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Abstract — Grid.it is a FIRB Strategic Project in the area of Enabling Technologies for
Information Society, coordinated by the National Research Council, granted by the Italian
Ministry for Education and Research for three years (November 2002 - November 2005).
This project, having a strong interdisciplinary character, is aimed at defining, implementing
and applying innovative solutions for network computing enabling platforms, oriented
towards scalable Virtual Organizations and based on the Grid Computing paradigm. The
research topics of Grid.it span from high performance networks, innovative middleware
services, high-performance programming environments and application testbeds.

This paper is organized as follows:

e Part 1: introduction to Grid Computing technology and concepts,

e Part 2: overview of Grid.it project,

o Part 3: description of the Grid.it approach to programming environments for developing
Grid-aware applications.

1. Basic concePTS ON GRID COMPUTING TECHNOLOGY

Grid Computing is the area that studies computing and data management
infrastructures providing an abstraction for resource sharing and collaboration
across multiple administrative domains [2, 3]. Grid platforms are characterized by
the ability to dynamically link together resources as an ensemble to support the
execution of large-scale, resource-intensive and distributed applications for a global
society in business, government, research and science [4, 5, 6].

This research area originated a large interest growth, not only in USA but also
in Europe, as proved by different research projects, e.g. the e-science project in UK
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and the European Community actions in the VI Research Framework. These new
technologies are aimed at drastically improving the impact of ICT in the econom-
ics, commerce and industry, as well as to play an important role in the evolution of
computational sciences.

In the last years there have been large improvements in computer systems, in
distributed platforms, in WEB computing (client/server and peer-to-peer), in appli-
cation service and storage service products, in Enterprise Computing Systems
(CORBA, Java Beans, Dcom, etc.) and in the programming and development tech-
nologies (objects, components). Despite the results achieved in all these fields, the
ability to actually integrate these technologies to meet the requirements of multi-
disciplinary applications (either compute or data intensive) did not grow conse-
quently: these requirements concern performance, security, reliability and quality of
service, according to an Open Software / Open Standard approach. In other terms,
new ITC platforms are required to support, efficiently and in a secure and con-
trolled way, resource sharing and integration in a scalable Virtual Organization
(VO) context. VOs (sets of individuals or organizations that need to share
resources to solve a given complex problem) have a strong dynamic structure,
form, lasting and composition: this poses new strategic challenges to ITC technol-
ogy. The paradigm and the infrastructure having scalable VO as the main target is
usually called Grid Computing.

From the high-performance architectures point of view, the trends in ICT
platforms are clearly focused in the direction of integrating computing resources
into large-scale platforms [2]: the high-performance computing resources to be inte-
grated include parallel machines such as SMP shared memory systems, previous-
generation supercomputers, homogeneous and heterogeneous Beowulf clusters of
PCs and/or workstations, as well as Beowulf clusters of parallel (SMP) nodes. The
interconnection of such resources, according to a client-server or a peer-to-peer
approach, is not limited to state-of-the art distributed systems at the Internet level:
high-speed communication technologies are emerging, not only at the cluster and
LAN level, but also at the Intranet and MAN level, e.g. very high-bandwidth opti-
cal networks. In this context, the Grid Computing paradigm is emerging as an out-
standing approach to realize new large-scale platforms to support high-perform-
ance applications efficiently and in a secure and controlled way.

An outstanding goal of Grid technology is to allow the users/applications to
achieve the desired level of Quality of Service — in terms of performance, fault toler-
ance, security —, and to guarantee that such QoS level is preserved in spite of the
heterogeneous and dynamic nature of Grid resources. With respect to other plat-
forms (e.g. PC/WS clusters, Virtual Private Networks), this goal is a novel and very
interesting R&D challenge. Besides the heterogeneous and dynamic nature of Grid
platforms, the security and administration issues are crucial for the success of the
Grid technology.

For the above reasons, the development of Grid applications requires capabil-
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ities and properties beyond those needed in both sequential programming and in
parallel/distributed programming, as it requires the management of computations
and environments that are typically dynamic and heterogeneous in their composi-
tion, and include resource hierarchies with different features (e.g. memory and net-
work). Thus Grid programming environment is an outstanding research issue for
next generation Grids. There is a growing agreement in the scientific community
that: 1) current programming environments, languages and tools are not sufficient
to support the development of Grid applications, 2) Grid-aware applications
should be designed and implemented exploiting comzponent technology [7, 8, 9, 10,
11]. The component based implementation will alleviate the effort required to
develop applications, as different components can be reused in different combina-
tions to achieve better results. Moreover, the component based implementation will
allow single items functional to the whole environment to be reused in different
contexts.

The static and dynamic support tools for Grid-aware application development
must, in turn, be implemented as a Grid Abstract Machine on top of a, possibly
standard, M:ddleware layer, such as versions of Globus Toolkit, Unicore, and
others. This layer offers the users a view of Grid resources and services which is
independent of the underlying basic platforms («fabrics»), such as .NET, J2EE,
Websphere and others. Though fundamental, the Middleware layer should not be
considered as the machine directly visible to the application designer/programmer:
instead, the application designer/programmer should have a more high-level,
abstract view of the Grid platform through the assistance of the programming envi-
ronment tools. The task of Grid Abstract Machine, mentioned above, is just to
hide all the very complex details of Grid platforms.

At the middleware level, a fundamental role is played by the Grid Information
Service (GIS), that is the subsystem that takes care of publishing and searching the
information concerning the resources available on the network. The main goal of
GIS is to support optimal choices of the computational resources used to schedule
a computation, but also to identify the data and the software components available
on the Grid. Notable research issues are: z) to achieve a high level of accuracy of
the dynamic information distributed by GIS without requiring the synchronizations
needed to guarantee a consistent view of the global status, 7Z) tools and infrastruc-
tures that will allow end users and GIS services to collect information on the dif-
ferent Grid resources status, on faults or possible error situations, z7Z) policies and
tools needed to allocate, co-allocate, reserve and schedule Grid resources to fulfill
applications requests.

2. THE GRID.IT PROJECT ON NEXT GENERATION GRID TECHNOLOGY AND APPLICATIONS

Grid.it [1] is a FIRB Strategic Project in the area of Enabling Technologies for
Information Society, coordinated by the National Research Council, granted by the
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Italian Ministry for Education and Research for three years (November 2002 -
November 2005). This project, having a strong interdisciplinary character, is aimed
at defining, implementing and applying innovative solutions for network comput-
ing enabling platforms, oriented towards scalable Virtual Organizations and based
on the Grid Computing paradigm. The research topics of Grid.it span from high
performance photonic networks, innovative middleware services, high-performance
programming environments and application testbeds.

Ahead of the distributed platform based on a distributed infrastructure aspect,
in Grid.it a special emphasis is placed on the high performance requirement of the
applications developed on Grids. This means that the study of the integration of
systems and resources, as well as heterogeneity and dynamic situations manage-
ment, must explicitly handle the case of Grid nodes (which in general are geo-
graphically distributed or placed on private virtual networks) being high perform-
ance systems, such as parallel machine architectures or clusters. The research on
high performance extends to all the platform levels, from high bandwidth network
to middleware services, and, in particular, resource management, as well to tools
and programming environments, as shown in Fig. 1.

At the programming tools and environment level the high performance require-
ment implies that, in the design of scalable VOs, a unifying approach in the devel-
opment of application should be used. Such approach is able to take into account
both the aspects related to the distribution of computations and resources, and of
those related to parallelism. The programming environment must therefore be
characterized by high degree of portability on different hardware-software systems
(or different hardware-software combinations) in an heterogeneous and dynamic
context. Portability must be guaranteed not only for code: portability must mainly
ensure that the performance matches the configuration of the target system at
hand. Fundamental to the programming environment are tool interoperability and
high performance application reuse.

The research on resource management, at Middleware level, includes aspects of
maximal importance as discovery, brokering, scheduling, monitoring and perform-
ance evaluation/prediction.

High speed networks needed to support enabling Grid platforms for scalable
VOs is an internationally recognized «hot» topic. Within this research activity an
important role is played by experiments on very high bandwidth optical networks,
based on photonic technology for Grid platforms with high performance sites that
extend to metropolitan area.

Beyond the aspects concerning programming environments and resource man-
agement, the software technology studied in Grid.it includes some fundamental
aspects related to Middleware:

e security: secure Grid environments and cooperation among Grid environments
belonging to different organizations;
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Fig. 1 - Research issues of Grid.it and system levels.

® data intensive services: federated database services, visualization and hierarchical
management of data and meta-data according to advances and high-performance
technique;

® knowledge discovery services: Grid services (data mining, search engines, etc.) that
provide consistent, efficient and pervasive access to high end computational
resources;

¢ Grid portals: Grid enabled applicative services, e.g. the possibility provided to the
user to submit tasks and collect results to remote jobs via Web interface.

The design and implementation of scientific libraries suitable to be used in an
heterogeneous and dynamic context, such as the one of Grid, completes the
research on programming environments.

Grid.it includes the development of some demonstrators selected within
applicative fields that are of maximum interest, not only for their scientific value,
but also as testbeds for high performance Grid platforms:

o Earth observation

® Geophysics

o Astronomy

® Biology

o Computational chemistry

In order to be able to implement and experiment the ideas and the results of
the project, some Grid infrastructures (two by CNR, one by INFN, one by ASI)
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are implemented, on a national scale, based on the GARR network. This project
result provides the community with national Grid resources to be used in different
computational science research sectors, and also for commerce, industrial and
social service applications.

Six High Qualification Centres (Research Units) participate to the project:

. ISTI-CNR (D. Laforenza)
. ISTM-CNR (M. Rosi)

. ICAR-CNR (A. Murli)

. INFN (M. Mazzucato)

. CNIT (G. Prati)

. ASI (G. Milillo).

A large number of University departments (Pisa, Cosenza, Padova, Perugia,
Rome Tor Vergata, Rome La Sapienza, Bologna, Naples, Genova, Milano Bicocca,
Turin, Venezia, Trieste, Bari, Lecce) is coordinated in the context of these six
Research Units.

The principal investigator is Marco Vanneschi, Dipartimento di Informatica,
University of Pisa and ISTI-CNR, Pisa. The Technical Board is coordinated by
Domenico Laforenza, ISTI-CNR, Pisa.

The research Workpackages and respective coordinators are listed below:
WP1. Grid Oriented Optical Switching Paradigms (P. Castoldi, CNIT, Pisa)
WP2. High Performance Photonic Testbed (S. Giordano, University of Pisa)
WP3. Grid Deployment (M. Mazzucato, INFN, Padova)

WP4. Security (M. Talamo, University of Rome «Tor Vergata»)

WP5. Data Intensive Core Services (M. Mazzucato, INFN, Padova)

WP6. Knowledge Services for Intensive Data Analysis, Intelligent Searching, and
Intelligent Query Answering (Franco Turini, University of Pisa)

WP7. Grid Portals (G. Aloisio, University of Lecce)

WPS8. High-performance Component-based Programming Environment (M.
Danelutto, University of Pisa)

WP9. Grid-enabled Scientific Libraries (A. Murli, University of Naples and
ICAR-CNR)

WP10. Grid Applications for Astrophysics (L. Benacchio, INAF, Padova)

WP11. Grid Applications for Earth Observation Systems Application (G. Milillo,
ASI, Matera)

WP12. Grid Applications for Biology (A. Apostolico, University of Padova)

WP13. Grid Applications for Molecular Virtual Reality (A. Lagana, University of
Perugia)

WP14. Grid Applications for Geophysics (A. Navarra, INGV, Bologna)

The Grid.it project is aimed at playing an important role in the training of
highly qualified young people. A relevant part of the project cost is reserved to
contracts for young researchers.

AN AW DN -
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3. THE GRID.IT SOFTWARE TECHNOLOGY FOR GRID-AWARE APPLICATIONS DEVELOPMENT

In this section, we will describe in more detail one of the research tracks of
Grid.it, concerning the software technology for application development. In the
context of Grid.it organization, WP8 is the responsible for this activity, however
there is a strong coordination with activities of several WPs around the approach
and tools of WP8, namely WP1, 2, 4, 6, 9, 11, 13.

As introduced in Section 1, a Grid-aware application must be able to deal with
heterogeneity and dynamicity in the most effective way (adaptive applications), in
order to guarantee the specified level of performance in spite of the variety of run-
time events causing modifications in resource availability (load unbalancing,
node/network faults, administration issues, emergencies, and so on). With respect
to traditional platforms, now it is much more important to rely on application
development environments and tools that guarantee high-level programmability and
application compositionality, software interoperability and reuse, and, at the same
time, to be able to achieve high-performance and capability to adapt to the evolution
of the underlying technologies (networks, nodes, clusters, operating systems, Mid-
dleware, and so on) [12, 13, 14, 15].

Our view of Grid application development is summarized by the level struc-
ture shown in Fig. 2.

Applications

High-performance, Component based
Programming Environment

Grid Abstract Machine
(including Middleware services)

Basic hardware-software platform

Fig. 2 - The role of Programming Environment in Grid application development.

The Programming Environment is centered on the existence of a high-level,
high-performance programming model and related development tools. A high-level
view of compositionality, interoperability, reuse, performance and application adaptiv-
ity characterizes the Programming Environment we advocate. Applications are
expressed entirely on top of this level. The level denoted by Grid Abstract Machine
includes all the functionalities to support the preparation, loading and execution of
the applications expressed in the formalism of the programming environment and
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transformed by the compiling tools. The Grid Abstract Machine includes the func-
tionalities that, in the current view of Grids, are provided by the Middleware tools and
services, e.g. moving bottom-up: the Connectivity (micro-kernel), Resource (resource
management services) and Collective (collective and dynamic resource control and
allocation) levels. This Middleware may be one of the current/standard products
(Globus Toolkit and its evolutions), or a subset of the services performed by them.

The Grid Abstract Machine exploits a subset of the Middleware services and
adds very critical functionalities that support the programming model and the
development tools, including all the strategies for resource management and sched-
uling and re-scheduling, allocation and re-allocation, as well as all the actions con-
cerning the application structuring and re-structuring. By replacing the old-fashion
OS-like view — according to which the application development occurs directly on
top of the Middleware — by the view centered upon the Programming Environment
and the Grid Abstract Machine, we wish to stress the programming-model based
approach to system design, and, at the same time, to minimize the amount and vari-
ety of functionalities that are present in the underlying levels: i.e. these functional-
ities must be limited just to the support to the programming model and tools used
to build Grid-aware, adaptive applications. Potentially, this approach leads to
achieve a much better trade-off between programmability and interoperability, on
one side, and performance, on the other side.

From the discussion above, it follows that the fundamental research issues, to
design innovative platforms for Grid-aware applications, are the programming
model and its implementation strategies. Other notable research projects namely
GraDS [16, 12, 13, 14, 15], ProActive [17] and Ibis [18], propose to follow a sim-
ilar approach, each one with its own characterization. See also [23].

The Grid.it software technology is an evolution of ASSIST (A Software devel-
opment System based upon Integrated Skeleton Technology), a programming envi-
ronment, developed by the Department of Computer Science at University of Pisa,
oriented to the development of parallel and distributed high-performance applica-
tions according to a unified approach [19, 20, 21, 22]

3.1. Programming model: distribution, parallelism, interoperability and adaptivity

Currently, Grid applications are often designed according to a low-level
approach (i.e., by relying on the Middlware services directly, possibly through a
Grid portal) and, in many cases, they consist in single jobs or in limited forms of
job composition (e.g. DAGs). Parallelism, where present, is limited inside single
jobs, in a way that does not affect the external structure of the application (e.g. a
job may be a MPI program). The result is that rarely Grid applications are Grid-
aware and high-performance.

As discussed in the previous section, our point of view is radically different. Tt
is based on the definition and realization of a programming model with the follow-
ing features:



— 275 —

1. applications are expressed as compositions of high performance components,
2. a uniform approach is followed for distributed and parallel programming: in
general components exploits internal parallelism and are executed in parallel
with each other,
3. the strategies to drive the dynamic adaptation of applications are expressed in
the same high-level formalism of the programming model.
Fig. 3 summarizes the interrelationships of these features. Such interrelation-
ship forms the conceptual frameworks on which we found our research approach.

Interoperability in high-
performance Grid High-performance
applications. “Fxisting” components
and “new” applications. / \
Parallel programs are Annotations expressing the
wrapped into “standard” “performance confract” are
components. associated to the parallel
4 components.
The Grid is \
considered “a
. computer” whose
Qnﬁprm approach  to resources can be Dynamically adaptive
dlstnbutedl and parallel mem  allocated and re- applications
programining allocated fo the
applications
i consistently. Dynamic adaplation stralegies are
Grid applications are expressed in a implemented by the parametric
parallel component formalism, restructuring of parallel components,
independently of the inter- or intra- exploiting the cost model of the
node allocation of parallel parallel formalism.

components. Resource allocation and
re-allocation is delegated to the Grid
Abstract Machine.

Fig. 3 - The conceptual framework for Grid-aware programming environments.

3.2. Grid-aware applications as compositions of high-performance components

Feature 1 is based on the proper exploitation of the component technology. In
our view, components are the basic mechanism to achieve compositionality by
guaranteeing software interoperability and reuse. Here, we assume that the basic
features of this software technology are known to the reader.

Achieving high-performance in component technology is currently an impor-



— 276 —

tant research issue. Currently, we are evaluating how the existing standards (CCA
[8, 9,1, Java Beans, CCM [10], Web Services [11]) can be assumed as starting
points to define and realize a robust component-based high-performance program-
ming model, that can be widely accepted and that is able to interoperate in many
application areas.

ASSIST provides the abstraction of high-performance components and high-
performance composition of components, independently of any commercial stan-
dard. This allows us to understand the basic features that high-performance com-
ponents should possess, in particular from the point of view of computation struc-
turing, parallelism exploitation and modularity. These features will be properly
merged with one or more commercial standard, or their future high-performance
versions, in order to achieve extensive interoperability and reuse. The merging of
high-performance programming and component technology must allow the designer
to structure the application as the proper composition of «existing» and «news» com-
ponents, i.e. some of them may be already existing (possibly in binary form), other
ones are programmed from scratch (e.g. written in ASSIST) or as the combination
of existing software into new parallel structures.

The current version of ASSIST (ASSIST 1.2) supports heterogeneity and the
interoperability with several currant standards, in particular the CORBA interoper-
ability [10]: that is, not only an ASSIST program can act as a client of a CORBA
server, but ASSIST programs can be easily defined as, and automatically trans-
formed into, CORBA servers invoked by any CORBA client. Though referred to an
object-oriented approach, this experience proves that interoperability features can
be merged into the ASSIST model, in order to design applications as composition
of components, some of which are possibly parallel.

3.3. Uniform approach to distributed and parallel programming for Grid-aware appli-
cations

Despite the current limitations in Grid application development, Grid appli-
cations have to be distributed in the real meaning of the word, as known in theory
since many years. With Feature 2 of the conceptual framework we further charac-
terize this concept: we design a Grid application as a parallel program described by
the parallel composition of parallel components (and possibly existing compo-
nents). No distinction is made a priori between parallelism and distribution, i.e.
between modules to be executed in the same (possibly parallel) Grid node or in
distinct Grid nodes. In the same way, we do not restrict the application to be a
single (sequential or internally parallel) job or a DAG of jobs. In general, the struc-
ture of the application can be any graph whose nodes are (parallel) components
and the arcs are the mechanisms for their composition and interaction. The pro-
gramming model of ASSIST is based on this concept.

At this point, it is important to clarify that modeling a Grid application as a
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parallel program does not necessarily mean that we are considering a Grid merely
as a parallel machine, though in some cases this is a meaningful and effective view.
There may be applications in which we could not be interested in inter-component
parallelism or in optimizing such potential parallelism, possibly exploiting the par-
allelism at the intra-component level and forcing distinct components to be allo-
cated onto distinct Grid nodes.

However, there are strong reasons in support to a uniform view of distributed
programming and parallel programming. Provided that the module granularity is
determined properly, there are many applications that can greatly benefit from
inter-node parallelism, while additional performance is gained at the intra-node
level. We point out that, because of the heterogeneous and dynamic nature of Grid
platforms, the a-priori distinction between inter- and intra-node parallelism may be
difficult or, by forcing it in some way, it may cause a sensible degradation in per-
formance or fault-tolerance. Instead, we believe that the distinction between inter-
and intra-node parallelism must be delegated to the programming tools, either at
compile- and at run-time: it is for this reason that the resource management, sched-
uling and allocation functionalities must belong to the Programming Environment
support (the Grid Abstract Machine), and in particular to the support of the pro-
gramming formalism.

As a consequence, an approach that does not limit the parallelism opportuni-
ties is characterized by much more flexibility and performance: notably, it must be
possible to adapt applications, without sensible or no modifications, to changes and
evolutions in the underlying platform, such as in node architecture and multiplic-
ity, communication latency or bandwidth, processor power, operating system facili-
ties, and so on. This aspect is consistent with the trends in component technology
[7], e.g. application versioning according to different requirements of users and/or
availability of system resources.

3.4. Grid-awareness: dynamically adaptive applications

The considerations above are generalized to the possibility of developing
dynamically adaptive applications, i.e. applications whose resource allocation varies
at run-time to guarantee a desired level of performance. Re-scheduling and re-allo-
cation of resources should occur because of node unavailability or node unbalanc-
ing, or because an increase in performance is required in response to an emergency
(e.g. in an Earth Observation application for landslip detection, the response to
some events may require a very large increase in computing power that can be ren-
dered available by a large collection of Grid-connected machines).

Currently, when this problem is addressed only partial solutions are men-
tioned: notably, dynamic code/data movement.

In general, the problem does not consist merely in finding a better allocation
of the same code and data, instead we need to take into account other more com-
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plex actions that imply a transformation of the executable version of the program,

such as

e a different degree of parallelism,

e different data distribution and partitioning,

¢ and also alternative versions of the program implementing the same functionality,
i.e. a different implementation of the same component or composition of com-
ponents.

A rigorous approach to the adaptivity problem can be based upon the follow-
ing points:

e several modalities of expressing the structuring and restructuring of a computation
must be available in the programming formalism,

¢ these modalities must be characterized by a cost model (performance model) that
can drive the structuring and restructuring phases with reasonable complexity
and overhead.

These modalities can correspond to the usage of diferent (combinations of)
parallelism forms, or parallelism paradigms, as it normally happens in structured par-
allel programming models [19]. In such models a consistent set of parallelism forms
is provided to the programmer to structure/restructure the application at hand: for
example, pipeline, farm or divide&conquer are typical task-parallel (stream-paral-
lel) paradigms, while map, reduce, prefix, scan, stencil are typical data-parallel par-
adigms. In structured parallel programming, a coordination language is adopted
that acts as a metalanguage used to compose codes expressed in any standard lan-
guage (C, C++, Java, Fortran). These codes may be already existing: for example
they may be existing programs, libraries, or components themselves.

Parallelism forms have associated a semantic model and a cost model, that
make this approach very promising also for Grid programming: because of the
existence of the cost model, the static and dynamic implementation of each paral-
lelism form is parametric with respect to few parameters. For example, the actual
degree of parallelism or the actual number of data partitions can be varied dynam-
ically without affecting the code of the run-time support.

ASSIST is based on the structured parallel programming approach. Beyond the
«classical» parallelism forms, the ASSIST programming model contains several fea-
tures (graphs, parallel modules, external objects) that sensibly increase flexibility
and expressive power, including the possibility to design adaptive program struc-
tures (see the previous consideration about the need for alternative versions of the
same computation).

Summing up:

e parallelism (and structured parallelism in particular) is not only useful per se (i.e.
to exploit higher performance of a certain code, possibly allocated onto the same
Grid node), but also it has an utilization which is much more consistent with the
dynamically adaptive nature of Grid-aware applications: in fact, in our model
structured parallel programming is @ way fo specify the strategy for structuring and
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for restructuring a component or a composition of components. Components are
internally expressed in ASSIST, with the addition of proper scripting annotations
for specifying the «performance contract» [15] of the component (e.g. perform-
ance metrics, critical events, and so on). Notice that, in general, processes of the
same component could be rescheduled onto different Grid nodes.

Grid.it will develop, on top of available standard services (GlobusToolkit), a
Grid Abstract Machine based on an Application Manager (AM) for parallel and
distributed applications according to the Grid-awareness principles. AM, that logi-
cally is a centralized entity whose implementation may be decentralized, will
exploit the functionalities made available by
® Performance Model
® Monitoring
® Resource Discovery
o Scheduling strategies, both local to single nodes and global to Grid
e Allocation strategies of codes and data.

The current implementation of ASSIST for heterogeneous networks and Grids
will be extended in order to support the dynamic allocation of ASSIST programs:
this affects the run-time support of ASSIST modules (called parmod), so that parts
of the same parallel components can be re-allocated dynamically to different nodes
according to the decisions of AM.

Modules of ASSIST programs will be wrapped into standard components and,
in general, made interoperable with other non-ASSIST components in order to
build Grid applications. Moreover, each component will provide a scripting anno-
tation about the «performance contract» to be established with the Grid Abstract
Machine.

The following example could serve to clarify the ASSIST-based approach to
the design of dynamically adaptive applications. The applications consists of the
component composition shown in Fig. 4.

Component C1 is an interface towards a Grid memory hierarchy, that virtual-
izes and transforms data sets available on the Grid into two streams of objects, the
one (whose elements have an elementary type) is sent to C2, and the other (whose
elements have array type) is sent to C3. C1 may be an existing component available
on the Grid, virtualized by an ASSIST program.

C2 is a component encapsulating an ASSIST program. The «performance
contract» of C2 specifies that
® by default C2 is a sequential module executing a certain function F;

e when the Monitoring and Performance Model services generate the event that
signals the need or opportunity to adjusting the current performance level (“on
restructuring”), C2 is transformed into a far computation whose workers exe-
cute the same function F. AM of the Grid Abstract Machine determines the
actual number of workers and their allocation to Grid resources: these may
belong to the same Grid node (cluster) or to different Grid nodes. This is con-
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Fig. 4 - Example of an adaptive application expressed by parallel components.

sistent with our conceptual framework, according to which the high-level version
of the application is expressed by the structured parallel formalism with annota-
tions, and all the allocation strategies are delegated to the Grid Abstract
Machine.

C3 is a component encapsulating an ASSIST data-parallel program operating
on each stream element of array type. Similarly to the approach described for C2,
the «performance contract» of C3 specifies that, by default, the ASSIST program
has to be executed on a single Grid node with cluster internal architecture, while
“on restructuring” it can modify (increase) the parallelism degree (amount of real
processors onto which the data-parallel virtual processors are mapped). The re-allo-
cation may exploit resources belonging to one Grid node or to distinct Grid nodes.

C4 is a component encapsulating an ASSIST program which, by default, is a
sequential module, while “on restructuring” it is transformed into a parallel module
operating on the input stream according to a data-parallel or a farm style, depend-
ing on the values of the module state and on the input values themselves. In this
case the adaptation principle is applied at two levels: at the program level and at
the allocation level.

C5 is a component encapsulating an ASSIST program operating nondetermin-
istically on the input values received from C3 or C4, and transforming the two
streams into a data set. The «performance contract» of C5 specifies that C5 can be
allocated and executed only on a certain Grid node and that no reconfiguration
can occur. This may be due to security, or privacy, reasons, or to requirements
related to the specific resource kinds needed to operate on the data set.

Let us assume that at a certain time C2 is becoming a bottleneck that causes a
substantial degradation of performance of the whole application. AM provides to
transform C2 into a version with the proper parallelism degree and to re-schedule
and re-allocate this new version, assumed that, interacting with the Grid Resource
Management services, the necessary resources can be found. In case of restructut-
ing of data-parallel components, the AM strategy must be applied also to the re-
distribution of the data constituting the internal state of ASSIST modules. As a
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consequence of C2 restructuring, AM could decide to restructure other modules
(C4, C5) consistently in order to optimize the global performance.

3.5. Interrelationships of programming model features

As shown in Fig. 3, features 1, 2 and 3, that we advocate for the definition of a
Grid programming model, are strongly interrelated. Feature 1, that implies interop-
erability, is fundamental for being able to structure complex application that
include existing and /or predefined software components, and their «glue» is made
possible and easy by the structured parallel programming approach. This feature is
also fundamental to allow «legacy code» usage in Grid programs.

Feature 3 requires that components of an application can be rescheduled and
restructured dynamically: in turn, this requires feature 2 (uniform approach to dis-
tributed and parallel programming) because processes of the same parallel compo-
nent could be restructured and reallocated onto different and distinct nodes, even
in the case that at launch time this component has been allocated onto the same
node in a sequential or differently parallelized fashion. The parametric feature of
structured parallel programming makes the realization of a performance model for
the dynamic restructuring of applications feasible.

Summing up:
® a Grid-aware application can be designed as a parallel program, properly

«wrapped» into a components structure (together with some possibly pre-exist-
ing components), without distinguishing between inter- or intra-node parallelism
at the implementation level. Provided that an initial allocation of the components
is done at launch time, the allocation of parts of the same components can be
modified at run-time (both in identities of nodes and in amount of nodes) to deal
with the dynamic adaptation strategies expressed in the same parallel formalism.

Finally, we observe that dealing with the complexity of the Grid programming
model has beneficial effects on the same parallel programming principles per se. In
fact, the possibility to express dynamically adaptive computations also contributes
to the solution of zrregular and dynamic problems in parallel programming, i.e. com-
putations that cannot efficiently be expressed according to predefined paradigms
and/or that need substantial modifications according to some data values known at
run-time (e.g. parallel Barnes-Hut algorithm), including some interactive applica-
tions. ASSIST aims to be a solution to this problems too, since it goes beyond the
typical limitations of «classical» parallelism forms in dealing with irregularity,
dynamicity and interactivity.

4. CONCLUSIVE REMARKS

Grid.it is an Italian research project that aims to contribute to the develop-
ment of an innovative technology for Next Generation Grids in cooperation with
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the main European Research Centres and projects. In Section 3 of this paper we
have sketched the features of one of the Grid.it research track, namely the applica-
tion development environment. Detailed information about all the research tracks
of Grid.it can be found at www.grid.it.

Currently several Grid Research initiatives are ongoing or planned at national
and European Community level. Though these initiatives provide a rich set of
advanced technologies, methodologies and applications, these various endeavours
are presently uncoordinated and look rather disparate and fragmented. In the
2002-2006 timeframe, the funding of Grid research and deployment at EU level
(275 M€) more than doubles passing from FP5 to FP6. During the same period
national funding of 500 M€ for Grid research and development projects has been
expended (UK, France, Italy, The Netherlands, Germany, Hungary, Spain, Poland,
Czech Republic, Sweden). The totality of these initiatives could provide the EU
with the potential to play a world leadership role in Grid technologies and appli-
cations. National and EU collaborations have been established with other interna-
tional players (in the US and Asia-Pacific) and with international standards organi-
sations. However, if Europe wishes to compete with leading global players, it
would be sensible to attempt to better coordinate its various, fragmented efforts
towards achieving critical mass and the potential for a more visible impact at an
international level. Achieving such a coordinated approach will require co-ordina-
tion among the funding authorities, collaboration among the individual researchers,
and a visionary research agenda.

These are the goals of GridCoord (www.gridcoord.org), an IST Special Sup-
port Action of the European Community VI Framework Programme: an ERA Pilot
on a co-ordinated Europe-wide initiative in Grid Research, coordinated by the Uni-
versity of Pisa, Department of Computer Science.
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