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Variational Problems with Fractal Layers (**)

ABSTRACT. — We construct suitable energy forms with singular terms on fractal layers and
state related variational principles.

Problemi variazionali con strati frattali

SUNTO. — Si costruiscono alcuni funzionali dell’energia con termini singolari su certi strati
frattali e si formulano i relativi principi variazionali.

1. - INTRODUCTION

The aim of this note is to describe some variational principles for transmission
problems, which involve a highly conductive layer of fractal type imbedded in an
Euclidean domain. Broadly speaking, the layer is characterized with respect to the
surrounding space by the property of possessing a much greater conductivity, or per-
meability. The flow is absorbed by the layer and it starts to diffuse within the layer
much more «efficiently» than in the surrounding space, giving rise to a second order
transmission condition across the layer boundary.

Boundary value problems for elliptic and parabolic equations with second order
boundary conditions on a layer have been investigated since the early 70’s, in connec-
tion with various engineering problems of the kind arising, for example, in the flow of
oil in a fractured medium (T.R. Cannon and G. H. Meyer, 1971, [4]), or in electrosta-
tics and magnetostatics in presence of highly conductive layers (H. Pham Huy and E.
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Sanchez-Palencia, 1974, [28]). We also refer to the recent survey of D. E. Apushkin-
skaya and A. I. Nazarov, 2000, [2], where the b.v.p.’s mentioned before are seen in the
more general perspective of so–called Venttsel problems, which go back to the late
50’s (Venttsel, 1959, [30]).

In many applications, like the ones studied by Cannon and Meyer, one is indeed
interested in enhancing the layer absorption and diffusion. In principle – for a given
conductivity of the layer material – this could be also achieved by raising as much as
possible the surface of the layer with respect to the surrounding volume. In this re-
spect, suitable layers of fractal type – as the one considered in this paper – may pro-
vide a geometric surface vs volume relation adequate to the preceding goal.

We consider here only the stationary version of the layer problem and, in addition,
we confine ourselves to the formulation of a variational principle, involving both the
volume and layer contributions to the total energy.

The method we use, in order to construct the energy functional, is new and is
based on the product construction of a local energy, the Lagrangean. This is the ana-
logue of the classical Fubini theorem for measures, applied now to the measure-valued
Lagrangean forms, see [23]. This method – which we think is interesting in itself – ap-
plies, in particular, to product fractals of the type K3 I , where I4 [0 , 1] and K is,
e.g.,the planar Koch or Sierpinski curve (see [26]). If K is the Koch curve – or a piece-
wise Koch curve, like the snow-flake – the weak solution can be proved to be a
«strong» solution, which satisfies a second order transmission condition on the layer
K3 I . In this paper however, we shall not deal with the strong formulation of the
b.v.p. satisfied by the weak solution, which is of course of great interest in the applica-
tions. This study is carried out, for K the snow-flake, in the paper of M. R. Lancia in
this volume (see [19]).

Brownian motions penetrating fractals and related Dirichlet forms have been also
studied in [13], [22] and [16]. We notice in this regard, that the layer surface S consi-
dered in this paper is not a nested fractal, in the sense of [21], and has spectral dimen-
sion 2 . For energy functionals with singular terms, as in (2.2) below, see also [8] and
[24].

In Section 2 we define the energy in the pre-fractal case, in Section 3 the energy in
the fractal case. Our main results are Theorem 3.2 and its corollary Theorem 3.3 (the
variational principle). Section 4 is entirely devoted to the proof of Theorem 3.2. Some
important technical tools are given in the Appendix.

2. - ENERGY FORMS

We consider a 3-dimensional Euclidean domain Q containing a fractal subset S ,
the layer. Our basic model refers to the geometry illustrated in Fig. 1. Here the layer is
of the type

S4K3 I ,(2.1)
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Fig. 1. – Basic model.

where K is the so-called Koch curve in the plane, whose endpoints are A and B:

K
i

4K0]A , B(

and I4 [0 , L] is a real interval (for simplicity we take L41). Howewer, K could be
any finitely ramified fractal like a Sierpinski curve; (see e.g. [11] and [5]).

The layer is embedded in a 3-dimensional box:

Q»4 (0 , 1 )3 u2
1

2
,

1

2
v3 (0 , 1 ),

with coordinates (x1 , x2 , y) and the boundary of S belongs to the boundary of Q . We
put

V»4 (0 , 1 )3 u2
1

2
,

1

2
v,

with coordinates (x1 , x2 ).
In order to state the variational principle, we need to define an energy functional E

of the type

E4EQ1ES(2.2)

where EQ gives the volume energy and ES the energy of the layer.
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We assume that the energy EQ is simply the usual Dirichlet integral

EQ [u] 4�
Q

N˜uN2 dQ(2.3)

where dQ4dx1 dx2 dy is the Lebesgue volume measure on R3.
The space of functions of finite energy on Q , vanishing on ¯Q , is the usual Sobolev

space H 1
0 (Q). It is well known that these functions have a well defined q.e. represen-

tative in Q (see e.g. Adams-Hedberg [1]). In the following we still denote by u the
q.e.-representative of a function u�H 1

0 (Q).
We now describe the construction of the layer energy ES , by first considering the

case where K is the pre-fractal Lipschitz curve occurring in the construction of the
Koch curve, see Fig. 2.

We set

ES [u] 4�
I

dy�
K

NDl uN2 d l 1�
K

d l �
I

NDy uN2 dy .(2.4)

The domain of the total energy form E is the space

D0 [E] 4 ]u�H 1
0 (Q) : uNS

�H 1
0 (S)(.(2.5)

In (2.5), H 1
0 (Q) denotes the usual Sobolev space in Q and H 1

0 (S) the Sobolev
space on S according to Necǎs definition, [27] (see also Grisvard [9]). We note that in-
tegrals in the right-hand side of (2.4) turn out to be the sum of integrals over the
«faces» Sj

!
j
u �

Sj

NDl uN21NDy uN2v dS

where Dl denotes the tangential derivative along the pre-fractal K and Dy the usual
partial derivative in the y direction; d l denotes the one-dimensional measure on K rela-
tive to the arc-length l and dS the surface measure on S , that is, dS4d l dy .

By E , in the following, we shall denote both the quadratic functional and the asso-
ciated (symmetric) bilinear form.

Fig. 2. – P�S , P4 (x , y), x4 (x1 , x2 ) �K , y� I .
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PROPOSITION 2.1: The space D0 [E] given by (2.5) is a Hilbert space under the
norm

VuVD0[E]4 (E[u] )1/2

and E , with domain D0 [E], is a regular, strongly local Dirichlet form in L 2 (Q).

The proof follows from Proposition 5.1 of the Appendix. We do not give details
here, because the proof is similar, but simpler, than the proof given in Section 4 of the
following Theorem 3.2.

For definitions and main properties of Dirichlet forms see e.g. [6], [24] and [8].
The construction of ES when K is fractal will be carried on in the following

section.

3. - FRACTAL ENERGY

We now consider the case of the layer S4K3 I , whose section is the fractal Koch
curve K . We introduce the coordinates described in Fig. 2, where every P�S is
uniquely described by its projection x4 (x1 , x2 ) on the plane (x1 , x2 ) and by its pro-
jection y on the interval [0 , 1], hence, P4 (x , y). It is well known that on the Koch
curve K there exists an invariant measure m , that is a regular positive Borel measure m ,
that, after normalization, coincides with the restriction to K of the df-dimensional
Hausdorff measure Hdf of R2 :

m4 (Hdf (K) )21 Hdf NK ,(3.1)

where

df4
ln 4

ln 3
(3.2)

is the Hausdorff dimension of K . The measure m has the property that there exists two
positive constants c1 , c2

c1 r df Gm(Be (x , r)OK) Gc2 r df , (x�K ,(3.3)

(see Hutchinson [11] and Falconer [5]), where Be (x , r) denote the Euclidean ball in
R2 . According to Jonsson and Wallin [15], we say that K is a df-set.

We recall that a Lagrangean Lx (u , v) is defined on K and

EK (u , v) 4�
K

Lx (u , v)(dx)(3.4)

is a regular strongly local Dirichlet form with domain D[EK ] dense in L 2 (K , m). For
the notion of Lagrangean in the present context see [23] and [25].

D[EK ] is a Hilbert space with respect to the norm

VuVD[EK]4 (EK (u , u)1VuV

2
L 2 (K , m) )1/2 .(3.5)
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The functions in D[EK ] possess a continuous representative, which is actually
Hölder continuous on K . For these properties we refer e.g. to [17] and [25].

We now consider the subspace

D0 [EK ] 4 ]u�D[EK ] : u40 on A and B(.(3.6)

D0 [EK ] is a closed subspace of D[EK ], hence a Hilbert space with respect to the
norm (3.5). From the Poincaré inequality:

VuVL 2 (K , m)Gc(EK (u , u) )1/2 , u�D0 [EK ](3.7)

(see e.g. [7] and [17]), we deduce that

VuVD0[EK]4 (EK (u , u) )1/2(3.8)

is an equivalent norm in D0 [EK ]. The form EK , with domain D0 [EK ] is a regular,
closed and densely defined in L 2 (K , m).

We define the product Lagrangean Lx , y (Q , Q) on the fractal S4K3 I by
setting

Lx , y (u , v)(dx , dy) 4 Lx (u , v)(dx) dy1Dy uDy vdym(dx)(3.9)

on the set

DLx , y
4C0 (S)OL 2 (I ; D0 [EK ] )OL 2 (K ; H 1

0 (I) )(3.10)

where

L 2 (K) 4L 2 (K , m).(3.11)

Here Lx (Q , Q)(dx) denotes the measure-valued Lagrangian of the energy for EK of K
(see (3.4)), now acting on u(x , y) and v(x , y) as a functions of x�K for a.e. y� I and
m(dx) is the measure defined in (3.1) acting on each section K of S for a.e.
y� I .

We use the notation

Lx [u] 4 Lx (u , u), u�DLx , y
.

The following functional is well defined for every u�DLx , y

ES [u] 4�
I

dy�
K

Lx [u](dx)1�
K

dm(x)�
I

NDy uN2 dy .(3.12)

We then define D0 [ES ] as the completion of DLx , y
in the intrinsic norm:

VuVD0[ES]4 (ES [u])1/2 ,(3.13)

and we remark that the functional in (3.12) is also well defined on D0 [ES ].
By m we denote the product measure on S ,

dm4dm(x) dy .
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The measure m has the property that there exists two positive constants c1 , c2 such
that

c1 r dGm(Be (P , r)OS) Gc2 r d , ( P�S ,(3.14)

where

d4df11 4
log 12

log 3
(3.15)

and where Be (P , r) denote the Euclidean ball in R3 . As before, S is a d-set where now
d4df11. From the Poincaré inequality on K , see (3.7), we derive easily the Poincaré
inequality on S:

VuVL 2 (S , m)Gc(ES [u] )1/2 , u�D0 [ES ] .(3.16)

PROPOSITION 3.1: D0 [ES ] is a Hilbert space under the intrinsic norm (3.13) and the
form ES , with domain D0 [ES ], is a regular Dirichlet form in L 2 (S , m).

PROOF: We first prove that ES is a closed form in L 2 (S , m). Let ]vh(h�N be a
Cauchy sequence in the norm

VuV14VuVL 2 (S , m)1 (ES [u] )1/2(3.17)

than there exists a function u in L 2 (S , m) that is the limit of vh in L 2 (S , m). The se-
quence vh is also a Cauchy sequence in the space L 2 (I ; D0 [EK ] ) therefore it converges
(strongly) in this space to a function that can be identified with u . Similarly the se-
quence vh is a Cauchy sequence in the space L 2 (K ; H 1

0 (I) ) therefore it converges in
this space to a function which, again, can be identified with u . This show the com-
pleteness. The form inherits the Markovian property from the form EK on K .

We now prove that this form is regular. As the density of C0 (S)OD0 [ES ] in
D0 [ES ] (in the intrinsic norm) follows from the definition of D0 [ES ], then it suffices to
show that C0 (S)OD0 [ES ] is dense in C0 (S) in the norm of C0 (S). By Stone-Weier-
strass theorem, we only need to prove that for any choice of P× and P

A in S0¯S with
P× c P

A there exist f in C0 (S)OD0 [ES ] such that f (P×) c f (PA). Let P× 4 (x×, y×) and P
A

4

4 (xA, yA). If x× 4 xA and y× c yA then we choose h�C 1
0 (I) such that h(y×) ch(yA) and we

put:

f (x , y) 4g(x) h(y)(3.18)

where g(x) is the capacitary potential of K× in D0 [EK ], where K× is a closed subset of K
contained in K

i

and containing the point x×. If instead x× c xA we choose g in D0 [EK ]
such that g(x×) cg(xA), (any function of D0 [EK ] is Hölder continuous as previously
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mentioned), and we put

f (x , y) 4g(x) h(y)(3.19)

where h is a function in C 1
0 (I) such that h(y×) 4h(yA) 41. r

We now come back to the total energy functional (2.2), S being the fractal layer.
The domain of the form E is the space

D0 [E] 4 ]u�H 1
0 (Q) : uNS

�D0 [ES ](.(3.20)

THEOREM 3.2: The space D0 [E] given by (3.20) is a Hilbert space under the intrin-
sic norm

VuVD0[E]4 (E[u] )1/2(3.21)

and the form E , with domain D0 [E], is a regular Dirichlet form in L 2 (Q).

The proof of Theorem 3.2 will be carried out in the following section.
Let us conclude this section by formulating the variational principle, for both the

pre-fractal and the fractal problem.

THEOREM 3.3: Let f be a given function in L 2 (Q). Let EQ be as in (2.3) and ES be
given by (2.4) in the pre-fractal case and by (3.12) in the fractal case. Let E be the energy
functional (2.2) with domain D0 [E] given by (2.5) in the pre-fractal case and by (3.20)
in the fractal case. Then there exists a unique u�D0 [E] that minimizes the functional

1

2
E[u]2�

Q

fudQ

in D0 [E].

PROOF: The proof follows from Theorem 3.2 by applying Lax-Milgram theorem to
the form E .

4. - PROOF OF THEOREM 3.2

We extend the form E defined in (2.2) to the whole space L 2 (Q), by
defining

E[u] 41Q for every u�L 2 (Q)0D0 [E].

In the same way, we extend the form EK defined in (3.4) to the whole space
L 2 (K , m).

We recall, see [24], that E is closed in L 2 (Q) if and only if the extended quadratic
functional E(u , u) is lower semicontinuous on L 2 (Q).
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We prove that the extended functional E[u] is lower semicontinuous in
L 2 (Q).

We suppose that

vhKu in L 2 (Q) strongly as hK1Q(4.1)

It is not restrictive to assume that there exists a subsequence, still denoted by vh , and a
constant c , independent of h , such that

vh�D0 [E] ,(4.2)

where D0 [E] is the domain (3.20) of the form E defined in (2.2), moreover,

�
Q

N˜vhN2 dQGc(4.3)

�
I

dy�
K

Lx [vh ](dx) Gc(4.4)

�
K

dm(x)�
I

NDy vhN2 dyGc .(4.5)

From (4.3) there exists a subsequence of vh weakly converging in H 1
0 (Q) and hence

strongly converging in H s
0 (Q) for all 0 E sE1, in particular strongly converging in

L 2 (Q). By (4.1), the whole sequence vh weakly converges to u in H 1
0 (Q). Hence

�
Q

N˜uN2 dQG lim �
Q

N˜vhN2 dQ .(4.6)

By Proposition 5.3 in the Appendix and taking into account that S is a d-set with d4

411df , we have that vhNS
and uNS

belong to the Besov space B 2, 2
df /2 (S) and

vhNS
KuNS

in B 2, 2
a (S) strongly(4.7)

with aE
df

2
. In particular, vhNS

KuNS
strongly in L 2 (S , m).

In a similar way and taking into account that K is a df-set (see (3.3)), we have that
vhNK

and uNK
belong to the Besov space B 2, 2

(df21)/2 (K) and

vhNK
KuNK

in B 2, 2
a (K) strongly(4.8)

with aE
df21

2
. In particular, we have strong convergence in L 2 (K , m).

From now on, for simplicity, we denote by the same symbol w the function w , its
trace wNS

on S and also its trace wNK
on K , when the meaning is clear from the

context.
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From the closedness of the form EK in L 2 (K , m) we deduce:

�
K

Lx [u](dx) G lim �
K

Lx [vh ](dx).(4.9)

By making use of Fatou’s Lemma,

�
I

dy�
K

Lx [u](dx) G lim �
I

dy�
K

Lx [vh ](dx).(4.10)

Similarly, we deduce from (4.5), that there exists a subsequence of Dy vh weakly con-
verging in L 2 (S , m) to a function w . By (4.1) and the uniqueness of weak derivatives,
the whole sequence Dy vh converges to Dy u weakly in L 2 (S , m) hence

�
S

NDy uN2 dmG lim �
S

NDy vhN2 dm .(4.11)

Summing up inequalities (4.11), (4.10) and (4.6), we have proved the lower semi-
continuity of the functional E and this concludes the proof of the completeness of the
domain D0 [E].

The form is Markovian and strongly local, as it follows easily from the analogous
properties which hold in H 1

0 (Q) and D0 [ES ].
Hence to achieve the proof of Theorem 3.2 we have only to show that the form

E(Q , Q) is regular.

Step 1

We first see that the space C0 (Q)OD0 [ES ] is dense in C0 (Q) with respect to the
uniform norm i. e.

C0 (Q)OD0 [E] V Q VQ 4C0 (Q) .(4.12)

By Stone-Weierstrass theorem it suffices to show that for every pair of points (P×, P
A) –

with P× c P
A, P× and P

A
�Q – there exists a function in C0 (Q)OD0 [E] such that:

f (P×) c f (PA).
Without loss of generality we can assume P×, P

A
�S0¯S . In the notation of Section 3

we set P× 4 (x×, y×) and P
A

4 (xA, yA). If x× c xA, we can choose g in D0 [EK ] such that
g(x×) cg(xA). We recall that such a function exists and it is continuous. If instead x× 4 xA,
we choose g(x) to be the capacitary potential of K× in D0 [EK ], where K× is closed, K× % K

i

and x× � K×. In both cases (x× c xA and x× 4 xA), we set

gA 4
.
/
´

g

0

on K

on ¯V0K
(4.13)

as a function on the (closed) subset KN¯V of R2 . We want to extend gA to a function g×
in R2 such that g× belongs to C0 (V)OH 1

0 (V). We apply Theorem 1 of [14], (see also
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Remark 4.1 below). This theorem provides, in particular, a continuous linear operator
E×xt ,

E×xt : B
A2, 2

11e (KN¯V) KH 11e (R2 ) e� u0, 12
df

2
v(4.14)

where B
A2, 2

11e (Q) is the Besov space defined in [14] page 356. We now observe that g be-
longs to the Besov space B 2, 2

df /21e (K), (see definition 5.2 in the Appendix and Proposi-
tion 4.4 of [20]) and gA belongs to B

A2, 2
11e (KN¯V). Therefore the function E×xtgA belongs

to H 11e (R2 ) and g× 4 E×xtgANV
belongs to C0 (V)OH 1

0 (V). Now we set

f (x , y) 4
.
/
´

g×(x) f×(y)

g×(x) f
A(y)

if x× c xA

if x× 4 xA
(4.15)

where f× and f
A belong to C 1

0 (I) and are such that:

.
/
´

f×(y×) 4 f×(yA) 41

f
A(y×) c f

A(yA) .
(4.16)

This concludes the proof of (4.12).

Step 2

Now we show that the space C0 (Q)OD0 [E] is dense in D0 [E] with respect to the
intrinsic norm (3.21). Consider u�D0 [E]: then uNS

belongs to D0 [ES ] and there exists
a sequence of functions hn in C0 (S)OD0 [ES ] converging towards uNS

in the intrinsic
norm V QVD0[ES] (see (3.13)).

As in Step 1, we set

h
A

n4
.
/
´

hn

0

on S

on ¯Q0S
(4.17)

as a function on the (closed) subset SN¯Q of R3 .
We want to extend h

A
n to a function h×n in R3 such that h×n belongs to

C0 (Q)OH 1
0 (Q). We apply again Theorem 1 of [14], (see also Remark 4.1 below), with

a different choice of the spaces. More precisely, E×xt denotes now a continuous linear
operator

E×xt : B
A2, 2

1 (SN¯Q) KH 1 (R3 )(4.18)

(BA2, 2
1 (Q) is the Besov space defined in [14] page 356) and c0 is the norm of this

operator,

c04VE×xtVL(BA2, 2
1 (SN¯Q), H 1 (R3 ) ) .(4.19)

We observe that hn belongs to the Besov space B 2, 2
df /2 (S), (see definition 5.2 in the Ap-

pendix and Proposition 3.1 of [19]) and h
A

n belongs to B
A2, 2

1 (SN¯Q). Therefore the
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function E×xt h
A

n belongs to H 1 (R3 ). From the definition of the extension operator (see
section 3 of [14]) we have that E×xt h

A
n is smooth on R3 0S . From the properties of the

Whitney decomposition and of the extension operator and taking into account that hn

is continuous on S we deduce that, for every n , E×xt h
A

n is continuous on R3 .
We set

h×n4 E×xt h
A

n NQ(4.20)

and we have h×n�C0 (Q)OH 1
0 (Q).

We prove that the sequence h×n converges towards a function u× in H 1
0 (Q). In fact

D0 [ES ] is continuously injected in B 2, 2
df /2 (S) (see Proposition 3.1 of [19]), then we

have

�
0

1

Vh×m2h×n V

2
H 1

0 (V) dyGcc0
2
Vhm2hn V

2
D0[ES] .(4.21)

Since the sequences hm converges in the norm V QVD0[ES] , the right hand side of
(4.21) tends to 0 as n , mKQ . We call u× the limit of h×n in L 2 (I ; H 1

0 (V) ) as
nKQ .

Analogously, we have

�
0

1

VDy h×m2Dy h×n V

2
L 2 (V) dyGcc0

2
Vhm2hn V

2
D0[ES] .(4.22)

Therefore the sequences Dy h×n converges towards Dy u× as nKQ .
We now observe that u2u× belongs to H 1

0 (Q0S). In fact, u2u× belongs to H 1
0 (Q);

moreover u×NS4 lim hn
×NS in B 2, 2

df /2 (S), uNS4 lim hn in D0 [ES ], and h×n NS4hn , therefore
uNS4 u×NS . It follows that there exist a sequence fn in C 1

0 (Q0S) converging to u2u× in
H 1

0 (Q). Since (u2u×)NSf fn NS40, the sequence converges also in D0 [E] (see (3.20)).
On the other hand, the sequences h×n converges in D0 [E] towards u×, because h×n con-
verges in H 1

0 (Q) and h×n NS4hn converges in D0 [Es ]. Hence the sequences fn1h×n con-
verges towards u in D0 [E]. r

REMARK 4.1: We note that KN¯V and SN¯Q are not d-sets in the sense of the de-
finition of Section 3 (see (3.3) and (3.14)), so we cannot apply Proposition 5.3 of the Ap-
pendix to extend the functions defined in KN¯V or in SN¯Q . Therefore, in the Step 1
and Step 2 of the previous proof, we relay on the more sophisticated tools given in Jons-
son (see [14] Theorem 1).

5. - APPENDIX

5.1. - Traces in Sobolev spaces

We recall some trace results specialized to our case, by referring to [9], [27], [12]
and [3] for a more general theory.
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Let S be defined in (2.1) where K is the pre-fractal curve approximating the Koch
curve. We define the trace operator

g 0 u4uNS

according to the following proposition (see e.g. [12]):

PROPOSITION 5.1: Let S be defined in (2.1) where K is the pre-fractal curve approxi-

mating the Koch curve. Let s� g 1

2
,

3

2
h . Then H s21/2 (S), is the trace space to S of

H s (Q) in the following sense: There exists g 0 , such that

(i) g 0 is a continuous and linear operator from H s (Q) to H s21/2 (S),

(ii) there is a continuous linear operator Ext from H s21/2 (S) to H s (Q), such that
g 0 i Ext is the identity operator in H s21/2 (S).

5.2. - Traces in Besov spaces

We now introduce the definition of Besov spaces on the Koch curve K and on the
surface S defined in (2.1). Let us recall that S and K are d-sets (see (3.14), (3.3)) with

d4
log 12

log 3
and d4

log 4

log 3
(respectively).

There are actually many equivalent definitions of the Besov spaces B p , q
a (see for in-

stance [29] and [15]). We recall here the one which best fits our aims and we restrict
ourselves to the case 0 EaE1, p4q42. The general setting is more involved, see
[15], but it is not needed here.

Let G denote S or K . We define the Besov space B 2, 2
a (G).

DEFINITION 5.2: By B 2, 2
a (G), 0 EaE1, we denote the space of all functions f such

that

V f VB 2, 2
a (G)4V f V2, n1 u� �

NP2P 8NE1

Nf (P)2 f (P 8 )N2

NP2P 8 Nd12a
dn(P) dn(P 8 )v1/2

EQ ,

where n denotes the restriction to G of the (normalized) d-dimensional Hausdorff mea-
sure of R3 .

By applying Theorem 7.1 in [15] to our case, see also [29] and [31] we define the
trace operator

g 0 u4uNG

according to the following:

PROPOSITION 5.3: Let G denote S or K . Let s� g 32d

2
,

52d

2
h, b4 s2

32d

2
.

Then B 2, 2
b (G) is the trace space of H s (Q) on G in the following sense: There exists g 0 ,

such that
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(i) g 0 is a continuous linear operator from H s (Q) to B 2, 2
b (G).

(ii) there is a continuous linear operator Ext from B 2, 2
b (G) to H s (Q) such that

g 0 i Ext is the identity operator in B 2, 2
b (G).
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