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ABSTRACT. Ð This paper treats some closely related conceptually simple problems associated
with gravitational attraction and centrifugal force. They are more elaborate variants of problems
treated by Newton, Jas. and Joh. Bernoulli, and Abel. They offer examples of qualitative methods
in classical mechanics, of inverse problems, and of calculus of variations richer than those of the
original versions of the problems.

1. - INTRODUCTION.

In his Principia [19] of 1687 Newton determined the gravitational attraction on a

particle exerted by a body having a spherically symmetric mass distribution. (See Sec. XII

of Book I.) The particle could be located anywhere, either within or without the body.

Newton's Proposition XXXVIII, Theorem XII can immediately be used to determine the

motion of a particle in a frictionless diametral tunnel through the earth, with the earth

modelled as a ball of constant mass density. (This problem is posed and solved in the

elementary physics text [22, pp. 351-352].) The motion is sinusoidal.

Newton's approach to studying such motions was modern in the sense of being

qualitative, rather than analytic. He actually demonstrated that such motions are periodic.

Our search through his Mathematical Papers [27], however, did not yield an explicit

treatment of particle motion in a diametral tunnel.

In 1696 Joh. Bernoulli [3] posed the brachistochrone problem of determining the
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shape of a frictionless wire joining two prescribed points along which a bead, under the

constant gravitational attraction of a flat earth, descends in the least time. (See Bliss [4].)

Within a year, its solution, a cycloid, was found by Newton, Leibniz, L'HoÃ pital,

Joh. Bernoulli himself, and, to his dismay, his brother Jas. Bernoulli. Newton's solution,

which took him a whole evening to construct, was published anonymously. But

Joh. Bernoulli identified the author immediately `̀ even as the lion by its paw print''

(``tanquam ex ungue leonem''; see Westfall [26, p. 583].)

The related tautochrone problem is to find such a wire for which the time of descent

of the bead is independent of the position of the starting point. The problem was posed

by Huygens. In 1659 he used geometrical arguments to show that the solution of this

problem is also a cycloid. (The work was published in [9].) Joh. Bernoulli observed that

the tautochrone is the classical brachistochrone (see [13, p. 34]). More relevant for us is

that in 1826 Abel [1] gave an analytic solution of a generalization of this problem

formulated as an Abel integral equation.

We put a new spin on Newton's problem of a particle moving in a frictionless

diametral tunnel through a stationary earth by replacing the stationary earth by a

spherically symmetric planet spinning about an axis and by replacing the diametral

tunnel with a tunnel of an arbitrary smooth shape. (In Book III of the Principia Newton

considered spinning planets, and in discussing the oblateness of such planets he

considered the behavior of tunnels filled with liquid.) We solve a related inverse problem

of determining the density distribution of a planet from information about motions in

tunnels. It leads to an Abel integral equation. We put a new spin on Bernoulli's problem

by replacing the wire above a flat earth by an underground tunnel joining two prescribed

points of our spinning planet. The presence of both spinning and gravity typically

prevents the brachistochrone from being planar and prevents the Euler-Lagrange

equations for its shape from being elementary. Our spin around these problems will

take us through a beautiful and varied mathematical landscape.

Before attacking these problems, we first derive the gravitational attraction of

spherically symmetric planet on a particle within it, and then formulate the equations

of motion with great care. (This formulation affords an easy entreÂe into the mathematical

structure of classical particle mechanics.)

Throughout this paper we denote both ordinary and partial derivatives by subscripts,

and denote some ordinary derivatives by primes.

2. - THE GRAVITY OF THE SITUATION

According to Newton's Law of Universal Gravitation, the force exerted on a particle at

x per unit of its mass by a body occupying region B (given by the inverse-square law) is

G

�
B

yÿ x

jyÿ xj3 dm(y)�2:1�

Ð 8 Ð



where G is the universal gravitational constant and dm(y) is the differential mass (measure)

at y in B. We need to find the force exerted by a body with a spherically symmetric mass

distribution on a particle within the body. Since the formula is not well known, we sketch

its derivation, following Kellogg [15]. (For a modern version of Newton's derivation, see

[7] or [22].)

Let fi1; i2; i3 � kg be a fixed right-handed orthonormal basis for Euclidean 3-space.

Let

e1(f) :� cos f i1 � sinf i2; e2(f) :� ÿsinf i1 � cos f i2 � k� e1(f); e3 :� k:�2:2�
We take the body to be a ball of radius R centered at the origin. Then a typical point y of

the ball can be located by the spherical coordinates (r; u; f) by

y � r[sinue1(f)� cos uk]:�2:3�
Without loss of generality, let the attracted particle occupy position x � zk with

0 � z � R. We assume that the ball has a mass density m depending only on r, in

consonance with radial symmetry, so that dm(y) � m(r)r2 sinu dr du df. By virtue of the

symmetry, the force on the particle at zk per unit of its mass, given by (2.1), only has a

component in the k-direction, given by

ÿG 0(z) : � G

�2p
0

�p
0

�R
0

r cos u ÿ z

[r2 ÿ 2rz cos u � z2]3=2
m(r)r2 sinu dr du df

� 2pG

�R
0

dr m(r)r2

�p
0

r cos u ÿ z

[r2 ÿ 2rz cos u � z2]3=2
sinu du:

�2:4�

To evaluate the u-integral, we change the variable of integration from u to

u :� ������������������������������������
r2 ÿ 2rz cos u � z2
p

, which leads to

G 0(z) � 4pG

z2

�z
0

m(r)r2 dr �: g(z)z:�2:5�

The potential energy of the gravity force (per unit mass of the particle on which it acts) at

radius r is G(r), defined from (2.5):

G(r) :�
�r
0

jg(j) dj:�2:6�

If m is constant; then g � 4p

3
Gm (const) and G (r) � 2

3
pm G r2 � 1

2
gr2:�2:7�

Thus the gravitational attraction acts like a sort of spring, nonlinear in z when m is not

constant.

Ð 9 Ð



3. - TUNNELLING

We suppose that a spherically symmetric planet spins about the axis k fixed in space

with a constant angular speed v. Then the basis e1(vt); e2(vt); k is fixed in the planet. We

identify a tunnel in the planet with a twice continuously differentiable curve fixed in the

planet and lying entirely within it. Such a curve (at time t) has a parametrization of the

form

s 7! r̂(s; t) � x1(s)e1(vt)� x2(s)e2(vt)� x3(s)e3�3:1�
with x1; x2; x3 independent of t and with jrj � R. (The functions e1 and e2 are defined in

(2.2).) Let us set

r(s) � x1(s) i1 � x2(s) i2 � x3(s) i3 ( � r̂(s; 0));�3:2�
and define the proper orthogonal transformation (rotation)

V(t) � e1(vt)
 i1 � e2(vt)
 i2 � k
 k�3:3�
as a sum of dyadic products. (A dyadic product a
 b is a linear transformation with the

defining property that (a
 b) c :� (b � c) a.) Then

r̂(s; t) � V(t) r(s):�3:4�
The position r̂(ŝ(t); t) of a particle in the tunnel at time t is determined by its

parameter ŝ(t) (which could well be the arc length to the particle from some fixed point

in the tunnel) by

r̂(ŝ(t); t) � x1(ŝ(t))e1(vt)� x2(ŝ(t))e2(vt)� x3(ŝ(t))e3 � V(t) r(ŝ(t)):�3:5�

Since
d

dt
e1(vt) � v e2(vt) � v k� e1(vt), etc., the velocity and acceleration of the

particle at time t are thus

d

dt
r̂(ŝ(t); t) � r̂s(ŝ(t); t)ŝt(t)� v k� r̂(ŝ(t); t)�3:6�

� V(t)frs(ŝ(t))ŝt(t)� v k� r(ŝ(t))g;

d2

dt2
r̂(ŝ(t); t) � r̂s(ŝ(t); t)ŝtt(t)� r̂ss(ŝ(t); t)ŝt(t)

2�3:7�
� 2v k� r̂s(ŝ(t); t)ŝt(t)� v2k� [k� r̂(ŝ(t); t)]

� V(t)frs(ŝ(t))ŝtt(t)� rss(ŝ(t))ŝt(t)
2

� 2v k� rs(ŝ(t))ŝt(t)� v2k� [k� r(ŝ(t))]g:
(The last term in the first equation of (3.7), namely, v2fr̂(ŝ(t); t)ÿ [r̂(ŝ(t); t) � k]kg, is the

centrifugal acceleration. This is a misnomer for our problem because it is directed away

from the axis k of spin rather than away from the center. A better term would be axifugal

acceleration. The penultimate term in this equation is the Coriolis acceleration. The

products of these accelerations with the negative of the mass of the particle are somewhat

misleadingly called the centrifugal and Coriolis forces.)

Ð 10 Ð



Let the mass of the particle be denoted m. We assume that during its motion in a

tunnel it is subject solely to the force of gravity and to the contact force exerted on it by

the tunnel. This contact force has a component normal to the tunnel, which for algebraic

convenience we scale by the mass and denote by m n̂(t), with

n̂(t) � r̂s(ŝ(t); t) � 0:�3:8�
We define n by

n̂(t) �: V(t)n(t) so that n(t) � rs(ŝ(t)) � 0:�3:9�
We assume that the tangential component of the contact force is frictional, i.e., it opposes

the motion. In particular, we assume that there is a function f of (s; _s; n) defined for _s 6� 0

such that the (tangential) friction force at time t is

ÿmf (ŝ(t); ŝt(t); n(t))r̂s(ŝ(t); t) with f (s; _s; n)_s � 0 for _s 6� 0:�3:10�
(That this force should have this special dependence is a manifestation of a fundamental

mechanical principle requiring that material properties, like frictional resistance, be

invariant under rigid motions.)

REMARK. The spinning generally prevents the velocity
d

dt
r̂ from being tangent to the

tunnel. It is reasonable to assume that f is continuous in _s for _s 6� 0, and that f is piecewise

continuous in the other two variables. A body subject to dry friction can stay in equili-

brium for a range of forces applied to it. Thus, for it (when s and n are fixed), the friction

force is not specified as a function of _s, but rather it is specified by a graph of f vs. _s in

which there is a vertical segment at _s � 0 containing the point (_s; f ) � (0; 0). The de-

pendence of f on s means that the frictional properties of the tunnel can vary with the

location along it. We could have allowed f to depend on n only through jnj, but by

eschewing this simplification we allow the frictional resistance to depend on which `̀ side''

of the tunnel the particle is pressed against. Although we devote some attention to the

treatment of friction because the correct formulation of the equations accounting for it is

a little tricky and because this formulation opens the way to new problems, we shall

comment but briefly on the analysis of equations accounting for friction.

Newton's Second Law of Motion says that the total force on a particle equals its mass

times its acceleration. Substituting the forces and acceleration into this law and cancelling

the m we obtain

r̂sŝtt � r̂ssŝt
2 � 2v k� r̂sŝt � v2k� (k� r̂) � ÿg(jr̂j)r̂� n̂ÿ f (ŝ; ŝt; n) r̂s:�3:11�

Here and below, the argumens of r̂ and its derivatives are ŝ(t); t. This vectorial equation,

together with (3.8) corresponds to a system of four scalar equations for the unknown

functions ŝ and n̂. In view of (3.4), (3.8), (3.9), we can replace r̂ and n̂ in (3.11) with r and n.

To get an equation for ŝ alone, we project (3.11) onto the tangent r̂s(ŝ(t); t) to the

rotating tunnel and onto its complement, or, equivalently, project the version of (3.11)

without circumflexes onto rs(ŝ(t)) and onto its complement. The first projection is

effected by taking the dot product of (3.11) with r̂s(ŝ(t); t) � V(t)rs(ŝ(t)):

jrsj2ŝtt � rs � rssŝt
2 � v2[r � rs ÿ (r � k)(rs � k)]ÿ g(jrj) r � rs ÿ f (ŝ; ŝt; n)jrsj2:�3:12�

Ð 11 Ð



Here and below, the argumen of r and its derivatives is ŝ(t). (This projection is the

fundamental step for transforming the Newtonian formulation of mechanics to the

Lagrangian.) If f is independent of n, then this is an equation for ŝ alone. Note that the

first two terms on the right-hand side of (3.12) are autonomous, i.e., they depend on t only

through ŝ.

Next let

q :� rs

jrsj :�3:13�

We project (3.11) without circumflexes onto the complement of rs by operating on (3.11)

with q� to get what we denote as q�(3.11). Since n � q � 0, it follows that

n � q� (n� q), which we find from this projection, by operating on q�(3.11) with q�:

n � ŝt
2[rss ÿ (rss � q)q]ÿ 2vŝtrs � k

� v2f[r � qÿ (r � k)(q � k)]qÿ [rÿ (r � k)k]g
� g(jrj)[rÿ (r � q)q]:

�3:14�

(This step is equivalent to operating on (3.11) with Iÿ q
 q.) We now substitute this n
into (3.12) to get an equation for ŝ alone, which is autonomous (because of the invariant

form of f ).

We could simplify the form (3.12) by taking s to be the arc-length parameter of the

curve r(s), so that rs � rs � 1, rs � q, and rss � rs � 0:

ŝtt � v2[r � rs ÿ (r � k)(rs � k)]ÿ g(jrj)r � rs ÿ f (ŝ; ŝt; n):�3:15�
This parametrization removes rss � q from (3.14). For parts of our ensuing discussion, it is

convenient to retain the general form (3.12).

4. - QUALITATIVE BEHAVIOR

Since (3.12) and (3.14) form an autonomous second-order equation for ŝ, we can

determine its qualitative behavior from its phase portrait in the (s; _s)-phase plane. For this

purpose, we first obtain the energy inequality.

The potential energy of the gravity force (per unit mass of the particle on which it acts)

at radius r is G(r), defined by (2.5).

We multiply (3.12) by ŝt and use (3.10) to obtain the energy inequality

d

dt

�
1

2
jrsj2ŝt

2 ÿ 1

2
v2[ jrj2 ÿ (r � k)2]� G(jrj)

�
� ÿjrsj2f (ŝ; ŝt; n)ŝt � 0:�4:1�

If f � 0, i.e., if the tunnel is frictionless, then the trajectories in the (s; _s)-phase plane are

clockwise-oriented parametrized curves lying on the level curves of the energy, namely,

1

2
jrsj2 _s2 ÿ 1

2
v2[jr(s)j2 ÿ (r(s) � k)2]� G(jr(s)j) � h (const):�4:2�

Ð 12 Ð



If f 6� 0, then the essential properties of the phase portrait follow from the energy

inequality (4.1), which implies that the trajectories in the phase plane pierce the level

curves of energy in the direction of lower energy. (A special treatment, however, is

typically required for f 's correspond ing to dry friction.) Refinements of the phase portrait

can be obtained by studying the singular points and by using LaSalle's invariance

principle; see [23, Sec. VII.3].) Since this material is standard, we accordingly devote

our attention to the case of a frictionless tunnel.

The structure of the terms in (4.2) confirms our intuition about the qualitative

features of solutions, which we can read off from the phase portrait: The potential

energy G of the gravity force is a nowhere-negative convex function of its argument.

For constant m, it is quadratic in jrj, but jrj is an arbitrary function of s. Thus the gravity

force tends to stabilize any motion. The potential energy ÿ 1

2
v2[jr(s)j2 ÿ (r(s) � k)2] of

the centrifugal force is a nowhere-positive quadratic function of the projection of r
onto the equatorial plane. It tends to destabilize any motion. Thus these two potentials

compete for dominance. Their relative strengths are influenced by the latitudes

through which the tunnel meanders, by the magnitude v of the spin, and by the

range of the gravitational function g. To illustrate this competition, we take g �
constant, and show how the qualitative behavior of the phase portrait changes

markedly as the parameter v2=g varies. In this case, (3.12) implies that its equilibrium

points satisfy

(v2 ÿ g)r � rs � v2x3x3s () (v2 ÿ g)(x1x1s � x2x2s) � gx3x3s:�4:3�
Note that if x3x3s � 0 everywhere, i.e., if the tunnel is confined to a horizontal plane, then

the locations of the equilibrium points are independent of v2=g. But their types are not:

As v2=g crosses the value 1, the generic equilibrium points switch from saddles to centers

and vice versa. For the critical values v2 � g, (4.3) reduces to the degenerate x3x3s � 0,

and (4.2) reduces to the degenerate

jrsj2 _s2 � 2hÿ v2(r(s) � k)2:�4:4�
In Figure 1 we illustrate the dependence of the phase portrait on v2=g for the specific

horizontal quartic curve

x1(s) � (s2 ÿ 1)(s2 ÿ 4)� 3 � s2 ÿ 5

2

� �2

� 3

4
; x2(s) � s; x3(s) � 1�4:5�

so that

jrj2 � s2 ÿ 5

2

� �2

� 3

4

" #2

�s2 � 1; jrsj2 � 16s2 s2 ÿ 5

2

� �2

�1;�4:6�

with jrj2 � R2 to keep the tunnel within the planet. (When (4.6) holds, the set of s

satisfying R2 > 50, i.e., the set of s for which R2 exceeds the local maximum of jrj2 (at

Ð 13 Ð



s � 0), is an interval centered at the origin; if jrj2 > R2, this set is a pair of disjoint

intervals symmetrically disposed about the origin.) Given any R, the phase portraits of

Figure 1 are valid only where jrj2 � R2.

The interpretation of these portraits follows the discussion given above: The point

corresponding to s � 0, which is at a local maximum of the distance of the tunnel from

the axis, is unstable when gravity dominates centrifugal force and becomes stable when

the centrifugal force dominates. Note that the nonzero equilibrium points do not lie on

the minimizers of x1. The sharp bends in the phase portraits are due to the relatively large

range of jrsj2 as s varies over [ÿ 2; 2].

FIG. 1. - (s; _s=4v)-phase portraits for (3.12) for f � 0, corresponding to the level curves of (4.2)

when (4.5) holds. The upper portrait is for
g

v2
� 3

2
(so that gravity dominates) and the lower for

g

v2
� 1

2
(so that centrifugal force dominates). The motion on these curves is to the right in the

upper half plane and to the left in the lower half plane. The nonzero equilibrium points are at

(� 1:4839; 0), their positions indicating the scaling. The separatrices are shown with thicker curves.

Ð 14 Ð



5. - AN INVERSE PROBLEM FOR THE DENSITY

An inverse problem for a differential equation is to determine functions appearing in

the equation from properties of a family of solutions of the equation. Newton solved one

of the first inverse problems of mathematical physics when he determined that the only

central force allowing planetary orbits to be conic sections is given by the inverse square

law (see [26, p. 420]). Here we sketch the solution of another inverse problem, which he

might have appreciated: Determine a radially symmetric mass density m of a planet from

data about the motion of a particle in a tunnel in the planet.

For simplicity, we limit our attention to a diametral frictionless tunnel through the

planet:

r(s) � [sinc i1 � cosc k]s�5:1�
where c is a constant. For it, (4.2) reduces to

1

2
_s2 � V (s) � h; V (s) :� G(jsj)ÿ 1

2
v2s2 sin2c:�5:2�

The level curves (5.2)1 in the (s; _s)-phase plane are symmetric about the s- and _s-axes.

For the unknown density m we seek, let us provisionally assume that m(r) is positive for

r in some interval (0; �a]. Recall that (2.5) and (2.6) yield

G(r) � 4pG

�r
0

1

j2

�j
0

m(h)h2dh dj;�5:3�

from which it follows that G(0) � 0 � G 0(0) and that G(r) > 0 and G 0(r) > 0 for

r 2 (0; �a]. By taking two derivatives of (5.3), we immediately see that m is determined

from G. Let us provisionally take v2 sin2c so small that V (0) � 0 � V 0(0) and that

V (s) > 0 and V 0(s) > 0 for s 2 (0; �a]. In this case, the origin of the phase portrait for (5.2)

is a center, so that all nearby orbits correspond to periodic motions.

We now show that if we know how the period of motions about the planet's center

depends on the amplitude (maximum displacement) a for all amplitudes in [0; �a], then we

can determine G on [0; �a] and thence m on [0; �a]. Let b denote the speed of the particle at

the center of the planet. Then (5.2) implies that

h � V (a) � G(a)ÿ 1

2
v2a2 sin2c � 1

2
b2:�5:4�

These equations have unique positive-valued solutions for a and b in terms of h. When ŝ

moves in the open first quadrant of its phase portrait, its derivative ŝt > 0, so that ŝ has an

inverse s 7! t̂(s), with t̂s(s) � 1=ŝt(t̂(s)) � 1=
�����������������������
2[hÿ V (s)]
p

. In view of the symmetry of

(5.2), the time lapse for ŝ to make one pass from 0 to a is a quarter of the period t, so that

t � 2
���
2
p �a

0

ds�����������������
hÿ V (s)
p :�5:5�

Ð 15 Ð



We suppose that t is a given function of a (or b) and therefore of h, denoting the latter by

h 7! t̂(h). We assume that t is continuously differentiable and that t(0) � 0. Let us make

the invertible change of variables v � V (s), denoting the solution of this equation by

s � s(v). Then (5.5) yields the following Abel integral equation for s0:

t̂(h) � 2
���
2
p �h

0

s0(v) dv�����������
hÿ v
p :�5:6�

The solution of this equation (which uses elementary methods) [16, pp. 71 ff.] is given by

s0(v) � 1

p

d

dv

�v
0

t̂(h) dh�����������
vÿ h
p :�5:7�

V , G, m are thus immediately determined from (5.7), with m enjoying the provisional

restrictions imposed on it. If t̂ lacks the mild restrictions imposed on it, then the density

need not satisfy the provisional restrictions. (For a detailed generalization of the method

of this section, see [25].)

6. - THE BELOW-GROUND BRACHISTOCHRONE

Given two points a and b fixed in a spinning planet, we seek a tunnel, if any, by which

a particle can move from a to b in the shortest time solely under the action of the

gravitational and centrifugal forces. (The tunnel's curve is the brachistochrone, from the

Greek for `̀ shortest time''.) We assume that the tunnel is frictionless. (There are several

papers cited in Section 9 that treat the classical above-ground brachistochrone with

friction. Their methods could presumably be imported to handle our problem in the

presence of friction.) We accordingly take f � 0, and use the energy equation

corresponding to (4.2):

1

2
(rs � rs)ŝt(t)

2 ÿ 1

2
v2[ jrj2 ÿ (r � k)2]� G(jrj) � h (const):�6:1�

We limit our attention to twice continuously differentiable curves parametrized so that

rs vanishes nowhere. We take l > 0 so that

r(0) � a; r(l) � b:�6:2�
We prescribe the initial speed

ĵst(0)rs(0)j � c�6:3�
relative to the planet. Then h is a given function of c and a:

h � 1

2
c2 ÿ 1

2
v2[ jaj2 ÿ (a � k)2]� G(jaj):�6:4�

On the closure of any open time interval on which ŝt vanishes nowhere, ŝ has an

inverse s 7! t̂(s), with t̂s(s) � 1=ŝt(t̂(s)). Thus the time needed for a particle to move along
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the curve r from a, starting with an initial speed c relative to the planet, to b on such an

interval is

T[r; l] : �
�l
0

ds

ŝt(t̂(s))
�
�l
0

�����������
rs � rs
p ��������

u(r)
p ds;

u(r) : � 2h� v2[ jrj2 ÿ (r � k)2]ÿ 2G(jrj):

�6:5�

(T[r; l] could be infinite.) We seek a twice continuously differentiable curve r satisfying

the boundary conditions (6.2) with jaj; jbj � R that minimizes T. Rather than requiring

that jrj � R a priori, we verify this inequality a posteriori. (Alternatively, we could merely

assume that r lies entirely within a larger planet. In either case, we avoid dealing with the

change in the form of the gravitation attraction at the surface of the planet.)

It is important to note that we are fixing l , but not fixing the parametrization of r.

Finding a minimizing r gives its parametrization. If, on the other hand, we were to fix the

parametrization, e.g., by using the arc-length parametrization so that jrsj � 1, then we

would have to handle this restriction as a constraint (preferably in the form rs � rs � 1)

and introduce a suitable Lagrange multiplier. In this case l would not be known a priori.

If T has a minimizer �r over the class of twice continuously differentiable functions r
satisfying (6.2) and satisfying jrs(s)j > 0 for all s 2 [0; 1], then �r must satisfy the Euler-

Lagrange equation :

d

ds

�
rs

jrsj
���
u
p
�
� ÿ jrsjur

2u3=2
; s 2 (0; l):�6:6�

We call a solution of (6.6) satisfying the boundary conditions (6.2) an extremal. We

eschew a full treatment of the variational problem for (6.5), with its existence theory,

regularity theory, second-variation tests, etc., commenting briefly on these matters in

Section 9. We content ourselves with the study of (6.6), which will in fact yield

nonexistence and nonuniqueness theorems.

7. - ANALYSIS OF THE EULER-LAGRANGE EQUATIONS

For computational simplicity and for visualization, it is convenient to take s to be the

arc-length parameter, in which case jrsj � 1, and the resulting simplification of (6.6) is

equivalent to the system

rs �
���
u
p

p; ps � ÿ
ur

2u3=2
:�7:1�

This system admits the integral

jpj2 ÿ 1

u
� const;�7:2�

which (7.1)1 shows to be nothing more than a consequence of jrsj � 1, which ensures that

the constant should be 0.
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REMARK. It is easy to see that (7.1) is not Hamiltonian. We can convert (6.6) into the

very simple Hamiltonian form first by setting p :� rs

jrsj
���
u
p so that this definition and (6.6)

yield the first-order system

rs � jrsj
���
u
p

p �: l p; ps � ÿ
jrsjur

2u3=2
� ÿ lur

2u2
:�7:3�

Since l > 0, we introduce a new independent variable s � ~s(s) as the integral of

~ss � l � jrsj
���
u
p

:�7:4�
We denote r(~s(s)) by ~r(s), etc., and we introduce the Hamiltonian function

H(~r; ~p) � 1

2
j~pj2 ÿ 1

2u
:�7:5�

Then (7.1) reduces to the Hamiltonian equations:

~rs � H~p � ~p; ~ps � ÿH~r � ÿ u~r

2u2
:�7:6�

We immediately see that if ~r; ~p satisfy this first-order system, then

2H � j~pj2 ÿ 1

u
� const;�7:7�

cf. (7.2). (The formulation leading to (7.6) is due to CaratheÂodory [5, Chap. 14].)

REMARK. System (7.6) is more attractive than system (7.1) because its equations

are simpler and because it has Hamiltonian structure. For our present discussion,

there is no need for the Hamiltonian structure. Despite its slight complications, we

shall use (7.1) because it simplifies the initial condition (6.3), it simplifies initial

conditions complementary to it, which are used in the shooting method in the next

section, and for the shooting method it allows the range of s to be estimated in

terms of the radius R.

REMARK. The change of variables (7.4) could have been made in the functional (6.5),

the form of whose integrand is invariant under any such change of variables. The

conversion of (6.5) to an arc-length parametrization, however, cannot be carried out

directly: Simply replacing the numerator of the integrand of the second integral in (6.5)

produces a degeneracy. Instead, the condition that jrsj2 � 1 must be appended as a

constraint, and the Lagrange Multiplier Rule must be invoked to yield Euler-Lagrange

equations, which involve a scalar Lagrange multiplier function of s. Its elimination yields

(7.1). We omit the details.

Let us describe r and p by cylindrical coordinates:

r(s) � r(s)e1(f(s))� z(s)k; p(s) � p1(s)e1(f(s))� p2(s)e2(f(s))� p3(s)k:�7:8�
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Then

rs � rse1 � rfse2 � zsk;

ps � (p1s ÿ p2fs)e1 � (p2s � p1fs)e2 � p3sk;

u � 2h� v2r2 ÿ 2G(
��������������
r2 � z2

p
);

ur � 2[v2r e1 ÿ g(
��������������
r2 � z2

p
)(r e1 � zk)];

�7:9�

and (7.1) yields

rs �
���
u
p

p1; rfs �
���
u
p

p2; zs �
���
u
p

p3;�7:10�

p1s ÿ p2fs � r[gÿ v2]uÿ3=2;

p2s � p1fs � 0;

p3s � gzuÿ3=2:

�7:11�

The substitution of (7.10) into (7.11)2 yields (uÿ1=2r2fs)s � 0, whence

uÿ1=2r2fs � a (const):�7:12�
(If we were to express the integrand in (6.5) in cylindrical coordinates, then the absence of

f from this integrand (i.e., the ignorability of f) would cause the correspond ing Euler-

Lagrange equation to be equivalent to (7.12). This observation is a special case of

Noether's Theorem; cf. [12].)

Equation (7.12) ensures that fs has a fixed sign. Thus a minimizing tunnel (if it exists)

cannot start out moving west and later go east, or vice-versa. In particular, if the initial and

terminal points a and b have the same longitude, i.e., if they have the same coordinate f1,

then a minimizing tunnel must either lie in the (e1(f1); k)-plane, or else (what seems

unlikely) wind around the axis with the initial and final values of f varying by a nonzero

integral multiple of 2p. On the other hand, if a and b have longitudes differing by p, i.e., if

f2 � f1 � p, say, then, as we shall soon see, the brachistochrone need not be confined to

the vertical plane containing these termini. These considerations show that the

independent variable s could be replaced by f when the initial and terminal points a
and b do not have the same longitude.

Equations (7.10)3 and (7.11)3 imply that

[uÿ1=2zs]s � gzuÿ3=2:�7:13�
Thus, if j is a value of s at which z(j) > 0 and zs(j) � 0, then zss(j) > 0. This means that

for z > 0, z can have at most one interior minimum and can have no interior maximum.

(The analog of (7.13) for ~z(s) :� z(~s(s)) (cf. (7.4)) is that ~z is convex.)

Equations (7.10)1, (7.11)1, (7.12) imply that

[uÿ1=2rs]s � a2
���
u
p

rÿ3 � uÿ3=2r[gÿ v2]:�7:14�
This equation ensures that r can have at most one interior minimum and can have no

interior maximum when the gravitational force dominates the centrifugal force in the
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sense that g � v2. A similar result holds for r �
��������������
r2 � z2

p
. When the gravitational force

dominates the centrifugal force, we can ask whether r must be monotone.

It is clear that the system (7.10) and (7.11) is compatible with brachistochrones lying

in a vertical plane, for which fs � 0. But (7.13) shows that this system is not compatible

with brachistochrones lying in a horizontal plane, for which zs � 0, except at the equator,

where the resultant of the gravitational and centrifugal forces is central.

System (7.1) and its equivalent versions (7.9), (7.10), and (7.11) admit the integrals

(7.2) and (7.12). These integrals do not suffice to make this system totally integrable, i.e.,

reducible to a phase-plane analysis, except for motion in the equatorial plane. Indeed, for

motion in a vertical plane, for which a � 0, under the assumption that z is strictly

monotone, we can replace the independent variable s with z and reduce this system to a

second-order ordinary differential equation for r, which is not autonomous because of the

presence of the independent variable z in u. In other words the presence of both jrj,
corresponding to gravity, and jrÿ (r � k)kj corresponding to the centrifugal force, in the u

of (6.5) (cf. (7.9)) is the obstacle to integrability.

8. - YOU CAN'T ALWAYS GET THERE FROM HERE

Now we illustrate some of the rich possibilities for brachistochrones with numerical

and simple qualitative results. Our governing equations are (7.13) and (7.14), or their

equivalent system of first-order equations coming from (7.10)1;3, (7.11)1;3, (7.12). These

equations admit the integral (7.2). When a � 0, (7.13) and (7.14) have a similar structure,

at least when g > v2. We take the density m of the planet to be constant, so that u is a

nonhomogeneous quadratic form in r and z. We limit our attention to the case that a and

b lie on the boundary of the spherical planet. Our basic dimensionless parameter is v2=g.

REMARK. When a 6� 0, we could suppress the nonlinear term a2
���
u
p

rÿ3in (7.14) by

replacing the independent variable s with f, denoting the inverse of f by ŝ, and then

defining v(f) :� 1=r(ŝ(f)). This classical device from the mechanics of a particle in a

central force field has no apparent utility because it cannot simplify the coupled nonlinear

ities on the right-hand sides of (7.13) and (7.14).

The starting point of our analysis is the observation that a trajectory for the Euler-

Lagrange ordinary differential equations entering the planet at a prescribed point a on

its boundary with a prescribed initial speed and having its first exit at some point b on

its boundary determines a solution of these equations satisfying the boundary

conditions (6.2). In other words, given such a trajectory for an initial-value problem,

we can trivially identify the boundary-value problem that it satisfies. This trajectory is an

extremal, i.e, a candidate for a brachistochrone, for which we can readily compute the

time lapse (6.5).
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In Figure 2 for v2=g � 0 and v2=g � 0:7 we show two sets of extremals in a vertical

plane that start with zero speed at a latitude making angle
p

4
with the north pole. When

there is no spin, the left figure indicates that every point on and within the great circle

through the north pole and the starting point are accessible. (We have not exhibited very

shallow trajectories.) In this case there is a diametral extremal. The right figure shows

what happens when there is some spin. The two nearly horizontal curves form the loci of

points at which the speed on the extremals drops to zero, and at which the phase portrait

would show that the motion continues in the opposite direction. Thus there are segments

of the great circle that are inaccessible to such trajectories. If there were a brachistochrone

capable of reaching points on these segments, then the brachistochrone could not lie in a

vertical plane, and by symmetry there would have to be two of them. Note that the

trajectories that terminate on the nearly horizontal curves in the right side of Figure 2 have

the special features that they terminate with zero speed and that their reversal represents

solutions starting and ending with zero speed. There are exactly three such trajectories

with termini on the great circle.

For the classical above-ground brachistochrone with zero initial speed, the accessible

termini are precisely those lying at or below the height of the starting point. For our

problem, the issue of accessibility is more complicated:

It is not fruitful to explain the inaccessibility of points in terms of the gravitational and

centrifugal forces, because their effect on the particle is due to their projection onto the

unknown tangent to the tunnel at the point occupied by the particle. Instead, we note that

the energy equation (6.1), (6.4) with g constant implies that

�8:1� (gÿv2)[jrj2ÿ (r � k)2]�g(r � k)2 � 2h� c2� (gÿv2)[ jaj2 ÿ (a � k)2]� g(a � k)2:

FIG. 2. - Trajectories for v2=g � 0 and v2=g � 0:7 of extremals in a vertical plane that start

with zero speed at a latitude making angle
p

4
with the north pole. The axis of spin is vertical. The

white regions near the initial point are filled with trajectories that are not shown.
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Denote the set of r satisfying this inequality by A. An accessible terminal point b must lie

inA. (In the next paragraph we give simple sufficient conditions in a special case ensuring

that there actually are extremals going to certain termini b in A.) The boundary @A of A
consists of the locus of points having zero terminal speed. If g > v2, then @A is an

ellipsoid. The version of (8.1) corresponding to the left side of Figure 2 is obtained by

setting g � 0, c � 0, in which case A is the ball identical to the region occupied by the

planet. @A corresponding to the right side of Figure 2 is an oblate ellipsoid, its

intersection with the region of the vertical plane occupied by the planet is the region

filled with trajectories. If g � v2, then A is the slab bounded by the planes

x3 � �
����������
2h=g

p
. If g < v2, then @A is a hyperboloid. If, furthermore, h > 0, then @A

is a hyperboloid of two sheets, with A containing an interval along the k-axis centered at

the origin. If h � 0, then @A is a cone of two sheets symmetric about the k-axis with A
intersecting this axis only at the origin. If h < 0 (by virtue of a sufficiently large spin), then

@A is a hyperboloid of one sheet symmetric about the k-axis, withA lying outside of it. In

this case, there is a region centered about the axis of spin in which no brachistochrone can

enter. This hyperboloid intersects the fi1; i2g-plane in a circle of radius A, with

(gÿ v2)A2 � 2h � c2 � (gÿ v2)[R2 ÿ (a � k)2]� g(a � k)2;�8:2�
by (8.1), where R is the radius of the planet and a is taken to lie on the surface of the

planet. Thus A � R with equality only when c � 0 � a � k. Except when c � 0 � a � k,

there is a belt of accessible terminal points on the surface of the planet centered on the

equator, and A penetrates into a ring-like region. This means that if h < 0, then there is

an arc of accessible points in the opposite hemisphere lying on the great circle through a
and the poles that cannot be reached by brachistochrones lying in the plane of the great

circle. By symmetry, there must be at least two brachistochrones reaching each such

accessible point.

We now determine when extremals meet prescribed boundary conditions, an issue we

have so far avoided. For generality, let us temporarily allow the density m to be variable.

Equations (7.14) and (7.12), and (7.9)3 yield

[uÿ1=2rs]s � a2
���
u
p

rÿ3 � uÿ3=2[g(r)ÿ v2]r; fs � au1=2rÿ2;

u � 2h� v2r2 ÿ 2G(r); 2h � c2 ÿ v2R2 � 2G(R)
�8:3�

when the tunnel is taken to start on the equator with s � 0. We take it to start here at

f � 0. We multiply (8.3)1 by uÿ1=2rs to obtain the integral

rs
2 � r2fs

2 ÿ 1� du � rs
2 � a2urÿ2 ÿ 1� du � 0�8:4�

where d is a constant that we recognize as zero because (7.9)1 and the assumption that

jrsj � 1 implies that rs
2 � r2fs

2 � 1. (In other words, the integral (8.4) with d � 0 is just

a statement that s is an arc-length parameter; cf. the remark following (7.2)). Thus, when g
is a constant, (8.4) yields

rs
2 � r2fs

2 � 1; r2fs
2 � a2rÿ2[c2 � (v2 ÿ g)(r2 ÿ R2)]:�8:5�

Ð 22 Ð



Note that R2fs(0) � ac by (8.3)2, so that a determines fs(0). But (8.5) implies that it also

determines rs(0) (because rs(0) must be� 0 if the tunnel is to begin within the planet.) In

light of the development surrounding (8.1) and (8.2), we henceforth limit our attention to

the case that

l :� v2 ÿ g > 0 so that 2h � c2 ÿ lR2; r2fs
2 � a2rÿ2[2h� lr2]:�8:6�

For each fixed set of parameters a2; c2;v2 ÿ g, (8.5) gives the level curve in the (r; rs)-

phase plane on which lie the trajectories for (8.3). Any level curve that corresponds to a

trajectory that is a candidate for a brachistochrone (or more generally for an extremal)

(i) must intersect the line r � R because the initial and terminal points of the

brachistochrone must lie on the equator and (ii) must connect these intersection points

with a segment lying to the left of this line. The inequality R2fs(0)2 � 1, coming from the

evaluation of (8.5)1 at r � R, yields

a2c2 � R2:�8:7�
The discussion following (8.5) shows that this inequality is a restriction on the initial

direction.

Let us first study the case that h > 0. Then r2fs
2 approaches 1 as r& 0, and the

phase portrait of (8.4) shows that it meets requirements (i) and (ii). In particular, r must

have a positive lower bound on the level curve (8.5), so that there is a core around the axis

that cannot be penetrated by brachistochrones, as we have already seen. Since h > 0,

inequality (8.7) yields

B :� 1ÿ a2l > 0:�8:8�
(This inequality comes directly from (8.5) by replacing rs

2 with 0.) Equation (8.6)3 implies

that r2fs
2 asymptotically approaches a2l as r!1. Thus (8.8) implies that (8.5)1

describes a U-shaped curve in the (r; rs)-phase plane that is symmetric about the r-axis

and opens to the right. Equation (8.5) and the positivity of h give an explicit lower bound

for r:

r2 � 2ha2

B
> 0:�8:9�

If h < 0, i.e., if c2 < lR2, then r2fs
2 approaches ÿ1 as r& 0. In this case, the phase

portrait of (8.5) consists of curves asymptotic to the � rs axis on which r has a single

maximum, at the r-axis. If such a curve intersects the line r � R, then the intersection

points are joined by a curve on which r > R. Therefore, (8.5) cannot meet the

requirements (i) and (ii). If h � 0 so that c2 � lR2, then rs
2 � 1ÿ a2l. If 1ÿ a2l > 0,

then the level curves are two lines parallel to the r-axis in the phase plane, so there can be

no continuously differentiable brachistochrone starting and ending on the equator. If

1ÿ a2l < 0, then this equation has no real solutions. If 1ÿ a2l � 0, then r must be the

constant R, and (8.3)1 implies that fs � � 1=R. This degenerate case corresponds to an

equatorial tunnel. Since this degenerate case is the only novel result that holds when

h � 0, we henceforth limit our attention to the case that h > 0.
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To determine a brachistochrone that terminates at the equator at a prescribed point

with angle f � c, we must choose the initial direction determined by a so that

c � a

�l
0

u1=2rÿ2 ds�8:10�

where r satisfies (8.5) with r(l) � R. To exploit (8.10) we observe that (8.5) implies that

fBr2 ÿ 2ha2gÿ1=2(r2)s � � 2:�8:11�
Note that the discussion leading to (8.9) ensures that the argument of the square root

in (8.11) is positive.

We take r(0) � R � r(l). The symmetry of the loop (8.5) about the r-axis implies that

r has its minimum at s � 1

2
l . The elementary integration of (8.11) gives

r2 �
R2 ÿ 2

��������������������
R2 ÿ a2c2
p

s� Bs2 for 0 � s � 1
2 l;

R2 ÿ 2
��������������������
R2 ÿ a2c2
p

(l ÿ s)� B(l ÿ s)2 for
1

2
l � s � l:

8<:�8:12�

Equation (8.12) implies that r2 � R2, as required. Note that (8.11) implies that

rs

1

2
l

� �
� 0 and that r2 1

2
l

� �
is exactly the second term in (8.9), so (8.9) is sharp.

Equating (8.9) with (8.12) at s � 1

2
l gives

l

2
�

��������������������
R2 ÿ a2c2
p

B
:�8:13�

To evaluate the integral in (8.10), we use the symmetry of the level curve of (8.5) about

the r-axis to write the integral as twice that over
1

2
l; l

� �
. By making the change of

variables z � r(s)2 we can write (8.10) as

c � 2a

�l
l=2

������������������
2h� lr2

p
r2

ds

� a

�R2

2ha2=B

���������������������������������������������������������������
lBz2 � 2h[1ÿ 2a2l]z ÿ (2h)2a2

p
z

dz

� ac
��������������������
R2 ÿ a2c2
p

� 2hajaj p
2
ÿ arcsin 1ÿ 2c2a2

R2

� �� �

� ah[1ÿ 2a2l]������
lB
p ln

������������������������������
lBc2(Rÿ a2c2)
p � lBR2 � h[1ÿ 2a2l]

2a2lh� [1ÿ2a2l]h
:

�8:14�
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As a increases from 0 to its upper limit R=c allowed by (8.7), the parameter B

decreases from 1 to 2h=c2, and the right-hand side of (8.14), which is continuous in a,

varies from 0 to 2phR2=c2. The Intermediate-Value Theorem then implies that if

jcj < 2phR2=c2, then (8.14) has at least one solution a, and there is an extremal in the

equatorial plane joining the point with polar coordinates (R; 0) with the point (R;c). In

particular if 2hR2=c2 > 1, then there is an extremal terminating at (R; p), and by

symmetry, there must be at least two. The lack of monotonicity of the function

a 7! ac
��������������������
R2 ÿ a2c2
p

suggests that for appropriate ranges of the parameters there can be

multiple extremals reaching other given terminal points.

An overly simplified characterization of our findings is that the larger v2=g, the

smaller the accessible region, and the larger c, the larger the accessible region. The

momentum associated with a large c enables the particle to overcome much of the effect

of the gravitational and centrifugal force.

9. - COMMENTS

The development of the concept of energy, which pervades our study, was attributed

by Whittaker [28, p. 62] to Huygens, Newton, Joh. and D. Bernoulli, and Lagrange.

Euler can certainly be added to this list. Whittaker's classical book, among many, can be

consulted for the basic mechanics used in this paper, albeit presented with a cumbersome

notation.

There have been several classical and modern variations on Joh. Bernoulli's

brachistochrone problems. Euler [10] treated the brachistochrone for a velocity-

dependent frictional force; cf. [13, p. 78 ff.]. For other treatments of brachistochrone

problems with friction, see [2, 14, 17]. For the brachistochrone problem for a bead on a

wire located outside an attracting spherically symmetric planet, in which case the

attraction would be governed by the inverse-square law, see [20]. For the

brachistochrone inside a stationary planet, see [8, 24]. For a relativistic version of the

brachistochrone problem see [11]. Among the novelties of our work (as in [18]) is the

competition between gravitational and centrifugal forces, and its consequence that

brachistochrones are typically space curves. These curves are governed by systems of

ordinary differential equations whose solutions cannot be determined by a phase-plane

analysis, unlike our variation of Newton's problem. (In a somewhat antiquated locution,

problems reducible to a phase-plane analysis are termed integrable by quadratures. Now

such problems are called totally integrable.)

In this connection, we note that the classical brachistochrone is traditionally described

as the graph of a function, and then a change of variables gives it a parametric

representation as a cycloid. If this brachistochrone is initially given a parametric

representation, as we do for our generalization, then the parametric representation for

the cycloid appears directly [5]. Our brachistochrone problem does not appear to admit a

second-order equation for a graph in Cartesian or cylindrical or spherical coordinates.
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Our brachistochrone problem is an example of a parametric problem in the Calculus

of Variations. Such problems provide technical obstacles for their analysis not present for

classical nonparametric problems. The proof that our brachistochrone problem has a

minimum can be based on the existence theorems for parametric problems stated in

Chapter 14 of Cesari's book [6]. Their full proofs were to have been presented in a sequel

to [6], which Cesari never lived to complete. Many can no doubt be found in his

published papers. The most comprehensive treatment for parametric problems of

necessary conditions for minimization and of sufficient conditions for solutions of the

Euler-Lagrange equations to be local minimizers is given by Bliss [4]. The techniques

presented in [4] could be used to supplement the theory of Sections 7 and 8.

There are numerous other variants of the brachistochrone problem: The admissible

curves could be required to have a prescribed length (which of course, must exceed the

distance between the starting and finishing points). In this case the problem is

isoperimetric. We could constrain the admissible curves to lie in a prescribed plane or

even a prescribed surface.

A brachistochrone for a given initial speed is typically is not one for another initial

speed. As in Section 4, we could study motions in a brachistochrone tunnel for a given

initial speed for different initial data.

And finally, why not y? A few books spell `̀ brachistochrone'' as `̀ brachystochrone''

apparently because `̀ brachy'' comes from the Greek adjective braxy* Q for `̀ short'', with

upsilon y the vowel following x. But the superlative form of this Greek adjective is

bra* xistoQ with an iota i following x. Hence the i is appropriate. (See the Oxford English

Dictionary. Stefan Hildebrandt kindly pointed out to us why i should be used.)
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