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Parallel Decimal Multipliers: a hybrid approach 1

Abstract – An algorithm for decimal parallel multiplication is presented, in which the
basic steps are: the creation of 4*4 arrays representing the products of a multiplicand BCD
digit and of a multiplier digit (digit partial products), the calculation of the binary sums of
such arrays lying on each digit- column of the total array, their conversion in decimal, the
creation of an array of “column partial products”, composed by 3 or 4 “major partial prod-
ucts”, whose sum is the product. Three main points are discussed: the design of the adders
of a number of digit partial products (using a compact dot notation and showing a design
tool based on a spreadsheet), the parallel binary-decimal converters composed by a planar
array of identical cells, the parallel addition of the major partial products obtaining the prod-
uct. The area of this multiplier is shown to be slightly higher than the area of a parallel
binary multiplier, with factors of same bit-length. The total delay is approximately twice the
delay of a binary parallel multiplier.

Keywords: parallel arithmetic, high speed arithmetic, logic arrays, design aids, automatic
synthesis.

I - INTRODUCTION

Considerable interest has arisen since few years in decimal arithmetic, in par-
ticular in decimal multipliers [12, 13, 14, 16]. The related research appears to be
rather exploratory, since the problems are more complex than it could seem at a
first glance, and no definitive real good solution have not been yet found. The
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approach followed by most Decimal Arithmetic schemes so far proposed assumes
decimal digits represented in one of the many binary codes available, from BCD to
Signed Codes. Moreover the proposed decimal multipliers are based on parallel-
serial operation. Elementary arithmetic operators and any parts of them involve
often some form of re-coding. A particular attention has been paid to decimal
codes offering the possibility of implementing addition with limited or no carry
propagation [12, 13]. 

We will show that it is possible and convenient to assume in some parts of a
decimal multiplier, a pure binary code. The advantage is a simpler and faster binary
processing. The disadvantage consists in the need for radix conversion, i.e. binary
to BCD. 

A radical application of such approach consists in using a purely binary mul-
tiplier (e.g. a fully parallel one) “surrounded” by suitable binary to decimal (DB)
and BD converters. Such a scheme offers a high throughput (comparable to the
one offered by the binary multiplier) at the cost of a considerable latency and
greater area required by the converters.

We consider here the case of a fully parallel decimal multiplier where the
binary approach is assumed only for well defined parts of it (precisely, to the addi-
tion of single “digit-columns” of the products array).

II - A BASIC SCHEME

In a binary multiplier each element of the initial product array generates a
single binary digit obtained as a logical AND of a multiplicand digit with a digit of
the multiplier.

The product is the value of the total array and the various schemes are char-
acterized by the algorithms used in transforming the multiplication array into a
single equivalent binary number.

The generation of the multiplication array in decimal multipliers differs from
the binary case due to the fact that the factors are decimal numbers, composed by
decimal digits coded in binary in various ways: we assume to adopt the binary
coding of decimal digits (BCD). Each Digit Partial Product is obtained from a digit
of the multiplicand (Md) and another from the Multiplier (Mr). The first step of
the multiplier algorithm consists in obtaining each Digit Partial Product from the
two digits. This is an expensive operation, if the digit partial product (i.e. the dec-
imal product of two decimal digits) has to be obtained as a decimal two digits
number. It can be obtained through a table or through the direct synthesis of each
partial product combinational functions (8 with BCD coding). 

Due to the fact that all digit partial products require two decimal digits, two
different algorithms can be used for their accumulation. In the first each digit par-
tial product is added to another digit partial product (of same column in the prod-
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uct array) by considering both digits (of weights 10i and 10i+1) composing it. In a
second algorithm the most significant digit is associated with the least significant
digit of a digit partial product belonging to the following (i+1) column: two digits
of same weight are added instead of two digits of different (i, i+1) adjacent columns.

We propose to avoid any encoding of the digit partial products, assuming
them to be represented simply by the 16 bits generated by 16 two-input AND gates
that appear arranged in a “digit-array” as shown in fig. 1. Each digit-array is
enclosed in a parallelogram, and an array of 3*3 digits is shown decomposed in 9
digit arrays. 

Let’s consider as a working example the product of 3*3 decimal digits A and
B. Each of the three decimal digits a2, a1, a0 and b2, b1, b0, is encoded with bits
having weights equal, for a2, a1, a0, to: a2,3 = 800, a2,2 = 400, a2,1 = 200, a2,0 = 100;
a1,3 = 80, a1,2 = 40, a1,1 = 20, a1,0 = 10; a0,3 = 8, a0,2 = 4, a0,1 = 2, a0,0 = 1 , and sim-
ilarly for b2, b1, b0.. The numbers A and B are not binary, since the weights of the
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Fig. 1. The basic scheme of a 3*3 multiplier: the values in the bottom part assume that all
MR and MD digits are equal to 9.



successive bits are not (except for the 4 least significant ones) integer powers of the
base 2 (as: 24 = 1610, 25 = 3210, …). 

Suppose now that the two numbers are treated as in parallel binary multipli-
ers, by forming the array of fig. 1, where each line starting from A’s bits of a multi-
plicand digit and each line from the B’s bits of a multiplier digit crosses in 16
points, the 12 lines starting from the multiplicand A being directed diagonally to
down-left direction. A two-input AND gate in each of the 12*12 crossings pro-
duces a bit of the product array.

The array can be partitioned, as shown in Fig. 1, into digit-arrays representing
the product arrays of two BCD digits of 4 bits each, that we have call Digit Partial
Products. It is important to note that in each digit-arrays each of the 7 columns is
characterized by weights from 20 = 1 (for the rightmost one containing the upper-
right corner of the digit-array), to 26 = 64 (for the leftmost column containing the
lower-left corner). The intermediate columns contain 2 or 3 or 4 bits of the digit-array.

It is also important to note that the 3*3 decimal digit-arrays can be identified
by the couple i, j of integers given by the index i of the multiplicand and j of the
multiplier. 

The product array can be seen as an array composed by digit-arrays as shown
in the figure: the digit-arrays are arranged in columns, each containing all digit-
arrays with the same i+j value.

Each Digit Partial Product is computed as a binary number with weights from
20 to 26, whose maximum value is: 9*9=8110 or : 101 00012. Each digit partial prod-
uct is multiplied by 10(i+j), where i and j are the subscript’s of A and B digits. The
product is equivalent to the sum of all the digit partial products composing the
array of fig. 1 (the product array).

Note that in each of the product array column, the weight of each bit is not
the same, since it depends from the digit-array to which it belongs. More precisely,
it is necessary, as done in fig. 1, to mark the successive weights for each digit-array
column from 20*10i to 26*10i, where 24*10i, 25*10i and 26*10i overlap 20*10i+1,
21*10i+1 and 23*10i+1, valid for the successive i+1 digit-array columns. 

Obtaining such a sum, expressed with a decimal BCD number, is our problem. 
A further step is to split the weights of each bit of the product array in two

factors, the first being the binary weight 2k (0<=k<7), the second the decimal one,
10i+j.

The main reason for partitioning the product array into digit arrays columns is
given by the fact that all bits belonging to a digit-column are characterized by suc-
cessive power of two. It becomes then possible to evaluate the value of each digit-
column as can be done in purely binary multipliers [2].

The binary numbers thus obtained must be multiplied by 10(i+j). The succes-
sive digit-arrays columns are characterized by successive values of (i+j).The addi-
tion of such numbers will lead to the product: this requires that before the addi-
tion, each column value, obtained in binary, is converted in decimal form. Conse-
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quently the multiplication with a power of ten and the alignment for their addition
can be done very easily, through suitable wiring.

Details about the above problems will be given in the following chapter.
Meanwhile, it will be of some interest to show the main intermediate results,

concerning the product: 999*999 = 998001.

An example

Assuming the input digits equal to 9, all digit-array values will be 8110 i.e.
10100012. The (maximum) value of the successive digit-arrays columns will be:
2*81*10=1620; 3*81*100=24300 (see Fig. 2). For the two columns following the
third one (see fig. 1) we get the values: 2*81*1000=162000 and: 810000. The sum
of those numbers is: 998001, i.e. the product.

A better way for obtaining the product through the columns values is to write
these as in fig. 1 and fig. 2, i.e. in “skew-tiled” form: we then obtain three decimal
numbers, whose sum is the product: we call this three decimal numbers the Major
Partial Products.

It can be shown that three numbers will suffice for multipliers of up to twelve
digit factors, since 81*12=972 (3 digit) and 81*13=1052 (4 digit). 

Four numbers will suffice for factors of up to 123 decimal digits:
81*123=9963 (4 digit), 81*124=10044 (5 digit).

We discuss now with more details the three main parts of the general scheme
of Fig. 1, i.e. the computation of the Column Partial Products, the conversion in
decimal of their binary outputs, the summation of the Major Partial Products
obtaining the Product.
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Fig. 2. The addition of the Column Partial Products in Fig. 1 scheme.



Meanwhile, we invite the reader to look and to test a 8*8 and a 16*16 decimal
multipliers, implementing the algorithm just described in a pure decimal form,
using for the purpose a spreadsheet: they can be downloaded from the Web, from
the site whose URL is given at [18]. This Web page contains the links to various
other spreadsheets programs, recalled later. 

III - COMPUTING THE BINARY VALUE OF DIGIT-ARRAYS COLUMNS (“COLUMN PARTIAL

PRODUCTS”) VIA COMBINATIONAL NETWORKS OF FULL-ADDERS

A Column Partial Product has been defined in the preceding chapter as the
sum of the digit arrays composing a digit-arrays column, as shown in fig. 1

The 7 vertical lines defined by each 4*4 digit array are assumed to carry the
weights: 20, 21, 22, 23, 24, 25, 26 or: 1, 2, 4, 8, 16, 32, 64. The factors 10(i+j) (see fig.
1) will be taken into account later, when dealing with the addition of the Column
Partial Products through the Major Partial Products Array.

The evaluation of the Column Partial Products can be done using the same
method used for designing binary multipliers [2, 3, 7, 8, 15]. This design method
is an abstract representation of the real circuitry and will be applied as a first exam-
ple to the evaluation of a Column Partial Product composed by a single digit array:
see fig. 3 (p=1). The first line gives in the 7 column the values: 1, 2, 3, 4, 3, 2, 1
representing the number of binary variables in each column of the “dot” diagrams
in fig. 3A.

In the rightmost column we see: a single dot under the 1 value, in the 3rd line
of the 2nd array. A crossed slash joins a dot in the 2nd column (1st line of 2nd array,
under the input value 2), with a dot in 3rd column (2nd line of 2nd array): the
crossed slash represents a half adder, whose two inputs are the 2 variables in 2nd

column of 1st input row.
The value 3 in third (from right) column represents variables input to a full

adder, represented by a slash joining the two outputs. The value 4 in the 4th column
corresponds to a full adder, using 3 variables, the fourth being simply transmitted
with to the 3rd line of 2nd array.

Note that the two inputs in column 6th are not processed, being simply moved
to the second array with a dot marked with 2 in the third row. The reason why the
two inputs in 2nd column are processed via a half adder is to produce a single
output bit in 2nd column: see more comment later.

The second “compression” stage transforms, with the rules given above, the
three lines of the 2nd array into the two lines of the 3rd array.

Finally, it is assumed to adopt a carry propagating adder (usually, for speed
reason, a carry look ahead adder) for obtaining the binary number equivalent to
the original 4*4 product array.

An important note: the product of two BCD decimal digits has a maximum
value of 9*9=81, while the product of two generic 4 bit numbers is 152=225. In
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binary, 7 bit are required to represent 8110 and 8 bit to represents 22510. Moreover,
the compression process adopted obtains the final result with three bits (the less
significant) fully computed. As a consequence, the final adder is composed with 4
stages only, with no carry needed from the leftmost stage, since at most 7 bits in
total are needed.

Consider now the case p=2, see fig. 3A. The first line represents the input
variables in the different column as: 4, 8, 12, 16, 12, 8, 4, twice the values of the
preceding case. We apply here a variation of the method used so far, leading to
“compact” dot-schemes. Schemes, that with the standard methods [2] may be dif-
ficult to trace and to read, for a too large number of rows, can be handled much
more easily.

In order to compress a given column, the number d of variables of same
weight is divided by 3 and the quotient q written close to the segment joining the
two outputs, so that the necessary full adders are represented by a single full adder
with the “multiplicity factor” q close to it or to the carry and sum dots, placed in
two adjacent columns. The remainder (valued 0 or 1 or 2) is written below the sum
output in a third row: see fig. 3A. In another version, in case of remainder equal to
2, a half adder can be used to obtain a sum and carry output placed in two adjacent
columns.

All the fig. 3A dot-schemes have been constructed with the just described pro-
cedure, with two additional points.

The first is the use of a half adder at the right end on each compression stage
if the input variables are 2: this is done with the purpose of obtaining in the last 2-
rows stage a number of least significant single bits. This requires a smaller carry
propagating final adder, and therefore a smaller delay in the final addition.

The second point concerns the number of bits of the final output, due to the
fact that the 4*4 digit products are bound to operate on 4-bits factors representing
BCD digit and not generic 4-bit binary numbers. For the reason said before, the 8th

bit is not generated in fig. 3A (p=1) scheme.
In a similar way this check has been done for all the other fig. 3A schemes,

knowing the values of the multiples of 8110. These are listed in Appendix B Table,
in column 3 with their binary equivalents. 

It can be noted, in the last 2-line arrays of schemes p=3, p=5 and p=6, a half
adder with a X at the carry output, placed in the leftmost position. This symbol
represents a 2-input XOR for obtaining the Sum output [11]. The carry is not pro-
duced, since no carry can be generated at those points. 

The above rules allow the design of rather complex computing schemes based
on a network of full (and half) adders, or (3,2) and (2,2) elementary counters.

The schemes are not yet wiring schemes: rather they represent a first step for
arriving to wiring schemes. For this reason, the three input variables of a full
adders, represented by a slash joining two dots in adjacent columns, are not speci-
fied, being assumed that they have to be found in the column of the sum output. 
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We recall here that in the future IEEE Standard for decimal floating point [17]
three length values are prescribed for the characteristic: 7, 16 and 34 BCD digits.
The schemes of fig. 3A are therefore sufficient for the implementation of a parallel
decimal multiplier for 7 digit factors. They could also be used for implementing
smaller sized multipliers, as could be needed in generic embedded systems.

For larger characteristic’s values, more schemes would be needed. It has been
found convenient for such cases to provide a tool for obtaining their design by
computer. This in order to get a faultless design: it is in effect rather easy to make
mistakes in drawing the dot schemes by hand.

In the report [15], dedicated to the compact dot design method described
previously, it is also shown that efficient design tools can be built for adders of a
large number of binary addends, for parallel binary multipliers and for adders of
products. The latter is what is needed for the design of Column Partial Products:
such a program, for up to p=45, can be found in a web page [18].
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Fig. 3A. Dot schemes for obtaining the binary Column Partial Products for up to p=7.



Fig. 3A schemes have been compared with the schemes generated through the
spreadsheet program that can be found in the said web page. The corresponding
schemes have been found identical.

The algorithm implemented for the final stage has the role of compressing the
3 input rows to value 2, obtaining the value 1 for a number of adjacent columns,
starting from the rightmost, least significant one. Starting from the right side we
can obtain this result using a full adder for the first found 3 or a half adder for the
first found 2. If the inputs following this full or half adder are 3 or 2, we must use
full or respectively half adders for “making room” for the carries. If a 1 is found, it
can accept a carry. The process is repeated for the following string of bits. The
additional cost of the single bit generated in the last stage is given by the half
adders placed for the first group of 2s.

An example of 2 initial half adders can be seen in fig. 3A p=4. 
The same program computes also two important parameters: the total number

compression stages (knowing the VLSI technology adopted it is then possible to
compute the delay of each Column Partial Product) and the total number of full and
half adders (allowing the computation of the silicon area). For simplicity reason and
also for the small number of half adders, these are counted as full adders.

The following fig. 3B shows the dot schemes for computing the Column Par-
tial Products for p=8 to p=16, to be used with fig.3A schemes for the design of a
16*16 digit multiplier.

In Appendix B Table a number of parameters concerning the Column Partial
Products for up to p=34 are shown.

IV - CONVERTING THE COLUMN PARTIAL PRODUCTS TO DECIMAL

The Column Partial Products obtained as shown in the preceding chapter
must be converted to decimal (BCD) in order to add them for obtaining the prod-
uct: see fig. 1 general scheme. 

The problem of converting numbers in a given base or radix into another one
has been extensively treated , particularly in the early years of the computer era [1].

In our case we need a conversion algorithm that can be implemented in a
rather fast circuit. We must therefore look for algorithms that operate with a high
parallelism.

Searching in the literature, we found a suitable algorithm in a paper by
Nicoud [4]. The algorithm can be implemented with a planar architecture, com-
posed by identical cells, each connected only to the nearest neighboring cells or to
the output-input nodes.

Fig. 4 shows a set of binary to decimal converters for decimal multipliers for fac-
tors of up to 37 digit. Each converter converts all Column Partial Products of a given
length (in bit). See Appendix B Table, 3rd column and compare with fig. 4 schemes.

The operation of the BD converters is briefly exposed in Appendix A. 
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The range of p (the number of Digit Products composing a column of the
multiplier array) is found in each scheme, along with c (the number of cells) and d
(the number of cell delays included in the critical paths). 

The silicon area of each cell is less than twice the area of a full adder. Its delay
is approximately a half the delay of a full adder, see chapter VI. The total area of a
converter is therefore rather small if compared with the area of the associated
Column Partial Product generator, due to the fact that the number of BD cells is
much smaller that the number of full adders needed to implement a Column Par-
tial Product generator: from 13.8% for n=7 to 4.5% for n=34. See the data in
Appendix B Table. 

The delay of each converter can be easily evaluated, due to its regular simple
structure. The critical path in each converter can be expressed by the maximum
number of cells connecting the most significant bits at the top of Fig. 4 schemes to
the d0 decimal digits at their bottom [4]. The numbers of such “levels” is written
as d in same Fig. 42. 

It can be seen that the delay introduced by the binary to decimal converters is
smaller than the delays of the respective Column Partial Products: see chapter VI
for numerical data.
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Fig. 4: The set of binary to decimal converters for decimal multipliers of up to 37 digits.
p: number of digit partial products; c: number of cells; d: maximum number of cell-delays.



It can be shown that fig.4 schemes are redundant: for instance input numbers
composed by all 1’s will never be applied, see Appendix B Table, 3rd column.

In Appendix A we give an algorithm allowing the design of converters whose
conversion ranges match closely the needed ranges. This leads to the fig. A4
schemes. They offer smaller delays and number of cells: in Appendix B Table,
columns headed “BD Conv B”, we give for each n the following data: number of
cells, total number of cells in an n*n multiplier, number of cascaded stages. In column
“BD Conv A” the data are given for fig. 4 schemes.

The design of such new set of schemes has been obtained with the help of a
design tool implemented with a spreadsheet. Such tool can be downloaded via the
URL at [18].

V - ADDING THE MAJOR PARTIAL PRODUCTS

As said in chapter II the Major Partial Products are generated by adding all
the Column Partial Products. As shown in fig. 2 it is convenient to write the
Column Partial Product in skew-tiled form, thus avoiding to write the 0’s needed
for their correct alignment and obtaining the product simply as the sum of three,
or at most four, decimal numbers.

Appendix C shows the major partial products for multipliers of up to 18 digits
factors, all digits in those factors having the value 9, in order to determine the max-
imum possible value of products. The products can be easily checked, their values
(except for n=1) being composed by n-1 9s followed by an 8 and by n-1 0s and a
final 1.

Appendix B table shows the values of Column Partial Products in decimal and
in binary form (for factors digit = 9). It is possible to compose with them the set of
the Major Partial Products for any n<35, as done in the construction of Appendix
C for n<19

Fig. 5 shows the Major Partial Products for n=7 and for n=16.
It can be seen that the number of Major Partial Products increases from 3 to

4 for multipliers of n=13. Note that 12*81=972 and that 13*81=1053. The fourth
major partial product is composed by 0s and 1s for 12<p<25. For 24<n<37 the
fourth Major Partial Product will be composed by 0s, 1s and 2s.

This is important when considering the problem of adding all the Major Par-
tial Products for obtaining the final Product.

We have shown in [16] that the sum of several decimal numbers can be
obtained with a hybrid approach similar to the one followed in this paper. 

In the fig. 5, n=16 example we consider the set of Major Partial Products com-
posed by 4 decimal numbers: three of them are composed by decimal digits that can
have values from 0 to 9. The fourth number is composed from a central part with
all digits that can at most be equal to 1, and two adjacent parts with all zeros.
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Note that in both cases in fig. 5 (n=7 and n=16) the least significant digit of
the Product is known (column c=0).

Columns c=1 and c=2 are composed by 2 digits. Columns 3 to 14 are com-
posed by 3 digits; columns 15 to 21 by 4 digits; columns 22 to 30 by 3 digits;
column 31, the last, most significant, by 2 digits.

An important remark: when we consider the worst case (all digits of both factors
equal to 9) it is certainly true that the most significant digit of each column sum is the
maximum: for any other values of the factors digits those values will be at most equal
to the worst case ones. This cannot be said for the other digits of the column sums:
they can assume values greater or smaller than the their worst case one.

This can be easily checked through the spreadsheets that can be downloaded
via the URL at [18], where two multipliers (8*8 and 16*16) have been simulated,
showing also the set of Major Partial Products.

The most significant digits of the column sums are overlined in fig. 5. Such
values will be used for optimizing the schemes obtaining the sums of the columns
in the Major Product Arrays, see fig. 7. 

Note that in column 2 and column 14 (fig. 5, n=16) the topmost digit is not
overlined: they are not the most significant digits of a column sum, but the second
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Fig. 6. A scheme for a 7*7 multiplier, where the addition of the Major Partial Products is
shown in detail p: number of digit products; c: the weight of the column is 10c. At the right:
a variation in which the column c=1 and c=2 of the MPP array are unchanged. Each arrows
at the output of column adders points to the least significant digit of the column sum placed
in the bottom line of the Major Partial Products array.



one. The value assigned to them will therefore be 9 when considering the design of
the Major Partial Product Adder schemes.

A scheme for adding the Major Partial Product is shown in fig. 6 for a 7*7
digit multiplier.

Such a scheme shows in its upper part an array of 2n-1=13 column adders
(including the respective BD Converters), followed by the array of 3 Major Partial
Products, whose sum is the Product.

The Product least significant digit coincides with the least significant digit of
the third Major Partial Product, column c=0. Each of the remaining columns of the
MPP array feeds a “decimal compressor”. This generates a binary sum that is con-
verted in decimal, as shown in the various schemes of fig. 7, with two decimal
digits: d0 with the same weight 10k of the input digits, d1 with weight 10k+1. 

Fig. 7 shows the schemes of four column compressors, where the components
are the same as in fig. 3A with the addition of the basic BD Conversion cell (see
Appendix A).

In all compressor schemes we start with a first phase in which, in all binary
columns in parallel we add the binary values of the input digits (of same weight
10k). The output is composed from two digits: d0 with the same weight 10k of the
input digit, d1 with a weight 10k+1.
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Fig. 7. Dot Schemes for compressing 3 or 4 digits columns of the Major Partial Products
Array into decimal numbers.



In fig. 7a) scheme we need only a 4 bit parallel adder. We must add two BCD
digits and a third one (the topmost) composed of a single bit, i.e. a digit that can
assume only the values 0 or 1. The maximum values of the three digits (1,9,9) is
written at the left-top of the figure. The minimum sum value can be 0, the three
digits being all zeros, and it has to be noticed that in the case the value of the
binary sum of the three digit is smaller than 1010 the action of the BD cell will be
simply to generate a d0 equal to the sum and a d1=0. 

Fig.7b) shows a compressor whose maximum input is (9, 9, 9): the correspon-
ding binary sum will be 3*9=27=110112 . A 2-stage BD converter is needed.

Fig. 7c) has 4 digits input, the top one having at most the value 1. The maxi-
mum digit values are (1,9,9,9): the corresponding binary value being
1+3*9=28=111002. The BD conversion scheme is identical to the one in fig. 7b).
The difference of the two schemes is in the binary adder: in fig. 7b) scheme we
need a 4-stages adder, while a 5-stages adder is needed in fig. 7c) scheme. Note that
in fig. 7b) scheme the carry-save stage generates a final “single bit”: this doesn’t
happen in fig. 7c scheme.

In the last fig. 7d) scheme the maximum values of the three digits are (3,9,9,9).
The corresponding sum is: 3+3*9=30=111102. We have here two carry save stages,
generating a single least significant bit (as in fig. 7b). The BD conversion is identi-
cal to the two previous schemes.

The above described decimal compressors can be used for transforming a set
of 3 or 4 Major Partial Products into a set of two decimal numbers whose sum is
the Product. We will therefore need, see fig. 6, a final Parallel Decimal Adder. For
speed reason this will adopt a carry-look-ahead scheme.

It is possible to derive from fig. 7b) two schemes, having a slight smaller area,
assuming that the top input digit requires only 3 or 2 bits, representing the values
7 or 3. The corresponding circuits will require 1 or 2 half adders to replace full
adders in the first reduction stage. 

Note that generating the maximum values of Column Partial Product does not
mean that the maximum values in the column of the Major Partial Products array
reach the maximum 3*9+1 value. This value is certainly the upper limit in the
Major Partial Product sum. Determining for all cases its real maximum could lead
to some simplification. This problem will not be treated here.

VI - DELAY AND AREA

We give now data on delay and area on a 7*7 digit multiplier. This offers an
opportunity to show how the various functional components are chosen: column
adders from fig. 3A, BD Converters from fig. 4 or fig. A4, decimal compressors
from fig. 7. They will be assembled as shown in fig. 1 and fig. 6. 

Such data, and the following ones, have been obtained from the STM 0.18mm
library of standard cells and Synopsis Design Compiler.
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Delay and Area of the main component of the schemes are given in the fol-
lowing Table A:

Table A

The critical path

Let’s consider fig. 8, where the scheme of fig. 6 has been redrawn representing
in a single block the 13 column adders, the Major Partial Product Set and the
Compressor. In each column we find: the number p of the digit product, the expo-
nent c of the base 10 and, at the bottom, the delay; the c=13 column was added to
represent (see fig. 6) the delay of the last compressor: since the result of the addi-
tion cannot be greater than 9, the d1 output of this compressor is always zero. 

— 67 —

NOR FA HA BD cla4 cla5 cla6 cla7

ns
/um^2

NOR: generating the bits in the product array
FA, HA: Full and Half Adders
BD: Binary-to-Decimal conversion cell
Cla4: carry-look-ahead binary adders with 4 cells

0.04 0.31 0.36 0.38 0.41
197 90 50 168 614 823 1409 2999

Fig. 8. The critical path is given by the column p=7 and the 8 most significant 8 stages of
the Decimal Parallel Adder.



Since the two least significant digits are already known, we start the Decimal
Adder from column c=2, the last stage being at column c=13. We compare the delays
from column c=2 to c=7, i.e. the central column with the maximum delay (3.42 ns).
We compute the delay in the Decimal Adder from the first stage to the 5th stage (in
column c=7). If this delay is smaller then the delay difference from the columns 7 and
3, the critical path is composed of the central column and by the 8 most significant
stages of the Decimal Adder. In the case considered here and using the data obtained
from the said cell library the total delay in the critical path is 4.45 ns.

In case the above condition is not met, the critical path is composed by one
of the columns at the left of the central one, ck, whose delay added to the delay of
the stage of the Decimal Adder corresponding to the same column, is maximum. 

The matching of the delays pattern of the column adders with the final deci-
mal adder has only been sketched. For a better understanding simulation could help.

The area

The total area, excluding the final decimal adder (of 12 stages, see fig. 8) is
108953µm 2. The area of a carry-look-ahead decimal adder of 12 digit is 23223µm 2

Delay and area for the n=16 multiplier

Fig. 9 is a general scheme of a 16*16 digit decimal multiplier, similar to the
preceding fig. 6 scheme. The outputs of the 31 column adders compose an array of
4 decimal numbers shown in fig. 5 and reproduced in fig. 9. The outputs of
columns 12 to 18 require 4 digits each, the most significant being at most 1. 

As a consequence the compressors for columns 15 to 21 must adopt the
scheme of fig. 7C (requiring a 5 stage carry-look-ahead binary adder). The final
decimal parallel adder will require 30 stages. The following fig. 8B contains for
each column of the multiplier the delay and the area of circuits of the Digit Array
(simple NORs), of the Column Adders (shown in fig. 3A and fig. 3B) and the asso-
ciated BD converters fig. 4A) and of the Compressor section (fig. 7). 

Note that column c=31 is composed only of a compressor, acting on the car-
ries generated in the Major Partial Products.

The product is obtained via the Decimal Parallel Adder, assumed to be a
carry-look-ahead type for speed reason. The area of the multiplier part represented
in fig. 9 is 511638µm 2; the area of the 30 stages final decimal adders is 56660µm 2;
the total area is therefore 568298µm 2.

The maximum delay at the inputs to the decimal adder is the one in column
c=15, of 4.01 ns. The total delay of the decimal adders in 30 stages is 1.59ns. Due
to the delays in the columns output from c=2 to c=15 it can be assumed, as done
for fig.8 that the critical path is composed of two parts: the path through column
c=15 (4.01ns) and the paths fin the last 17 stages of the decimal adder (1.38ns) for
a total of 5.39ns.
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Fig. 9. The scheme of a 16*16 digit multiplier where the compression of the Major Partial
Products to two equivalent BCD numbers is shown, followed by a parallel decimal multi-
plier obtaining the Product.

Fig. 10. Delay and area in a 16*16 digit multiplier.



Comparisons: a first comparison can be made with a binary parallel multiplier
for factors with an equal number of bits. The main data, i.e. the total number of
full adder and the number of stages in shown in the Appendix B Table. Our deci-
mal multiplier uses a slightly larger area (less that 10%) and gives a delay about
50% higher. Taking into account the totally different architectures the decimal
scheme seems quite acceptable.

A parallel decimal multiplier has been recently presented [19]. This multiplier
was designed with a purely decimal arithmetic. The factors digits are recoded for
reducing the number of partial product pre-computations. The design is done in a
90nm technology. The delay on the critical path is 2.65ns and the total area is
300,000µm 2. This multiplier and the one described in this paper are, to our knowl-
edge, the only two, so far published, proposing a parallel decimal scheme. Their
architectures appear totally different. Comparing the data of our scheme, based on
a 0,18µm CMOS technology with the data of the just mentioned authors, based on
a 0.09µm technology doesn’t seem possible. We will redesign in the near future our
scheme on the latter technology.

VII - CONCLUSION

We have shown how a fully parallel decimal multiplier can be designed, with
a hybrid approach using the binary technology for adding the values of Digit Par-
tial Products, composing Columns Partial Products. Binary to Decimal converters
are used for converting to decimal their binary output.

The summation of such Partial Product in order to obtain the Product is com-
posed by two phases, the first obtaining the set of Major Partial Products by
“tiling” the “skewed” Column Partial Products, the second by adding two or at
most four decimal numbers.

Some software tools have been built for obtaining the Column Partial Prod-
ucts.

It has been found, see Appendix B Table, that the size of a decimal multiplier
is slightly larger than the size of a binary multiplies for factors of equal bit-size. The
total area and delay has been determined to be 568298µm 2 and 5.39ns.

It has been pointed out that computing the Column Partial Products requires
a considerable silicon area, while a relatively smaller one is required by the other
functions. The Binary to Digital converters require a relatively small area and delay.

Further problems have been identified such as: the partition into pipelined sec-
tions in order to increase the throughput (accepting the connected latency); the
composition of small n multipliers for obtaining multiplications of larger factors, the
partition of a large multiplier into smaller parts to be used for the same purpose. 

A faster BD conversion scheme is highly desirable.
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Appendix A: Binary to Decimal Conversion

In Chapter IV we have described the binary to decimal converters used for
obtaining the Column Partial Products. We expose here, for completeness, the
background of such converters. The exposition differs from the original one by
Nicoud [4] mostly for adopting a different more compact notation, allowing an
easier design and checking of the operation. We also prove directly that a linear
array of basic cells obtains, in binary, the division of a given binary integer by ten.
It is well known that for converting a number Ns in base s into its equivalent Nt in
another base t, the basic step is to divide Ns by t, the remainder being a digit of Nt.

The basic cell for our case (s=2, t=1010) is depicted in Fig. A1:

di is the input decimal digit; we assume that it is a BCD digit (it could be coded in any other
way)
do is the output decimal digit
bi is the binary input digit
bo is the binary output digit

Fig. A1. The basic conversion cell

The algorithm implemented in the cell operates as follows.

– The sum S of the inputs is: S = 2*di + bi.
– If S > 9

S = S – 10; bo = 1; do = S
If S<1010

bo = 0; do = S

The above algorithm can easily by represented by a truth table [4] and imple-
mented with a combinational network.

A converter based on a single cell, valid for input numbers of only 4 bits, is
shown in Fig. A2, a). The three most significant input bits, b3, b2 and b1 compose,
with an additional 0 the BCD decimal input digit of the cell, b0 being applied at the
binary input. The decimal output d0 is the least significant decimal digit, the binary
output, associated with three 0’s is the most significant output digit. The operation
of the circuit can be easily verified: e.g. (b3 b2 b1 b0) = (1 1 1 1) generate 15.
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Fig. A2, b) to d), represent converters for numbers: 100002=1610 to
100112=1910. The input numbers are characterized by the first four bits represent-
ing 8 or 9: they can therefore be used as the decimal input to the converters 

Fig. A3 shows some converter schemes each composed by a column of four
cells.

In fig. A3, a) the binary input is 100 00002. The converter operation is shown
by writing the values at the inputs and at the outputs of each cell, according to the
described algorithm. The four binary outputs represents the digit 6=01102. The
first 1 represents a number equal to 10*22, the second the value 10*21, both sub-
tracted to the input binary input to the array. The total of the number subtracted,
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Fig. A2. Monocell BD converters, for number from 0010 to 1910.

Fig. A3. a) a linear array of 4 cells obtain the quotient 01102, i.e. 610, and a remainder of 410

from the number 100 00002, i.e. 6410; b) the input 101 00012 is the value 9*9 of a BCD digit
array; c), d) two more examples.



40+20=60, is the maximum multiple of the base ten smaller that 64, i.e. the quotient
of 64/10, since the remainder 4 is smaller than ten. This property holds for any binary
number, of any length (provided a suitable number of cells is used in the array).

We show also an algorithm for obtaining a set of schemes, using a minimum
number of cells.and to be used instead of the fig. 4 schemes.

Fig. A3, b) shows the case of input equal to 101 00012 = 8110, i.e. the conver-
sion of a single digit array column partial product.

Consider now fig. A3, c): the output binary is, in decimal, 1210, the quotient of
127/10. In order to obtain the two digits 1 and 2, a further converting column is
required, composed as in fig. A2, a) scheme. The same holds for fig. A3, d) scheme.

Fig. 4 schemes (chapter IV) were obtained on the basis of the bit length n of
the Column Partial Products, assuming a scheme capable of converting a binary
number composed of n 1s, i.e. the maximum numbers of such length, obviously
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Fig. A4. The set of minimal binary to decimal converters for decimal multipliers of up to 34
digits; p: number of digit partial products; c: number of cells; d: maximum delay in number
of cell-delays. The range of p=12 includes p=11 and p=10. Similarly for all other schemes.



applicable to all Column Partial Products with such length. Another criterion is to
adopt converters on the basis of their actual maximum values, listed in Appendix
B Table, in column “binary”. This allows to determining schemes that can be
implemented with smaller number of cells. The algorithm to be used can be
described as follows:

– consider all the columns of binary numbers generated within the converters,
see in fig. A4 the p=34 scheme: the first (from the right) column is the input
number, the second is the quotient of the division by ten of such number, the third
is the quotient of the division by ten of the second number, etc. The final remain-
ders represent the result, i.e. the decimal equivalent of the binary input. 

– in each column consider the first four topmost digits: if their value is 10012

or 10002, the corresponding variables compose the BCD digit to input to the first
topmost cell. Otherwise (this is the case in p=34 scheme), send to the same cell the
first three bits and add a zero bit to compose the BCD digit. 

The above algorithm must be applied to all 34 Column Partial Products of
Appendix B Table, obtaining the above fig. A4 schemes.

In order to help this process we have developed a simulation of the converters
using a spreadsheet: it can be downloaded from [18]. In this process we start with
the highest p=34 case as given by the top-right scheme in fig. A4. It has been
drawn for the input from Appendix A Table p=34 row, 3rd column, with the above

— 75 —

Fig. A5. Obtaining an optimal BD converter for p=31 from a BD converters for p=34.



rules. Replace in it the input with p=33 from the table, obtain all the new values,
see that the rules are still satisfied. So with the p=32 values.

With p=31 such rules are not more satisfied. Keep the previous scheme, valid
for p=34 to 32, and transform the scheme by deleting the top cell: the input value
being 1001 it must be input in the new first cell. Compute all the remaining values
obtaining the p=31 scheme; check that it’s valid for n=25 to 31.

For p=24 it will be necessary to remove a cell from the leftmost cell column,
obtaining a single cell in it.

A cell will be removed any time a new scheme is created. 
The selective removal of cells is the characteristic of the method, that leads to

a sequence of schemes ending with the case p=1.
The set of fig. A4 schemes can be considered an optimal solution to the con-

version problem.
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Appendix B
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Columns Product Sums /Column BD Conv BD Conv Binary
Partial Products (factor’s digits=9) A B multiplier

1 81 101 0001 7 2 7 3 8 8 4 4 4 4 4 4 6 2
2 162 1010 0010 8 4 8 4 24 40 6 14 5 6 14 5 42 5
3 243 1111 0011 8 5 9 4 38 102 7 27 5 7 27 5 110 6
4 324 1 0100 0100 9 6 9 4 58 198 8 42 6 8 42 6 210 7
5 405 1 1001 0101 9 6 10 4 69 325 9 59 6 9 59 6 342 7
6 486 1 1100 0110 9 7 10 5 86 480 9 77 6 9 77 6 506 8
7 567 10 0011 0111 10 8 10 6 102 668 11 97 7 9 95 6 702 8
8 648 10 1000 1000 10 8 10 4 122 892 11 119 7 10 114 7 930 8
9 729 10 1101 1001 10 8 11 5 138 1152 11 141 7 10 134 7 1190 9

10 810 11 0010 1010 10 8 11 5 149 1439 11 163 7 11 155 7 1482 9
11 891 11 0111 1011 10 8 11 4 164 1752 11 185 7 11 177 7 1806 9
12 972 11 1100 1100 10 8 11 5 181 2097 11 207 7 11 199 7 2162 10
13 1053 100 0001 1101 11 9 11 6 197 2475 15 233 8 12 222 7 2550 10
14 1134 100 0110 1110 11 9 11 5 214 2886 15 263 8 12 246 7 2970 10
15 1215 100 1011 1111 11 9 11 6 227 3327 15 293 8 12 270 7 3422 10
16 1296 101 0001 0000 11 9 11 5 248 3802 15 323 8 13 295 8 3906 10
17 1377 101 0110 0001 11 10 11 6 264 4314 15 353 8 13 321 8 4422 11
18 1458 101 1011 0010 11 10 12 6 282 4860 15 383 8 13 347 8 4970 11
19 1539 110 0000 0011 11 10 12 6 295 5437 15 413 8 13 373 8 5550 11
20 1620 110 0101 0100 11 9 12 5 308 6040 15 443 8 14 400 8 6162 11
21 1701 110 1010 0101 11 10 12 6 325 6673 15 473 8 14 428 8 6806 11
22 1782 110 1111 0110 11 10 12 5 338 7336 15 503 8 14 456 8 7482 11
23 1863 111 0100 0111 11 10 12 5 357 8031 15 533 8 14 484 8 8190 11
24 1944 111 1001 1000 11 10 12 6 373 8761 15 563 8 14 512 8 8930 11
25 2025 111 1110 1001 11 11 12 7 388 9522 15 593 8 15 541 8 9702 11
26 2106 1000 0011 1010 12 11 12 7 405 10315 18 626 9 15 571 8 10506 11
27 2187 1000 1000 1011 12 11 12 6 416 11136 18 662 9 15 601 8 11342 11
28 2268 1000 1101 1100 12 11 12 6 438 11990 18 698 9 15 631 8 12210 11
29 2349 1001 0010 1101 12 11 12 6 450 12878 18 734 9 15 661 8 13110 11
30 2430 1001 0111 1110 12 11 12 7 467 13795 18 770 9 15 691 8
31 2511 1001 1100 1111 12 11 12 6 480 14742 18 806 9 15 721 8
32 2592 1010 0010 0000 12 11 12 5 504 15726 18 842 9 16 752 9
33 2673 1010 0111 0001 12 11 12 6 517 16747 18 878 9 16 784 9
34 2754 1010 1100 0010 12 11 12 6 535 17799 18 914 9 16 816 9
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The above Table summarizes data on the Parallel Decimal Multiplier
described in the main text.

The data concern multipliers for up to 34 BCD digits in each factor (34 digits
being the maximum length of the characteristic prescribed in the new (draft) IEEE
Standard for floating point decimal numbers). 
– 1st column n gives is the length of the factors.
– 2nd column “decimal” shows the maximum value of the Column Partial Prod-

ucts, for each n, i.e. the values corresponding to factors composed by all 9’s.
– 3rd column “binary” gives the same values in binary.
– 4th column “bits” gives the number of bits of the Column Partial Product.
– 5th column “stages” gives the number of cascaded logical stages of the compres-

sion process, corresponding to a delay of a full adder for each stage.
– 6th column “last row length” gives the length of the last rows of the output of

Products Adders in fig. 3A and fig. 3B, obtaining the binary values of each
Column Partial Products.

– 7th column “last 1s” shows the number of the non-redundant least significant
part of the Column Partial Products, generated by the compression stages, com-
posed by single bits only. The remaining most significant part has to be com-
puted by carry propagating binary adders.

– 8th column “full adders” gives the number of full adders (and half adders) com-
posing the compression stages of each Column Partial Product, of length n.

– 9th column “mult. tot. fa” gives the total numbers of full (and half) adders
needed in a decimal n*n multiplier (see Fig. 1).

The following three columns under the heading “BD Conv. A” give the main
data on the binary-to-decimal converters used to obtain the decimal values of the
Column Partial Products, see Fig. 4.
– 10th column “cells” gives the number of cells composing a converter, for each n
– 11th column “mult. tot. cells” contains the total number of cells for a decimal

n*n multiplier.
– The 10th column “stages” gives the number of logical stage in each converter.

The above two data allows a reasonable good evaluation of the area and of the
delay for each converter and for the whole multiplier.

The following three columns under the heading “BD Conv, B” give the same
data for the BD converters illustrated in Appendix A, fig. A4.

The last two columns give data concerning binary parallel multipliers for fac-
tors of 4*n bits each. The data show that the total number of full adders for com-
puting all the Column Partial Products is slightly smaller that the number of full
adder in a parallel binary multipliers.

The decimal multiplier needs also the Adder of the Major Partial Products,
generating the 2*n digit products. The amount of hardware needed can be obtained
from [14] for each of the three main methods there suggested, or from fig. 6 for
the method outlined in chapter V. 
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An “anomaly” can be noticed in 5th column (stages) row n=20: the value 9 is
preceded by three values 10 and followed by four values 10. Is this an error in the
program? An accurate analysis of the programs doesn’t reveal any error: the result
is obtained via a proved algorithm. A possible objection: the program for n=20
could be used for n=17, 18 and 19, obtaining schemes with 9 stages in the com-
pression stages, i.e. a faster circuit. This can certainly be done, but at a cost given
by the greater number of full adders. Similar anomalies has been found in other
programs as well. 

The said anomaly is caused by the remainders of the division by three in the
last compression stages, where the values of the quotients have values 1 or 2.
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Appendix C: Major Partial Products of multipliers of up to 18 digit factors

For obtaining the set of Major Partial Products for n>18, see the spreadsheet
program designed for the purpose downloadable from [18].


