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Asstract, — We present asymptotic approximations of Green’s kernels for operators of linear
elasticity in planar and three-dimensional domains containing multiple inclusions with the Dirichlet
boundary conditions. The main feature of these approximations is their uniformity with respect to
the independent variables. The asymptotic formulae are supplied with rigorous remainder
estimates. Finally, we offer examples, where results of asymptotic approximations are compared
with accurate finite element numerical simulations, and demonstrate the advantages of the
asymptotic method.

1. - INTRODUCTION

The study of Green’s functions in domains with perturbed boundaries was initiated by
the classical work of Hadamard (see [7]) who analyzed Green’s kernels both for the
Laplacian and the biharmonic problem in a domain with a regularly perturbed smooth
boundary. The asymptotic formula derived in [7] is often referred to as the Hadamard
variational formula, and it had substantial impact on several areas of the theory of partial
differential equations: among its applications are shape sensitivity and optimization
analysis [5], free boundary problems [16], Brownian motion on hypersurfaces [8].
Analogues of Hadamard’s formula were also obtained for general elliptic boundary value
problems [6] as well as for the heat equation. Neither Hadamard’s formula nor
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asymptotic approximations related to the above mentioned applications are uniform
with respect to independent variables. The correction, which makes Hadamard’s
approximation uniform, was recently stated in [11].

The paper [10] includes uniform asymptotic approximations of Green’s functions of
Dirichlet boundary value problems for the Laplacian in domains with small inclusions.
Analysis of other types of boundary conditions and uniform asymptotics of Green’s
functions for domains of different shapes (singularly perturbed cones, thin cylinders etc.)
were published in [11]. In both papers [10], [11], we employ the method of compound
asymptotic expansions (see [13]).

The asymptotic analysis of [10, 11] has been extended in [12] to Green’s tensors of
vector elasticity, in both two and three dimensions, for a solid containing a small
inclusion. The asymptotic approximations are uniform, and the paper [12] also includes
the rigorous remainder estimates.

In the present paper, the earlier results of [10], [12] are further advanced to problems
of elasticity for solids with multiple inclusions. In addition to the analytical formulae, we
also include the numerical simulations illustrating the efficiency of the asymptotic
approximations.

The structure of the article is as follows.

Section 2 contains the main notations adopted throughout the text and the
formulation of Green’s function for the operator —A4 in a planar domain with several
inclusions (the case of anti-plane shear). In Section 3, we deal with the asymptotic
approximation of the Green’s function for anti-plane shear in a planar region with several
inclusions. In Section 4, we show how the asymptotic formula for Green’s function
simplifies under constraints on the independent spatial variables within the singularly
perturbed domain. Following the analytical investigation of the approximation of Green’s
function for —4 in a domain with multiple inclusions, in Section 5 we then proceed with
the numerical computations to illustrate the efficiency of the asymptotic algorithm. Here
we consider the regular part of Green’s function for Laplace’s operator, in the case of a
planar domain with several inclusions. We then extend the theory developed in Section 3
to the case of Green’s tensor for the system of elasticity in Section 6. In addition to
differences in asymptotic approximations for the scalar and vector cases, there is an
additional difficulty in justification of asymptotics due to a lack of the classical maximum
principle in linear elasticity for domains with small inclusions. This obstacle is overcome
in Section 6, where the Fichera maximum principle is extended to domains with small
inclusions. In Section 7, another example is treated where we compare the asymptotic
approximation of Section 6 against the benchmark finite element computations. Finally,
in Section 8, we construct the approximation of Green’s tensor for a three-dimensional
body with several inclusions, followed by Section 9 with simplified asymptotic formulae
(under the constraints of Section 4).

In what follows, G, denotes Green’s tensor for the planar perturbed bounded domain
Q,, ¢ is a small positive parameter, G is Green’s tensor for the unperturbed domain, g/ is
Green’s tensor for the unbounded domain corresponding to the 7% inclusion and y is the
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fundamental solution of the Lamé operator in two dimensions. We also have ¢ as the
limit of ¢ at infinity, ™ is a constant matrix present in the asymptotics of ¢ at
infinity. In addition, we make use of the elastic capacitary potential P!/ related to the /%
inclusion, defined in the perturbed domain. The notation y denotes the position of the
point force, x is the spatial variable where the measurement of displacement produced by
the force aty is to be taken and Q" is the centre of the ;* inclusion. By /4 and x we mean
elastic moduli.
As one of our main results presented in this article, we prove the following

Tueorem: Green's tensor for the Lamé operator in Q, C R? admits the representation

N () (2]
_ (H(x=O0" y-O"\ L xy
(1) Gi.) =Glr.y)+3 e ( : ) N2

& & & &

N () )

+ {p<f><x>A<f>p<ﬂT<y> - ("—_O ]> - (y—_o ]> + c“"’”}
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/=1
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-3 3 PP@)GOY,0%)PPT(y) + O
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uniformly with respect to (x,y) € Q. x Q,, where
AY = (4 + 30 @ru(i 4+ 2w) togel, + HOY,0V) — ) 1<;<N.

In the above theorem, the last term in (1) denotes a matrix whose components are O(g).
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Fic. 1. — a) Numerical solution produced in FEMLAB, b) Computations produced by the
asymptotic approximation for the regular part of Green’s function for ¢ = 0.2974.
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The regular part of Green’s function in a disk with 5 circular inclusions is shown in
Fig. 1 for the case of anti-plane shear; here ¢ = 0.2974 and the asymptotic approximation
of the regular part for Green’s function is compared with the corresponding numerical
solution obtained in FEMLAB. It can be seen that both plots are very similar; the
maximum absolute error here is as small as 0.0206.

2. - MAIN NOTATIONS AND GOVERNING EQUATIONS

We now give several notations adopted in the following text. Let £ be a bounded
domain in R”, # = 2,3 with compact closure Q and smooth boundary 9Q. By o',
7=1,...,N,we denote domains in R” with smooth boundary 9w’ and compact closure
@"7; its complement being Ca'"”) = R"\@"". We shall assume that ©", j =1,...,N
contains the origin O as an interior point. We introduce the sets @) =
= {x:e'(x —0Y) € 0"}, where ¢ is a small positive parameter and 0" being the
centre of w{/). Also we have the open set 2, = Q\|J@!”. It is also assumed that the

minimum distance between the points OV, / = 1, . /. ,N and between the points OV
and 02 is equal to 1. In addition the maximum distance between O and the points of
0" will be taken as 1.

The main object of our study in Sections 3-5 is Green’s function for —4 in Q, C R?,
and we will denote this function by G;. The function G, is a solution of

(2) —4,Gelx,y) =0x —y), x,y€Q,,
3) Gix, ) =0, x€dQ,yecQ,.

In the Sequel,valong with x and y, we shall use scaled variables & = e lx —0Y) and
n=¢'(y-0Y),;=1,...,N.

By const we always mean different positive constants independent of e.

The notation f = O(g) for a scalar function f is equivalent to the inequality
|/] < const g. Whenever we write f = O(g) for a matrix (vector) function f, we mean a
matrix (vector) f whose components are O(g).

3. - GREEN’S FUNCTION FOR THE CASE OF ANTI-PLANE SHEAR
FOR A DOMAIN WITH SEVERAL INCLUSIONS

Let G(x,y) and g(f)(é]v7
domains  and Ca”, j =
following problem
(4) —4,Glx,y) =dlx —y), x,y€Q,

(5) Glx,y) =0, x€0Q,yeQ,

1;) denote Green’s function for the operator —4 in the
1,..., N, respectively. The function G is a solution the
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and the functions g solve

(6) _Af g (577 ”/) 5(5/ - ”/) ’ é_ﬂ 'I/ € C&)(/) )
(8) gm(éj, 1;) is bounded as |&;| — oo , 7, € Ca"
We represent Glx, y) as

9) Gla,y) = —(27) loglv —y| — Hix, ),
and g(f‘)(éj, n;) forj=1,...,Nas

(10) g(ﬂ(éﬂ ’7/) = - (27-[)_1 lOg |é; ’I]| - ‘g/a ’I])

where H and A" are the regular parts of G and g\, respectively, and the first term in the
right-hand sides of (9) and (10) is the fundamental solution of the operator —4.
We introduce the function (V) as

(11) C(f) (”]_) _ léllig1oc g(/)(éf, ”]_) ’

and the constant

(12) = Jim {V ) — 2m) " log ||}
nl—

fory=1,...,N.

3.1. Auxiliary functions

3.1.1. Estimates for the functions ») and ¢ in the unbounded domain

In this subsection we state two results related to the functions A and ¢,
7=1,...,N, which will be used in the algorithm for the asymptotic expansion of the
function G,.

The proof of the following lemma can be found in [10].

Lemma 1: For |&;| > 2 and y; € Ca"" the following estimate holds
(13) P& 1) = —@m~ og|&| — (V) + O(&™)
forj=1,...,N.

The proof of the next lemma follows from that of Kondratiev and Oleinik [9] (p. 78,
Lemma 2).

Lemma 2: For |&;| > 2, the following representation for &9 bolds
(14) () = @) log g | + ¢ + 0(g |
forj=1,...,N.



— 108 —

3.1.2. The equilibrium potential

Let PY)(x) be the equilibrium potential corresponding to the 7 inclusion with centre
0" The function PY)(x) is defined as a solution of

(15) APV (x) =0, x€Q,,
(16) PVx)=0, xcoQ,
(17) Px)=0;, x€da?, i=1,...,N,

where J;; is the Kronecker delta.

We give a uniform approximation of the vector function P,(x) = {P\/) (9.7)}]N:1

Tueorem 1: The asymptotic approximation of P.(x) is given by the formula,

1
(18) P.(x) = ( diag {a‘(g/)} - ?IR) S(x) + pylax)
1</<N
where
(19) a) = 2m) 'loge + HOY,0Y) - |

W= {(1-0,5)GO", 0}, Sk)={~Glx,0") +{(g) ~ 20 log|g |~ L}

=1
and the vector py(x) is the remainder term such that
(20) [pe(x)| < conste|loge| ",

uniformly with respect to x € Q,.

Prior to the proof of Theorem 1 we shall show that the leading order term of the
functions P\/) are solutions of a certain algebraic system.

Lemma 3: The leading order parts P\ of the functions PY) are solutions of

(21) ( diag {a/'} — 933) Pelx) = Slx) ,

1<j<N

where P, = {Pi’ ) }/N:1

Proor: We represent PY)(x) in the form

~Glx,09) + V(&) — 2m) Hlog & — LY
2n) 'loge + H(O(j),o(j)) - CLQ ’

(22) PV(x) =

where the functions R\ (x) are subject to

(23) ARV (x) =0, x€Q,,
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g“(f)(é/v) — )" log |&;] — Céé)

24 RV (x) = — kAN _ | x€0Q,
( ) e X (271_)—1 loge JrH(O(]),O(‘/)) _ Cgo) X
-1 %] ()
e (2n)" " loge+ H(x,0"") = { ()
(25) R/ (x)=1——7 a0 X €0,
(2n)" loge+ HOY',0V") — (7
(26) RV (x) = Glx,0) = (V&) + 2m) ' log |&] + L)

en)~! loge + H(O(/'),O(/.)) — C(OQ
xedo® 1<k<N k#j.
The boundary condition (25) is equivalent to
‘ Dy _ ) O)
(27) R (x) = — P_Il(x,O : HE()) ’<(-)) : m
(2n)" loge+ HOY',0") — (7

, X € 8609 ,

s0 RY)(x) = Ole|loge| ™) for x € dwl/). Using the asymptotic approximation of C(/)(éj)
given in Lemma 2, we have from (24) that R/’ () = Ole|log ¢| ") forx € Q. Then from
(26), also using Lemma 2 and the fact G(x,O(/ )Y is smooth in €,, we have
] G O(/e) O(/)
(28) R/ (x) = —— - 0 ) 7
(2n) " loge + HOV',0V) - ¢

fora € 00, 1 < k<N, k#j.

Then we may write R\ (x), using the equilibrium potential P*), & # /, as

Z G(o(k)’ O(/))p(k) (x)

&

5+ O loge| ™),

oo

=
29 RV (x) = — ==K V),
( ) & (27_[)—1 loge + H(O(]),O(])) _ C(O/O) &
where p!/)(x) is the remainder term.
Now combining (29) with (22), we obtain
(30) PY(x) :( ~ Glae,0) + V(&) — 2m) ' log |&| — ¢
N o . »
+ Y Go%",0"p¥ (x)) @M+ pV (),
<l

where a!/) is as in the formulation of Theorem 1, and we have p{/(x) is a function which is
harmonic in 2, and is O(¢| log 8|_1) forx € 90Q and x € 6w§/>, 1 <7 < N. Therefore by
the maximum principle p/)(x) = O(¢| log g™ forx € Q,.

Then, (30) gives us the following system of algebraic equations in terms of the
functions P\, whose solution will give us the approximation of the functions P!/,

1</<N

(31) < diag {a!/} — Wﬁ)P;;(x) = Sx) + N, ,
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where P(x) = {Pf:/)(x)}]{\]:l, S and I are as in the formulation of Theorem 1, and

R, = {a’p}Y . The leading order part of (31) is equivalent to (21). O
Let

—1
(32) E= <diag {a} — we) :

1<j<N
and 5,7,/ = 1,..., N denote the entries of this matrix. Multiplying both sides of (31) by
=, we have
(33) P,(x) = ES(x) + p; ,
where p, = EN, is the remainder. We shall now estimate the remainder in (33).
The proof of Theorem 1 is given via estimation of the remainder term p,. For the

estimate of the norm of the vector p,(x) in (18), we shall need an estimate for the entries
Z,; of the matrix Z, which is contained in the following Lemma.

Lemma 4: For the matrix 5 = [5); ?Ijzl, we have

_ O] log£|7l) fori=7j,
! O(loge| ) fori#j.
Proor: Since I is a symmetric matrix, it follows from (32) that & is also symmetric.
We have
(34) Z=(det(@ M) tadj(EY,

where det (1) is the determinant of the N x N matrix £~ ' and adj (E~!) is the adjoint
of the matrix 5~ !. Let the matrix of cofactors for Z~! be denoted by C with entries

Ci=(~10"T; ij=1...N,

where T} are the corresponding minors of £,

First, we consider T; when 7 =,. In this case we shall need to compute the
determinant of an (N — 1) x (N — 1) matrix, with N — 1 terms each of O(]log¢|) along
the diagonal, and with off-diagonal components of O(1). Thus T for 7 =/ is then is
O(|loge/N™1).

Next consider T, when 7 # 7, so that we compute the determinant of an (N — 1)x
x (N — 1) matrix, containing N — 2 components of O(|log ¢|) and all other components of

O(1). Then Ty, for 7 #  is O(|loge|N2). Therefore

C. O(|logs|N_1) fori=j,
/ O] log£|N72) fori#7;.

[

Since det (27!) is O(|log&|Y) we complete the proof of the Lemma. O

Now, we finalize the proof of Theorem 1
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Proor oF Treorem 1: The asymptotic approximation of the vector P, admits the
representation given in (33) as a consequence of Lemma 3, with the remainder term given
by p. = EN,, Where R, = {apV } . In the proof of Lemma 3, it was shown that

p!”) = Ole|loge| ") and noting a!) = O(| logé|), we have by the preceding Lemma, the
remainder term p, has the vector norm |p,| = Ole]logé|™!). The proof of Theorem 1 is
complete. O

3.2. A uniform asymptotic approximation of Green’s function for —A in a two-dimensional
domain with several small inclusions

Now we may approach the approximation of Green’s matrix G, for the Laplacian in a
planar domain with several inclusions.

TreOREM 2: Green’s function for the operator — A in Q, C R? admits the representation

(35) Gilx,y) =Glx, ) +Zg (&,n) + NCm ' log (™' |x —|)

7=1

-3 > G0",0"PP(y)P %) + O

uniformly with respect to (x,y) € Q, x Q,.

Proor: For this we propose that G, may be given as

N
(36) Gila,y) = —(2n) " loglx —y| — Hylw, ) = > 5 x,3)

=1

where it suffices to seek the approximation of the functions Hy(x, y) and h\/(x, y), which
are solutions of the problems

(37) A Hy(x,y) =0, x,y€Q,,

(38) Hyx,y) = —Qn) 'loglx —y|, xcdQ,yecQ,,
(39) Hyx,y) =0, xcdol yecQ,1<;<N,
and

(40) AP (x,9) =0, x,y€Q,,

(41) b‘i/)(x,y):O, x€0QyeQ,,

(42) M, y) = —02n) 'loglx —y|, xcdo,yecQ,,
(43) /ol(sfv)(.x,y):O7 xe@wik),yeQe,lﬁkSN,k;éj.
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The approximation of Hy(x,y). Let H.(x, y) be given by

(44) H,x,y) = ~HO", y)P(x) + H(x,y) + V(x, ) ,
where V(x, y) satisfies

(45) AVix,y) =0, x,ye€,,

(46) Vix,y) =0, x€dQ,yecQ,,

(47) Vix,y) =HO"Y,y) —H(x,y), xcdal, yeQ,,
(48) Vix,y)=—-Hx,y), xcdo? yecQ, k#;,1<k<N.

Since »!, 1 < < N, are small inclusions and H is a smooth function in Q, we may
expand H about the centres of the inclusions. Namely, for the boundary condition (47)
we have

(49) Vix,y) =HO"Y,y) —Hx,y) =0, xecda yec,,
and from (48)
(50) Vix,y) = —Hx,y) = —HO"Y, y) + O)

xedo® yeQ, k#j,1<k<N.

We therefore write the function V(x, y) as

(51) Vix,y)=— > HOY, )PP )+ 9,x, ),

k#j
1<k<N

where 9, is the remainder term. Substituting (51) into (44) we have
(52) H,(x,y) = ZH(O PV () + Hix, y) + 9,(x, ) ,

where 9, (x, y) satisfies

(53) Ax@g(x’y) = 0 ) x’y E Qs b
(54) D,x,y)=0, x€dQ,yeQ,,
(55) 9.x,3) =HO,y) — Hix, y)

=06, xcdo’ yec,1<;<N,

and therefore by the maximum principle $,(x,y) = O(e), uniformly with respect to
x,y € Q..

The approximation of b (x, y). We begin by writing the boundary condition (42) on
) as
(56) P, y) = —2n) ' loge — 1) Hog (7 x —y]), x €0,y € Q,.
We seek b/ (x, y) in the form

(57) hx,y) = —@n) loge + bV (&, m) + 1) (x, p)
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where the remainder 4!/ satisfies

(58) Ax)(y)(x,y):O , X,y E€Q,,
(59) i x,y) = 2n) " loge — /9(,7')(5]_7,,],) , XE€E0Q ye,,
(60) V9 =0, xcdo, yecQ,,

(61) 7/, y) = @n) loge—hE,p), xcdo® yeQ 1 <k<N k#;.
From Lemma 1, we may write boundary conditions (59) and (61) as
62) AV, y) =20 oglx —OV |+ ) + O0le), x €0,y € Q,,
(63) 1. y) =@n) " log b =0 + V() + Oke)
forxeaa)ik)7y €, ,1<kE<N.,k#/.

Then we represent '/ as

(64) 2, y) = —He,0Y) + (1 - PPN () + 6 (x, p)
where f)ij (a, y) satisfies

(65) Axf)ij)(x,y):O, xay€Q£7

(66) 57 (x,9) = 0@), x€dQyec,,

(67) 0V (x,y) = Hx,0"), xcdu.yecQ,,

68)  §7x,3) = -Gx,0")+ 0@, xcdo® yecQ , 1<k<N,k+;.

From the fact that G(x,0") and its regular part are smooth functions in ,, we expand
these functions about the centres of the small inclusions in such a way that boundary
conditions (67) and (68) become

(69) 57 (x,y) = HOY,0") + Oe), x €8,y € Q,,
(70) 5V, y) = -GO®,0")+0k), xcon® ye@, 1 <k<N,k+;.
Then the biﬂ (x, y) is given by

(71) 6V, p) =HOV, 0PV ) - Y GOW,0")PY )+ O) .

&
k#j
1<k<N

Placing (64) and (71) into (57), we obtain the following approximation of 5/ (x, y)
(72) PP (x,y) =~ 2n) " loge + h (&, n,) — Hx,0")

+ (1= PV @) () + HOY,0Y)PY (x)

- Y GOY,0")PPx) + 0,

k4]
1<k<N

which is uniform with respect to x,y € Q,.
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Combined formula. Now substituting (52), (72) into (36) we obtain

(73)  Gilx,y) =Glx,y) +Zg (&, n,) +NQ2m) ™" log (|x —y|)

7=1

+3 (1 = PP@)HOV,0Y) — () — HOY, y))

-

Il
—_

J

(H(x,O("‘)) + H(O('/),y) _ H(O(/),O('/)))

M=

+

~.
z |l
_

+3° 3 Go%,0")PP ) + O .
J k#j
1<k<N

Il
—

Using the following relation obtained from the approximation of Péf)(x) (see (30)),
(74) (HOY,0) - () - HOY, p)(a) ™

=1-PYp) + @) S GOW,0"PP () + Otelloge| ™),
k7

1<k<N
and substituting into (73), we have
N
(75) Gelx, y) =G(x,y)+z (5],117)+N(27z "og |x —y|
=1

+> a1 =P ) (1 = PV (y)

N
+> (Hx,0Y) + HO", y) - HO",0")
j=1
N -
+3 > GOP 0N {PP(y) + PP (x)
=l kA
1<k<N

Then, expanding the fourth term on the right-hand side of (75) and using (74), we have
N

(76) Zaif (1= PY))(1 — PV (y))
=

N
_ Z (H(x,O(j)) + H(O(/),y) B H(O(/'),O(/)))
=
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N
> @@ + ) - ) - Ner oge

=1

N
=3 > GO0 {PP(y) + PP )}

=k
1<k<N

+Y PV ()PP (x) + Ole) .

M=

~.
Il
—

Substitution of (76) in (75) leads to the formula (35).
The proof is complete. O

4. - SIMPLIFIED ASYMPTOTIC FORMULAE OF THE ANTI-PLANE SHEAR (GREEN’S FUNCTION SUBJECT
TO CONSTRAINTS ON THE INDEPENDENT VARIABLES

Here we show how the asymptotic formula for G, (see (35)), may be simplified under
suitable assumptions on the points x,y. We consider two cases, the first being the
situation when the points x, y are sufficiently far away from each of the inclusions, the
second is when the points are within a small neighborhood of a particular inclusion.

CoRrOLLARY 1: @) Let x,y € Q, C R? such that

(77) min{jx —O"|,|y —OY|} > 2¢eforall j=1,...,N.
Then
N "
(78) G,lx, ) Z Z:mG(y,0")Glx,0)

N
i o(Z e(min{|x — 0%, |y o“’>|})1> ,

=1
where = [5,1Y e 1, is given by (32).
b) If max{|x —0"| |y —O"|} < 1/2, then

(79) Gilx, y) :g<”f><ém,nm>+<:f> 7, )" (E,)
+ > @ NGx,0")

J#Fm

1</<N

+ O(max{|jx —0"|,|y —0"|})

where a) = 2n) loge + HOY ,0Y)) — (V.
Both (78) and (79) are uniform with respect to (x,y) € Q, x Q..
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Proor: a) From (35), G, may be written as

N
(80) G;:(x»y) - G(x;y) - Zb(j)(éjvqj)
J=1

+

M=

{a7PY ()P ) = V(8 — ) +

=
N “ .
-3 > GOY,0"PP()PY )+ O) .
= 5
1<k<N
Owing to Lemma 2, we have the estimate for the function { )
(81) (&) = @m) og &+ Y + 0(e ™)

and, as a result of condition (77), along with the estimate for 4 given in Lemma 1 we
obtain

(82) PEm) = — @r) M og & — V() + O(lg] ™)
= — 20 log |&| — @n) " log|yy| — ¢V
+ Ole(min{|]x — O], |y —OV|})7 1) .

Using the latter estimates in (80), yields

N
(83) Gilx, ) =Gla,p) + > a' PV ()P (x)
=1
N - B
_ Z Z G(O(k),O(]))Pék)(y)Péj)(x)
7= kA
1<k<N
N » K
+ O(Zs<min{|x 0|y - o<f’}>1) :
=1
The two summands in (83) may be written as
N N
(84) Zaéf)péﬁ(y)p;j)(x) _ Z Z G(O(/e),O(/))pi/e)(y)pé/’)(x)
=1 = e
1<k<N
=P (x) diag {a}P,(y) — P (x)MP,(y)

1</<N
=PI (x)E'P.(y) ,
where P, = {PV}N |, M = {(1 - )GOY,0)}} _,, and Z is given by (32).
From Theorem 1,

(85) P.(x) = ES(x) + Ole|loge| ™) ,
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where Sx) ={- Gx oY) +C (&) — (2m) 1log|é/| — } " ;, which by Lemma 2,
={- G (x,0) + O( |§/|7 } . Then, combining thlS w1th (85) in (84), we may
write (84)

N N
(86) > d’PY@P () =Y Y GIOY,07)PY )PP (y)
j=1 =1 ki
1<k<N

N
(Zf’ min{|x — 0", |y - O(Z')|}>1> :

=1
where Z,,,,7,m = 1,..., N are the entries of =Z. Next, substituting (86) into (83) we arrive
at (78).
b) Using the following expression
N

(87) 3 a1 - PO — PO(y)

N
:Zagﬂ{l—P( + (@)~ Z GO"®,0Vp )(x)}

/=1 k#j
1<k<N
< {1=PV() + @) Y GOY,0MP ()}
1
+>° 3 GOY,0N{ PV (PP w) + PE(y)PY )
=1k
1<k<N
~PYx) — PA(y) — (@ S G(O“’,O<f’)P§1>(y)P§’<)(x)} 7
1

along with identity (74) and the definition of G and g, j # 2, in (75) we have

(88) Gfl(xvy) :g(M)<ém7”m) - 7y) Z /9 6]7’]/) + (N - 1)(275) 10g8

J#m
1<j<N

N
+Z N~ HOY,0Y) - (V) - Hy,0"

7=1
« (H(O(/),O(/)) _ Cm(éj) _ H(x,o(/.)))

N
+ Z (H(x,O(/)) + H(y,O‘/>) — H(O(/),Om))
=1
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N
+>° Y 60", 0P (PP )
7=l kA
1<k<N

_ Z (afzj-))flG(O(l)’O(/))Pil)(y)Pé/e)(x)} 10 .
17
1<I<N
Since max{|x — 0|, |y — 0|} < 1/2, we may expand H(x, y) about (0", 0"),
this together with estimates (81), (82) for ; # 7z leads to

(89)  Gilw,y) =¢" & m,) + > {20 og e lx =0V |y —OV|) + (1}
J#Fm
1</<N

+ @) (=" w,,) + Oy =0 = {"(E,) + Ollx —0™))

+ Z (aéf'))’l(aif)+G(y,0‘/)))(a§/)+G(x,0‘/)))
22N

+ Y (Hx,0Y) +Hp,0Y) — HOY,0")
2N
N

+> ) G(O%)’O(/)){p£/'>(y)P§k>(x)

=1k
1<k<N

-y (ai/))71G(OU),O(/'))Py)(y)Pik)(x)}

I#
1<I<N

+ O(max{lx —0"|,|y —0"|}).
Simplifying the second summand in (89), we have
(90) G, ) =¢" (&, m,) + (@), ) (E,)

+ Z (aif))*lG(y’O(J'))G(x’o(j))
jF#Em
1</<N
N

+3 % G(O(/@),O(/)){Péf)(y)PS/e)(x)

=k
1<k<N

_ Z (a,(s/))—lc(o(/)’O(/))Pél)(y)Pék)(x)}

I
1</<N

+ O(max{|x —0"],|y —0"|})

and since PV (x) is Ol|loge| ") for j # mz, we arrive at (79). O
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5. - ASYMPTOTIC FORMULAE VERSUS NUMERICAL SOLUTION

In this section, for the case of when €, is a planar circular domain with several circular
inclusions, we shall compare the asymptotic formula for the regular part H, of the
function G, for the operator —4, with a solution produced by the method of finite
elements in FEMLAB.

The aim of this section is to illustrate through two examples that

i) that the asymptotic formulae can produce a solution to the problem, even when the
finite element package cannot, and

ii) that we are able to take the inclusions in our example configurations to be rather
large (by increasing ¢) and still obtain a good accuracy by the asymptotic formulae.

5.1. Domain and the asymptotic approximation

Let @ C R? be a disk of radius R and let O, ..., O™ be interior points of Q. We
introduce the sets @\ as disks of positive harmonic capacity in R? each with centres oY
and small radii p”) for / = 1,..., N, and we have the set Q, = Q\ [J@!”. The function
H, is a solution of the problem

(91) MAH (x, ) =0, x,y€Q,,

(92) Ha(x,y) = - (275)71 10g |x _y| , X &€ 39;;,3’ €.

The regular part H, of Green’s function G, for —4 in the domain €, is given by

N
(93) Holw, y) =Hx, ) = 3 g/x —0Y, y —0V)
7=1
N _
— @) 'Nlog|x —y| — Z{a(/)Pi/)(J’)Pi])(x)
7=1

+27)  log (0 ~ 0y —0) )}

N
+>° 3" GO",0"PP )PV x) + O)

=k
1<k<N

which is uniform with respect to (x, y) € Q, x Q.. We use the leading order part of this
approximation for our calculations.

Here ¢ = m/d is the small parameter, with »2 being the maximum radius of all the
disks @ and

— i ; ; () ; : @ oW
(94) d= mln{lrgnglN{dlst(O ,0Q)}, ISn%rgll\]{dlst(o ,O )}} )
ik
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the function H is the regular part of Green’s function G for the domain Q

1 R R?
Hix.y) = —lo (—> s,
V= m B\l —s1) 7T

7
g is the Green’s function for the set C&\”, j = 1,...,N, given by
. , (p\))? .
|y _O(J)”x _O(/) o |y _O(/)‘z (y _O(/))|

v _O(/) _O(/) |
R P~

The function P is the leading part of the approximation of the function P!/,
7=1,...,N which is a solution of

(95) 4PV (x) =0, x€Q,,
(96) PYx) =0, xcdQ,
(97) PV(x) =6y, xcdo® k=1,...,N.
Let P, = {PV }/N:p then the entries PV’ are obtained from
-1
(98) Pelx) = ( diag {a'} — E)JE) Six) ,
1</<N

where 4 = (21) ' log p" + HOY,0Y), M = (1 - 5,)GO"™,0)Y,_,, with

7

1
Glx,y) = —Elog|x —y|—Hlx,y),

and S = {S(/)}]-I\j:l with entries being given by SV (x) = — G(x,0").

The formula (93) can be written via solutions of model problems in domains
independent of the small parameter.

Let the sets o) = {¢ e —0Y) : x € 0"}, 7 = 1,...,N with radii 7/ = &~ 1p/),
and denote there complements by Ca”) = R*\ @), ; = 1,...,N.

We will assume that all of @'/ contain the origin and that the maximum distance
between the O and dw'” is equal to d.

In the following we use the scaled variables & = ¢~ (x — 0"Y) and n=¢"'y —0oY).

The Green’s functions for the sets C@'”), j = 1,..., N are given by
- Lo (mls-aly 67
99 DE y) = —log| MG =Y U7,
(99) g (éj ’7/) o7 08 <V(])|é]' _ ’l/| ; |’7j‘2 n;

We introduce the functions £ by

(100) (D) = lim g7, n)

|&|—00
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and the constants

(101) (7 = lim {{@) — n) " logluyl},

In;|—o00

forj =1,...,N. For the domain @, described above
() A G Lo
(102) {'n) = —l < (/)> , L =- Elogr’

We may then rewrite (93), incorporating the small parameter ¢ with the use of (99), (100)
and (102) as follows

N
(103) Hlx,y) = ) =3 &, m) — @ 'Nlog (¢ x — )
7=1
= PGP @) - ) - D) +
=1
N 2 B
+>° > GO%,0"PE(yP ) + O
=
1<k<N

where a{/) = 2n) ' loge + 2n) log ) + HOY',0).

5.2. Example: A configuration with a large number of small inclusions

For our first illustrative example, we shall plot the regular part H, of Green’s function
G,.

//,, - —_ 04 035
[ IR I I \\\
0 L. R RS
\ PR i o O 0.4
0.1 s S _— 01
02 05 02 045
03 -03

-0.55

-06

— -0.65
Py ™
e .50 07
0T o 07
-50\\\///750 SN/SO
100 -100
a) b)

FiG. 2. —a) Numerical solution produced in FEMLAB on a mesh containing 188112 elements,
b) Computation based on the asymptotic formula for H,, when & = 0.0498.
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Relative error

Absolute error

Fic. 3. — a) Absolute error and b) relative error between numerical solution and the
computations produced by the asymptotic formula for H,, when ¢ = 0.0498 and the mesh contains
188112 elements. All the spikes occur on the boundaries of the inclusions. Maximum absolute error
is 0.1162, maximum relative error is 0.2995, which is attained on the boundary of the inclusion with
centre (—20, 4), near the point (-20, 15) where the force is applied.

We produced the surface plot of the asymptotic solution for H,, on a mesh consisting
of 752448 elements, (see Fig. 4). On this mesh, FEMLAB was unable to produce an
accurate numerical solution, but the asymptotic formula is still efficient for this case.

The numerical settings are as follows. Let £ be the disk of radius R = 70, centered at
the origin. We consider the situation when we have N = 50 small disks, whose radii in
scaled coordinates do not exceed 10.0449, and our small parameter ¢ = 0.0498. The
location of the point force is given by y = ( — 20, 15).

T
7 . -
0 B IS 03
201 N R St Tl
T Lo 2 e 0.35
0.2 P N
03 0.4

N
-100

FiG. 4. — The computation based on the asymptotic formula for the regular part H, of Green’s
function on the refined mesh, when & = 0.0498 and the mesh contains 752448 elements.
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For a mesh containing 188112 elements, we produced a surface plot of the asymptotic
formula for H, given in (103) and the numerical solution given in FEMLAB by the
method of finite elements, and the corresponding diagrams are shown in Fig. 2a), b).

We compared both the asymptotic representation for the regular part of G, and the
numerical solution produced in FEMLAB on this mesh, by taking the absolute difference
between the two (see Fig 3a)) and then the relative error (see Fig 3b)). From both of these
figures it can be seen that the asymptotic formula gives a good approximation to the
numerical solution produced in FEMLAB.

The critical case when FEMLAB failed but the asymptotic formula still produced an
accurate solution is shown in Fig. 4.

5.3. Example: A configuration with inclusions of relatively large size

In this example, we shall once again take the asymptotic formulae for the regular part
'H, of the function G, and compare this with numerical solutions produced in FEMLAB,
for a configuration with few inclusions, and we shall experiment with our parameter &. We
show that we are able to consider a configuration where the inclusions are rather large (by
increasing &) and our asymptotic formula for H, still gives a good approximation to the
numerical solution.

Let Q now be a disk of radius 150, and we consider the case when we have 5 inclusions
o, j=1,...,5, with centres OV = (44,66), 0¥ = (—90,34), 0® = (—36,—68),
0% = (68, -26),0” = (- 14,0), and whose radii in scaled coordinates do not exceed
53.7919. The position of the point force isy = ( — 25,70).

In Table 1, we present data showing how the error between the numerical solution
given in FEMLAB and the asymptotic formula for the regular part of Green’s function H,
changes as we decrease ¢. Here 72 denotes the maximum radius of the inclusions and A,
and R, are absolute and relative error, respectively.

Table 1: Maximum absolute and relative error corresponding to various values of e.

m & A"L(I,.’I,' RWI ar
40 0.7436 0.1219 0.1991
36 0.6692 0.09741 0.157
32 0.5949 0.07637 0.1216
28 0.5205 0.05845 0.09204
24 0.4462 0.04335 0.06752
20 03718 0.0308 0.04749
16 0.2974 0.0206 0.03156
12 0.2231 0.01298 0.02

8 0.1487 0.007266 0.0111

4 0.0744 0.001395 0.004503
2 0.0372 0.0006608 0.001991

1 0.0186 0.002993 0.0009269
0.5 0.0093 0.0003156 0.0004448

0.25 0.0046 0.0001515 0.0002171




Asymptotic formula

Relative error

100 %0

T
0 T

067
08 )
1T o 0.8 0 T

T
T 50
T 0
00 T 100
400 T

150

a)

FiG. 5. — a) Computations produced by the asymptotic formula for H,, b) The relative error
between the numerical solution and the asymptotic formula for the case & = 0.7436.

We also have for the situation when ¢ = 0.7436 the surface plot of the asymptotic
formula for the regular part of Green’s function and the relative error between the
numerical solution and the asymptotic formula; we note that inclusions are rather large in
this case (see Fig 5a) and b)). It can be seen from Fig 5b) that although the maximum
relative error is larger near where the point force is applied (R, = 0.1991), the
asymptotic formula still gives a good match with the numerical solution everywhere else.

The plot of ¢ against R, on a logarithmic scale is shown in Fig. 6. It can be seen from
this that for small ¢ the graph is appears to be linear and from this we can conclude the
numerical evaluation of the relative error R, is consistent with the theoretical prediction
of formula (103).

6. - GREEN'S TENSOR FOR THE LAME OPERATOR IN TWO-DIMENSIONAL ELASTICITY

In the subsequent sections we shall study Green’s tensor for the Lamé operator in
Q. C R”, n = 2,3 which will be denoted by G,. The tensor G, is a solution of

(104)  udeGylxe,y) + A+ 1)Ve(Vy - Gelx, 3)) + 0x — ), =01, , x,y € Q,,
(105) G:x,y)=0I,, x€0Q,y¢€Q,,

where I, is the 7 X 7 identity matrix. An important property of this tensor is the symmetry
relation

(106) Gilx,y) =Gl(y,x), forx,ycQ,x+#y.
We shall also introduce the notation for the Lamé operator

L(0x) := udy + A+ WVi(Vy ),
where 0, = 0/0x.
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FiG. 6. — Plot of log (¢) against log R,y

Let u be the displacement vector which satisfies the Dirichlet boundary value problem
in the domain Q, C R”, » = 2,3

(107) Lo ulx) =0, xeQ,,
(108) ulx)=ykx), xcoQ,
(109) ulx) =9 ' x—0Y)), x€dn 1<;<N,

where O is the zero vector, and we assume that ¢ and w are continuous vector
functions. We shall also use the notation ¢!/ (x) = ¢/ (7 (x — o).
We state the Lemma, whose analogue for the case of a single inclusion was proved in [12].

Lemma 5: There exists a unique solution u € C(Q,) of problem (107) — (109) which
satisfies the estimate

N
(110) mas o) < constma{ S 100l -
3 j=1

Before presenting the proof, we introduce the inverse operators for boundary value
problems in model domains.

6.1. Model problems

Inverse operators for the model problems. Let n =2 or n =3. We use the inverse
operators ITo : y — w and 1TV : 9V — v for the boundary values problems

(111) Logwkx) =0, xeQ,
(112) wkx) =wplx), x€0Q,
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and

(113) L@@ =0, &ecR\a",
(114) V(@) = 9@, E€dn”,
(115) (@ -0 as g — o0,

where y and ¢ are continuous vector functions, the boundaries 9Q and dw'” are
smooth, and for 7 = 2, ¢/ satisfies the orthogonality conditions

(116) JW@E@W@@:mk:u,
'/

with the vector functions (V% & = 1,2 being the columns of the matrix function V) (see
(191)) which is a solution of

(117) L@@ =0, &eRA\aV,
(118) (& =0L, &ecdw,
(119) (@) ~ &0+ as g — o0

Here 7 is the fundamental solution of the Lamé operator in an infinite plane and ('™ is a
constant matrix (see (192)).

The notation 1T : 9" — v') will be used for the inverse operator corresponding
to the boundary value problem similar to (113)-(115) in R"\w!’; here
vg/) — v(/.)(sfl(x _ O(/))).

Estimates for solutions to the model problems. The following assertions state the
properties of solutions to the model problems (111), (112) and (113)-(115) which will be
used in the proof of Lemma 5 given in Section 6.2 below.

Lemma 6 (Fichera’s maximum principle, see [4]): There exists a unique solution
u € C(Q) of problem (111), (112). This solution satisfies the estimate

(120) [l ) < const||wllcpg) -

Lemma 7: There exists a unique solution in C(R”\@'"") of the problen: (113) — (115) for
n =73 and (113)-(116) for n = 2. This solution satisfies the estimate

(121) sup {1¢[ (@)1} < constl|o" | o) -

EeCaly)

Proor: For the sake of simplicity of notations we omit the superscript /), and write w,
v and ¢ instead of w7, v and 9. Without loss of generality, we assume that
diam @ = 1. By Lemma 6, there exists a unique solution U € C(Bs;\w) of the Dirichlet
problem

(122) L@IU@E =0  inBs\@,
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(123) UE=0 ondB;,

(124) UE =9l onodw,

where By is the ball of radius R centered at the origin.
This solution satisfies the estimate

(125) Ul ¢ < const (9]¢ -

It suffices to prove the lemma assuming that ¢ is smooth, with the general case being
settled by approximation. Owing to the classical elliptic theory and smoothness of both
Ow and ¢, there exists a unique variational solution v € C(R”\@) (see Fichera [3]).

Let

(126) w=v—nU,

where 7 € C§°(Bs) and 7 = 1 on B,. The vector function #U is extended by zero outside
Bs. Obviously,

(127) Troow = O |,
and

(128) w=00g") aslg—o0.
Furthermore,

(129) L(0dw = —[L(02),n1U

so that L(O:w € C(R"\@) and supp L(9:)w C Bs\B,. By Betti’s formula and Korn’s
inequality we obtain
1/2

(130) 0|15\ < comst J U dx
B;\B,
This along with (125) gives
(131) l[]]1,8,\8,,) < const [llcea -
By the local regularity estimate for solutions of L(0:)jw = O we have
(132) ||w||c<aB7/4> < const 9]l ¢(o0) -
This and (125), (126) imply
(133) [vllcos, ) < const [[0llcoe) -
Applying Fichera’s maximum principle (see Lemma 6) for the domain B;/4\@ we find
(134) [o]lcs, 00 < const [|]lcow) -
Let 7 € C(By)4), and 7 = 1 on Bs 4. Then
(135) —LO)((1 — ) ==/,
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where

(136) fFECPR")  and  suppf C Byjy\Bsss .
We have

(137) 1—1w=8xf,

where & is the fundamental solution of the Lamé operator.

Now, (137) implies
(138) €1 — 7(&][p(&)] < const ||UHL2(B7/4\BS/4) )
in the three-dimensional case. For # = 2, we notice that the condition that (1 — 7)o
vanishes at infinity results in the zero principal force condition for f. Therefore, the
logarithmic and homogeneous of order zero terms in the asymptotics of & disappear and

(138) holds in the two-dimensional case as well. Referring to (134) we obtain for
e R"\By

(139) €l o (@) < const [|¢]lcoa) -

and using (134) once more, we complete the proof of (121). O

6.2. Proof of Lemma 5

We present a proof for both # = 2 and # = 3. We note that the two-dimensional case
requires the notion of elastic capacitary potentials.

6.2.1. The two-dimensional case

The matrix P,. We need an auxiliary 2 x 2 block matrix P, = (P, ..., PN) whose
appearance will become clearer in Section 6.5, where the elastic capacitary potentials P
are introduced and it is shown that the entries of P, are the leading order parts in the

asymptotic representation of Pifv). We set
(140) P, =F(1+GD,) ",

where I + GD, is the N x N block matrix, whose (£,/) elements are the 2 x 2 matrices
L+ (1 -6,)GO0",0V)DY. Here D, = diag {D\V,..., DN}, and the 2 x 2 blocks
DY) have the entries

141) DY = — (K{) ' (Kzloge — &5 + Hx (0,0,

—_
N
N

~—

(
( DYy =~ K5 ~ Hep0V,07)),
(143) Dé]l) = <KY))_1(C(2010’]‘) - Hzl(O(j),Om)) )
(144) D;fz) =— (K(l/))fl(Kz loge — é'(lolo,/) + Hn(O(/),O(/))) 7

andfor;=1,...,N
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(145) kY (Kz loge — {77 + HH(O‘/),O")))

x (Kaloge — {57 + H(0,0)

_ (le(o(/)7o(j)) _ 41(1020-,/))([_121(0 ,0 (/) ) — 2010 7)) ,
with
A+3u
146 K=t
(146) 27 4+ 2p0)

Here (' ) ! are the entries of the constant matrix (™ (see (192)), and Hy, are the
components of the regular part of Green’s tensor in Q.
The blocks F* of the matrix F, = (F, ..., FNV) are defined by

(147) FPx) =Glw,0") — (e (e —OW))
_ y(sil(x _O( : )70) +Coo,/e)D£k) ,

where G is Green’s matrix of the model problem (111), (112) in 2. The matrix functions
P satisfy the homogeneous Lamé equation.

Furthermore,
(148) PV = Ole|loge| ™), for x € OQ ,
and
(149) PY) = 9, + Ole|loge| "), forx € 9 k=1,...,N .

Homogeneous boundary condition on 9Q. First we consider the problem

(150) L0 ulx) =0, x€Q,,
(151) ulx) =9V x-0Y)), x€do, 1<j<N,
(152) ux)=0, xe€dQ.

We are looking for the solution in the form

N N
(153) u=Yy 1Y(g" — A7) + 3" PP A"
7=1 j=1
— HQ(ZTI‘&QH‘E‘.‘/)(gi/) _ A(/)g(/'))) ’
7=1

where g (x) =g (e (x —0")), g are unknown vector functions and the constant
vectors A'g"” are defined by

(154) AT = [ 0@ @ s

A’/
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The matrix 9t (&) is the 2 x 2 matrix function given by

(155) N(@&) = {T,0:71(@), T, (0729}
where

. "Ny + 612 )
156 T, (8:) VR (&) = (‘7“ | , .
o % 12"+ 022 my

n (156), n = (1,7,) is the unit outward normal on dw'”, g;, 7,7 =1,2 are the
components of the two-dimensional Cauchy stress tensor given by

gjj = Aty + e j +ujj)

where repeated indices are the indices of summation, and (156) represents the tractions of
the vectors C(]‘k), fork=1,2.
Evaluating the trace of (153) on ¥ we obtain

(157) o =g +5 e 87 ...&"), k=12,.N,

where the operators S* are defined by

(158) $P(g" g2, g™N) = Try 0 (PY — L) A%g"
+ ) Tryw (1 (gd) — A7)
J#k
1</<N
+ Y Trgn (P AVgY)
i#k
1</j<N
~Teyetta Y Tua g~ A7)
1<;<N

By (140) and (154)
(159) [ Ttp0 (PY = 1) A¥g || i) < const el logel (|84 e -

Lemmas 6 and 7 imply

160 Tr, w1V (g — AVg! < const & e
(160) ‘ ; Tao ( (g! ) . cons 1rSr;)aSXNH 8o, -
1<j<N
and
(le1) HTrOw@HQ( Z Tragnif)(gif)_A(/)g(/))>
’ 1</<N C(Owgk))

< const & max lg? llc@a?) -
<p<
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According to (149),
(162) Tt 5,0 (P AV )| gy < const el logel ™"l ll o,

for ; # k. Combining (159)-(162) we deduce

(163) 27T o) sty < cOnSt e

It follows from (157) that

(164) g =U+5)"9,,

whereg, = (g!",....g™) and g, = (9, ..., o™ and S, is a matrix operator whose
rows are SV ... SV then

(165) 16, < const max 10

Owing to (153), (165) and Lemmas 6, 7 we obtain

()
(166) max |u| < const 121/@2&“(08 et -

£

The inhomogeneous boundary condition on 9Q. Now we consider the problem

(167) L0y ulx) =0, xe€,,
(168) ulx)=wkx), x€dQ,
(169) ulx)=0, xc¢ 8602/),1 <;<N.

The solution is sought in the form
(170) u=Iloy+v,

where the second term v is defined as a solution of the problem (150)-(152) with the
boundary condition (151) replaced by

v@&) = —(Try o llop)x), x € 0w/ j=1,...,N.
According to the first part of the proof (see (166)), we have

<
(171) max lv| < const 11;1(}1721;([\] \Traw?)ﬂgm

€

< const [|y|cag) -
It follows from Lemma 6 that

(172) max [Toy] < const [[¥llcin -

£

Combining (170), (171) and (172) we deduce

(173) rr}zax ju| < const ||wlcog) -

€

The estimates (166) and (173) lead to (110). This completes the proof for the case » = 2.
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6.2.2. The three-dimensional case

First let us consider the homogeneous boundary condition on OQ as stated in (150)-
(152).
We look for a solution of the problem (107)-(109) in the form

N N
(174) w =310~ o(Trag > 11007
7=1 7=1
Evaluating the trace of (174) on dw!”’ we obtain
(175) o) =g/ + 5/ 8?,....a"),
where
(176) S (gh g@ . g™y /(E:H )
l k#j
1<k<N
N
— Tr(?wé/) HQ (Trag Z Hi@gi@) .
k=1
By Lemma 7
(177) ||Tr0w§f)( ”ch 5 < const & g ||deu:;) when & # /.
and
(178) [ TroolT 8" || cog) < const & [l [l cou) -

According to Lemma 6 combined with (176)-(178) we obtain

(179) ”Sé/)”C(H/\:l ouf) ~Cloal?) < const ¢ .

Hence

(180) g =U0+S)""9,,

where g, = (gV,... gV )7, = (p!! ,...,(pﬁ‘.N))T and S, is the matrix operator whose
rows are SV, ..., SW and the estimate

(181) gV lcaany < const 1mpax (% ||Ca(]£p))

holds. By (174), (181) and Lemmas 6, 7 we deduce

(/)
(182) m%x lu| < const max 125"l ey -

For the case when we have a non-zero condition on 982, we consider the problem (167) -
(169), with Q, being a three-dimensional domain with small inclusions and adopt the
representation (170) for its solution. Similar to Subsection 6.2.1, we deduce the estimate
(173) for the case of three dimensions, which together with (182) leads to (110). O
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6.3. Green’s Matrix for a two-dimensional domain with several small inclusions

In this section, we shall consider the uniform approximation of the tensor G,(x, y) for
the case of a planar domain with multiple small inclusions (7 = 2), formulated in
Section 6. We once again introduce model domains and governing equations needed
for the study related to this case.

6.4. Green's kernels for model domains in two dimensions

Let Glx,y) = [GV(x,3),G?(x,p)] and gV(&,m) = [g"V (&, m;),8"? (&, ;)] now
denote Green’s tensors for the Lamé operator in the domain Q and C&'” = R*\@'7,

7=1,...,N, respectively. The tensor G is a solution of the problem

(183) L(0y)G(x,y) +6x —y) =0, x,y €Q,

(184) Gle,y)=0L, xc0Q,yeQ,

and the tensors g/ satisfy

(185) L0 )g” (& n) + 0 — ), = 0L,  &,n; € Ca"
(186) g</>(fj7 ,,]_) =0, & e 8C&)(/), 0 € Ca 7

(187) |g(/"k)(éj-,t]]-)| is bounded as |&;| — oo , 7, € Ca' for k=1,2.

We represent Glx, y) as

(188) Glx,y) = y(x,y) —Hlx,y) ,
and gV (&, n;) forj=1,...,Nas
(189) g(/)(é/a ’7/) = y(éja ’I/) - b(/)(éja ’I/) )

where H and A" are the regular parts of G and g/, respectively, and y(x,y) =

[y,(x,3)1% _,, is the fundamental solution of the Lamé operator in two dimensions with
y y 7,7=1 p

components

(190) v, ) = (G4 30 Eru(i +20) ' (— log|x — |0,
+ A O A+30) o — 9 — )l — |7

for 7,/ = 1,2. We introduce the tensor ¢ as

(191) () = Jim g/ my)

and the constant matrix

(192) (e = Jim () + 7,0}
1| =00

fory=1,...,N.

In [12], it was proved that the matrices ¢V, (%) 1 < < N, where symmetric.
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6.5. Auxiliary matrix functions

6.5.1. An estimate for the regular part A of Green’s tensor for the
unbounded domain

Here we state a result concerning an asymptotic expansion of the regular part 5 of
Green’s tensor g/, which is consequence of Lemma 2 presented in [9], (p. 78).
For the proof of the following Lemmas, we refer to [12].

Lemma 8: Let |&| > 2, 5, € Ca\"). Then the regular part b/ (&, n,) of Green’s matrix
g m), in CV admits the asymptotic representation
(193) P&, ) = 9(&,0) = V() + 0T,
forj=1,...,N.

We also have the following asymptotic representation of the matrix function ("’

Lemma 9: For |&| > 2, the following representation for &9 bolds

(194) (NE) = —9(E,0) + 7 1 0(g ™,
forj=1,...,N.

6.5.2. The elastic capacitary potential

Let P/ (x) be the elastic capacitary potential corresponding to the ;% inclusion, that is
the matrix P!/ (x) satisfying

(195) L@O)P(x) = 0L, x € Q,,

(196) PV(x)=0L, x€dQ,

(197) Px)=L, xedo,

(198) PPx)=0L, xecdo® 1<k<Nk+#;.

Given the above boundary value problem, we show that the elastic capacitary
potentials P/ can be approximated by (140).

Lemma 10: The leading order part P of the asymptotic approximation of PY(x) is a
solution of the following system of equations
&

N
(199) PY@) + > (1 - 3PP )GO",0)DY
k=1

_ (G(&O(/)) — (&) —9(E,0) + c‘°°”’>>D£” :

where DY) defined by (141)-(146).
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Proor: We represent PY)(x) in the form
(200) PY(x) = (Glx,0Y) = V(&) — p(&,0) + (*/)DY + RV (x) ,1 <j <N,

where the matrix Ré’l) (x) satisfies

(201) L3RV (x) = 0L, x€Q,,

(202) RV(x) = V(&) + 9(&,0) = (DY, x€0Q,

03)  RVw) =1~ (~Kslogel — Hx,0") + (™" )D) | x € 00/,
(204) R () = — (Glx,0) - (&) — (&, 0) + {*=)DY

x€cdoP1<k<N,k#j.

The boundary condition (203) is equivalent to

(205) jo)(x) _ (H(x,O(/)) . H(O(/)’O(/)))DLJ') , x€ (9602/) ’
where DY) = O(|logé| "), so RV (x) = O(e|loge| ) for x € A

By Lemma 9
(206) C(/)(f/) +7(&,0) — () = 0e), forx €0Q.

Then in (202), we have that RY)(x) = O(¢| log £|7_1) for x € Q.
Next, using Lemma 9 and the fact that G(x,0") is smooth forax € ©;, we havein (204)

(207) RYV(x) = —GO"™ 07DV + O(e|loge| ™),

forx € 9™ 1 <k < N,k #;.
Then we may write RY)(x), using the elastic capacitary potential for the individual
inclusions, as
(208) RV )=~ Y PPwxGO",0")DY +p(x) .
ki
1<k<N

Combining (200) and (208) we arrive at
(209) P) = (G<x,0”’)> — () — (&, 0) + ()

- > P;@(x)c;(o%),o‘f))) DY +pV(x).
kA
1<k<N
Here p"/)(x) is a matrix satisfying the homogeneous Lamé equation, and is O(¢|loge| ')
forx € 0Q and x € Bwi,/), 1 <7 < N. Therefore by Lemma 5, p'”(x) for 1 <; < N is
Ole|loge|™") uniformly with respect to x € €,.
The removal of the remainder term in (209), gives the system (199). O
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6.6. A uniform asymptotic formula

Now we may approach the approximation of Green’s matrix G, for a two-dimensional
elastic solid with multiple inclusions.

THEOREM 3: Green's tensor for the Lamé operator in Q, C R? admits the representation

N
(210)  Gilw,y) =Gla,p) +>_ ¢, n) — Nyle"'x,27'y)

+ > {PP@ATPIT(y) — V(g — ) + )
j=1

N R R

-3 3 PPw)GOY,0%)PHT(y) + Ot

7=l kA
1<k<N

uniformly with respect to (x,y) € Q, X Q,, where

(211) AY = Kylogel, + HOY' , 0V — (> 1<;<N.

Proor: Let G, be sought in the form
N

(212) Golx, y) =y, p) — Holw, ) = Y _h(x,p)

j=1

where it suffices to seek the approximation of the tensors H(x, y) and /) (x, y), which
solve the problems

(213) L0y H,(x,y) = 0L, x,y €,

(214) H.(x,y) =yx,y), x€0Qy€eQ,,
(215) H,x,y) =0L, x€cdo,y€Q,1<;<N,
and

(216) L(@x)b(sfv)(x,y) =0L, x,yeQ,,

(217) /Jif)(x,y)zolz , X€E0R,yeQ,,

(218) /9&7')(x,y) =ylx,y), x€ 8w§7),y €Q,,

(219) P (x,y) =0l , xeawék),yGQE,ISkSN,k#j.

The approximation of Hy(x,y). Let H.(x, y) be given by

(220) H,(x,y) = =PV (x)HOY, y) + H(x, y) + V(x, ) ,
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where V(x, y) satisfies

(221) LOy)V(x,y)=0L, x,y€Q,,

(222) Vie,y) =0, x€dQ,y€Q,,

(223) Vix,y) =HO"Y y) - Hix,y), xcdo yeQ,,
(224) Vix,y)=—-H,y), « eé)wi’%y €Q, k#7,1<k<N.

Since wifv), 1 <7 < N, are small inclusions and H is a smooth tensor in £ we may expand
H about their centres. Namely, for the boundary condition (223) we have

(225) Vix,y) =HOY,y) — Hx,y) = 0), xcda yec,,
and from (224)
(226) V(x,y) =—H(x,y) = —HO®, ) + O) ,

xeaw'i@,ye.()g,k;éj,lgng.

Therefore, using the elastic capacitary potential of the individual inclusions, we represent
the tensor V(x, y) as

(227) Vie,y)=— Y PP@HOY, y)+9,x,5) .
e
Substituting (227) into (220) we have
N
(228) Hyx,y) ==Y PY@)HOY, y) + Hlx, y) + 9,(x, ) ,
=1

where ,(x, y) is the remainder term satisfying

(229) L(ax)ség(xﬂy) = OIZ ) X, ) S QS 5
(230) D, y)=0L, x€dQyec,,
(231) 9., y) =HO", y) — Hlx, y)

=0(), xcdon/ yec,1<;<N.
Therefore, by Lemma 5, we have $,(x, y) = O(¢) uniformly with respect to x, y € Q,.

The approximation of b\ (x, y). We begin by writing the boundary condition (218) on
) as

(232) bf‘,/)(x,y) =—Kylogel, +y(&,m), x€ 8wf;/) ,y € Q..
Thus we seek h/(x, y) in the form
(233) b, ) = —Kologel + (&, m) + 7/ (x, p)

for x, y € Q,, where the remainder 7!/ satisfies
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(234) L@y, y) =0, x,y€Q,,

(235) )(ff)(x,y) =Ky logel, — b &), x€ciyecQ,,

(236) N, y)=0L, xcda, yecQ,,

(237) 1 (x, y) =Ky logel, — /9(/)(6/,17/) , x€ aa)‘(f),y €Q,,
1<E<N,k#;.

Using Lemma 8, we rewrite boundary conditions (235) and (237) as
(238) W, y) = —yx,0) + )+ 06), xcoye,,
and
(239) 76, p) = =9,09) + {g) + OG)

forx € 0P,y € Q,, 1 < k <N, k # ;. Then, using the elastic capacitary potential, x/’
is sought in the form

(240) 7, y) = —Hx,0Y) + (L — PPN () + 0 (e, p)
where the matrix f)y) (x, y) satisfies

(241) L)Y (x,3) = 0L, x,y €Q,,

(242) 6V (x,y) =0, x€dyec®,,

(243) 1, y) = Hx,0Y), x € oo ycQ,,

244) 5 (x,y) = -Gx,0")+0k), xcdo® yecQ, 1<k<N,k+#j.

From the fact that G(x,0") and its regular part are smooth in €,, in the vicinity of the
small inclusions we expand these matrices about the centres of these inclusions, in such a
way that boundary conditions (243) and (244) become

(245) 67, 9) = HOV,0") + 0(), x€dal)yecQ,,
246) 5V, y) = -GO® 07)+06), xcoP yecQ, 1 <k<N,k#;.
Then, using the elastic capacitary potential, we represent f)f/ '(x,y) as

(247) 6 (x, y) = P x)HO,07) — 3" PPx)GOY,07) + ) ,

k#j
1<k<N

which is uniform for x, y € Q,, by Lemma 5.
Placing (240) and (247) into (233), we obtain the approximation of 5/ (x, y) in the form

(248) b‘ij)(x, y) =—Kylogel, + b(/)(é/, ;) — H(x,0")
+ (L = PN ) + PV (x)HOY,0)

_ Z Pge)(x)G(O(k),O(/))+O(g) )

k#j
1<k<N
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Combined formula. Now substituting (228), (248) into (212) we obtain

N
(249)  Gilw,y) =Gla,y)+ > _ ¢, n) — Nylx, )
=1

N
+ > (= P/ @)HO,0) — (") ~ HOY, y))

=1

N
+3 " (Hx,0) + HO", y) — HO,0")

=1

+ZZ PP x)GO"™,0) + 0(e) .

=k
1<k<N

Using the following relation obtained from the approximation of P/ (x) (see (209))

(250) (A(/))fl(H(O(/),O(j) o C(_/’) 'l/ HO ’y))
=L - Py + 3 (AN G0,0%)PHT(y) + Ofe|loge| !

k#j
1<k<N
where AV = — (Dgfv))fl, and substituting in (249) we have
N -
(251) Glx,3) =Glx,3) + Y /(& m) — Nyl, p)
=1
+ Z (L - ] (Iz P T(y))
+3 " (H,0Y) + HO", y) - HOY,0))
=1

N
+3° 3 PPw)Go™,.0")
=1k
1<k<N

N
+Z Z / ))G(O‘” O(k))Pék)T(y)

7= kA
1<k<N

+ Ole) .

Then, using the approximation of the elastic capacitary potential to simplify the second
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summand
N
(252) (I, = PP ()AL — PP ()
j=1
_ Z (H(x’o(])) + H(O(/),y) N H(O(/),O(/)))
=
=€) + V) - ) — NK; logel,
=
N R .
_ Z Z {G(O(/)’O(k))Pék)T(y) 4 Pék)(x)G(O(k)7O(,/))}
=y
1<k<N
+ Y PP @)AYPIT () + O) .
=
Substitution of (252) in (251) yields the formula (210). The proof is complete. O

7. - ASYMPTOTIC FORMULAE VERSUS NUMERICAL SOLUTION FOR THE SYSTEM
OF TWO-DIMENSIONAL ELASTICITY

We consider a numerical example which illustrates the accuracy of asymptotic formula
of Green’s tensor given by (210), for the Lamé operator in Q, C R2. As in Section 5, we
shall concern ourselves only with the approximation of the regular part of (210).

7.1. Domain and asymptotic formula

The example configuration considered here is that of a half-plane with N circular
inclusions. Let Ri be the half-plane

(253) Ri = {x = (x1,%) 1 x1 > 0,x € R},

andlet o/, j = 1,..., N be disks of scaled radii 4;, where a; does not exceed d defined by
(94) in Section 5 and take N = 5. Let the point where the in-plane horizontal and vertical
forces act be y = (250,50). We also define ¢ as in Section 5.

The regular part H, of the tensor G; is a solution of the boundary value problem

(254) L(ax)HF(xvy) - OIZ , X, € Q£ 5
(255) Helxe,y) = yple,y), x €09,y € Q,,

where Q, = Ri\ U c_og/ ),
J
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By (210), the asymptotic formula for the tensor H,, is given as follows

N
(256)  Mix,y) =Hlx,p)+ > b, n)

=1

N
Z{P(/ (x)A(/ ( ) — C(.z’)(é/_) _ C(/.)(l]]-) I C(oo.,f)}
7=1

N

+>° 3 PP@)G0Y,0%)PHT (y) + O) .
=1 k#
1<k<N

The tensor H(x,y). Here H(x, y) = [Hj(x, y)]” 1, is the regular part of Green’s
tensor in R?, whose components, obtained from [17], are given by

(x14+71)° _ 25191 (%2 — 92)° — (%1 +91)%)

(257) Hulx,y)= 3 poe

—xclogr +

)

2mulic + 1)

(258) H21(x y)

1 [(M —y1) (%2 — 92) n 45191 (1 + y1) (e — yz)]
2nu(ic + 1) 2 Krt ’

(259) le(x y)

1 [(M —y1) (%2 — 92) Al + 910 — yz)]
) b)

2ru(c + 1 2 Kt
(260) Hay(x,y) = _ —rxlogr+ (2 = 32)° + 201y +31)° = b2 =92)
2%,y 2mu + 1) J 72 Kr? ’
where
(261) r=((x +y1)2 + (%2 _y2)2)1/2 ,
(262) k=430 + 0"

The tensor b7 (&, n;). To obtain the regular part bl (&, )7/) of Green’s tensor for the
exterior of the circular inclusion, we take the solution AV [/) /D2 41 of the
homogeneous Lamé system, which corresponds to the regular part of the displacements
produced by a point force applied on the positive real semi-axis in an infinite plane with
a circular inclusion centred at the origin (see [11, [2]). The relationship between 5 and
hUP) is then given by

(263)  HUV( &, n;) {b v/, (b;,0)) cos® 0; — [/9 (v]-,(b/-,O))
+ b ; (vj, (b;,0))] cos b, sin 6; + b("’D)(vj, (6;,0)) sin? @}e(l)
+ {BSP(w;, (b;,0)) cos? 0, + [AY: (vj7(b/70))
— BP vy, (b;,00)] cos 0; sin 0; — P (v, (;,0)) sin? 6 }e?
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(264) AU, m) ={h" vy, (b;,0)) cos® 0; + (b (v, (B, 0)

— bggD)(u,-, (b;,0))] cos;sin 0, — b;’i’D)(v/, (b;,0)) sin? 0; eV

+ {557 vy, by, 00) cos” 0; + [ (v, (6, 0)

+ 55 Py, (7, 00)] cos 0; sin 0; + by vy, (8;,0)) sin® 0, }e?
wheree? = (1, O)T, e? = (0, 1)T, 0; is the angle between the line that passes through the
origin and the point u; = (17,1, ,,) where the force is applied, and the ¢;;-axis in scaled

coordinates, b, = (i, +;7/22)1/ ?, and the components of the vector v, = (vj1,;) are
represented as follows

(265) vj1 =& cosl; +Epsind;
(266) vp = — & sinl; + £ cosl; .
The components of »V"P)(v;, (b;,0)) are given as follows

267)  B9P,, (5, 0)

B 1 (k — 1)@ —bp  a? — 257 — 2Kb? log (a;b; ")
= et D {Ziclogrl + o + 7
: 2
(b7 (k — 1)(B7 — a7) + Ka) (Ujl - Zi]) —xb) (U/l (Ujl - %) —vfz)
- Kbrl
2032 _ 2 A% 2 i
. a;(b; — aj) <_(U/1 — b)) (<(0/1 - b_/) —”/2'2) +205 (U_/l - E>>
Kb} ’

268) AP (w;, (b;,0))

42, 2 ﬂz’
) . { ) d]z(b]z — 4]2)0/2 <(U/1 — b_]]) —0]22 + 2(0/1 - b) (U]-l - é))

T dmu(c+ 1) ber‘l‘

2
V2 <bfaf(1c + 1)+ b/ — 1) — ka} — b} (20/-1 - %))
7
Kb} 7}
(c = D(a? — By }

+

Kkb;rs
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(269) b12 (U/a (b/; 0))

a?\2 2
1 ﬂjz(b]z — 4]2.)1)]-2 <(U/1 _ b_7/> _0/22 + 200 — b) (Uﬂ . b_//))
=— 4drpGc + 1) Kb;_;/l!
2
b2 (bz (k—1)+ 174(K +1) — }m Kb3 (20]1 — bi))
+ g

Kb; 72

(e + )57 — a7)vj2
- Kbjr3 7

(270) AP (w;, (B;,0)

1 (e + D& —a)vpy  a; + 27 log (a;b; ")
T 4mule+ 1) {ZKIOg n Kb, - b;
@ a
(bz(}c—i— 1)(ﬂ — bz) )(l)/l —b—)-i—Kb (Uj‘l (Uj‘l —j)-l)jz»z)
* kb7 :
2002 _ 2 b, AT 2,2 a}
a;(b; —a;)| —(vj1 = by) (Ujl b]'> — Uy |+ 205 (Uj‘l - b_])
i KB }
where 4, is the radius of the /* circular inclusion in scaled coordinates,
“2 1/2 . 1/2
(271) r = ((vp _b_) + l) )T, = ( + 1)]2) .
j
The tensor ((/)(éj). The tensor V) [ézk (& :IZ 41, taken from [14], has
components given by
1 |5|) W g - &)
272 2klog( L) — 2 / A /
@r2) @)= 4wW+D{K%<@ e ¥
- 1 &i&n  Enén
273 (/) J2I=Ie =il ,
) e =46 = i A gp e )
1 |~f|) W8 2E -8
274 diclog(19) L LT 52 Gisn T 520
@ éﬁ@)4wm+n{x%<@ &I &I’ )

The constant matrix (™. The constant matrix {° is present in the asymptotics of
the matrix function ¢/ at infinity (see (192)). For the case of a circular insert in an infinite
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plane it has the form

(275) oo — 1 —2xloga; + 1 0
4mpu(re 4 1) 0 ocloga 1)

The elastic capacitary potential. For the elastic capacitary potential P/) we shall use the
solution of the system obtained from (199).

7.2. Numerical simulation

Now we discuss the comparison of the computations based on the asymptotic formula
for the regular part (256) against those given in FEMLAB. This is carried out as follows:
we compute the total displacements for the first and second columns of the regular part
using the FEMLAB kernel, then we perform the same calculations using the leading order
part of our approximation (256). The comparison is then made by taking the absolute
error between the computations produced in FEMLAB and those produced by our
approximation. Since it is not possible to program unbounded domains in FEMLAB, we
replace the half-plane of our example by a sufficiently large semidisk of radius 5000
throughout the numerical computations.

For these experiments, we take Young’s modulus to be 1.4 x 10! Nm™ and
Poisson’s ratio to be 0.25, which corresponds to the case of Cast Iron. In this case the
elastic moduli are 4 = ¢ = 5.6 x 10'° Nm 2.

7.2.1. The case of five circular inclusions

Let N =5and ®!,/ = 1,2,3,4,5 be circular inclusions contained in the domain Q,.
The inclusions ®!, / = 1,2,3,4,5 have centres 0" = (125,125), 0¥ = (200, —125),

x10" x10"
sool 16

400

200

-200+
@)

1 -400(-

600

J J
800 1000 -200 0 200 400 600 800 1000

FiG. 7. - a) Numerical solution produced in FEMLAB on a mesh containing 66480 elements,
b) Computations based on the asymptotic formula for the first column of H,, when & = 0.32.
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x10" x 10
16
16 600~

400

200+

-200 -

'
400 600 800 1000 -200

FiG. 8.—a) Numerical solution produced in FEMLAB on a mesh containing 66480 elements, b)
Computations based on the asymptotic formula for the second column of H,, when ¢ = 0.32.

%
5]
8
°
N
51
8

0% = (300,370), 0¥ = (190, —500), O® = (400, —350) and scaled radii 62.5, 125,
87.5, 75, 112.5, respectively. We consider the situation when ¢ = 0.32.

Fig 7a), b) shows the 2D plot of the numerical solution given in FEMLAB and
that produced according to the asymptotic formula for the first column of H,, when
Q, contains 5 circular inclusions. Fig 8a), b) shows the same 2D plots, which are
done for the second column of H,. Then we compare the computations given by the
asymptotic formula and the method of finite elements for the first and second

600 22 600f

400

200+

200

-400(- -400(-

-600 -
-200

b)

Fic. 9. — a) Absolute error between computations given in FEMLAB and those by the
asymptotic formula for a) the first column and b) the second column of H, when ¢ = 0.32 in the
vicinity of the inclusions. In a) the maximum absolute error is 2.285 x 107", which occurs on
boundary of the inclusion with centre (200, —125), and in b) the maximum absolute error is
1.697 x 1073, which occurs on boundary of the inclusion with centre (400, —350).
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column of H, by computing the absolute error between the data, the results are
shown in Fig 9a), b).
The error stays within the range predicted by the asymptotic theory.

8. - GREEN'S MATRIX FOR A THREE-DIMENSIONAL DOMAIN WITH SEVERAL SMALL INCLUSIONS

Now that the study of the approximation of Green’s kernel for the situations of anti-
plane shear and plane strain of elasticity have been considered, we now formulate and
produce an approximation of Green’s matrix for the system of elasticity in a three-
dimensional domain with multiple inclusions.

8.1. Green’s tensors for model domains in three dimensions

Let Glx,p) = [GV(x,p), G, ), GV, »)] and ¢V&,n) = [V, n),
g¥2(&,n;), 72 (&,n,)] denote Green’s tensors for the Lamé operator

(276) Li=pud+ A+ VIV ),

in the sets Q and C@'”) = R>\@'”, ; = 1,..., N, respectively. In the present section, the
tensor G solves the following problem

(277) L(0y)G(x, y) +6x —y)5 =05, x,y €Q,
(278) Glx,y) =0, xe€dQyeQ,
and the tensors g/ are solutions of
(279) L(0g, )g(/)(éj, n;) +0& —n)s =05, &, € Ca'
(280) &) =0, & €dCa, g e Ca,
(281) &) — 0L as  |&| — oo,m; € CaV
for;y=1,...,N.

We represent Glx, y) and g (&, n,) as
(282) Glx,y)=TI'(x,y) —Hx,y),
and
(283) &G m) = I'&,m) =& m)) |

where ', y) = [I,,,(x, )1’ _,, is the fundamental solution of the Lamé operator in
three dimensions, whose entries are given by

T, ) = Bmu(A + 2) — 3 )" (A + 10y — 90 6 — vl =32+ (A4 310)0,,)
(284)

and H, h'/) are the regular parts of G, g/, 7 = 1,..., N, respectively.
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8.2. Auxiliary matrix functions in three dimensions

8.2.1. The elastic capacitary potential matrix

We denote by P(-/)(é/) = [PU1(g), P(/‘Z)(éj), PU3)(&;)] the elastic capacitary potential
matrix of the set @7, which is defined as a solution of

(285) L@:)PV(E) = 0L, , & € Ca
(286) PO =1, &€,
(287) PU(E) =0 as  [g] — oo,
fory=1,...,N.

Let BY) = [BU)]?_, be the elastic capacity matrix for the set @', forj =1,...,N.
This matrix was introduced and its properties where studied in [12]. In particular, it was
shown that this matrix is symmetric.

For the proof of the following Lemma, we refer to [12] Section 4.2, Lemmas 4 and 6.

Lemma 11: 7) If |&| > 2, then for PUA §=1,2,3, the following estimate holds
(288) IPU(&) — I'(&,0)BY")| < const |&] 7,

where B are the columns of the symmetric elastic capacity matrix BV of the set o).
ii) The columns PY7, i = 1,2 or 3, of the elastic capacitary potential of the set "/,

7 =1,...,N, satisfy the inequality

(289) sup {|&|[PV)(E)]} <const, j=1,...,N.

&eCal)

8.2.2. An estimate for the regular part A of Green’s tensor in the
unbounded domain

Now we present an asymptotic expansion for the regular part 5 of Green’s tensor
¢, whose proof is found in [12], Lemma 11.

Lemma 12: For all n; € Cd" and & with |&| > 2, the following estimate for the col-
umns b9 | i =1,2, or 3, of the regular part of g8/ holds
(290) b7, m,) — T'(&, 0PV (y,)] < const|&] %[y,
wherej =1,...,N.
8.3. A uniform asymptotic formula for Green's tensor in a three-dimensional domain with

several inclusions

Now we present the main result concerning the approximation of the matrix G, for a
three-dimensional domain with multiple inclusions.
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Tueorem 4: Green's tensor G, for the Lamé operator in the domain Q. C IR’ admits
the representation

N
(291) GS(x?.y) = G(x7y) + 8_1 Zg(].)(éﬁ”/) - Nr(xvy)
=1

Z{ HOY, y) + Hix, 0PV ()
~ PY(EHO,0")PVT () — eHx, 0B HO, )}

_|_Z Z P(k ék GO )70(/'))13(/)1"(’]/)
7=l kA
1<k<N

N
+o<zez<min{|x—o“| ly =01}~ )

J=1

uniformly with respect to (x,y) € Q, X Q..

Proor: We begin with a formal argument, in order to obtain the leading order part of
(291), then we give a rigorous proof of the remainder.

Formal argument

As in the preceding sections, we seek G; in the form

(292) Gy, y) = I'x, p) Zb b, )

where the tensors H,(x, y) and 5 (x, y) are solutions of the problems
(293) L(Oy)H,(x,y) =0, x,y € Q,,

(294) Hx,y)=Tx,y), x€0Q,yec,,

(295) Hx,y) =05, «x Gawy),y €Q,1<;<N,
and

(296) L@hY x,p) =0, x,y €,

(297) M, y) =0, xcd,yc,,

(298) P, y)=Tx,y), xcdo yecQ,,

(299) P, y) =0, x¢c 8a)1(:/€),y €Q,,1<k<N k#/.

The approximation of H,(x, y)

Consider the tensor H.(x,y)— H(x,y). This satisfies the homogeneous Lamé
equation and has zero boundary data for x € 9Q,y € Q,. For x € 90\, y € Q,,
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1 <j < N, this matrix is equal to —H(x, y), whose leading order part is —H(OQ"”

Then we may approximate H,, using the elastic capacitary potential, by

;).

where the remainder term ©, on the rlght is a solution of the homogeneous Lamé
equation, is O(e) forx € dw!, y € ©,,1 <j < N and by Lemma 11 /) the leading order
part of &, is

N
(301) > elr(x,0")BYHOY, ) forx € 02,y € Q, .

Then the approximation of S,(x, y) may be given by

N

(302) Sulx, y) Z HOY, y) + 9,(x, ) ,

then upon substitution of this into (300) we obtain the following approximation for H,
(303) H,(x, ) Z{P EHOY, y)

(x,O ) 73’)}‘5‘@3(-*,3’)»

where 9, (x, y) represents the remainder given by this approximation.

The approximation of 1" (x, y)

The matrix
(304) W) = b, 3) — e h(E )

satisfies the homogeneous Lamé equation, is equal to 0I5 on the boundary of the inclusion

dw) and

(305) W, y) = —e bV ), x€0Q,y€Q,,

(306) W, p)=-e'b"¢E, ), xcdl yecQ k#£;,1<k<N.
By Lemma 12, the boundary conditions (305), (306) are equivalent to

(307) WY(x,y) = —I'(x,0V)P' () + Oy -0V "), x€dQ,yecQ,,
(308) W, y) = —x,0")PYT () + O]y —OV[ )

forx € 00 |y € Q, k#7,1<k<N.
Then the matrix W (x, y) is sought in the form

(309) W, y) = —H,0V) P () + 1V (x, y)
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where the matrix ! (x, y) is a solution of the boundary value problem

(310) L x,y) =05, x,y€Q,,

(311) (xy Oy — oY | by, x €0Q,y€Q,,
(312) 7V, y) = Hax, 0P (), x €00,y € Q,,
(313) 7, y) = - Gla,0")PT () + OE2y —OV| ),

x€8w£k>,y€Qg,1§k§N,k7éj'.

Since the tensor G(x,0") and the regular part H(x, y) of Green’s tensor for the domain
Q, have smooth components for x,y € €,, then on !/’ we may expand these tensors
about the centres of wif ) (1 <j < N). Thus from (312), (313) we obtain

(314) Xij)(x7y) _ H(o(/‘))o(/‘))P(/')T(”j) + O(32|y N O(/)|71)
forx € Bw‘i/),y € Q,, and
(315) 2, y) = =GO 0P () + O]y -0V )

forx € 9oy € Q, 1 <k <N, k#j.
However, (314) and (315) are not small on the exterior boundary Q. Therefore,
using the elastic capacitary potential we represent 7'/ (x, y) as

(316) X;(;/)(x7 y) = py) (@_)H(O(/)’O(/’))P(/)T(”].)

_ Z p(é)(ék)c(o(@’O(/))p(,/)T(,,/)

k#j
1<k<N

+57(x, )

where the matrix I)((E/) (x, ) is the remainder term.
Collecting (309) and (316) in (304), we have the following approximation for the

tensor A/
(317) POk, y) = h(E, ) — Hx,0V)PYT ()

+PV(&HOY,07)P ()

_ Z P(k)(ék)G(O(k),OU))P(/)T(I]]-)

k]
1<k<N

+57(x, ).

Combined formula

Substituting (303) and (317) in (292) we obtain
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N
(318) Gilx,y) =Glx,y)+& > /&, n) - NI'(x,y)
j=l1

N
+ Z{P (&)HO, y) + Hx,0")P'(y,)
— PYEHOY, 0P () — eH(x, 0BV HO, y)}

N
+Z Z P(k)(ék)G(O(k)7O(/))P(/?T(”].)

=k
1<k<N

+Ra(x7y)a

where the matrix R, represents the combination of the remainder terms $, and f)y),
7=1,...,N, given in the approximations (303) and (317), respectively.
We now give a rigorous proof of (291), including the remainder estimate.

Proof of Theorem 4

From (318), the columns R¥(x, y), £ = 1,2,3 of the remainder, satisfy the boundary
value problem

(319) 1 RP(x, y) + G4 WVe(Vy - RP(x,9) =0, x,y €Q,,
N
(320)  RPx,y) =¢ IZWe &) — Z Yo", y)
J=1 J=
+ H(x,0Y ) BT y) — eH(xO NBYH® OV, y)
— PY(E)HO",0V)PUHT ()}
N
_ Z Z P(l)(é/)G(O(l)7O(,/’))P(_/.k)T(’I/)7
=1 I
1</<N

forx € 0Q,y € Q. ,

(321) RE(x, y) = HO(x, 3) — HOO™, y) + 27 3 B4, p)
et
— {H@x,0") — HO" ,0")}P"PT(y )
— 3 {PYEHPOY, ) + Hx,07)PVHT ()
Dy

— PY(EHO,07)PUAT ()}
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+ZaHx 0")B"HP 0, y)

_ Z puAT (,’])

iF#m
1</<N

N
_Z Z P(/)(éZ)G(O(l))O(/))P(/’,’é)T(’Ij)

=1 I
I#m
1</<N

forxeaa)im),yEQs,lngN.

The components of H@ (x,O(/ ) and H(k)(O(/), y) of H are bounded in Q and the
components of H*® (x,0") are bounded on 9Q. They are also bounded for x € o™,
y € 2., 1 < m < N. Therefore, the norms of the terms

Z EH(x,O(/))B(j)H(k)(O(k),y) ’
JF#Em
1<<N

are bounded by const ¢ in (321).
By Lemma 11 #), since the entries of PY)(y ) are bounded, we have

(322)  |H®(,y)-H®0" y) — (Hx,0") — HO"™ ,0"))P"*T(y )|
< const ¢, forxeawi’”),y €., 1<m<N.

Then using the estimate given in Lemma 12 for the columns of 4\, j # m, we have

(323)

Z {8 ]/<‘ é/’n] H(x’o(/))P(/,k)T(']j) _ G(O(m)’O(/))p(/,k)T()l/)}‘

J#m
1</<N

Z {G(x7o(/)) i G(o(m)’o(j))}P(j,k)T(”j)

+const Y £y -0V

J#m JFEmM
1</<N 1</<N
<const E Ely -0V,
JFEm
1<<N

forx € 860&”“,_)1 € Q..
Finally, using the estimate for P(f ) of Lemma 11 #) for j # 7 and also the fact that the
components of H and Go" L0V, j # [, are bounded in Q, we obtain

(324) Z {P(/)(éj)H(k)(O(j),y) _ P(/)(é/-)H(O(j),O(/))P</’k)T(n/)} =0,
J#m
1</<N
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and
N ) ) N .
(325) Z Z P(/)(éZ)G(O(/)70(/))P(/,k)T(,’].) = O(Zgzly _ O(/)l—l) ’
=l /=1
I#£m
1</<N

forx € 8wé’”),y € Q,.
Thus combining the estimates (322)-(325) in (321), we have

(326) IR¥(x, y)| < const &,

forx € 80)2’“’,y €Q,1<m<N.
Now we estimate the right-hand side of the boundary condition (320).
Using Lemma 11 7), we obtain

(327)

N
Z{P(/‘)(é/)H%)(O(/),y) N EH(x,O(]‘))B(/)H(k)(o(/),y)}‘
j=1

N
Z{(P(f)(é/) _ F(@,O)B(/))H%)(O(/) )}
7=1

N
< const Zsz\x —O(/)|72 < const & , forx € 9Q ,y € 09, ,
7=1

where we have used the fact that forx € 90Q2, 1 < |x — O(j)|, 1<7<N.
From Lemma 11 77), we also have

(328) |p(/.k)(é(j))| < const 8|x _O</)|—1 )

Owing to Lemma 12 we have

(329)

N
et Z{b(_/,k)(é’ ) — H(x,O(/))P(/‘k)T(q/)}
7=1

:8_1

N
> {BP e ) — F(f;‘aO)P(jk)T('l/)}‘
=

N
<const Zgz|x _ O</>|72|y _ O(/)|’1
j=1

N
<const Z£2|y 0V forx €0Q .,y € 09, .
=

Then by (328) and the definition of G and its regular part H, the estimates

(330) IPY(E)HOY,0)PU#T ()] < const &y —OV| ",
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and
(331) PYENGOY,0)PURT ()| < const &y —OY|™" | for [ #/,

forx € 90Q,y € Q..
Therefore, combining the estimates (327), (329)-(331) we have

N
(332) IR¥(x, y)| < const Zsz|y oY,
=T
forx € 0Q,y € Q..
Then (326), (332) and Lemma 5 imply
N N
(333) IR (x, y)| < const max{z(ﬂx —oY|! ,Zsz|y - O(])|1}
=1 =1

N
<const Y _ Z(min{lx —OY| |y —0OY[})7".
/=1

The proof is complete. O

9. - SIMPLIFIED ASYMPTOTIC FORMULAE FOR THE CASE OF THREE DIMENSIONS

Here we show how the asymptotic formulae (291) simplify under certain constraints
on the independent variables.

COROLLARY 2: a) Let x,y € Q, C R? such that

334 min{|x — 0|, |y —O|}Y >2¢ forall j=1,...,N.
( ) i {| O(/)| |y O(/)|} for all N
Then
N . . .
Gylx,y) = Glx, y) — gz G(x,O(/))B(/)G(O(/),y)
7=1

N
(335) + o(Z 2(jx — 0|y — 0| min{jx — O], |y — o<f"|})1> :
=1

b) If max{|x — 0|, |y — 0|} < 1/2, then
(336) Gyloe,y) =e'¢"(&,.1,)
— (I — P"(&,NHO"™,0") 15 — P"1(y,))
+ O(max{]x —0"]| ||y —O0"}) .

We note that the formula (335) presented in part a) of the above Corollary is similar to
that presented in the paper by Ozawa [15] (p. 215), for the approximate Green’s function
of the eigenvalue problem for the Laplacian in a bounded domain in R’ containing
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several spherical inclusions, which makes use of the Green’s function in the unperturbed

domain.

Proor: @) From (291), G, can be rewritten as

N
(337) G,lx,») =Glx,p) —&! Z b, n,)

+ Z{ (E)HO, y) + Hix,0")PIT ()

PY(E)HOY,0Y)PIT () — sH(x,oV))BU’H(oU),y>}

N
+Z Z P(k)(ék)c(o(k)70(]'))P(j)T(”j)

J=1 k#
1<k<N

N
+ o(Z &(min{jx —OY| ||y — 0<f>|})1> .
7=1
By Lemma 11 7), we have the following estimate for the elastic capacitary potential
(338) PI(E) = el w,07)BY + O(Zx ~ 0| ?)
and from Lemma 12 we also have the approximation

(339) 871})(/)(&]’,1]/) :[‘(x O(/‘))P(j)T(’I/) + O(FZ(|.X' . O(/)‘2|y 70(/-)|)71)
—el(x,0")BY T (y,0Y)
O£k~ 01y — 0 min{lx ~ 0],y ~0[) ") .

where in (339) we have combined both of the above mentioned results.
In (337), using (338) and (339), we have

(340)  G,lx,y) =Glx,y) str(x 0B (y,0Y)
+ Z{gr(x,o(f) )JBYHO"Y, y) + eH(x,0")BY' I (y,0")
SH(x’O(j))B(/')H(O(/),y)}

/=1

N .
O(Zezux ~0"|ly =0 min{lx — 0", |y — 0‘”|}>1> :
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Using the definition of the matrix function G given in (282), we may rewrite the preceding
formula as

N
(341)  Gilx,y) =Glx,y) —¢Y_ Glx,0")B"I(y,0")
=1

N
+ SZ G(x,O(]))B(f')H(O(fﬁy)

7=1
' O<Zsz<x ~0"[|y —0"|min{lx —0"||y —0‘”|}>1> ’
7=1

from which (335) follows.
b) Due to the condition max{|x —0"| |y —0"|} < 1/2, and since H(x, y) has
smooth components for x, y € £, in the vicinity of (O(m),O(m) ) we have from (291)

N
(342)  Gyx,p)=-HO",0")+&"> V& n) — (N- DI (x,y)

=1

P™(&,)HO™,0") + Oy — 0"))
+(HO",0™) + O(x — 0" )P (x,,)

- P&, HO",0")P" ()

+ Y {PVEHOY,0") + Olly —0"))
J#Fm
1</<N

+ (H(O“’”,Om) + O(\x _ O(M)|))p(/)T(,I].)

- PYEHOY, 0P ()}

+Z Z P(k ék GO )’0(/))P(/)T('I/)
=1k
1<k<N

+ O(max{|x —O"|,|y —0"|}) .

Now using the estimate for the regular part 5/ given in (339), and that for the elastic
capacitary potential (338) for j # 7 we arrive at (336). O
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