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ABSTRACT. Ð It is known that the treatment of boundary value problems based on variational
principles often leads to corresponding boundary integral equations in weak formulations. Their
mapping properties can then be derived from those of the associated partial differential equations.
However, this approach is restricted only to those boundary value problems which can be
formulated in terms of general variational principles based on GaÊrding's inequality. On the other
hand, boundary integral equations can also be recast as special classes of pseudodifferential
equations. In this paper, we are concerned with the latter approach by applying pseudodifferential
operator theory to elliptic boundary value problems. In particular, a scalar model problem and the
LameÂ system in linear elasticity will serve as concrete examples illustrating the basic ideas how one
can apply the theory of pseudodifferential operators and their calculus to obtain basic properties for
the corresponding boundary integral operators.

1. - INTRODUCTION

The class of pseudo-differential operators is essentially the smallest algebra of

operators which contains all differential operators, all fundamental solutions of elliptic

differential operators and all integral operators with pseudohomogeneous kernel

expansions . The linear pseudo-differential operators can be characterized by generalized

Fourier multipliers, the so-called symbols. The development of the theory of pseudo-

differential operators has made possible to provide a unified treatment of differential and

integral operators. For boundary element methods, we are generally dealing with

variational solutions of linear integral operators arising from Green representations for

the solutions of elliptic boundary value problems. Therefore, it is natural to recast them as
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elliptic pseudo-differential operators from which we may utilize all the developed calculus

of pseudo-differential operators to study their properties from algebraic calculations of

the corresponding symbols.

There are many excellent existing books on pseudo-differential operators (see, e.g.,

[8], [7], [9], [12], [14], [15], [16], [17], [21], [22], [28], and [29], to name a few).

However, most of them seem to be focused on pseudo-differential operators with

applications to differential operators in mind. On the other hand, in [1], [2], [4], [6],

[24], [25], and [27], we may find some applications of pseudo-differential operators to

integral operators. Yet in our opinion, the approaches there are either too general or too

special for treating general boundary integral equations arising in applications. For our

purpose, there seem to be some gaps particularly in applying the standard calculus of

pseudo-differential operators to integral operators on closed boundary manifolds. It is the

purpose of this paper to bridge these gaps and to give, in particular, a simple procedure

for analyzing a class of boundary integral operators in most of applications, including

classical boundary potentials, which can be followed by people in practice without too

much deep knowledge on pseudo-differential operators. Our presentation follows [19]

and is originally motivated by the work of [20] , [23] and [25]. Moreover, it can be seen as

a very simple case of pseudo-differential calculus in [3] for treating elliptic boundary

problems. We present the results without the proofs and refer to the details and proofs in

our forthcoming monograph [19].

In order to give an idea what kind of integral operators we have in mind, we consider a

model problem of the form:

Pu :� ÿDu� q(x)u � f in V � R3;�1:1�
with q(x) � 0; x 2 V; and supp f � V [ eV, where V is a bounded domain with C1

boundary G, and eV is a tubular neighborhood of G � @V (see Fig. 3). Here q and f are

given functions with regularity to be specified later. Our staring point is the

representation of the solution of (1.1)

u �ÿ
�
V

E(x; y)q(y)u(y)dy�
�
V

E(x; y)f (y)dy

�
�
G

E(x; y)t(y)dsy ÿ
�
G

@

@ny
E(x; y)W(y)dsy for x 2 V;

where E(x; y) is the fundamental solution of ÿD:

E(x; y) � 1

4p

1

jxÿ yj ;

and W; t are the Cauchy data of the solution,

g0u � ujG � W; g1u � @u=@njG � t:

The representation of u can be rewritten as a domain integral equation in the form

uÿ T u �Vt ÿWW�N f in V;�1:2�
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where V;W are, respectively, the simple and double layer potential operator for ÿD, and

N the Newton potential operator. Here the domain integral operator T is a weighted

Newton operator defined by

T u(x) :� ÿ
�
V

E(x; y)q(y)u(y)dy on V:

By taking the trace of the domain integral equation (1.2), we obtain the following two

boundary integral equations:

Wÿ g0T u � g0Vt ÿ g0WW� g0N f on G�1:3�
t ÿ g1T u � g1Vt ÿ g1WW� g1N f on G�1:4�

The solution u of the partial differential equation (1.1), and its Cauchy data W; t are

related by the coupled domain-boundary integral equations, (1.2)-(1.4). If one of the

Cauchy data is prescribed, then the solution of (1.1) and the remaining unknown Cauchy

data can be in principle determined from the domain integral equation (1.2) together with

either one of the boundary integral equations (1.3) and (1.4). This simple model problem

is rather special. Nevertheless, it leads to typical integral operators which we may

encounter in the study of boundary value problems by boundary element methods. It

is these integral operators, whose mapping properties in particular, we believe can be best

obtained by using the theory of pseudo-differential operators.

The main results concerning boundary integral operators generated by pseudo-

differential operators on domains (cdOs on domains) will be presented in Section 3.

Sections 2 contains definitions and basic properties of pseudo-differential operators. In

addition, we show that domain integral operators of the Newton potential type belong to

a special class of pseudo-differential operators of negative order on domains. In the last

section, Section 4, we introduce the concept of strong ellipticity for the boundary pseudo-

differential operators. The latter then leads to the GaÊrding inequality of the strongly

elliptic boundary integral operators. As a consequence, this provides the Fredholm

alternatives for the solvability of the variational formulations of the corresponding

integral equations as well as straightforward stability properties of finite- and boundary

element approximations in related computational methods, see [18]. We conclude the

paper by applying cdO results to simple and hypersingular boundary integral operators

in linear elasticity.

2. - DOMAIN INTEGRAL OPERATORS AS cdOs ON DOMAINS

As the linear pseudo-differential operators can be characterized by generalized

Fourier multipliers, the so-called symbols, we begin with the basic definition of symbols

classes for the standard pseudo-differential operators Sm(V �Rn) on functions and

distributions defined on some domain V � Rn.
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DEFINITION 2.1: For m 2 R, the symbol class Sm(V �Rn) of order m is defined to

consist of the set of functions a 2 C1(V �Rn) with the property that, for any compact set

K�� V � Rn and multiple-indices a; b there exist positive constants c(K; a; b) such that����� @@x

�b� @
@j

�a

a(x; j)

����� c(K; a; b)(1� jjj)mÿjaj�2:1�

for all x 2 K and j 2 Rn.

The elements of Sm(V �Rn), i.e, a(x; j), are called symbols of order m.

In connection with the symbols a 2 Sm(V �Rn), we define the associated standard cdO

of order m.

DEFINITION 2.2: For a 2 Sm(V �Rn), the standard cdO of order m is defined by

A(x;D)u :�Fÿ1
j 7! x(a(x; j)F y 7! ju(y))�2:2�

�(2p)ÿn

�
Rn

�
V

ei(xÿy)�ja(x; j)u(y)dydj

for u 2 C10 (V) and x 2 V.

The set of all standard cdOs of order m is denoted by OPSm(V �Rn).

One of the basic theorems is the following.

THEOREM 2.3: The operator A 2 OPSm(V �Rn) is a continuous operator

A : C10 (V)! C1(V):

The operator A can be extended to a continuous linear mapping from eHs(K) into Hsÿm
loc (V)

for any compact subset K�� V. Furthermore, in the framework of distributions, A can also be

extended to a continuous linear operator

A : E0(V)! D0(V):

As a simple example, let us consider the differential operator P � ÿD� q(x) in the

model problem (1.1). Since the Fourier transform of ÿDu,

ÿcDu � jjj2û;

we see that

Pu � Fÿ1
j 7! x(ÿ cDu� q(x)û) � Fÿ1

j 7! x(jjj2 � q(x))F x 7! ju):

Hence for bounded smooth function q,

aP(x; j) � jjj2 � q(x)

is the symbol of P and the P is a pseudodifferential operator in OPS2(V �R3):
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On the other hand, let us consider the integral operator on V:

N f :�
�

R3

1

4pjxÿ yj f (y)dy:

If we denote the symbol of the ÿD by aÿD(x; j) � jjj2, then we could write

N f � Fÿ1
j 7!x(aÿD(x; j)ÿ1F y 7! j f (y));

and take

aN (x; j) � aÿD(x; j)ÿ1 � 1

jjj2

as the symbol of the integral operator N so that N belongs to the class OPSÿ2(V �R3).

However
1

jjj2 is singular at j � 0, and can never be a symbol according to the definition

(2.1). In order to circumvent this difficulty, we take a cut-off function x 2 C10 (R3) such

that x(j) � 0 for jjj � 1=2, and x(j) � 1 for jjj � 1, and write

N f �Fÿ1
j 7! x

ÿ
x(j)aÿD(x; j)ÿ1F y 7! j f (y)

��2:3�
�Fÿ1

j 7!x

ÿ
(1ÿ x(j))aÿD(x; j)ÿ1F y 7! j f (y)

� �: N 0 f �Rf :

It follows from the fundamental Paley-Wiener-Schwartz theorem [13] that the operator

R is a smoothing operator. The operator N 0 is a pseudodifferential operator in

OPSÿ2(V �R3). In fact, the decomposition leads to N 2 Lm(V), a class larger than

OPSm(V �Rn) (with m � ÿ2; n � 3 in this case).

DEFINITION 2.4: The class of operators Lm(V) consists of Fourier integral operators of the

form

Au(x) � (2p)ÿn

�
Rn

�
V

ei(xÿy)�ja(x; y; j)u(y)dydj�2:4�

for u 2 C10 (V) and x; y 2 V with the so-called amplitude function a 2 Sm(V � V �Rn)

and with the special phase function W(x; y; j) � (xÿ y) � j.

The following theorem is relevant to domain integral operators.

THEOREM 2.5: Every operator A 2 Lm(V) can be written as

A � A0(x;D)� R

where A0(x;D) 2 OPSm(V �Rn) is properly supported and R 2 Lÿ1(V) with

Lÿ1(V) :�
\

m2R

Lm(V) � OPSÿ1(V � V �Rn)

Some clarifications of this theorem are in order.
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� Smoothing operator. The operator R 2 Lÿ1(V) is called a smoothing operator and it

has a C1(V � V) Schwartz kernel.

� Symbol of a properly supported operator. It A0 2 OPSm(V �Rn) is properly sup-

ported then

a(x; j) � eÿix�j(A0eij�)(x)

is the symbol.

� Complete symbol. If A 2 Lm(V) is properly supported, then we have

a(x; j) � eÿix�j(Aeij�)(x) 2 Sm(V �Rn);

and A � A(x;D). Furthermore, if a(x; y; j) 2 Sm(V � V �Rn) is an amplitude for A, we

have the asymptotic expansion

a(x; j) �
X
a�0

1

a!

� @
@j

�a�
ÿ i

@

@y

�a
a(x; y; j)

� �
jy� x

:

The symbol a(x; j) is called the complete symbol of A.

� Complete symbol class. The operator A0 in the Theorem 2.5 is not unique. Hence

for A 2 Lm(V), we choose a properly supported operator A0 2 Lm(V) such that

Aÿ A0 2 L1(V), and we define

sA :� the equivalence class of complete symbols of A0

in Sm(V �Rn)=Sÿ1(V �Rn):

This equivalence class is called the complete symbol class of A 2 Lm(V).

� Principle symbol class. The equivalence class defined by the complete symbols of

A0 in Sm(V �Rn)=Smÿ1(V �Rn) is called the principal symbol class of A and denoted

by smA.

We remark that for equivalence classes in general one often uses just one representative of

the class sA or smA, respectively, to identify the whole class in Sm(V �Rn).

We also need a subclass of Lm(V), the so-called classical cdO class which is very

important in connection with elliptic boundary value problems and boundary integral

equations. First, we need the definition of the subclass of symbols.

DEFINITION 2.6: A symbol a 2 Sm(V �Rn) is called classical symbol, if there exists a

sequence of functions amÿj 2 Smÿj (V �Rn); j 2 N0 which are of homogeneous degree

mj � mÿ j such that

a �
X1
j�0

amj
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in the sense that if for every k > 0 there holds

aÿ
Xkÿ1

j�0

amj
2 Smk (V �Rn):

The set of all classical symbols of order m will be denoted by Sm
c`(V �Rn).

In Definition 2.6, by a homogeneous degree mj function amj
, we mean amj

has the

property:

amj
(x; tj) � tmj amj

(x; j) for t � 1 and jjj � 1:

We remark that for a 2 Sm
c`(V �Rn), the homogeneous functions amj

(x; j) for jjj � 1 are

uniquely determined. The leading term am0
2 Sm0 (V �Rn) is called the principal symbol.

DEFINITION 2.7: A cdO A 2 Lm(V) is said to be classical, if its complete symbol sA has a

representative in the class Sm
c`(V �Rn). We denote by Lm

c`(V �Rn) the set of all classical

cdOs of order m.

For A 2 Lm
c`(V), the principal symbol class smA has a representative

a0
m(x; j) :� jjjmam x;

j

jjj
� �

�2:5�

which belongs to C1(V � (Rn n f0g)) and is positively homogeneous of degree m with

respect to j; i.e.,

a0
m(x; tj) � tma0

m(x; j) for every t > 0 and for all j 2 Rn n f0g:
The function a0

m(x; j) is called the homogeneous principal symbol of A 2 Lm
c`(V). If we

denote by

a0
mÿj (x; j) :� jjjmÿj amÿj x;

j

jjj
� �

�2:6�

the homogeneous parts of the asymptotic expansion of the classical symbol smA, which

have the properties

a0
mÿj (x; j) � amÿj (x; j) for jjj � 1 and

a0
mÿj (x; tj) � tmÿj a0

mÿj (x; j) for all t > 0 and j 6� 0 ;

then smA may be represented asymptotically by the formal sum
P1
j�0

a0
mÿj (x; j):

3. - BOUNDARY INTEGRAL OPERATORS GENERATED BY cdOs ON DOMAINS

This section is devoted to the connection between classical cdOs and the boundary

integral operators. A large class of boundary integral operators, as appeared in the
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model problem, belong to the special class of classical cdOs on compact manifolds

having symbols of the so-called rational type. We are particularly interested in

strongly elliptic systems of cdOs providing the GaÊring inequality (see Theorem 4.2

in Section 4). The particular class of operators having symbols of rational type enjoys

many special properties such as their relation to Newton potentials which define

genuine cdOs in Rn. The traces of their composition with tensor product

distributions involving d(k)
G generate in a natural way boundary operators cdOs on

the boundary manifold.

We consider the boundary G of V as a manifold immersed into Rn in the sense of

differential geometry and associate G with a so-called atlas A which is a family of local

charts f(Or;Ur; xr)jr 2 Ig. We recall that each of the local charts is a triplet:

Ur � xr(Or) � Rnÿ1, an open subset of the parametric space of G in Rnÿ1; The

parametric representation x � Tr(r0) � x(ÿ1)
r (r0) for r0 2 Ur defines a parameterized

patch Or :� Tr(Ur) of the surface G (or, respectively, Ur � xr(Or)). The mappings Tr

and xr are both bijective and bi-continuous, hence Tr � x(ÿ1)
r is a homeomorphism. For

an atlas we require G � S
r2I

Or. Moreover, if Ort :� Or \Ot � Ot 6� ; then the mapping

Frt :� xt � Tr � xt � x(ÿ1)
r � xr(Ort)! xt(Ort)�3:1�

is supposed to be a sufficiently smooth diffeomorphism.

We begin with the class Lm(G):

DEFINITION 3.1: Let A : D(G)! E(G) be a continuous linear operator. Then A is said to

be in the classLm(G) of cdOs, if for every local chart f(Or;Ur; xr)jr 2 Ig the associated local

operator

Axr
:� xr�Ax�r : D(Ur) 7!E(Ur)�3:2�

belongs to Lm(Ur), where xr� and x�r are pushforward and pullback respectively.

FIG. 1. - A local surface representation.
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We are interested in boundary operators on functions given on G, in some n-

dimensional domain that contains G in its interior. This amounts to study the trace of

a cdO A given on some tubular neighborhood of G. To this end, let f(Or;Ur; xr)jr 2 Ig
be any local chart of a atlas A for G with the parametrization Tr � x(ÿ1)

r . Then for every

point x 2 eOr � Rn where eOr is an open set containing Or, we define the mapping

x � Cr(r) :� Tr(%
0 )� %nn(% 0 ); % � (% 0; %n)�3:3�

for % 0 2 Ur � Rnÿ1 and %n 2 (ÿ "; ") with " > 0. Then, eOr � Cr

ÿ
Ur � (ÿ "; ")� � Rn.

Note that for a smooth surface G and appropriate "> 0, the inverse mapping Fr �C(ÿ1)
r

exists,

% � Fr(x) for x 2 eOr ;�3:4�
which maps V \ eOr onto (% 0; %n) 2 Ur � (ÿ "; 0). The boundary patch Or is mapped to

Ur � f0g, i.e. %n � 0. We call eV :� S
r2I

eOr � Rn a tubular neighborhood ofG (see Figure 3).

Now we are in position to state the main result.

THEOREM 3.2: Let A 2 Lm
c`(V [ eV) with m 2 R. Then the limit

QGv(x0) � lim
0>rn!0

( eQGv)(x); x � x0 � rnn(xr(x
0)) 2 eQ

FIG. 2. - cdOs on boundary manifold.

FIG. 3. - A tubular neighborhood of Or .
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always exists if m < ÿ1, and QG 2 Lm�1
c` (G) is a cdO of order m� 1 on G, where

( eQGv)(x) :� A(v
 dG)(x) for x � x0 � rnn(xr(X
0))

with x 2 eOr n G and v 2 C10 (Or); (x0; 0) 2 G. Furthermore, the homogeneous principal

symbol q0
m�1 of QG is given by the contour integral

q0
m�1(x 0; j 0 ) � 1

2p

�
c

a0
m((x 0; 0); (j 0; z))dz;

where a0
m�1 is the homogeneous principal symbol of A, and the contour c � C consisting of

points

c � �z 2 [ÿ c0; c0] [ fz � c0eiw : 0 � w � ÿpg	
in the lower-half plane is clockwise oriented where c0 > 0 is chosen sufficiently large so that

all the poles of a0
m�1

ÿ
(x 0; 0); (j 0; z)

�
in the lower half-plane are enclosed in the interior

complex domain with boundary c � C.

REMARK 3.3: We remark that Theorem 3.2 remains valid for m � ÿ1, including the case

when m� 1 2 N0 , provided additional conditions are satisfied for eQ (to be precise, the so-

called extension and Tricomi conditions, see Theorem 8.5.1 in [19]).

As a simple illustration, we consider the simple layer operator V :� g0V for the

Laplacian in R3. It is clear that the Newton potential operator N ,

N f (x) :�
�

R3

1

4pjxÿ yj f (y)dy

belongs to Lm
cl (V [ eQ) with m � ÿ2. The corresponding operator eQG according to

Theorem 3.2 with A replaced by N is defined byeQG t(x) :�N (t 
 dG)(x)

�
�

R3

1

4pjxÿ yj (t(y
0)
 dG)dy �

�
G

1

4pjxÿ y0j s(y0)dsy0 :

This implies that

Vt(x0) :�QGt(x
0) � lim

x!G
( eQGs)(x) �

�
G

1

4pjx0 ÿ y0j t(y
0)dsy0 ; x0 2 G;

and hence V is in Lm�1
cl (G) with m� 1 � ÿ 1.

To conclude this section, we now return to the model problem in Section 1. Based on

Theorem 3.2 the mapping properties of those domain and boundary operators for q

sufficiently smooth can now be summarized as follows.
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� cdOs on V. The operators N 2 Lÿ2
c` (V [ eV) and T 2 Lÿ2

c` (V [ eV) map

N : eHÿ1�s(V)! eH1�s(V)

T : H1�s(V)! H1�s�2(V); s > ÿ 3=2

� Surface potential operators. The operators V and W define surface potentials and

map

V : Hÿ1�s�1=2(G)! H1�s(V)

W : H1�sÿ1=2(G)! H1�s(V)

� Operators defined on G by traces of cdOs on domains. They have the mapping

properties:
g0N : Hÿ1�s(V)! H1�sÿ1=2(G); sÿ 1 > ÿ 1=2

g1N : Hÿ1�s(V)! Hÿ1�s�1=2(G); sÿ 1 > 1=2

g0T : H1�s(V)! H1�s�2ÿ1=2(G); 1� s > ÿ1=2

g1T : H1�s(V)! Hÿ1�s�2�1=2(G); 1� s > 1=2

� cdOs on G. These are basic boundary integral operators belonging to the class

Lm
c`(G) with m � ÿ1; 0; 0; 1, respectively:

g0V : Hÿ1�sÿ1=2(G)! Hÿ1�s�1=2(G)

g0W : H1�sÿ1=2(G)! H1�sÿ1=2(G)

g1V : Hÿ1�s�1=2(G)! Hÿ1�s�1=2(G)

g1W : H1�sÿ1=2(G)! Hÿ1�s�1=2(G)

4. - STRONG ELLIPTICITY

One of the advantages of considering integral operators as cdOs is that the mapping

properties of the boundary integral operators can be deduced by examining the symbols of

the cdos. On the other hand, GaÊrding's inequality for the integral operators plays a

fundamental role in the variational formulation of the integral equations. The latter follows

from the definition of strong ellipticity of cdOs. Since the cdOs on the boundary G are

characterized by their representations with respect to an atlas A of G and its local charts

� f(Or;Ur; xr)jr 2 Ig, the concept of the strong ellipticity can be introduced in accordance

with [26] with respect to local charts. The strong elliptic yields immediately stability

properties for approximations of boundary integral equations via Galerkin methods and is

in this regards fundamentally important. The definition of the strong ellipticity reads.

DEFINITION 4.1: Let A � ((Ajk))p�p be a system of cdOs Ajk 2 Lsj�tk

c` (G) on G. We call

the system ((Ajk))p�p strongly elliptic, if to the principal symbol matrices a0(x; j) �
� ((a jk0

sj�tk
(xr(x); j)))p�p on the charts (Or;Ur; xr) of the atlas A there exists a C1 matrix-
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valued function U(x) � ((Uj`))p�p on G, and a constant g0 > 0 such that

Rez>u(x)a0(x; j0)z � g0jzj2

is satisfied for all x 2 G; z 2 Cp and j0 2 Rnÿ1 with jj0j � 1.

In terms of the Bessel potential on G defined by

La � (ÿ DG � 1)a=2;

where DG is the Laplace-Beltrami operator for the Laplacian on G, the following GaÊrding

inequality holds.

THEOREM 4.2: If A � ((Ajk))p�p is a strongly elliptic system of cdOs on G, then there

exist constants g0 > 0 and g1 � 0 such that GaÊrding's inequality holds in the form

Re�w;Ls
GUL

ÿs
G Aw�Qp

`�1
H�t`ÿs`�=2�G� � g0kwk2Qp

`�1
Ht` �G� ÿ g1kwk2Qp

`�1
Ht`ÿ1�G��4:1�

for all w 2Qp
`�1 Ht` (G), where Ls

G � ((L
sj

Gdj`))p�p. The last term in (4.1) defines a linear

compact operator

C :
Yp

`�1

Ht` (G)!
Yp

`�1

Hÿs` (G);

which is given by

(v;Cw)Qp

`�1
H(t`ÿs`)=2(G)

� g1(v;w)Qp

`�1
Ht`ÿ1(G)

:

With this compact operator C, the GaÊrding inequality (4.1) takes the form

Re
ÿ
w; (Ls

GUL
ÿs
G A� C)w

�Qp

`�1
H(t`ÿs` )=2(G)

� g1kwk2Qp

`�1
Ht` (G)

:�4:2�

REMARK 4.3: As a consequence of (4.2), any strongly elliptic cdO or any strongly elliptic

system of cdOs defines a Fredholm operator of index zero and the classical Fredholm al-

ternative holds for the corresponding sesqulinear form

a(v;w) :� ÿv; (Ls
GUL

ÿs
G Aw

�Qp

`�1
H(t`ÿs` )=2(G)

REMARK 4.4: In the special case when ajk � 2a is a constant, where 2a is the same order

for all Ajk, we may choose a � sj � tk, and if the system is strongly elliptic, then GaÊrding's

inequality (4.2) reduces to the familiar form:

Re
ÿ
w; (UA� C)w

�
L2(G)

� g1kwka for all w 2 Ha(G):

As a concrete example, we now consider the simplest nontrivial elliptic system of

equations in linear elasticity, the LameÂ system:

Pu � ÿD�~u :� ÿmD~uÿ (m� l) grad div~u � ~f in V [ eV � R3;�4:3�
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where ~u is the displacement field, ~f a given body force. The parameters m and l are the

LameÂconstants which characterize the elastic material (see e.g., [10], [11]), and satisfy the

relation l � 2my=(1ÿ 2y) in terms of the Poisson ratio y. It is required that 0 � y <
1

2
.

The four basic boundary integral operators are strongly elliptic. In particular, we will

carry out the analysis for the simple and the hyper-singular boundary operators.

The quadratic symbol matrix of the partial differential operator P can be calculated

sP(j) � ÿÿmjjj2djk � (m� l)jjjk

��
3�3

;�4:4�
and hence, the characteristic determinant is given by

det sP(j) � m2(l� 2m)jjj6 :
Since det sP(j) 6� 0 for all x 2 R3 and for all j 2 R3 n f0g, P is elliptic in the sense of

Agmon-Douglis-Nirenberg and the inverse to sP(j) defines the symbol of the Newton

potential operator N ,ÿ
sP(j)

�ÿ1 � 1

mjjj4
��
jjj2djk ÿ (l� m)

(l� 2m)
jjjk

��
3�3

:�4:5�

The Fourier inverse of (sP)ÿ1 defines the fundamental matrix E(x; y) for P,

E(x; y) � (2p)ÿ3 p:f :

�
R3

ÿ
sP(j)

�ÿ1
ei(xÿy)djdj�4:6�

� 1

m(2p)3

  
p:f :

�
R3

1

jjj2 ei(xÿy)�jdjdjk

� l� m

l� 2m

@2

@xj@xk

p:f :

�
R3

1

jjj4 ei(xÿy)�jdj

!!
3�3

� 1

8pm

(3m� l)

(l� 2m)

  
djk

jxÿ yj �
l� m

3m� l

(xj ÿ yj )(xk ÿ yk)

jxÿ yj3
!!

3�3

We remark that since the symbol in (4.5) is homogeneous, the fundamental solution

defines the Schwartz kernel of the Newton potential. Although one may still define a

parametrix as in our model problem by multiplying the homogeneous symbol in (4.5) by a

cut-off function x(j). Alternatively, the Newton potential N 2 Lÿ2
c` (R3) can be

decomposed in the form

N f �
�

R3

E(x; y)f(y)dy

�
�

R3

E(x; y)c(jxÿ yj)f(y)dy�
�

R3

E(x; y)
ÿ
1ÿ c(jxÿ yj)�f(y)dy

�:N 0 f �Rf;
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where N 0 2 OPSÿ2(R3 �R3) is properly supported and R is smoothing. Here, c(z) 2
2 C10 (R3) is a cut-off function with c(z) � 1 for all jzj � 1=2 and c(z) � 0 for all jzj � 1.

As for boundary integral operators, we begin with the simple-layer boundary integral

operator

Vt(x 0 ) �
�
G

E(x 0; y 0 )t(y 0)dsy 0 ; x 0 2 G:�4:7�

Similar to the model problem, we defineeQG t(x) :�N (t 
 dG)(x)

�
�

R3

E(x; y)(t(y 0)
 dG)dy

�
�
G

E(x; y 0)t(y 0)dsy 0 ; x 62 G

with E(x; y) given by (4.6). For x! G, the simple boundary integral operator

Vt(x 0 ) � lim
V3x!G

eQGt(x) �
�
G

E(x 0; y 0 )t(y 0 )dsG(y 0 ) for x 0 2 G

defines a cdO, V 2 Lÿ1
c` (G).

To show V 2 Lÿ1
c` (G) is strongly elliptic, we now compute the symbol qÿ1(x 0; j 0). For

simplicity, we identify G with x3 � 0. For general G, we refer to our monograph [19]. It

can be shown that the symbol of V can be calculated form sÿ1
P (j) in (4.5) by the contour

integral as in Theorem 3.2,

qÿ1(x 0; j 0 ) � 1

2p

�
c

ÿ
sÿ1

p (j 0; z)
�
dz � 1

2p

�
c

djk

mfz2 � jj 0j2g dz

ÿ 1

2p

�
c

l� m

m(l� 2m)

1

fz2 � jj 0j2g2

j2
1 ; j1j2 ; j1z

j1j2 ; j2
2 ; j2z

j1z ; j2z ; z2

0B@
1CAdz :

By using the residue formulas, this yields the complete homogeneous symbol matrix of V

on G,

qÿ1(j 0 ) � 1

2mjj 0j djk ÿ l� m

4m(l� 2m)jj 0j3
j2

1 ; j1j2 ; 0

j1j2 ; j2
2 ; 0

0 ; 0 ; jj 0j2

0B@
1CA

� (l� 3m)

4jj 0j3m(l� 2m)

jj 0j2 � kj2
2 ; ÿkj1j2 ; 0

ÿkj2j1 ; jj 0j2 � kj2
1 ; 0

0 ; 0 ; jj 0j2

0B@
1CA
;
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where k � l� m

l� 3m
. Obviously, since 0 < k < 1, this symmetric matrix is positive definite,

therefore, qÿ1(j 0 ) satisfies the estimate

Rez>qÿ1(j 0 )z � g0jj 0jÿ1jzj2 for all 0 6� j 0 2 R2 and z 2 C3

with g0 �
1

2(l� 2m)
> 0. This shows that the simple-layer boundary integral operator is

strongly elliptic.

Next, we consider the hypersingular boundary integral operator D,

DW(x 0 ) :� ÿTx 0

�
G

Ty 0E(x 0; y 0 )>W(y 0 )dsy 0 for x 0 2 G;�4:8�

where T is the traction operator on G,

T~uG � l(div ~u )~n� 2m
@~v

@n
� m~n� curl~u

� �����
G

We remark that this is exact the case where m� 1 2 N0. As we mentioned earlier,

additional conditions are needed in order to apply Theorem 2.5. Nevertheless, we shall

carry through the analysis. We define similarly

eQGW(x) :� A(W
 dG)(x) :� ÿ
�
G

Tx

ÿ
Ty 0E(x; y 0 )

�>
W(y 0 )dsy 0�4:9�

�
�

R3

kA(x; xÿ y)
ÿ
W(y 0 )
 dG

�
dy for x 62 G :

Here the Schwartz kernel is given by

kA(x; xÿ y) � 1

4p

m

l� 2m

1

jzj5
��

3z � n(y)

�
2mnj (x)zk�4:10�

� lnk(x)zj � lz � n(x)djk ÿ 5

jzj2 z � n(x)zj zk

�
� 3l

�
n(x) � n(y)zj zk � z � n(x)nj (y)zk

	
� 2m

�
3z � n(x)zjnk(y)� jzj2nj (y)nk(x)� jzj2n(x) � n(y)djk

	
ÿ 2(mÿ l)nj (x)nk(y)jzj2

��
3�3

where z � xÿ y. Since the hypersingular boundary integral operator is defined by

DW(x 0 ) :� lim
V3x!G

eQGW(x) � lim
V3 x!G

A(W
 dG)(x);

we need to compute the symbol of A. We note that the composition with the fundamental
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solution matrix given by

(TyE(x; y))> � NW (x; y)

defines in the tubular neighborhood eV � R3 of G a pseudo-homogeneous Schwartz

kernel generating a cdO , AW of order ÿ1 with symbol of rational type, since both

Ty and the elastic Newton potential operator N are of rational type. Hence the

cdO A is the composition of ÿTx and AW . The idea here is to use standard

formula of cdOs to compute the sA in terms of the composition of sÿTx
and sAw

.

In order to facilitate the computation, sAW
can be calculated in terms of its

transposed operator A>W which has the kernel TxE(x; y). This yields the complete

symbol of A:

sÿTx�AW
(x; j) ��4:11�

ÿ
X
jbj�0

� 1

b!

� @
@j

�b
i((lnj (x)jk � mjj nk(x)� m

ÿ
j � n(x)

�
djk))3�3

�
�

�
�
ÿ i

@

@x

�b X
jaj�0

1

a!

� @
@j

�a�
ÿ i

@

@x

�a
�

� i

mjjj4
l� m

l� 2m

��
ljjj2n`(x)jm � 2m

ÿ
n(x) � j)j`jm

��
3�3

(

ÿ i

mjjj2
��

ln`(x)jm � mj`nm(x)� m
ÿ
n(x) � j�d`m��

3�3

)>
:

We now confine ourselves to the computation of the principal symbol of

ÿTx � AW and of D on G by choosing a � b � 0 in (4.11). A straightforward

computation yields

s0
ÿTx�AW

(x; j) � l� m

m(l� 2m)

1

jjj4 ((l2jjj4nj (x)nk(x)�4:12�

� 2lmjjj2ÿn(x) � j�ÿjjnk(x)� nj (x)jk

�� 4m2
ÿ
n(x) � j�2

jjjk))3�3

ÿ 1

mjjj2 ((l2jjj2nj (x)nk(x)� m(2l� m)
ÿ
n(x) � j�ÿjjnk(x)� nj (x)jk

�
� m2jjjk � m2

ÿ
n(x) � j�2

djk))3�3 :

Again we identify G with x3 � 0 by setting n1(x) � n2(x) � 0, n3(x) � 1, and j3 � z,

we obtain
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s0
ab � ÿ m

z2

z2 � d2
0

dab �
� 4m(l� m)

l� 2m

z2

(z2 � d2
0)2
ÿ m

1

z2 � d2
0

�
jajb ;

s0
a3 � s0

3a � 4m
l� m

l� 2m

� z3

(z2 � d2
0 )2
ÿ z

z2 � d2
0

�
ja for a; b � 1; 2 ;

s0
33 �

4m(l� m)

l� 2m

� z4

(z2 � d2
0 )2
ÿ 2

z2

z2 � d2
0

�
ÿ l2

l� 2m
:

By employing the contour integral formula

q0
D;1(j 0 ) � 1

2p

�
c

((s0
`m(j 0; z))3�3dz

in view of

1

2p

�
c

z4

(z2 � d2
0)2

dz � ÿ 3

4
d0;

we obtain the principal symbol of the hypersingular boundary integral operator

D 2 L1
c`(G):

q0
D;1 �

m

2jj 0j

jj 0j2 � "1j
2
1 ; "1j1j2 ; 0

"1j2j1 ; jj 0j2 � "1j
2
2 ; 0

0 ; 0 ; (1� "1)jj 0j2

0BBB@
1CCCA;�4:13�

where "1 � l

l� 2m
and, hence, j"1j < 1.

Obviously, for any j 0 2 R2 with jj 0j � 1, the matrix q0
D;1 is symmetric and positive

definite. Consequently, D satisfies the condition of strong ellipticity with U � ((djk))3�3

and g0 � (1ÿ j"1j) > 0. Moreover, the hypersingular boundary integral operator matrix

D satisfies on G the GaÊrding inequality (4.2), where t` � s` � 1

2
.

In closing, we remark that for details and more general results on integral equations

recast as pseudodifferential equations, we refer to our forthcoming monograph [19].
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