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ABSTRACT. Ð Based on previous work by B. Reidinger and O. Steinbach [9, 10], we reconsider
the relation between the solutions of the governing equations in linearised elasticity for the elastic

and inelastic materials when the Poisson ratio tends to
1

2
. Whereas the boundary integral equations

of linear elasticity model the material's elastic behaviour in a bounded region, the inelastic
behaviour is modelled by the integral equations of the Stokes flow. The latter corresponds to the
degenerate or reduced formulation of elasticity in terms of perturbation analysis. For the Dirichlet
problem (the pure displacement problem), the perturbation turns out to be singular in the sense
that in general the degenerate Stokes problem has no solution unless the boundary data satisfy
appropriate compatibility conditions. In the latter case, the asymptotics corresponds to that of a
light compressible Stokes flow and to the Cosserat spectrum at infinity as analyzed by R. Temam
[11]. The Neumann problem (the pure traction problem), however, is a regular perturbation
problem if the solvability conditions for the boundary tractions are satisfied. The mixed Dirichlet-
Neumann problem may or may not be a singular perturbation problem depending on additional
complementary conditions.

1. - THE RELATION BETWEEN THE LAMEÂ AND THE STOKES SYSTEM

Let us consider the LameÂ system

mDv� (l� m)r(r � v) � 0 in V � R3�1:1�
subject to

Dirichlet: vjG � W ; or�1:2�
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Neumann:TvjG �
�
ldiv v� 2m

@v

@n
� mn� curl v

�
jG � c ; or�1:3�

mixed Dirichlet-Neumann: vjG � W and TvjGN
� c�1:4�

boundary conditions. V is supposed to be a bounded strong Lipschitz domain whose

boundary @V � G consists of L mutually separated closed Lipschitz surfaces G j with

G � SL
j�1

G j where G1 denotes that component whose exterior domain is infinite.

We are interested in the elastic behaviour in V when the material becomes

incompressible, i.e., The Poisson ratio y tends to
1

2
,

1

2
> y � 1

2

l

l� m
! 1

2
;�1:5�

or l! �1.

Dividing (1.1) by m and introducing the pressure

p :� ÿ 1

c
div v; c :� 1ÿ 2y ;�1:6�

the LameÂ system can be written in the mixed form

ÿDv�rp � 0 and div v � ÿ cp�1:7�
and if c ! 0 it degenerates to the Stokes system

ÿDv0 �rp0 � 0 and div v0 � 0�1:8�
which corresponds to the inelastic behaviour of a Bingham body [1, p. 14] or a slightly

compressible flow [11, Chap. I, § 6]; and with cÿ1 � v it also corresponds to the Cosserat

spectrum near v � �1 [6, 11].

The solution's behaviour for c ! 0 can be understood by dealing with the

corresponding elastic boundary potentials. As is well known, any solution to the LameÂ

equations can be represented in the form

v(x) �
�
G

Ee`(x; y)s( y)dsy ÿ
�
G

ÿ
TyEe`(x; y)

�>
W( y)dsy for x 2 V�1:9�

where the boundary charges are the boundary traction s � Tv and W the boundary

displacement.

The fundamental tensor and elastic dipole kernel are given by

Ee`(x; y) � l� 3m

8pm(l� 2m)

�
1

jxÿ yj I�
l� m

l� 3m

(xÿ y)(xÿ y)>

jxÿ yj2
�
;�1:10�

TyEe`(x; y) �
��

I� 3(l� m)

mjxÿ yj2 (xÿ y)(xÿ y)>
��

@

@ny

1

jxÿ yj
�

�1:11�

� 1

jxÿ yj3
ÿ
(xÿ y)n( y)> ÿ n( y)(xÿ y)>

��
;
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respectively [7]. For l! �1, one obtains the fundamental tensor Est(x; y) and Kst(x; y)

of the Stokes system,

Est(x; y) � 1

8pm

�
1

jxÿ yj I� (xÿ y)(xÿ y)>

jxÿ yj3
�
;�1:12�

Kst(x; y) � 3

4pm

(xÿ y)(xÿ y)>

jxÿ yj2
@

@ny

�
1

jxÿ yj
�
;�1:13�

respectively , and v0, the velocity can be represented by

v0(x) �
�
G

Est(x; y)s( y)dsy ÿ
�
G

Kst(x; y)W( y)dsy�1:14�

with s the hydrodynamic boundary traction and W the boundary velocity, whereas the

pressure field p0(x) is given by the potentials

p0(x) � 1

4p

�
G

�
ry

1

jxÿ yj
�>

s( y)ÿ m

2p

�
G

�
@

@ny

�
ry

1

jxÿ yj
�>�

W( y)dsy :�1:15�

For both systems, the solution of the corresponding boundary value problems is based

on the boundary integral relations in the form of Calderon's projections obtained from

taking the trace and the boundary traction of the representation formulae as

Ve`s �
�

1

2
I � Ke`

�
W and

�
1

2
I ÿ K0e`

�
s � De`W on G ;�1:16�

Vsts �
�

1

2
I � Kst

�
W and

�
1

2
I ÿ K0st

�
s � DstW on G ;�1:17�

respectively [3]. The boundary integral operators in (1.16) and (1.17) are well known and

define continuous mappings on the indicated Sobolev spaces on the Lipschitz surface G

with j%j � 1

2
[2]:

Ke`W(x) �
�

Gnfxg

ÿ
TyEe`(x; y)

�>
W(y)dsy ; H

1
2�%(G)! H

1
2�%(G) ;�1:18�

K0e`s(x) �
�

Gnfxg

ÿ
TxEe`(x; y)

�
s( y)dsy ; Hÿ

1
2�%(G)! Hÿ

1
2�%(G) ;�1:19�

Ve`s(x) �
�

Gnfxg

ÿ
Ee`(x; y)

�
s( y)dsy ; Hÿ

1
2�%(G)! H

1
2�%(G) ;�1:20�

Ð 51 Ð



De`W(x) � ÿ m

4p

ÿ
n(x)�rx

�> �
Gnfxg

1

jxÿ yj
ÿ
n( y)�ry

�
W( y)dsy�1:21�

ÿMx

�
Gnfxg

�
4m2Ee`(x; y)ÿ m

2p

1

jxÿ yj I

�
(MyW)(y)dsy

� m

4p

�X3

`;k

m`;k(@x;x)

�
Gnfxg

1

jxÿ yjmk;j (@y; y)W`( y)dsy

�
j�1;2;3

;

H
1
2�%(G)! Hÿ

1
2�%(G) ;

where

My :� ÿÿmj ;k(@y; y)
��

:�
��

nk( y)
@

@yj
ÿ nj ( y)

@

@yk

��
3�3

:

The corresponding operators of the Stokes system have the same mapping properties

[5] and, in view of (1.10)-(1.13), are related to each other by

Ve` � 1

1� c
Vst � 2c

1� c

1

m
VD ;�1:22�

Ke` � 1

1� c
Kst � c

1� c
(KD � L1) ;�1:23�

K0e` �
1

1� c
K0st �

c

1� c
(K0D � L01) ;�1:24�

De` � Dst � cL2�1:25�
where

L1W � 1

4p

�
Gnfxg

�
n(y) � W( y)(xÿ y)ÿ (xÿ y) � W( y)n( y)

jxÿ yj3
�

dsy ;�1:26�

L2W(x) �Mx

�
Gnfxg

4m2 1

1� c

�
Est(x; y)ÿ 1

4mp

1

jxÿ yj
�
MyW( y)dsy�1:27�

and

VDs �
�

Gnfxg

ED(x; y)s( y)dsy where ED(x; y) :� 1

4p

1

jxÿ yj ;�1:28�

KDW � 1

4p

�
Gnfxg

@

@ny

�
1

jxÿ yj
�
W( y)dsy :�1:29�

These integrals are either weakly singular or Tricomi-Mikhlin principal value integrals.
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2. - THE DIRICHLET PROBLEM

Here, the boundary trace W 2 H
1
2(G) is given and the boundary traction s 2 Hÿ

1
2(G) in

(1.16) is unknown. So, we write (1.16) by using (1.20) in the form

Vsts � (1� c)

�
1

2
I � Ke`

�
Wÿ c

2

m
VDs�2:1�

which becomes (1.16) for c ! 0. Whereas Ve` is Hÿ
1
2(G)- elliptic [2], the operator Vst

has a non-trivial L-dimensional kernel (see also [9]), namely fn` � n(x)d`k for

x 2 Gk ; `; k � 1; . . . ;Lg where n(x) is the unit normal vector field along
SL
`�1

G` directed

into the exterior of V,

Ker Vst � Ker

�
1

2
I ÿ K0st

�
�
�XL

`�1

a` n` j a` 2 R

�
:�2:2�

LEMMA 2.1: Any eigenfunction t0 :� PL
`�1

g` n` of Vst on G generates a solution

v0 � 0 �
XL

`�1

g`Vst n` ; p0 � g1

of the Stokes system (1.8) in V.

PROOF: Since the pressure field at x2 V for the simple layer potential v0 �
PL
`�1

g`Vst n`
is given by

p0 �
XL

`�1

g`

�
G

1

4p

�
ry

1

jxÿ yj
�>

n`( y)dsy

�
XN

`�2

g`

�
G`

�
@

@ny
ED(x; y)

�>
dsy � g1

�
G1

�
@

@ny

�>
ED(x; y)dsy

� 0� g1 ;

since x 2 V is exterior to G` for ` � 2; . . . ;N but interior for G1.

With the constant pressure field we have Dv0 � 0 in V with v0jG � v0j@V � 0; hence,

v0(x) � 0 for all x 2 V which completes the proof.

On the other hand, s 2 Hÿ
1
2(G) is uniquely determined by (1.16) since

(Ve`)
ÿ1 : H

1
2(G)! Hÿ

1
2(G) exists. Therefore the right-hand side of (2.1) is orthogonal

to Ker Vst, i.e.,��
(1� c)

�
1

2
I � Ke`

��
Wÿ c

2

m
VDs; n`

�
� 0 for ` � 1; . . . ;L :�2:3�
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Accordingly, we split s as

s � s0 �
XL

`�1

a` n` where hs0;VD nki � 0 for k � 1; . . . ;L :�2:4�

Hence, (2.3) gives with the positive definite symmetric matrix

�bD :� ((hVD n`; nki))L�L � ((b`k))L�L�2:5�
the relations

a` � m

2c

XL

k�1

(�b
ÿ1
D )`k

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
; ` � 1; . . . ;L :�2:6�

With (1.23), (1� c)
1

2
I � Ke`

� �
� 1

2
cI � 1

2
I � Kst

� �
� c(KD � L1) and�

(1� c)

�
1

2
I � Ke`

�
W; nk

�
� hW; nki � c

��
1

2
I � KD � L1

�
W; nk

�
we find

a` � m

2c

XL

k�1

(�b
ÿ1
D )`khW; nki � m

2

XL

k�1

(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�
W; nk

�
�2:7�

So, Equation (2.1) becomes

Vsts0 � c
2

m
VDs0 � (1� c)

�
1

2
I � Ke`

�
Wÿ

XL

k;`�1

(�b
ÿ1
D )`k

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
n`

which is uniquely solvable for s0 satisfying (2.4), and which can be stabilized [9, 10] as

Vsts0 �
XL

j�1

hs0;VD njiVD nj � c
2

m
VDs0 � (1� c)

�
1

2
I � Ke`

�
W

ÿ
XL

k;`�1

(�b
ÿ1
D )k`

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
VD n` :

For 0 � c sufficiently small, this equation can be extended to the whole space Hÿ
1
2(G),

�2:8� Vsts0 �
XL

j�1

hs0;VD njiVD nj � 2c

m
VDs0 � (1� c)

�
1

2
I � Ke`

�
W

ÿ
XL

k;`�1

(�b
ÿ1
D )k`

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
VD n` ;

and is still uniquely solvable there. To see this multiply with nm, integrate over G and
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insert (2.4). Then one obtains for s � s0 �
PL
`�1

a0` n` the equation

XL

j�1

gjbjm �
2c

m
gm � 0 with gm �

XL

`�1

a0`b`m

which implies a0` � 0 for ` � 1; . . . ;L and s � s0.

The boundary traction s is then given by

�2:9� s � s0 �
XL

`�1

a` n` � s0 � m

2c

XL

`�1

XL

k�1

(�b
ÿ1
D )`khW; nkin`

� m

2
(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�
W; nk

�
n`

where s0 is the solution of (2.8).

Collecting these results we obtain the following theorem.

THEOREM 2.2: For c � 0, the elastic field of the Dirichlet problem (1.1), (1.2) has the

form

�2:10� v(x) � 1

1� c

��
G

Est(x; y)s0( y)dsy ÿ
�
G

Kst(x; y)W( y)dsy

�

� 1

1� c

XL

`;k�1

(�b
ÿ1
D )`khW; n`iVD nk(x)

� c

1� c

�
2

m
VDs0(x)ÿ

�
G

ÿ
KD(x; y)� L1(x; y)

�
W( y)dsy

�
XL

`;k�1

(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�
W; n`

�
VD nk(x)

�

� 1

1� c
ust � 1

1� c

XL

`;k�1

(�b
ÿ1
D )`khW; n`if(I � Kst)VD nkg(x)� c

1� c
eu(c; x) :

The function s0(x) is the unique solution of (2.8). The constants aj can then be explicitly

computed from (2.7). For c > 0, the function ust is the solution of the Stokes system to the

projected Dirichlet data

W0 :� Wÿ
XL

k;`�1

(�b
ÿ1
D )k`hW; nkiVD n` :

The boundary traction is given by

�2:11� s(x) � s0(x)� 1

c

m

2

XL

k;`�1

(�b
ÿ1
D )k`hW; nkin`(x)

�
XL

`;k�1

(�b
ÿ1
D )`k

m

2

��
1

2
I � KD � L1

�
W; nk

�
n`(x) :
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Note that in (2.9), due to Lemma 2.1, the contributions from n` for ` � 2; . . . ;L will

be mapped to zero.

COROLLARY 2.3: In general, the given boundary displacements will also depend on the

Poisson ratio, i.e., on c. So let us assume that

hW; nki � ak � cbk �O(c2)�2:12�
as 0 � c ! 0. Then (2.10) becomes

�2:13� s(x) � s0(x)� m

2c

XL

`�1

XL

k�1

(�b
ÿ1
D )`kakn`(x)

� m

2

XL

`�1

XL

k�1

(�b
ÿ1
D )`k

���
1

2
I � KD � L1

�
W; nk

�
bk

�
n`(x)�O(c)

as 0 < c ! 0.

REMARK: As we can see from (2.9), for c ! 0, i.e. y! 1

2
, the elastic displacement field

v(x) does not tend to the Stokes solution ust if ak 6� 0 for some k � 1; . . . ;L. In this case,

the second expression in (2.9) will remain, which defines a boundary layer all over V.

Correspondingly, the boundary stress s(x) blows up for c ! 0 and the relation

1

c

�
G

W � nds �
XL

`�1

hW; n`i 1
c
� ÿ

�
V

pdx�2:14�

shows that the total pressure in V will then become infinite.

Hence, the elastic Dirichlet problem is a singular perturbation problem. The elastic

displacement field will converge to the Stokes field if and only if
�
G

W � nds � O(c) for

c ! 0; otherwise a remaining stress field will arise.

Even if ak � 0 but bk 6� 0, the boundary traction will not converge to the

hydrodynamic boundary traction of the Stokes flow and a residual stress generated

by the last term in (2.10b) will remain. Moreover, since the right-hand side in (2.9)

depends analytically on c, the displacement fields v(x) as well as the boundary

traction s(x) can be expressed in terms of asymptotic expansions in powers of c and

we recover Temam's result [11, Chap. I § 6] for given Dirichlet data on G and no

volume forces.

Of course, the boundary integral equation (2.8) can also be formulated in terms of a

variational problem, i.e., to find s0 2 Hÿ
1
2(G) as the solution of

�2:15� aD(s0; x) :� hVsts0; xi �
XL

`�1

hs0;VD n`ihVD n`; xi

� c
2

m
hVDs0; xi � hF; xi for all x 2 Hÿ

1
2(G)
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where

F � (1� c)

�
1

2
I � Ke`

�
Wÿ

XL

k;`�1

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
VD n`�2:16�

and where aD(s; x) is Hÿ
1
2(G)-elliptic:

aD(s; s) � g0ksk2

Hÿ
1
2(G)

�2:17�
with g0 > 0 for 0 � c.

REGULARITY: In view of the coerciveness property (2.14) and the mapping properties of

K0st;K
0
D and L01; Kst;KD and L1 as in (1.18)-(1.21), respectively, we have for W 2 H

1
2(G)

that s 2 Hÿ
1
2(G) and v 2 H1(V). If W is given as W 2 H

1
2�%(G) with 0 < % <

1

2
on the

Lipschitz boundary G then one obtains with the arguments as in [2] that s 2 Hÿ
1
2�%(G)

and v 2 H1�%(V). Moreover, all the terms in the asymptotic expansions belong to the

corresponding spaces.

3. - THE NEUMAN PROBLEM

Now let us consider the problem (1.1), (1.3) where the boundary traction

TvjG � c 2 Hÿ
1
2(G)�3:1�

is given satisfying the compatibility conditions

hv;ci � 0 for all rigid motions v �
X6

j�1

vj mj (x) with vj 2 R�3:2�

and mj (x) is the j-th column vector of

1 0 0 0 x3 ÿx2

0 1 0 x2 0 x1

0 0 1 ÿx3 ÿx1 0

0@ 1A :�3:3�

Now the boundary traction s � c 2 Hÿ
1
2(G) is unknown and with (1.23) and (1.25),

the equation (1.16) can be written as

DstW� cL2W �
�

1

2
I ÿ K0e`

�
c :�3:4�

Here the 6L-dimensional kernels of the hypersingular operators of De`, the Stokes-

and the LameÂ system, coincide and are given by

�3:5� Ker De`jG`
� Ker DstjG`

� L�(mj` � mj (x)d`k for x 2 Gk ; :

`; k � 1; . . . ;L ; j � 1; . . . ; 6
	
;

where d`k denotes the Kronecker symbol.
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Since (1.23) holds for any c > 0 we conclude that also

L2 mj` � 0 for all ` � 1; . . . ;L and j � 1; . . . ; 6 :�3:6�
Since the solution W of the LameÂ-Neumann problem exists and, hence, also solves (3.4)

for c > 0, and Dst � cL2 is selfadjoint, the right-hand side
1

2
I ÿ K0e`

� �
c satisfies the 6L

orthogonality conditions��
1

2
I ÿ K0e`

�
c;mj`

�
� 0 for ` � 1; . . . ;L ; j � 1; . . . ; 6 :�3:7�

LEMMA 3.1: Any of the eigenfunctions mj` on G generates a solution u0j` of the Stokes

system with the properties

�3:8� u0j`(x) :� ÿ
�
G`

Kst(x; y)mj ( y)dsy � 0 for x 2 V if ` � 2; . . . ;L ;

mj (x) for x 2 V if ` � 1 ; j � 1; . . . ; 6 ;

(

p0`j (x) �
0 for x 2 V if ` � 2; . . . ;L ;

divx2m
�
G1

KD(x; y) mj ( y)dsy if ` � 1 ; j � 1; . . . ; 6 :

8<:�3:9�

PROOF: The hydrodynamic traction of u0j` satisfies

Tu0j`jG`
� DstjG`

mj � 0 on G` :

If ` � 2; . . . ;L then x 2 V lies in the exterior of V` with the closed boundary surface G`.

There, in R3 n V` the pair (u0j`; p0j`) is a solution of the homogeneous Neumann problem

for the homogeneous Stokes system and u0j` � O(jxjÿ2) ; p0j` � O(jxjÿ3) for jxj ! 1.

Hence, u0j` � 0 and p0j` � 0 for all x 2 R3 n V` (see [4, p. 16]).

For j � 1 ; u0j`(x) is the solution of the homogeneous Neumann problem in the

interior domain V1 � V
SN
`�2

V` and, therefore,

u0j`(x) �
X6

k�1

%k mk(x) � ÿ
�
G1

Kst(x; y) mj ( y)dsy ; %k 2 R :

If x! G1 we get with the jump relation

X6

k�1

%k mk(x) � 1

2
mj (x)ÿ Kst mj (x) for x 2 G1 :

Now we use the relation mj � VstjG1
tj on G1 with ftjg6

j�1 a basis of the 6-dimensional

eigenspace to
1

2
I � K0st on G1 (see [3, Theorem 2.3.2]), together with KstVst � VstK

0
st due
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to the Calderon projection, and obtainX6

k�1

%k mk(x) � mj (x)ÿ
�

1

2
I � Kst

�
Vsttj

� mj (x)ÿ Vst

�
1

2
I � K0st

�
tj � mj (x) ;

with
1

2
I � K0st

� �
tj � 0. Hence, %k � djk. This completes the proof of Lemma 3.1. p

Again, we split

W � W0 �
XL

`�1

X6

j�1

vj` mj`�3:10�

where W0 satisfies the 6L orthogonality conditions

hW0;mj`i � 0 for ` � 1; . . . ;L ; j � 1; . . . ; 6 ;�3:11�
and write equation (3.4) as an equation on the whole space H

1
2(G) in stabilized form

DstW0 �
XL

`�1

X6

j�1

hmj`;W0imj` � cL2W0 �
�

1

2
I ÿ K0e`

�
c :�3:12�

This equation is uniquely solvable and, because of (3.7), has the unique solution W0.

Collecting these properties and invoking Lemma 3.1 we have the following theorem.

THEOREM 3.2: For c � 0 the elastic field of the Neumann problem (1.1), (1.3) with (3.2)

has the form

v(x) � 1

1� c

��
G

Est(x; y)c( y)dsy ÿ
�
G

Kst(x; y)W0( y)dsy

�
�3:13�

� c

1� c

�
2

m

�
G

ED(x; y)c( y)dsy ÿ
�
G

�
KD(x; y)� L1(x; y)

�
W0( y)dsy

�

�
X6

j�1

aj mj (x) for x 2 V

� 1

1� c
ust(x)�

X6

j�1

aj mj (x)� c

1� c
eu(x)

where a` 2 R are arbitrary constants and W0(x) is the unique solution of the stabilized

equation (3.12).

Note that the contributions vj` mj` for ` � 2; . . . ;L will be mapped to zero in (3.13)

due to Lemma 3.1.
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REMARK 3.3: As we can see from Theorem 3.2, here the elastic field v(x) tends for c ! 0 to

the Stokes field. In the contrary to the Dirichlet problem, the traction problem is a regular

perturbation problem for c ! 0 to the Stokes traction problem. Here, since the operator in

(3.12) and also the right-hand side in (3.13) depend analytically on c, the displacement fields

W0 onG andv inV can be expressed inthe formofregularasymptoticequations inpowersof c.

Again, the boundary integral equation (3.12) can be formulated as a variational

problem, i.e., to find W0 2 H
1
2(G) as the solution of

�3:14� aN(W0; l) � hDstW0; li �
XL

`�1

X6

j�1

hmj`;W0ihmj`; li

� chL2W0; li �
��

1

2
I ÿ K0e`

�
c; l

�
for all l 2 H

1
2(G) :

The bilinear form aN is H
1
2(G)-elliptic, i.e., there holds

aN(l; l) � g1klk2

H
1
2(G)

for all l 2 H
1
2(G)�3:15�

with some constant g1 > 0.

Note that integration by parts reduces hDstW0; li to a bilinear form with weakly

singular kernel operating on the surface derivatives of W0 and l (see [5]).

REGULARITY: In view of (3.15), as for the Dirichlet problem, we find W0 2 H
1
2(G) and

v 2 H1(V) for given c 2 Hÿ
1
2(G satisfying (3.2), and for c 2 Hÿ

1
2�%(G) with 0 � % < 1

2
on the Lipschitz boundary we get W0 2 H

1
2�%(G) and v 2 H1�%(V).

4. - THE MIXED DIRICHLET-NEUMANN PROBLEM

In case of the mixed problem (1.1), (1.4) where G � GD [ GN and GD \ GN � ;, (GD

and GN are open parts of G), we have

vjGD
� W 2 H

1
2(GD) and TvjGN

� c 2 Hÿ
1
2(GN) � ( eH1

2

ÿ
GN)

�0
:�4:1�

Without loss of generality we assume that W and c are extended to Wg and cg,

respectively, to all of G; hence,

vjGD
� WgjGD

and TvjGN
� cgjGN

�4:2�
where now Wg 2 H

1
2(G) and cg 2 Hÿ

1
2(G). Then

vjG � Wg � eW � W0 �
XL

`�1

X6

j�1

vj` mj` 2 H
1
2(G) and

TvjG � cg � ec � s0 �
XL

`�1

a` n` 2 Hÿ
1
2(G)

�4:3�

where W0 satisfies (3.4) and s0 satisfies (2.4) and eW 2 eH1
2(GN) ; ec 2 eHÿ1

2(GD).

The spaces eH1
2(GN) and eHÿ1

2(GD) are defined as subspaces of H
1
2(G) and Hÿ

1
2(G),
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respectively, by eH1
2(GN) :� closure of C10 (GN) in H

1
2(G) ; andeHÿ1

2(GD) :� closure of C10 (GD) in Hÿ
1
2(G) :

For the elastic displacement field with c > 0, the Calderon projector implies the

system in mixed form on G, namely

Ve`(ec � cg)ÿ
�

1

2
I � Ke`

�
(eW� Wg) � 0 ;

ÿ
�

1

2
I ÿ K0e`

�
(ec � cg)� De`(eW� Wg) � 0 :

�4:4�

If we restrict the first equation to GN and the second one to GD then we get a system in
stabilized saddle point form:

Ve`ec ÿ Ke`eW � �ÿVe`cg �
�

1

2
I � Ke`

�
Wg

�
jGN

on GN ;

K0e`ec � De`eW � �1

2
I � K0e`

�
cg ÿ De`Wg

�
jGD

on GD

�4:5�

which is uniquely solvable for (eW; ec) 2 eH1
2(GN)� eHÿ1

2(GD) and whose variational bilinear

form on the product space eH1
2(GN)� eHÿ1

2(GD) �� H
1
2(G)�Hÿ

1
2(G) reads:

aDN

ÿ
(ec; eW) ; (es;ex)

�
:� hVe`ec;esi ÿ hKe`eW;esi � hec;Ke`exi � hDe`eW; xi ;�4:6�

and is
ÿ eH1

2(GN)
�� eHÿ1

2(GD)
�

elliptic:

�4:7� aDN

ÿ
(ec; eW) ; (ec; eW)

� � g0

ÿkeWk2

H
1
2(G)
� ÿkeck2

Hÿ
1
2(G)

�
for all eW 2 eH1

2(GN) ; ec 2 eHÿ1
2(GD) :

The constant g0 > 0 depends on GD and GN.

Inserting (1.22)-(1.29) leads to a system which is a perturbation of the degenerate

Stokes system . For the first equations in the Stokes system we insert into (2.8) the relation

(2.8a) and obtain

Vsts �
XL

`�1

hs;VD n`iVD n` � 2c

m
VDs�4:8�

� (1� c)

�
1

2
I � Ke`

�
Wÿ

XL

`;k�1

(�b
ÿ1
D )`k

�
(1� c)

�
1

2
I � Ke`

�
W; nk

�
VD n`

�
XL

k�1

m

2c
hW; nkiVD nk �

XL

`;k�1

(�b
ÿ1
D )`khW; nkiVD n`

�
XL

k�1

m

2

��
1

2
I � KD � L1

�
W; nk

�
VD nk

� c
XL

`;k�1

(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�
W; nk

�
VD n` :
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For the second equations, the hypersingular equation in stabilized form reads

DstW�
XL

`�1

X6

j�1

hW;mj`imj` � cL2W �
�

1

2
I ÿ K0e`

�
c :�4:9�

Now we insert s � sg � es and W � Wg � eW and recollect to obtain the equations in

variational form:

hVstes;exi �XL

`�1

hes;VD n`ihVD n`;exi � 2c

m
hVDes;exi�4:10�

ÿ (1� c)

��
1

2
I � Ke`

�eW;ex��XL

`;k�1

(�b
ÿ1
D )`k

�
(1� c)

�
1

2
I � Ke`

�eW; nk

�
hVD n`;exi

ÿ
XL

`;k�1

m

2

��
1

2
I � KD � L1

�eW; nk

�
hVD n`;exi

ÿ c
XL

`;k�1

(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�eW; nk

�
hVD n`;exi

� hF;exi for all ex 2 eHÿ1
2(GD)

and

�4:11� hDsteW;eli �XL

`�1

X6

j�1

heW;mj`ihmj`;eli � chL2eW;eli ÿ ��1

2
I ÿ K0e`

�es;el�� hC;eli :
Here, the right-hand sides are given by

F � ÿVstsg ÿ
XL

`�1

hVsg; n`iVD n` ÿ 2c

m
VDsg�4:12�

� (1� c)

�
1

2
I � Ke`

�
Wg ÿ

XL

`;k�1

(�b
ÿ1
D )`k

�
(1� c)

�
1

2
I � Ke`

�
Wg; nk

�
VD n`

�
XL

k�1

m

2

��
1

2
I � KD � L1

�
Wg; nk

�

� c
XL

`;k�1

(�b
ÿ1
D )`k

��
1

2
I � KD � L1

�
Wg; nk

�
VD n`

� m

2c

XL

k�1

akVD nk �
XL

`;k�1

�
(�b
ÿ1
D )`kak � m

2
d`kbk

�
VD n` � c

XL

`;k�1

(�b
ÿ1
D )`kbkVD n`

and

C � ÿDstWg ÿ
XL

`�1

X6

j�1

hWg;mj`imj` ÿ cL2Wg �
�

1

2
I ÿ K0e`

�
sg�4:13�
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together with the compatibility conditions

heW; nki � ak � cbk ÿ hWg; nki for k � 1; . . . ;L ;�4:14�
where ak and bk are given constants.

Collecting the above relations we have the following theorem.

THEOREM 4.1: For c > 0 the elastic field of the mixed Dirichlet-Neumann problem

(1.1), (1.4) has the form

v(x) � 1

1� c

��
G

Est(x; y)s( y)ÿ
�
G

Kst(x; y)W( y)dsy�4:15�

� c

�
2

m

�
G

ED(x; y)s( y)dsy ÿ
�
G

ÿ
KD(x; y)� L1(x; y)

�
W( y)dsy

��
where es and eW are the solutions of the equations (4.10), (4.11) and (4.14) where the

constants ak; bk are given.

REMARK: If we choose ak � bk � 0 in (4.14) then the mixed boundary value problem

becomes a regular perturbation problem of the Stokes equations whereas for non van-

ishing ak; bk, the problem becomes singular if c ! 0.

Since the operators in (4.8) and (4.9) and also C in (4.13) depend analytically on c, and

F in (4.12) is meromorphic, again the charges W and s on G and the displacement v in V
admit again asymptotic developments in powers of c.

REGULARITY: The coerciveness estimate (4.12) implies that W 2 H
1
2(G) ; s 2 Hÿ

1
2(G)

and v 2 H1(V) if G is Lipschitz. For higher regularity, however, i.e., if W 2 H
1
2�%(GD) and

c 2 Hÿ
1
2�%(GN) are given with 0 < % <

1

2
and G is just Lipschitz, higher regularity has not

been proven yet. But if the Lipschitz surface contains a vicinity of the collision curve

g � GN \ GD, that is, a piece of a Lyapounov surface, and if g is a C2-curve, then it can be

shown that v 2 H1�%(V) [8].
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