applications in information theory
and the communication sciences; see [82].

If a planar function from H to K exists, then G = H & K is a group of type (b); in
fact, D = {(x,f(x)): x € H} is easily seen to be an (#7,7,#,1)-RDS in G=H&K
relative to N = {0} @ K. Conversely, every splitting (n,n,n,1)-RDS - that is, every RDS
for which the forbidden subgroup N is a direct factor of the underlying group G - is of
this type; see Kumar [82] and Pott [97]. In particular, in view of Theorem 6.1, any
commutative semifield plane of odd order can be described by a planar function; see
Dembowski [26, p245] for a more detailed discussion and some explicit examples.
In [57], Hiramine characterized the planar functions over (GF(g), +) corresponding to
semifield planes.

Coulter and Matthews [25] proved that the polynomial

(6.5) f(X) — X(3“+1)/2

is planar over GF(3¢) provided that a is odd and (a, ¢) = 1. The corresponding projective
planes are not translation planes but of Lenz-Barlotti type I1.1 (?). It is an interesting open
problem whether or not there are similar constructions in the case of a characteristic other
than 3. The Coulter-Matthews planes are of particular interest, as they are associated with
the only known planar functions which do not give rise to translation planes.

We now turn to geometric applications of abelian groups of type (b), as studied
in [30]. The basic result is as follows; it is essentially due to the second author [71].
Again, the proof is similar to that of Theorem 3.12.

TraeOREM 6.2: Let D be an RDS with parameters (n,n,n,1) in an abelian group G.
Then the sets —D + g are n-arcs in the projective plane Il associated with dev D; each of
these arcs extends to an oval O, by adjoining the infinite point oo associated with the
parallel class determined by the forbidden subgroup.

In particular, the preceding result provides a simple alternative proof for the existence
of ovals in commutative semifield planes [40, 68]. Even more interesting is the fact that it
also yields the first known examples of ovals in planes of Lenz-Barlotti class IL.1, namely
in the Coulter-Matthews planes discussed before.

(®) In the Lenz-Barlotti classification, collineation groups of projective planes are classified
according to the configuration F formed by the point-line pairs (p, L) for which the given group G is
(p, L)-transitive; in the special case G = Aut I1, one speaks of the Lenz-Barlotti class of II. For a
detailed description of this famous classification of projective planes with respect to their central
collineations — due to Lenz for elations [86] and to Barlotti [5] for homologies — the reader is
referred to Dembowski [26, Section 3.1] and Hughes and Piper [66], or to the survey articles by
Yaqub [111] and Ghinelli [41].
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RemARK 6.3: In the semifield case, the arc D! associated with the RDS D given in
equation (6.4) can be realized as the affine conic with equation y = x? + x over the un-
derlying commutative semifield S.

If # is even, it is necessarily a power of 2, by a result of Ganley [37]; see also [71] for a
simpler proof. Of course, the ovals of Theorem 6.2. then extend to hyperovals. If we
assume, without loss of generality, 0 € D, the nucleus of O, is the point coy, on the line
L., which is determined by the parallel class of lines D + g + 5, where 5 € N. Analyzing
the intersection properties of the ovals constructed in Theorem 6.2. leads to the following
result obtained in [30]:

TueorEM 6.4: Let IT be a projective plane of even order n admitting an abelian colli-
neation group G of type (b). Then II contains a G-orbit of n* hyperovals sharing the
common point 0o which can be partitioned into n families of n hyperovals each such that any
two hyperovals from different families meet in exactly two points (namely, oo and a further
point on the line Ly,), whereas the hyperovals in any of the n families partition the affine
plane ¥ = IT \ Ly,. Moreover, these n* hyperovals together with the n* + n points # oo of
1T yield an embedding of the dual affine plane X* into II.

Proor: Except for the final assertion, the proof is routine. The intersection
properties of the #? hyperovals which we have constructed show that the incidence
structure @ formed by these hyperovals (as lines) and the #? + # points # oo of IT is a
dual affine plane of order #; note that @ can also be obtained as the unique completion
of the divisible semiplane 4 = dev D to a dual affine plane. As the relative difference
sets D and —D lead to isomorphic divisible semiplanes, it is clear that @ is isomorphic
to the dual affine plane @ obtained from I7 by removing the point co. Now it is well-
known that planes with an abelian collineation group of type (b) are self-dual [36];
explicitly, the map #n: g— D — g is a polarity of 4 = dev D, cf. [7, Proposition 1.4.11],
and this clearly extends to a polarity of IT which interchanges co and L. Therefore,
the dual affine plane @' is isomorphic to the dual of the affine plane X, proving the
final assertion. O

The following theorem concerning the existence of maximal arcs in planes with an
abelian group of type (b) was also proved in [30]; cf. Theorem 3.20.

THEOREM 6.5: Let D be an (n,1n,1n,1)-RDS in a group G, where n =2°. Write G
multiplicatively and assume, without loss of generality, 1 € D. Then the element M € 7.G
defined by

M = G—%(D2+N)

belongs to a maximal arc of degree n/2 in Il. Moreover, the affine points together with the
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n? translates Mg of M (as blocks) form a symmetric design with parameters
(66) (225 22571 _ 2b71 22572 _ 2571)

admitting G as a regular automorphism group.

Proor: We first check that M indeed determines a subset of G, that is, that M has
coefficients 0 and 1 only. Now the sum of the entries @ contained in the formal sum D? is
just the group ring element N, as the hypothesis 1 € D guarantees D? = N by a result
in [71]; thus § (D* 4+ N) contains each element of N with coefficient 1. If 4, e € D with
d # e, then the element g = de € G\ N also appears with coefficient 1 in $(D? + N), as
in the proof of Theorem 3.20.

In order to verify that M is a maximal arc, we show that each line of IT either is an
exterior line or meets M in exactly /2 points. By definition, Ly, is an exterior line. We
now apply Lemma 2.6. to compute the intersection sizes for lines of the form Ng and Dg,
respectively, with the help of Lemma 4.3. and the fact DN = D“VN = G, which is
obvious from the definition of an (#, 7, 7, 1)-RDS:

MDY = nG—%((ﬂ-}—G—N)D—i—G) = (G-D)

7
2
and

MN“D = MN = nG—%(ﬂG+nN) — g(c—m.

Thus the exterior lines to M are precisely the lines Dg with g € D and the lines N and L,
whereas all other lines of I7 intersect M in 72/2 points.

In order to prove the final assertion, it suffices to show that M is a difference set with
parameters (6.6) in G. Using Lemma 4.3, this follows from another short computation:

v _ (e~ Ly IRYSNEY
MM <G S0 +N))<G (07 +N)>

ZﬂzG—(ﬂz+ﬂ)G+%((ﬂ+G—N)2+2ﬂG+ﬂN)

ot —2n

== G.
474

O

In this context, one should also mention a result due to Kantor [80] which has some
similarity to Theorem 6.5, though the point sets considered there are probably somewhat
less interesting than maximal arcs. Recall that a /izze oval in a projective plane of order 7 is
the dual notion of an oval: it consists of # + 1 lines, no three if which are concurrent.

THEOREM 6.6: Let IT be an affine translation plane of order n = 2°, and let O be a line
oval containing one line of each of the n + 1 parallel classes. Then the union of the n + 1
lines of O forms a difference set with parameters (6.6).
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Finally, we once again look at the special case where /7 is defined over a commutative
semifield R of order 4. As noted before, the affine arc D" is the conic of X with the
equation y = x> + x. Now the translation group T of X consists of all collineations

Tt (6,9) — (x+a,y+b) with a,b € R,

and thus the arc DV is obtained from the base point (0,0) by applying all
translations 7_, .2 with x € R. As R has characteristic 2, these translations form
a subgroup of T of order ¢. This proves that the arc D"V is a translation oval as
defined by Cherowitzo [21]. It is easily checked that actually all the affine arcs A4,
constructed in Theorem 6.2. are translation ovals in the case under consideration.
Hence one obtains a partition of the affine semifield plane X into translation ovals;
this considerably strengthens a result of Jha and Wene [68] who constructed ¢ — 1
pairwise disjoint translation ovals in affine plane defined over a special class of
commutative semifields of even order ¢” (namely those with middle nucleus of
order g).

7. - DIRECT PRODUCT DIFFERENCE SETS

In this section, we consider planes admitting an abelian collineation group of type (f).
Such planes may be represented using the direct product difference sets defined in
Section 4. We now give an explicit description for the associated projective plane I7
which may be obtained from the semiplane 4 = dev D; this is rather more involved than
the corresponding constructions for affine difference sets and semiregular relative
difference sets.

Let D be a DPDS of order # in the abelian group G (multiplicatively written) with
respect to the forbidden subgroups A and B. In view of equation (4.2), D meets every
coset of A and all but one coset of B exactly once. In particular, we may assume
DN B =0. Under this assumption, we can give the following simplified variant of the
construction in Ganley [37], which is due to de Resmini and the present authors [30].
The points of IT are

e the #(n — 1) group elements g € G;
e a point oo and # points (a), where a € A;
e a point cop and # — 1 points ((5)), where b € B.

The lines of IT are

n(n — 1) lines [a,b] = Dab U {(a), (b))}, where a € A and b € B;

a line L., containing oo, oop and the # — 1 points ((»)), where & € B;
a line L4 containing co4 and the # points (a), where a € A;

n — 1 lines [Ab] = Ab U {c04}, where b € B;

n lines [Ba] = Ba U {ocop, (a)}, where a € A.



63 —

It is somewhat tedious (but not really difficult) to check that this indeed defines a
projective plane IT of order 7. Note that IT is both (00, Lo )- and (cop, L4)-transitive and
therefore at least in Lenz-Barlotti class I1.2. Any plane admitting two such transitivities is
of type (f) and can be described by a DPDS; see [96]. The only known examples are
provided by the Desarguesian planes PG(2, ¢).

We now turn to geometric properties of abelian groups of type (f), as studied in [30].
The proof of the following result is again similar to that of Theorem 3.12.

Prorosition 7.1: Let IT be a projective plane of order n admitting an abelian collineation
group G = A x B of type (f), and let D denote an associated DPDS such that DN B = ().
Then the (n — 1)-sets D~g are arcs in A= devD, and the n — 1 lines Dd—2g with d € D
are tangents to D7'g (with d='g as the tangency point). Moreover, the lines of IT
corresponding to the cosets of A and B, respectively, cannot be secants; hence, D™\ g may
be extended to an oval Oy = D~'g U {oca, oop} of I1.

Remark 7.2: In the classical case IT = PG(2,g), the plane may be represented by a
direct product difference set D in G = EA(g) x 7, for which the arc D! is the affine
hyperbola with the equation y = —1/x.

Using Proposition 7.1, we can provide a further example for a situation where a
simple geometric argument may be given for a non-trivial structural restriction, avoiding
algebraic machinery; we shall prove the following result due to Ganley [37] for even
orders and to Pott [96] for odd orders, respectively.

TreoreM 7.3: Let IT be a projective plane of order n admitting an abelian collineation
group G = A x Boftype (). If n is even, then n is a power of 2 and the Sylow 2-subgroup A
of G is elementary abelian; and if n is odd, the Sylow 2-subgroup of G is cyclic.

Proor: Consider the intersections of the tangents to D~! with the special line L4. By
Proposition 7.1, each point d = ab € D leads to the tangent [a=2,b~2] of O = Oy, which
intersects Ly in the point (¢=2). If 7 is even, all the tangents are concurrent in the nucleus
of O; as O meets L4 exactly once (namely in the point co4), the nucleus has to be on Ly.
Therefore, all the values (¢=2) with @ € A, a # 1, coincide (as D meets all cosets of B
except B itself). But A is of even order and hence contains an involution, so the common
value is necessarily 1. Thus A is an elementary abelian 2-group in this case, and the
nucleus of O is the point (1). On the other hand, if 7 is odd, no point can be on more than
two tangents, and a similar reasoning shows that A contains a unique involution which
implies that the Sylow 2-subgroup of G is cyclic. O

The above argument about the nucleus of the oval O generalizes to the following
result:
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CoroLLary 7.4: Under the hypotheses of Proposition 7.1, assume that n is even. Let
2€ G, say g=ab with a € A and b € B. Then the nucleus of the oval O, is the point
(a) € La.

On the purely geometric side, we may again obtain rather nice families of hyperovals,
whereas the odd order case seems a little less interesting (and will not be stated).

TueoREM 7.5: Let IT be a projective plane of even order n admitting an abelian colli-
neation group G of type (f). Then Il contains a G-orbit of n(n — 1) hyperovals sharing two
common points 0o, and oop which can be partitioned into n — 1 families of n hyperovals
each such that any two hyperovals from different families meet in exactly three points
(namely, 004, oop and a further point neither on Lo, nor on Ly), whereas the hyperovals in
any of the n — 1 families partition the affine plane X = IT \ L.

As in Theorems 3.20 and 6.5, one can also give an explicit construction for maximal
arcs in terms of the underlying direct product difference set D (using group ring
notation):

ProrositionN 7.6: Let IT be a projective plane of even order n admitting an abelian
collineation group G = A x B of type (f), and let D be an associated DPDS. Write G
multiplicatively and assume, without loss of generality, DB = 0. Then the element
M € 7.G defined by

(7.1) M = G—%(DZ—s—B)

corresponds to a maximal arc of degree n/2 in II.

8. - NEO-DIFFERENCE SETS

In this final section, we consider projective planes admitting an abelian group G of
type (g). Such a group G is of Lenz-Barlotti type 1.4, that is, the configuration F
formed by the point-line pairs (p, L) for which G is (p,L)-transitive consists of the
vertices and the opposite sides of a triangle. The associated plane I7 may be
represented using an abelian neo-difference set as defined in Section 4. We now
give an explicit description for IT; as in the case of direct product difference sets, this
is somewhat involved. The following results are taken from our papers [48, 49]; they
were inspired on one hand by the work of Hughes, cf. [64, pp. 660-662], with some
simplifications made possible by the more special situation we consider, and on the
other hand, by the more usual representation of planes with a group of type 1.4 by
neofields - an approach which we shall not discuss here, as it is not needed for our
purposes.



65 —

Let D be a neo-difference set of order # in the abelian group G (multiplicatively
written) with respect to the forbidden subgroups X, Y, and Z. These three subgroups are
necessarily isomorphic, and hence one may assume G = X x X. Then the forbidden
subgroups turn into U; = X x {1}, U, = {1} x X, and U; = {(&,&) : £ € X}, and the
defining group ring equation (4.3) becomes

(8.1) DDV = 4+ G-U, - U, — Us.

As shown in [48], one may assume that both U; and U, are disjoint from D and that the
unique coset of Us missing D is Us (1, 6), where 6 is an (in fact, the unique) involution in X
if 7 is odd, and 6 = 1 otherwise. With these assumptions, we may write

(8.2) D= > (£209),

ceX\{1}

where g: X'\ {1} — X\ {1} is a bijection. Note that the element (&, g(¢)) is in the coset
Us(1, & g(§)), and therefore

(8.3) {¢g(&): ce X} = X\ {0}.

Later, we shall need the following simple restriction on the structure of X which was first
proved by Paige [93] in the context of neofields.

Lemma 8.1: The group X contains at most one involution.

Proor: Let y be an involution of G, and assume y ¢ N = Uy U U, U Us. Then there is a
representation y = de~! with J,& € D. But this implies the second representation
y=79"1=¢0"!, a contradiction. Therefore all involutions of G are contained in N.
Now let x and A be involutions of X. Then (x, ) is an involution of G, and hence lies in N;
this is only possible if © = 4. O

In order to give an explicit description of the desired projective plane I7 = I1(D) in
terms of D, we choose an element 0 ¢ X and embed X into the semigroup X = X U {0},
where 0& = &0 = 0 for all & € X. Moreover, let 0o be some symbol not in X. Now the
points of IT are

o the 7% elements (&,y) € G = X x X (for (&,w) € G, we speak of ordinary points);
e 7 points (&), where ¢ € X, and a point (c0);

and the lines of IT are

(n — 1)% lines [£,y] = D(& w) U{(£,0),(0,), O}, where &y € X;

n lines [Uy] = {(&,w) : & € X} U {(0)}, where y € X;

n lines [UE] = {(&,y) : v € X} U {(c0)}, where ¢ € X;

n —1lines [Usy] = {(&, &p) : € € X} U{(w)}, where y € X;

a line [oo] = {(&) : € € X} U (00).



— 66 —

Again, it is somewhat involved to check that this indeed defines a projective plane IT
of order #. We remark that the vertices of the special triangle mentioned above are the
points o = (0,0), x = (0), and y = (c0). The only known examples are provided by the
classical planes PG(2,g). With K = GF(g), the set

D= {Ey) ek xK: ty=1}

is an abelian neo-difference set of order # in G = K* x K*; this is easily checked directly.

As with planar difference sets, multipliers are again a central tool in studying neo-
difference sets. Hughes [63] proved the neo-analogue of Hall’s multiplier theorem for
planar difference sets: every prime divisor p of # is a multiplier of every abelian neo-
difference set of order n. Using the group ring setting, we presented in [48] a
considerably simpler and more transparent proof. As for affine difference sets, there is
an analogue of the Mann test (essentially due to Kantor [79]), and here we even have a
simple geometric proof similar to the one given for Theorem 3.10. Hence we will include
the relevant results from our paper [48].

THEOREM 8.2: Let D be an abelian neo-difference set of order n in G =X x X. If D
admits a multiplier t of order 2, then n is a perfect square, say n = n, and necessarily
t=m.

Proor: Let ¢ be any multiplier of order 2 of D, and denote the induced collineation of
the associated projective plane IT by 7. Then 7 is an involution whose set of fixed points
contains the quadrangle oxyu, where # = (1,1). Thus 7 is a Baer involution, that is, the
fixed elements of 7 form a Baer subplane I7y; see Hughes and Piper [66]. In particular, 7
must be a square, say 7 = 72. We now define subgroups A and B of X as follows:

A={eX:&=¢&" and B = {EeX: &=¢}.

Then the mappings a and § defined by & = ¢~ and & = ¢ are homomorphisms
from X to A and B, respectively, and & = & foreach & € X; thus AB contains X, the
set of squares in X. Hence AB is a subgroup of index at most 2, by Lemma 8.1. The same
lemma also shows that the Sylow 2-subgroup of X is cyclic, which implies that X contains
unique subgroups of orders 7z — 1 and #z + 1, respectively.

Note that the ordinary points of 7 are simply the pairs (¢, ) with &,y € B; therefore
B is the subgroup of order 7z — 1 of X. Also, A has to contain the subgroup A; of order
m + 1 of X, as AB is a subgroup of index at most 2 in X. (It can be shown that actually
A =A; and AB = XU, but we do not really need these facts.)

The preceding arguments show that any multiplier of order 2 leads to the same
subgroups A; and B and acts on them in the same way as the given multiplier # does. In
particular, this holds for the multiplier 7z of order 2 whose existence is guaranteed by the
multiplier theorem mentioned before. Therefore the collineations induced by # and 72
certainly agree on all ordinary points (&, ) with &,y € X5, which suffices to show that
tm~! must be the identity.
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COROLLARY 8.3: Assume the existence of an abelian neo-difference set of square order n
in G, say n = n*. Then there also exists an abelian neo-difference set of order m.

Proor: One may assume that the given neo-difference set D is fixed by the multiplier
m of order 2. Hence - using the same notation as in the proof of Theorem 8.2. - D
belongs to the Baer subplane Iy formed by the fixed elements of the collineation 7
induced by 7z. Thus D N B is an (72 — 1)-subset of B x B which is easily seen to be a sub-
neo-difference set of D. O

TueoreM 8.4 [Mann test]: Let D be an abelian neo-difference set of order n in
G = X x X. Then either n is a square or every multiplier of D has odd order modulo exp G.
In particular, each of the following conditions implies that n is a square:

o D has a multiplier which has even order modulo g, where q divides n — 1 and either
g = 4 or q is an odd prime;

e p is a quadratic non-residue modulo q, where p and q are prime divisors of n and of
n — 1, respectively;

e 7 =4o0r6(mod8);

o 1/ = —1 (mod q) for some prime p dividing n, a suitable non-negative integer f and
some multiplier t of D, where q divides n — 1 and either g = 4 or q is an odd prime;

o (t+1,n—1) >3 for some multiplier t of D.

Proor: If ¢ has even order, a suitable power of # has order 2, and thus the first assertion
is an immediate consequence of Theorem 8.2. The remaining assertions follow using
some elementary number theory; see [48]. O

We conclude this section with some results concerning the application of abelian neo-
difference sets to the construction of ovals, hyperovals, and projective triangles, all taken
from [48]. The proof of the following result is again similar to that of Theorem 3.12,
though a little more involved.

ProrosiTion 8.5: Let IT be a projective plane of order n represented by a neo-difference
set D in an abelian group G, and let D have the form (8.2). Then the (n — 2)-sets
Ay = DVywith y = (a, ) € G are arcs in I1, and the line [E72a, g(&) 2B is the tangent
to A, with (&, g(& )1y as the tangency point. Moreover, the (n — 2)-arc A, may be extended
to an oval of I, namely O, = A, U {(0,0),(0), (c0)}. Finally, if n is even, the nucleus of O,
is the ordinary point y.

Let us note an interesting consequence of Proposition 8.5, which was originally
proved by Kantor [79] in a different way.
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CoroLLary 8.6: Under the assumptions of Proposition 8.5, let n # 2 be even. Then n is
a multiple of 4.

Proor: Note that D is disjoint from any translate of the form Dy with 1 # y € N. For
such a y, the hyperovals completing O ;) and O, intersect precisely in the three special
points (0, 0), (0) and (oo). But in a plane of order #» =2 (mod 4), any two hyperovals
intersect in an even number of points; see, for instance, [78, Lemma 3.3]. O

We also mention the following configuration result which is immediate from
Proposition 8.5.

CoROLLARY 8.7: Let II be a projective plane of order n represented by a neo-difference set
D in an abelian group G; in particular, we may take Il = PG(2,n). Then II contains a
family O of (n — 1)* ovals all of which contain the special triangle oxy and have pairwise at
most one further point of intersection.

Our final application concerns projective triangles, see Section 2.

Prorosition 8.8: Let IT be a projective plane of odd order n represented by a neo-
difference set D in an abelian group G. Let O denote the oval D™V U {0,x,y}, where
0=1(0,0), x = (0), and y = (00) (see Proposition 8.5). Now define B as the set of all points
which arise as the intersection of some side of oxy with some tangent of O. Then B is a
projective triangle of side 1 (n + 3); moreover, B is a minimal blocking set for II.

Proor: By Proposition 8.5, the line L: = [¢72, g(¢) 2] is the unique tangent of O in
the point (&, g(£)), where & runs over X \ {1}. Now the line L: meets the x-axis ox in
(£72,0), the y-axis oy in (O,g(f)fz), and the line at infinity xy in (Hg(f)fzéz). Hence,
using (8.3),

B = {0,%,9}U{(&0): e XU {0,p):we XYu{On:ne X"},

where we write XU for the set of squares in X. By Lemma 8.1, X contains a unique
involution, and hence X5 has index 2 in X, which shows that each side of oxy contains
exactly $(z+3) points of B. Now consider a point g = (¢,0) € ox and a point
r=(0,p) € 0y. Then g¢r is the line [£,y] and thus z = gr Nxy = (O™ ). Tt is now
immediate that ¢, » € Bimplies z € B, proving that Bis indeed a projective triangle. On the
other hand, if the line L = [&, ] intersects neither ox nor 0y in a point of B, then both &
and y must be non-squares. As X has index 2 in X, we see that ¢! is a square. Thus L
intersects xy in a point of B, so that B is indeed a blocking set, which is obviously minimal.

O

In the special case of Desarguesian planes, Proposition 8.8 provides the following
synthetic construction for projective triangles (which are usually defined in an algebraic
way, using coordinates):



69 —

CoroLLary 8.9: Let IT = PG(2, q), where q is odd. Choose any conic C in I, and let oxy
be a triangle contained in C. Now define B as the set of all points which arise as the
intersection of some side of oxy with some tangent of C. Then B is a projective triangle of
side 3 (g + 3); moreover, B is a minimal blocking set for II.
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