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ABSTRACT. Ð The elastic equilibrium problem for a cusped (tapered) prismatic shell-like body
with the angular projection under the action of a concentrated force is solved in the explicit form
within the framework of the zero approximation of I.Vekua's hierarchical models of prismatic
shells. The thickness of the prismatic shell-like body is proportional to the angle bisectrix coordinate
raised to a non-negative exponent. When the angle and exponent equal to p and zero, respectively,
the above solution coincides with the well-known solution of the classical Flamant problem [1].

1. - INTRODUCTION

In fifties of the XX century, I. Vekua suggested a new mathematical model of elastic

prismatic shells (i.e., of plates of variable thickness in case of symmetric shells) which was

based on the expansion of fields of displacement vectors, strain and stress tensors of the

three-dimensional theory of linear elasticity into orthogonal Fourier-Legendre series with

respect to the variable of the prismatic shell thickness. Considering only the first N � 1

terms of the expansions, he obtained the N-th approximation. Each of the

approximations N � 0; 1; . . . can be considered as an independent mathematical model

of prismatic shells from the above chain of the hierarchical models, e.g., in case of

symmetric prismatic shells (i.e., plates) the approximation N � 1 actually coincides with

the classical plate bending theory. In sixties, I. Vekua offered the analogous mathematical

model for thin shallow shells. All his results concerning plates and shells are collected in

his monograph [2]. At the same time he recommended to investigate cusped prismatic

shells, i.e., prismatic shells whose thickness vanishes on a part of the plate projection

boundary or on the whole one (about investigations in this direction see survey [3], [4],

and also I. Vekua's comments in [2], p. 86).
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The present paper deals with the Flamant type problem for a cusped prismatic shell-

like body in the approximation N � 0

2. - CUSPED (TAPERED) PRISMATIC SHELLS

Let Ox1x2x3 be a Cartesian coordinate system. Let us consider elastic body

(s.c., prismatic shell) which is bounded from top and from below by the surfaces

x3 � h
(�)

(x1; x2) and x3 � h
(ÿ)

(x1; x2), (x1; x2) 2 v, respectively (v is a projection of

the body in the plane x3 � 0), and (from lateral side) by a cylindrical surface

parallel to Ox3. The difference

2h � h
(�)

(x1; x2)ÿ h
(ÿ)

(x1; x2) � 0

will be called a thickness of the above body. The boundary @v of the projection v will be

called the boundary of the prismatic shell. Such body will be called cusped (or tapered)

body if the thickness of the body vanishes on some subset of the boundary @v or on the

whole one.

3. - BASIC RELATIONS IN THE CYLINDRICAL SYSTEM OF COORDINATES

FOR THE APPROXIMATION N � 0

From the basic relations in the cylindrical system of coordinates of the linear theory of

elasticity, after integration with respect to x3 within the limits h
(ÿ)

(x1; x2) and h
(�)

(x1; x2), it

is easy to derive the following basic relations in the zero approximation (see [5], pp. 27,

28, 149):

1. The equilibrium equations
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(3:1)

(here it is assumed that the upper and lower surfaces of the prismatic shell are unloaded

and the volume forces are neglected);

2. the kinematic formulas
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where
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3. Constitutive Relations (Hooke's law)
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where s is Poission's ratio, E is Young's modulus, m is the LameÂ constant, u
0

r, u
0
c , u3

0
are

the zero moments of the displacement vector components, e
0
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0
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0
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0
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0
are the

zero moments of the deformation tensor components, and s
0

r, s
0
c , t

0
rc , Z

0
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0
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0

are the

zero moments of the stress tensor components in the cylindrical coordinates. E.g.,
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sr(r;c; x3)dx3:

Let us note that in the zero approximation it is assumed that

ur(r;c; x3) � vr(r;c) :� u
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(3:7)

Similar assumptions are made for the stress and deformation tensor components.
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From (3.2), after integration, taking into account (3.5), we have
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where r0eic0 2 v is a fixed point; g1(c) and g2(r) are arbitrary functions.

Substituting (3.8) in (3.9), we obtain

vc � 1ÿ s2

E
r

�c
c0

s
0
c

2h
dc ÿ (1� s)s

E
r

�c
c0

s
0

r

2h
dc ÿ 1ÿ s2

E

�r
r0

dr

�c
c0

s
0

r

2h
dc

� (1� s)s

E

�r
r0

dr

�c
c0

s
0
c

2h
dc ÿ

�c
c0

g1dc � g2(r):

(3:10)

Now, substituting (3.8), (3.10) in (3.3) and taking into account the first of (3.6), we get
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(3:11)

Combining in (3.11) like terms and multiplying both the sides of (3.11) by
E

1� s
r,
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because of m � E

2(1� s)
, we have
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But (3.12) holds if and only if the left hand side is representable as a sum of two functions,

when one of them depends only on r and the another one depends only on c. In other

words the second order mixed derivative of the left hand side should equal to zero:
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From (3.4), (3.6) there follows
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Hence, the necessary and sufficient condition for restoration of v3 by its derivatives is
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Equations (3.13), (3.14) are compatibility equations, i.e., analogous of Beltrami-

Michell compatibility equations in the case under consideration.

4. - THE TITLE PROBLEM

Let the projection v of the prismatic shell-like body with the thickness

2h(x1; x2) � h0xk2 � h0rk sink c; h0 � const > 0; k � const � 0;(4:1)
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be the less angle between rays c � b and c � pÿ b, 0 � b <
p

2
(see Fig. 1). Let further

the body be loaded at the vertex of the angle by the concentrated force (ÿS1;ÿS2;ÿS3)R.

R means the vector components in the system Ox1x2x3. We are looking for the solution of

the problem in the zero approximation in the following form
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(4:2)

where

Wk(c) :�

g1eac � d1eÿac when k >
1

y
;

g2 � d2c when k � 1

y
;

g3cos (cc)� d3 sin(cc) when
1

y
> k � 0;

8>>>>><>>>>>:
(4:3)
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������������������������������
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p
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������������������������������
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p
; y :� s

1ÿ s
(0 < s < 1);(4:4)

and constants k, gi , di , i � 1; 2; 3, should be determined. It is easy to see that functions

(4.2) satisfy (3.1), (3.14), and (3.13), in view of (4.4).

Indeed, since
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equations (3.1), (3.14), and (3.13) we can rewrite as follows
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FIG. 1.
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respectively. Evidently, the first group of equations is satisfied by
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r
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r
;

The last equation holds as well for

s
0

r
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1
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;

because of (see (4.4))

(1ÿ s)a2 ÿ s(k� 1)(k� 2)� (1� s)(k� 1) � (1ÿ s)(k� 1) k
s

1ÿ s
ÿ 1

� �
� (k� 1)(1ÿ s ÿ sk) � 0;

ÿ s(k� 1)(k� 2)� (1� s)(k� 1) � (k� 1)(1ÿ skÿ s)

� 1ÿ s

s
� 1

� �
1ÿ s

1ÿ s

s
ÿ s

� �
� 0;

ÿ (1ÿ s)c2 ÿ s(k� 1)(k� 2)� (1� s)(k� 1) � ÿ (1ÿ s)(k� 1) 1ÿ k
s

1ÿ s

� �
� (k� 1)(1ÿ s ÿ sk) � 0;
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1

y
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y
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s
,

1

y
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The homogeneous boundary conditions on c � b and c � pÿ b (r > 0):

s
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c � 0; t

0
rc � 0; Z

0

c � 0

are obviously fulfilled by (4.2). The constants k, gi , di , i � 1; 2; 3, we have to calculate

from the following condition: the stresses distributed on any cylindrical surface of the

radius r lying in the body should be equivalent to the concentrated force (S1; S2; S3)R. On

the surface element corresponding to the angle dc acts the force�
s
0

r; t
0
cr � 0;Z

0

r

�
C

rdc

where C means the components in the cylindrical system of coordinates. Let us note that

(1; 0; 0)R � (cosc;ÿ sinc; 0)C; (0; 1; 0)R � ( sinc; cosc; 0)C; (0; 0; 1)R � (0; 0; 1)C

Projecting the forces distributed on any cylindrical surface of the radius r; lying in the

angle between the rays c � b and c � pÿ b, on the axes x1, x2, x3, and then integrating

with respect to c from b to pÿ b, we get the components of the resultant force of the

above forces: �pÿb
b

s
0

rr coscdc � S1;

�pÿb
b

s
0

rr sin cdc � S2;

�pÿb
b

Z
0

rrdc � S3:(4:5)

Therefore, substituting (4.2) in (4.5):
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1. If k >
1

y
:

g1

�pÿb
b

eac sink c coscdc � d1

�pÿb
b

eÿac sink c coscdc � S1(4:6)

g1

�pÿb
b

eac sink�1 c dc � d1

�pÿb
b

eÿac sink�1 c dc � S2:(4:7)

Let

L
b

(a; b) :�
�pÿb
b

eac sinÿbcdc; L�
b

(a; b) �
�pÿb
b

eac sinÿbc coscdc:

The determinant D1 of the system (4.6), (4.7) has the form

D1 � L
b

*(a;ÿk)L
b

(ÿ a;ÿkÿ 1)ÿ L
b

(a;ÿkÿ 1)L
b

*(ÿ a;ÿk)

� L
b

*(a;ÿk)eÿap L
b

(a;ÿkÿ 1)� L
b

(a;ÿkÿ 1)eÿap L
b

*(a;ÿk)

� 2eÿap L
b

(a;ÿkÿ 1)L
b

*(a;ÿk)

since

eap L
b

(ÿ a; b) � ÿ
�pÿb
b

ea(pÿc) sinÿb(pÿc)d(pÿ c)�ÿ
�b

pÿb

eat sinÿbtdt�L
b

(a; b);

eap L
b

*(ÿa; b) �
�pÿb
b

ea(pÿc) sinÿb(pÿ c)cos (pÿ c)d(pÿ c)

�
�b

pÿb

eat sinÿbtcos tdt � ÿ L�
b

(a; b):

(4:8)

Note thatL
b

*(0;ÿk) � 0. But in the case under consideration a > 0. Therefore, by virtue

of the mean value theorem of the integral calculus for the fixed c0 2 ]b; pÿ b[, evidently,

L�
b

(a;ÿk) �
�pÿb
b

eac sink cd sinc � ea(pÿb) ÿ eab

k� 1
sink�1b ÿ a

k� 1

�pÿb
b

eac sink�1cdc

� ea(pÿb) ÿ eab

k� 1
sink�1b ÿ a

k� 1
sink�1c0

�pÿb
b

eacdc

� ea(pÿb) ÿ eab

k� 1
( sink�1b ÿ sink�1c0) 6� 0;

because of c0 6� b; pÿ b. Thus, D1 6� 0.
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Taking into account (4.8) and solving the system (4.6), (4.7) with respect to g1, d1, we

have

g1 �
S1 L

b

(a;ÿkÿ 1)ÿ S2 L
b

*(a;ÿk)

eapD1
;(4:9)

d1 � S2 L
b

*(a;ÿk)ÿ S1 L
b

(a;ÿkÿ 1)

D1
:(4:10)

2. If a � 1

y
:

g2

�pÿb
b

sink c coscdc � d2

�pÿb
b

c sink c coscdc � S1(4:11)

g2

�pÿb
b

sink�1cdc � d2

�pÿb
b

c sink�1cdc � S2:(4:12)

Let

L
b

(b) :�
�pÿb
b

c sinÿbc coscdc;

L
�b

(b) :�
�pÿb
b

c sinÿbcdc:

(4:13)

Evidently, the first summand of (4.11) is equal to zero, therefore,

d2 � S1

L
b

(ÿ k)

:(4:14)

Substituting the latter in (4.12) and solving the obtained equation with respect to g2, we

get

g2 �
S2 L

b

(ÿ k)ÿ S1 L
�b

(ÿ kÿ 1)

L
b

(0;ÿkÿ 1)L
b

(ÿ k)

:(4:15)

Obviously, denominators of (4.14), (4.15) are not zero. Indeed, by virtue of the mean

value theorem of integral calculus for the fixed c0 2 ]b; pÿ b[, evidently,

L
b

(ÿ k) �
�pÿb
b

c sink cd sinc � pÿ 2b

k� 1
sink�1b ÿ 1

k� 1

�pÿb
b

sink�1cdc

� pÿ 2b

k� 1
sink�1b ÿ pÿ 2b

k� 1
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3. If
1

y
> k � 0:

g3

�pÿb
b

cos (cc) sink c coscdc � d3

�pÿb
b

sin(cc) sink c coscdc � S1;(4:16)

g3

�pÿb
b

cos (cc) sink�1cdc � d3

�pÿb
b

sin(cc) sink�1cdc � S2:(4:17)

Let

A
b

(c; b) :�
�pÿb
b

cos (cc) sinÿbcdc; A*
b

(c; b) :�
�pÿb
b

cos (cc) sinÿbc coscdc;

B
b

(c; b) :�
�pÿb
b

sin(cc) sinÿbcdc; B
b

*(c; b) :�
�pÿb
b

sin(cc) sinÿbc coscdc:

Evidently,

cos
cp

2
A
b

*(c; b)� sin
cp

2
B
b

*(c; b) � cos
cp

2

�pÿb
b

cos (cc) sinÿbc coscdc

� sin
cp

2

�pÿb
b

sin(cc) sinÿbc coscdc �
�pÿb
b

cos c c ÿ p

2

� �h i
sinÿbc coscdc

�
�p2ÿb
bÿp

2

cos (ct) sinÿb p

2
� t

� �
cos

p

2
� t

� �
dt � ÿ

�p2ÿb
bÿp

2

cos (ct)cos ÿbt sintdt � 0;

cos
cp

2
B
b

(c; b)ÿ sin
cp

2
A
b

(c; b) � cos
cp

2

�pÿb
b

sin(cc) sinÿbcdc

ÿ sin
cp

2

�pÿb
b

cos (cc) sinÿbcdc �
�pÿb
b

sin c c ÿ p

2

� �h i
sinÿbcdc

�
�p2ÿb
bÿp

2

sin(cc)cos ÿbcdc � 0;

(4:18)

since the last integrals in both the expressions are the integrals along a symmetric interval
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with odd integrands. Therefore, we have

A
b

(2k� 1; b) � 0; B
b

(2k; b) � 0; B*
b

(2k� 1; b) � 0; A*
b

(2k; b) � 0 for k � 1; 2; . . . ;

under the additional restriction b < 1 in case b � 0:

The determinant of the system (4.16), (4.17) has the form

D3 � A
b

*(c;ÿk) B
b

(c;ÿkÿ 1)ÿ A
b

(c;ÿkÿ 1) B
b

*(c;ÿk):

If c � 2k (k � 1; 2; . . .), then

D3 � ÿ B
b

*(2k;ÿk) A
b

(2k;ÿkÿ 1) 6� 0:

If c 6� 2k (k � 1; 2; . . . ), then

D3 � B
b

(c;ÿkÿ 1) A
b

*(c;ÿk)� ctg
cp

2
A
b

*(c;ÿk) ctg
cp

2
B
b

(c;ÿkÿ 1)

� 1� ctg2 cp

2

� �
A
b

*(c;ÿk) B
b

(c;ÿkÿ 1) � sinÿ2 cp

2
A
b

*(c;ÿk) B
b

(c;ÿkÿ 1) 6� 0;

because of

A
b

(c; b) � ctg
cp

2
B
b

(c; b); B
b

*(c; b) � ÿ ctg
cp

2
A
b

*(c; b)

which there follow from (4.18)

Solving the system (4.16), (4.17), we obtain

g3 �
S1 B

b

(c;ÿkÿ 1)ÿ S2 B
b

*(c;ÿk)

D3
;(4:19)

d3 � S2 A
b

*(c;ÿk)ÿ S1 A
b

(c;ÿkÿ 1)

D3
:(4:20)

In all the above cases, evidently,

k � S3

L
b

(0;ÿk)

(4:21)

REMARK 4.1: On the one hand,

2h(x1; x2) � O(rk), as r !1 for k � 0:

Hence, for k > 0 the thickness of the prismatic shell-like body tends to infinity as r !1.

On the other hand, as we see from (4.2),

s
0

r � O
1

r

� �
; Z

0

r � O
1

r

� �
; as r !1:

Therefore, for sufficiently large r the zero moments of stresses are arbitrarily small, and
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actually, we can assume that in the non-thin part of the body under consideration we

have not stressed (strained) state. Evidently, to this end h0 should be chosen duely.

REMARK 4.2: Let k � 0 (i.e., the prismatic shell-like body under consideration be-

comes a plate of the constant thickness), S1 � 0, S2 6� 0, S3 � 0, and the angle be equal to

p (i.e., b � 0). Then the solution (4.2) with (4.3), (4.19), (4.20) coincides with the well-

known solution of the classical Flamant problem [1]. The same expressions give the well-

known solution for 0 < b <
p

2
when either S1 � 0, S2 6� 0, S3 � 0, or S1 6� 0, S2 � 0,

S3 � 0 (see, e.g., [6], pp. 107, 108, and references therein or [7], pp. 516-518).

Let us, now, establish explicit expressions for the displacement vector components vr,

vc , v3. To this end we need again to consider the cases

k >
1

y
; k � 1

y
; and

1

y
> k > 0;

separately. Also the case k � 0 should be considered separately but it is classical and well-

known one (see, e.g., [7], p. 518).

1. k >
1

y
.

According to (3.8), (3.10), (4.2), (4.3), (4.1) after integration, we obtain

vr � s2 ÿ 1

kEh0
(g1eac � d1eÿac)(rÿk ÿ rÿk0 )� g1(c)

� s2 ÿ 1

kEh0
(g1eac � d1eÿac)rÿk �F1(c);

(4:22)

where

F1(c) :� ÿ s2 ÿ 1

kEh0
(g1eac � d1eÿac)rÿk0 � g1(c);

vc � ÿ (1� s)s

ah0E
[g1eac ÿ d1eÿac ÿ (g1eac0 ÿ d1eÿac0 )]rÿk

� (1ÿ s2)

akh0E
[g1eac ÿ d1eÿac ÿ (g1eac0 ÿ d1eÿac0 )]rÿk

ÿ
�c
c0

(1ÿ s2)

kh0E
rÿk0 (g1eac � d1eÿac)� g1(c)

� �
dc � g2(r)

� (1� s)(1ÿ s ÿ ks)

kaEh0
(g1eac ÿ d1eÿac)rÿk ÿ

�c
c0

F1(c)dc � F2(r);

(4:23)

where

F2(r) :� ÿ (1� s)(1ÿ s ÿ ks)

kaEh0
(g1eac0 ÿ d1eÿac0 )rÿk � g2(r):
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Since t
0

rc � 0, from (3.6) we conclude

e
0

rc � 0;(4:24)

i. e., by virtue of (3.3),

@ vr

@c
� r

@ vc
@ r
ÿ vc � 0(4:25)

Substituting (4.22), (4.23) in (4.25) and assuming Fa 2 C1, a � 1; 2, we get

ÿ 1� s

kaEh0
rÿk(g1eac ÿ d1eÿac)[(1ÿ s)a2 � k(1ÿ ks ÿ s)� 1ÿ ks ÿ s]

�F01(c)�
�c
c0

F1(c)dc � rF02(r)ÿ F2(r) � 0:
(4:26)

But, in view of (4.4),

(1ÿ s)a2 � (1� k)(1ÿ ks ÿ s)

� (1ÿ s)(1� k) k
s

1ÿ s
ÿ 1

� �
� (1� k)(1ÿ ks ÿ s) � 0:

(4:27)

Hence, from (4.26), (4.27) we arrive at

F01(c)�
�c
c0

F1(c)dc � ÿ rF02(r)� F2(r):

Whence,

F01(c)�
�c
c0

F1(c)dc � ÿC1;(4:28)

rF02(r)ÿ F2(r) � C1(4:29)

where C1 � const.

Let F1 2 C2, then from (4.28) we have

F001(c)� F1(c) � 0

The general solution of the last equation has the following form

F1(c) � C2 cosc � C3 sinc; C2;C3 � const:(4:30)

Evidently, (4.30) will be the general solution of the integro-differential equation (4.28) if

the constants Ci ; i � 1; 2; 3 and c0 are such that

C3 cosc0 ÿ C2 sinc0 � C1 � 0:(4:31)

The general solution of equation (4.29) has the following form

F2(r) � C4r ÿ C1; C4 � const:(4:32)
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But the obtained expressions for F1(c) and F2(c) correspond to the rigid motion.

Indeed, substituting

vr � C2cosc � C3 sinc;

vc � ÿ
�c
c0

(C2cosc � C3 sinc)dc � C4r ÿ C1;

under the condition (4.31), in (3.2), (3.3), we obtain

e
0

r � 0; e
0
c � 0; e

0
rc � h0xk2

2r
(ÿC2 sinc0 � C3 cos c0 � C1) � 0:

Thus, assuming Ci � 0, i � 1; 2; 3; 4, up to the rigid motion we have

vr � s2 ÿ 1

kEh0
(g1eac � d1eÿac)rÿk

vc � (1� s)(1ÿ ks ÿ s)

kaEh0
(g1eac ÿ d1eÿac)rÿk:

(4:33)

For the zero moments of the deformation tensor components, substituting (4.33) in

(3.2), (3.3) and taking into account (4.1), we get

e
0
r � 1ÿ s2

E
(g1eac � d1eÿac)

sink c

r
;

e
0
c � ÿ (1� s)s

E
(g1eac � d1eÿac)

sink c

r
;

e
0
rc � 0:

2. k � 1

y
.

According to (3.8), (3.10), (4.2), (4.3), similarly to the first case, we obtain

vr � s2 ÿ 1

kEh0
(g2 � d2c)rÿk � F1(c);

vc � ÿ
�c
c0

F1(c)dc � F2(r);

(4:34)

where F1(c) and F2(r) are arbitrary functions of their arguments. Let F1 2 C2 and

F2 2 C1. Substituting (4.34) in (4.25), we have

s2 ÿ 1

kEh0
d2rÿk � F01(c)� rF02(r)�

�c
c0

F1(c)dc ÿ F2(r) � 0:
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Whence,

F01(c)�
�c
c0

F1(c)dc � ÿC1;(4:35)

rF02(r)ÿF2(r) � C1 � 1ÿ s2

kEh0
d2rÿk:(4:36)

Integro-differential equation (4.35) we have already solved (see (4.30), (4.31)). The

general solution of (4.36) is

F2(r) � C4r ÿ C1 ÿ 1ÿ s2

k(1� k)Eh0
d2rÿk :

Since under the condition (4.31) the expressions

vr � C2cosc � C3 sinc;

vc �
�c
c0

(C2cosc � C3 sinc)dc � C4r ÿ C1

correspond to the rigid motion. Thus, up to the rigid motion we get

vr � s2 ÿ 1

kEh0
(g2 � d2c)rÿk;

vc � s2 ÿ 1

k(k� 1)Eh0
d2rÿk:

(4:37)

Substituting (4.37) in (3.2), (3.3), we obtain

e
0

r � 1ÿ s2

E
(g2 � d2c)

sink c

r
;

e
0
c � ÿ (1� s)s

E
(g2 � d2c)

sink c

r
;

e
0

rc � 0:

REMARK 4.3: If S1 � S3 � 0, S2 6� 0, by virtue of (4.14), d2 � 0 and from (4.37) there

follows that
vc � 0; vr 6� 0:

The last means that the points of the body under consideration displace only in the radial

direction.

3.
1

y
> k > 0:

Analogously to the previous cases, taking into account that (see (4.4))

(1� k)(1ÿ ks ÿ s)ÿ (1ÿ s)c2 � 0:
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up the rigid motion we have

vr � s2 ÿ 1

kEh0
[g3cos (cc)� d3 sin(cc)]rÿk;

vc � (1� s)(1ÿ ks ÿ s)

kcEh0
[g3 sin(cc)ÿ d3cos (cc)]rÿk:

(4:38)

Substituting (4.38) in (3.2), (3.3), we obtain

e
0
r � 1ÿ s2

E
[g3 cos (cc)� d3 sin (cc)]

sink c

r
;

e
0
c � ÿ (1� s)s

E
[g3 cos (cc)� d3 sin (cc)]

sink c

r
;

e
0
rc � 0:

In all the above cases (k > 0), by virtue of (4.2), after integration, from (3.4), (3.6) up to

the rigid transfer we get

v3 � ÿ k

kmh0

S3

rk
:(4:39)

Substituting (4.39) in (3.4), we obtain

e
0
c3 � 0; e3r

0 � kS3

2m

sink c

r
:

REMARK 4.4: In the particular case of a half-plane (i.e., when b � 0), the solution of the

above problem of the concentrated force is obtained in [5] (see pp. 121-129) from the

solution of the problem, when the cusped prismatic shell-like body with the thickness

(4.1) is arbitrarily loaded along the cusped edge x2 � 0. The solution of the last problem

is constructed in the integral form, preliminary solving the corresponding boundary value

problem in a half-plane for the equation of the stress function. The order of this fourth

order equation degenerates into the second order by x2 � 0:
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