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ABSTRACT. — A second order transmission problem across either a fractal layer S or the cor-
responding prefractal layer Sh is studied. Existence, uniqueness and regularity results for the
weak solution, in both cases, are established.

Problemi di trasmissione del secondo ordine attraverso una superficie frattale

SUNTO. — Si studia un problema di trasmissione del secondo ordine in cui lo strato è una su-
perficie frattale S oppure la corrispondente superficie prefrattale Sh . Si provano risultati di esi-
stenza, unicità e regolarità della soluzione variazionale sia nel caso frattale che prefrattale.

INTRODUCTION

There is a huge literature dealing with transmission problems. Transmission prob-
lems arise naturally in various fields (see [44]). For instance, in electrostatics and mag-
netostatics the model problem which describes the heat transfer through an infinitely
conductive layer is a transmission problem (in this regard see the paper by Pham Huy
and Sanchez Palencia [42] and the references listed in).

Another completely different field is that of «hydraulic fracturing» (see the paper
of Cannon and Meyer [9]) used in order to increase the flow of oil from a reservoir
into a producing oil well. We refer to [9] for more details. Further examples can be
found in Dautray and Lions [11].

In all these applications, the mathematical model is an elliptic or parabolic bound-
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ary value problem involving a transmission condition on the interface (layer) either of
order zero, one or two.

In this paper we will deal with a model problem considered in [42]. This is a sec-
ond order transmission problem with a «flat» smooth layer, formally stated as
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where V is a regular bounded open set in R3 , say a regular cylinder and S is a cross
section, say a disk. S divides V in two subsets V 1 and V 2 , u i denotes the restriction of

u to V i , [u] 4u 12u 2 denotes the jump of u across S and y ¯u

¯n
z4

¯u 1

¯n1

1
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¯n2

the

jump of the normal derivatives across S , ni being the outward normal vector; D is the
Laplace operator in R3 and D t denotes the tangential Laplacian on S , f is a given func-
tion in L 2 (V).

The existence and the uniqueness of the weak solution of problem P0 are proved in
[42]. No regularity results are proved. As far as we know, the question of the regulari-
ty of solutions of this kind of transmission problems has been firstly addressed in [32],
where it has been proved that the solution u is continuous in V, the restrictions u i are
in H 2 (V i ) and the transmission condition jj) holds in the L 2-sense.

Problems of this type – with a transmission condition of the second order as in (P0 )
– come out naturally from electrostatics and magnetostatics or from problems of «hy-
draulic fracturing». In the context of electrostatics or magnetostatics condition jj) is
typical of infinitely conductive layers and c0 is a positive constant representing the di-
electric constant or the magnetic permeability; in hydraulic fracturing c0 depends on
the permeability of the reservoir and on the fluid properties.

From the point of view of the applications, mentioned before, it would be interest-
ing to study those model-problems in which the absorption of the tensions, electric
conduction or flows is the relevant effect and hence the surface effects have to be en-
hanced. In this context fractal layers provide new interesting settings.

In the present paper we study problem (P0 ) when the layer S is not flat but is a
fractal surface. In this case, the presence of a fractal interface changes drastically the
nature of the problem. While in the problems considered in [42], [9] and in [32] the
layer has the same Hausdorff dimension of the boundary of V , now in the fractal case,
the layer has Hausdorff dimension greater than that of ¯V .

Problem (P0 ) can be seen as the Euler conditions satisfied by the minimizer of a
suitable energy functional. Variational principles of this kind have been stated in [39]
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both in the case when S is a pre-fractal or a fractal surface of the Koch type. In particu-
lar in [39] the existence of a variational (weak) solution (minimizer) is proved. In this
paper we will consider the case in which S is a fractal surface of the von Koch
snowflake type.

We shall be mainly concerned with the «strong» problem (P) associated with this
geometry. We will also study the approximating problems (Ph ) – with layer the pre-
fractal interface Sh approximating S .

The paper is organized as follows. In Section 1 we recall the definition of the von
Koch snowflake F and we describe the geometry of both the fractal and pre-fractal
layer S4F3 I and Sh4Fh3 I , I4 [0 , 1]. In section 2 we describe the relevant func-
tional spaces which will be used as well as the trace theorems on S and Sh respectively.
In section 3 we consider the variational formulation for the fractal transmission prob-
lem (P); existence and uniqueness for the weak solution of problem (P) in a «conve-
nient» space are proved (see Proposition 3.5) and the transmission condition is inter-
preted in a suitable duality sense (see Theorem 3.7). In section 4 we consider the varia-
tional formulation for the pre-fractal transmission problem (Ph ); existence and
uniqueness for the weak solution of problem (Ph ) in a convenient space are proved
(see Proposition 4.2), regularity results for the weak solution of problem (Ph ) and a
strong interpretation of the transmission condition in the L 22sense are established in
Theorem 4.3.

We think that Theorem 4.3 can be useful to build approximating numerical
schemes for the solutions of transmission problems with fractal layers.

1. - GEOMETRY OF THE FRACTAL LAYERS S and Sh

In the paper, by NP2P0N we denote the Euclidean distance in RD and the Eu-
clidean balls by B(P0 , r) 4 ]P�RD : NP2P0NE r(, P�RD , rD0. By the Von Koch
snowflake F , we will denote the union of three com-planar Von Koch curves (see
[12]) K1 , K2 and K3 as shown in Figure 1.a. We assume that the junction points A1 , A3

and A5 are the vertices of a regular triangle with unit side length, i.e. NA12A3N4

4NA12A5N4NA32A5N41. Obviously, F can also be seen as the union of the three other
standard von Koch curves K4 , K5 and K6 (with junction points A2 , A4 and A6), as shown
in Figure 1.b. From now on we assume that a clockwise orientation is given on F .

The Hausdorff dimension of the von Koch snowflake is given by df4
ln4

ln3
. This

fractal is no longer self–similar (and hence, not nested).
One can define, in a natural way, a finite Borel measure m F supported on

F by

m F »4m 11m 21m 3 ,(1.1)

where m i denotes the normalized df-dimensional Hausdorff measure, restricted
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Fig. 1. – a: first decomposition; b: second decomposition.

to Ki , i41, 2 , 3 , it also holds that m F4m 41m 51m 6 , where m i is the normalized
df-dimensional Hausdorff measure, restricted to Ki , i44, 5 , 6 .

K1 is the uniquely determined self–similar set with respect to four suitable con-

tractions c (1) , R , c (4) , with the same ratio
1

3
(see Section 3.2 in [13]). We approxi-

mate K1 by a sequence of finite sets of points. Let V0
(1) »4 ]A1 , A3(, Vj1 R jn

(1) »4

»4c j1
(1)

i Q Q Q i c jn
(1) (V0

(1) ) and

Vn
(1) »4 0

j1 , R , jn41

4

Vj1 R jn
(1) .(1.2)

We set V*
(1) »4 0

nF0
Vn

(1) . It holds that K14 V*
(1). Let K1

(0) denote the unit segment

whose endpoints are A1 and A3 and K (1)
j1 R jn »4c j1

(1)
i Q Q Q i c jn

(1) (K1
(0) ).

For nD0, we denote

F(1)
n 4 ]c j1

(1)
i Q Q Q i c jn

(1) (K1
(0) ), j1 , R , jn41, R 4(.(1.3)

We set K1
(1)4 0

j41

4

c j
(1) (K1

(0) ), K1
(n11)4 0

M�F(1)
n

0
j41

4

c j
(1) (M), here M denotes a segment

of the n11-th generation; K1
(n11) the polygonal curve and Vn11

(1) the set of its
vertices.

In a similar way, we approximate the von Koch curves K2 , R K6 by the sequences
(Vn

(2) )nF0 , R , (Vn
(6) )nF0 , and denote their limits by V*

(2) , R , V*
(6) , and the corre-

sponding polygonal curves by K2
(n11) , R , K6

(n11) .
In order to approximate F , we define the increasing sequence of finite sets of

points Vn »4 0
i41

3

Vn
(i)4 0

i44

6

Vn
(i) , nF1, and V* »4 0

nF1
Vn . It holds that V*4



— 195 —

4 0
i41

3

V*
(i)4 0

i44

6

V*
(i) and F4 V*. In the following we denote by

Fn114 0
i41

3

Ki
(n11)4 0

i44

6

Ki
(n11)(1.4)

the closed polygonal curve approximating F at the (n11)-th step.
The measure m F has the property that there exist two positive constants c1 , c2

c1 r dGm F (B(P , r)OF) Gc2 r d , (P�F(1.5)

where d4df4
log 4

log 3
and where B(P , r) denotes the Euclidean ball in R2 . As m F is

supported on F , it is not ambiguous to write in (1.5) m F (B(P , r) ) in place of
m F (B(P , r)OF). In the terminology of the following section we say that F is a d-set
with d 4df .

REMARK 1.1: The von Koch snowflake can be also regarded as a fractal manifold (see
[13] Section 3.2).

Let Q denote a bounded open set in R3 ; in our basic model Q denotes the paral-
lelepiped Q4 (21, 1)23 (0 , 1 ) and S denotes a «cylindrical» layer in Q of the type
S4F3 I , where I4 [0 , 1] and F is the von Koch snowflake. We assume that S is lo-
cated in a median position inside Q and divides Q in two sub-domains Q 1 and Q 2 (see
Figure 2).

We give a point P�S the cartesian coordinates P4 (x , y), where x4 (x1 , x2 ) are
the coordinates of the orthogonal projection of P on the plane containing F and y is
the coordinate of the orthogonal projection of P on the y-line containing the interval I:
P4 (x , y) �S , x4 (x1 , x2 ) �F , y� I .

One can define in a natural way, a finite Borel measure m supported on S as the

Fig. 2. – Two different viewpoints of the domain Q and the layer S .
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product measure

dm4 dm F3dy(1.6)

where dy denotes the one-dimensional Lebesgue measure on I . The measure m has
the property that there exist two positive constants c1 , c2

c1 r dGm(B(P , r)OS) Gc2 r d , (P�S(1.7)

where d 4df11 4
log 12

log3
and where B(P , r) denotes the Euclidean ball in R3 . As m

is supported on S , it is not ambiguous to write in (1.7) m(B(P , r) ) in place of
m(B(P , r)OS). In the terminology of the following section we say that S is a d-set with
d 4df11.

By Sh we denote the pre-fractal layer of the type Sh4Fh3 I , h41, 2 , R , Fh is the
piecewise linear pre-fractal approximation of F at the step h see (1.4). Sh is a surface of
polyhedral type. Sh divides Q in two sub-domains Qh

i , i41, 2 .
We give a point P�Sh the Cartesian coordinates P4 (x , y), where x4 (x1 , x2 ) are

the coordinates of the orthogonal projection of P on the plane containing Fh and y is
the coordinate of the orthogonal projection P on the y-line containing the interval I .

2. - FUNCTIONAL SPACES AND TRACES

2.1. - Sobolev spaces

Let Q be a polyhedral domain: just to fix the ideas, the parallelepiped as in the
previous section. For every integer hF1 let Sh be the prefractal surface approximating
the Koch-type surface S and let us denote every affine «face» of Sh by Sh

( j) ; Sh divides Q
into two subsets Q 1

h and Q 2
h .

By L 2 (Q) we denote the Lebesgue space with respect to the Lebesgue measure on
subsets of R3 , which will be left to the context whenever that does not create ambigui-
ty. Let T be a closed set of R3 , by C(T) we denote the space of continuous functions
on T , by C0 (T) we denote the space of continuous functions vanishing on ¯T . Let G

be an open set of R3 , by H s (G), where s�R1 we denote the usual (possibly fractional)
Sobolev spaces (see Necǎs [41]); H s

0 (G) is the closure of D(G), (the smooth functions
with compact support on G), with respect to the V QVH s-norm. By H 2

loc (G) we denote the
space of functions u�H 2 (A) on every open set A %% G. In the following, we will make
use of trace spaces on boundaries of polyhedral domains of R3 .
By H r (Sh ), 0 E rG1 we denote the Sobolev space on Sh , defined by local Lipschitz
charts as in Necas [41].
By H 1

0 (Sh ) we denote the closure in H 1 (Sh ) of the set

]vN¯Q 2
h
: v�C Q (Q 2

h ), v vanishes in a neighborhood of Sh(.

It is to be pointed out that the Sobolev space H r (Sh ) (defined in [41])
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coincides, with equivalent norms, with the trace space defined in Buffa e Ciarlet
in [7] (see also [6] for the case of polygonal boundaries).

When rD1 the trace spaces on non smooth boundaries can be defined in different
ways; we now recall two trace theorems, specialized to our case, which we will use, re-
ferring to [16], [17] and [10] for a more general discussion.

For f in H s (G), we put

g 0 f (P) 4 lim
rK0

1

NB(P , r)O G N
�

B(P , r)O G

f (Q) dQ(2.1)

at every point P� G where the limit exists. It is known that the limit (2.1) exists at
quasi every P� G with respect to the (s , 2 )-capacity [1].

We now recall the results of Theorem 3.1 in [19] specialized to our case, referring
to [17] and [10] for a more general discussion.

PROPOSITION 2.1: Let G denote respectively Q , Q 1
h , Q 2

h and let G denote Sh , ¯Q 1
h ,

¯Q 2
h , ¯Q . Let

1

2
E sE

3

2
. Then H

s2
1

2 (G), is the trace space to G of H s (G) in the fol-

lowing sense:

(i) g 0 is a continuous and linear operator from H s (G) to H
s2

1

2 (G),

(ii) there is a continuous linear operator Ext from H
s2

1

2 (G) to H s (G), such that

g 0 i Ext is the identity operator in H
s2

1

2 (G).

In particular we use the Lions-Magenes space H
1
2
0 , 0 (Sh ) defined as

H
1
2
0 , 0 (Sh ) 4 ]u�L 2 (Sh ) : )v�H 1

0 (Q) : g 0 v4u on Sh(,(2.2)

equipped with the quotient norm

VuV

H
1
2
0 , 0 (Sb )

44 inf ]VvVH 1 (Q) : v�H 1
0 (Q), g 0 v4u on Sh(.

We note that H
1
2
0 , 0 (Sh ) is the subspace of the functions u�H

1
2(Sh ) for which the triv-

ial extension u
A

i , u
A

i4u on Sh and u
A

i40 on ¯Q i
h 0Sh belongs to the space H

1
2(¯Q i

h ); (see

[7]).

Finally (H
1
2
0 , 0 (Sh ) )8 denotes the dual space of H

1
2
0 , 0 (Sh ).

For the present application, we will make use also of the Sobolev trace space

H
3
2(Sh ); in the author’s opinion, the definition of this Sobolev space (on polyhedral

boundaries), which best fits to this problem, is that given in Section 2 of [7].
We set

H
3
2(Sh ) 4 ]W�H 1 (Sh ) : WNSh

( j) �H
3
2(Sh

( j) ), (Sh
( j)�Sh(.

PROPOSITION 2.2: H
3
2(Sh ), is the trace space to Q i

h of H 2 (Q i
h ) in the following

sense:
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(i) g 0 is a continuous and linear operator from H 2 (Q i
h ) to H

3
2(Sh ),

(ii) there is a continuous linear operator Ext from H
3
2(Sh ) to H 2 (Q i

h ), such that

g 0 i Ext is the identity operator in H
3
2(Sh ),

(see Theorem 2.4 in [7] and Theorem 1 in [17]).
In the sequel we denote by the symbol fNSh

the trace g 0 f to Sh .

2.2. - Besov spaces

DEFINITION 2.3: Let T%RD be a closed non-empty subset. It is a d-set (0 EdGD) if
there exists a Borel measure m with supp m4T such that for some constants c14

4c1 (T) D0 and c24c2 (T) D0

c1 r dGm(B(P , r) ) Gc2 r d (P�T , 0 E rG1).(2.3)

Such a m is called a d-measure on T .

PROPOSITION 2.4: The set F is a d-set with d4df . The measure m F is a d-measure.
The layer S is a d-set with d4df11. The measure m is a d-measure.

See [13] and [39].
Throughout the paper c will denote different constants.
We now come to the definition of the Besov spaces. Actually there are many equiv-

alent definitions of these spaces see for instance [43] and [24]. We recall here the one
which best fits our aims and we will restrict ourselves to the case a positive and non-
integer, p4q42; the general setting being much more involved see [24].

Let T be a d-set in RD .
Let aD0 non integer, k4 [a] the integer part of a , j a D-dimensional multi-index

of length NjNGk . If f and ] f ( j)( are functions defined m-a.e. on T , we set

Rj (P , P 8 ) 4 f ( j) (P)2 !
Nj1 lNGk

f ( j1 l) (P 8 )

l!
(P2P 8 )l ,

where f (0)4 f and l denotes a D-dimensional multi-index. We now define the Besov
space B 2, 2

a (T) fB 2, 2
a (T , m).

DEFINITION 2.5: We say that f�B 2, 2
a (T) if there exists a family ] f ( j)( with NjNGk ,

as above, such that f ( j)�L 2 (T , m) and V]an(Vl2 EQ where an is the smallest number
such that

u3nd� �
NP2P 8 NE32n

NRj (P , P 8 )N2 dm(P) dm(P 8 )v1/2

G32n(a2NjN) an .

The norm of f in B 2, 2
a (T) is

V f VB 2, 2
a (T)4V f V2, m1V]an(Vl2 .
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The family ] f ( j)( in the previous definition is uniquely determined by f , as shown in
[24], for d-sets with dDD21.

Let us note that for 0 EaE1 the norm V f VB 2, 2
a (T) can be written as

V f V2, m1 u !
n40

Q

3n(d12a)� �
NP2P 8 NE32n

Nf (P)2 f (P 8 )N2 dm(P) dm(P 8 )v1/2

.

PROPOSITION 2.6: Let T be a d-set, T% Q. Let sD
(32d)

2
, gs2

(32d)

2
h�N ,

then B 2, 2
s2

(32d)

2

(T) is the trace space to T of H s (Q) in the following sense:

(i) g 0 is a continuous linear operator from H s (Q) to B 2, 2
s2

(32d)

2

(T),

(ii) there is a continuous linear operator Ext from B 2, 2
s2

(32d)

2

(T) to H s (Q) such

that g 0 i Ext is the identity operator in B 2, 2
s2

(32d)

2

(T).

For the proof we refer to Theorem 1 of Chapter VII in [24], see also [43].
From Proposition 2.6 it follows that when T4S and s41 the trace space of

H 1 (Q) is B 2, 2
df

2

(S).

Let b4
df

2
. The space B 2, 2

b , 0 (S) is a subspace of B 2, 2
b (S), more precisely

B 2, 2
b , 0 (S)4]u�L 2 (S , m)Nthere exists w�H 1

0 (Q) such that g 0 w4u on S(,(2.4)

equipped with the norm

VuVB 2, 2
b , 0 (S)4 inf ]VwVH 1 (Q) : w�H 1

0 (Q), g 0 w4u , on S(.

In the sequel we denote by the symbol fNS the trace g 0 f to S .
In the following, we also make use of the dual of Besov spaces on S . These spaces

as shown in [25] coincide with a subspace of Schwartz distributions D 8 (R3 ), which
are supported in S . They are built by means of atomic decomposition. Actually, Jons-
son and Wallin [25] proved this result in the general framework of d-sets. Here we do
not give a detailed description of the duals of Besov spaces on d-sets and we refer to
[25] for a complete discussion.

3. - VARIATIONAL FORMULATION FOR THE FRACTAL PROBLEM

3.1. - The energy forms

In Definition 4.5 of [13], a Lagrangian measure LF on F and the corresponding en-
ergy form EF as

EF (u , v) 4�
F

d LF (u , v)(3.1)

with domain D(F) have been introduced. The domain D(F) – which is a Hilbert space
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with norm (VuVL 2 (F , mF )
2 1 EF (u , u) )

1
2 – has been characterized in terms of the domains

of the energy forms on Ki (see [13] Theorem 4.6).
In the following we will omit the subscript F , the Lagrangian measure will be sim-

ply denoted by L(u , v) and we will set L[u] 4 L(u , u).
We define the energy forms ES on the fractal layer S4F3 I by setting

ES [u] 4s 1�
I

�
F

Lx [u](dx) dy1s 2�
F

�
I

NDy uN2 dym F (dx)(3.2)

where s 1 and s 2 are positive constants. Here Lx (Q , Q)(dx) denotes the measure-valued
Lagrangian (of the energy form EF of F with domain D(F)) now acting on u(x , y) and
v(x , y) as function of x�F for a.e. y� I; m F (dx) is the Hausdorff measure acting on

each section F of S for a.e. y� I with df4
log 4

log 3
, Dy (Q) denotes the derivative in the y

direction.
The form ES is defined for u�D(S) where D(S) is the closure in the intrinsic

norm

VuVD(S)4 (ES [u]1VuV

2
L 2 (S , m) )

1

2(3.3)

of the set

C0 (S)OL 2 (0 , 1 ; D(F) )OH0
1 (0 , 1 ; L 2 (F) )(3.4)

where L 2 (F) 4L 2 (F , m F (dx) ).
In the following we shall also use the form ES (u , v) which is obtained from ES [u]

by the polarization identity:

ES (u , v) 4
1

2
]ES [u1v]2ES [u]2ES [v](, u , v�D(S).(3.5)

PROPOSITION 3.1: The space D(S) is continuously embedded in Ba
2, 2 (S), aE1.

PROOF: According to [36] Section 2.2, we now introduce the following
spaces:

W(0 , 1 ) 4 ]z : SKR : z�L 2 (0 , 1 ; D(F) )OH 1 (0 , 1 ; L 2 (F) )((3.6)

equipped with the norm

VuVW(0 , 1 )4 (VuV

2
L 2 (0 , 1 ; D(F) )1VDy uV

2
L 2 (0 , 1 ; L 2 (F) ) )

1

2 .(3.7)

Obviously D(S) %W(0 , 1 ).
From theorem 3.1 in [31] we deduce that D(F) is embedded in Bdf2e

2, 2 (F).
Thus, in the notations of [36], we introduce the Hilbert space

Bdf2e , 1
2 , 2 (S) 4 ]L 2 (0 , 1 ; Bdf2e

2, 2 (F) )OH 1 (0 , 1 ; L 2 (F) )((3.8)
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with norm

u �
0

1

VuV

2
Bdf2 E

2, 2 (F) dy1VuV

2
H 1 (0 , 1 ; L 2 (F) )v

1

2

.(3.9)

From [36] page 8 it follows that the space W(0 , 1 ) %Bdf2e , 1
2 , 2 (S), for every eD0. From

the embedding Theorem 1 of [24] we deduce that the space Bdf2e , 1
2 , 2 (S) is continuously

embedded in Ba
2, 2 (S), aE1. r

It can be proved, as in Proposition 3.1 of [39], that

PROPOSITION 3.2: In the previous notations and assumptions the form ES with do-
main D(S) is a regular Dirichlet form in L 2 (S , m) and the space D(S) is a Hilbert space
under the intrinsic norm (3.3).

We now define the Laplace operator on S . As (ES , D(S) ) is a closed, bilinear form
on L 2 (S , m), there exists (see Chap. 6, Theorem 2.1 in [18]) a unique self-adjoint, non
positive operator D S on L 2 (S , m) – with domain D(D S ) ’D(S) dense in L 2 (S , m) –
such that

ES (u , v) 42�
S

(D S u) vdm , u� D(D S ), v�D(S) .(3.10)

Let (D(S) )8 denote the dual of the space D(S). We now introduce the Laplace opera-
tor on the fractal S as a variational operator from D(S) K (D(S) )8 by

ES (z , w) 42aD S z , wb(D(S) )8 , D(S)(3.11)

for z�D(S) and for all w�D(S) where aQ , Qb(D(S) )8 , D(S) is the duality pairing between
(D(S) )8 and D(S). We use the same symbol D S to define the Laplace operator both as a
self-adjoint operator in (3.10) and as a variational operator in (3.11). It will be clear
from the context to which case we refer.

Consider now the space of functions u : QKR

V(Q , S) 4 ]u�H0
1 (Q) : uNS�D(S)( .(3.12)

PROPOSITION 3.3: The space V(Q , S) 4 ]u�H 1
0 (Q) : uNS�D(S)( is non trivial.

PROOF: We will prove that non trivial functions in D(S) have a suitable extension
in H 1

0 (Q).
Let I1 denote the interval k 1

4
,

3

4
l , and I2 the interval k 3

8
,

5

8
l , S14F3 I1 and

S24F3 I2 . Let f be the capacity potential of S2 with respect to S1 (for its existence see
Theorem 2.1.5 in [15]) the function f

A
4f on S1 and f

A
40 on S0S1 belongs to D(S),

its compact support is contained on S1 . From Proposition 3.1 and Proposition 2.6
Ext f

A
�H 1 (Q), then w4h Ext f

A
�H 1

0 (Q), where h is a suitable cut-off func-
tion. r
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We now introduce the energy form

E[u] 4�
Q

NDuN2 dQ1c0 ES [uNS ](3.13)

defined on the domain V(Q , S).
As c0 is not relevant for our purposes we set c041.
In the following, by E(u , v), we will denote the corresponding bilinear form

E(u , v) 4�
Q

Du QDvdQ1ES (uNS , vNS )(3.14)

defined on V(Q , S)3V(Q , S).
As in Theorem 3.2 of [39], it can be proved

PROPOSITION 3.4: The form E[Q] defined in (3.13) is a regular Dirichlet form in
L 2 (Q) and the space V(Q , S) is a Hilbert space equipped with the scalar product

(u , v)V(Q , S)4�
Q

Du Dv dQ1ES (uNS , vNS )1�
S

uNS vNS dm(3.15)

where ES (uNS , vNS ) is the Dirichlet form defined in (3.5).

We denote by NNNuNNNV(Q , S) the norm in V(Q , S) (associated with (3.15)) and we
note that from the trace theorem (see Proposition 2.6) there exists a positive constant
c , such that

VuNS VL 2 (S , m)GcVuVH0
1 (Q)(3.16)

thus an equivalent norm in V(Q , S) is

VuVV(Q , S)4 uES [uNS ]1�
Q

NDuN2 dQv
1

2

.(3.17)

PROPOSITION 3.5: Given f�L 2 (Q), there exists a unique u�V(Q , S) such that

E(u , v) 4�
Q

fvdQ(3.18)

for every v�V(Q , S).
Moreover, u is obtained by

min
v�V(Q , S){ 1

2
E[v]2�

Q

fv dQ} .(3.19)

PROOF: The thesis follows by applying Lax-Milgram theorem to the bilinear form
E(u , v). r
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3.2. - The strong formulation of the transmission problem on the fractal layer S

We consider the problem (P) formally stated as

(P)

.
`
/
`
´

2Du4 f

2D S u4 k ¯u

¯n
l

u40

u 14u 2

u40

in Q i , i41, 2

on S ,

on ¯Q ,

on S ,

on ¯S

j)

jj)

jjj)

jv)

v),

(3.20)

where u i is the restriction to Q i ,
¯u i

¯ni

, i41, 2 is the outward «normal derivative»,

to be defined in a suitable sense, y ¯u

¯n
z4

¯u 1

¯n1

1
¯u 2

¯n2

is the jump of the normal

derivative and D S is the fractal Laplacian defined in Section 3.1.
We now prove that the variational solution of (3.18) satisfies problem (P) in a suit-

able strong sense. We state some preliminary results.

PROPOSITION 3.6: The space D(S) is embedded in Bb , 0
2 , 2 (S), b4

df

2
.

PROOF: The proof can be achieved by making use of a general extension theorem,
proved by Jonsson in [22], for Besov spaces defined on general closed sets which are
not possibly d-sets such as the set T4¯QNS . More precisely, for any given function
z�D(S) consider the function zA defined as zA 4z on S and zA 40 on ¯Q0S . In order to
extend zA to a function w�H 1

0 (Q) we apply Theorem 1 in [22]. This theorem provides,
in particular, a continuous linear operator E×xt,

E×xt : B
A2, 2

1 (SN¯Q) KH 1 (R3 ),

where B
A2, 2

1 (Q) is the Besov space defined in [22] page 356. We note that z belongs to

B 2, 2
a (S), aE1 (see Proposition 3.1) and zA belongs to B

A2, 2
b (SN¯Q), bE

22df

2
,

hence in particular to B
A2, 2

1 (SN¯Q). Therefore w4 E×xtzA NQ belongs to H 1
0 (Q) and

wNS4z on S . r

THEOREM 3.7: Let u be the variational solution for problem (3.18) then we have
that

u i�H 2
loc (Q i )(3.21)

¯u i

¯ni

� (Bb , 0
2 , 2 (S) )8 , b4

df

2
, i41, 2(3.22)
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and the transmission condition jj) holds in (D(S) )8 that is

aD S uNS , zb(D(S) )8 , D(S)4 oy ¯u

¯n
z

S

, zp
(D(S) )8 , D(S)

where (Bb , 0
2 , 2 (S) )8 is the dual of Bb , 0

2 , 2 (S) defined in (2.4); (D(S) )8 is the dual of D(S), D S

is the variational operator from D(S) K (D(S) )8 defined in (3.11) and aQ , Qb(D(S) )8 , D(S) is
the duality pairing between (D(S) )8 and D(S).

PROOF: We recall that by u i we denote the restriction to Q i of the solution
u�V(Q , S) of (3.18). We choose in (3.18) v4f i� D(Q i ) and we obtain

�
Q i

Du i Df i dQ4 �
Q i

ff i dQ(3.23)

for every f i� D(Q i ) (i41, 2). From the density of L 2 (Q i ) in D(Q i ) and from the
fact that f�L 2 (Q i ) we deduce that

2Du 14 f in L 2 (Q 1 )(3.24)

2Du 24 f in L 2 (Q 2 )(3.25)

This gives that u�V(Q i ) 4 ]u�H 1 (Q)NDu i�L 2 (Q i )( where the Laplacian is in-
tended in the distributional sense. The classical theory on local regularity results (see
[5]) gives also that u i�H 2

loc (Q i ).
Moreover, proceeding by duality (see Theorem 4.15 in [30] and [3] Appendix 4)

we prove that the normal derivative
¯u i

¯ni

is in the dual (Bb , 0
2 , 2 (S) )8 of the space Bb , 0

2 , 2 (S),

where b4
df

2
and

o ¯u i

¯ni

, vNSp
(B 2, 2

b , 0 (S) )8 , B 2, 2
b , 0 (S)

4�
Q i

Du i DvdQ1�
Q i

vDu i dQ , for every v�H 1
0 (Q).(3.26)

From Proposition 3.6 and proceeding as in Section 6 of [30], it can be proved that the
transmission condition

D S (uNS ) 4 y ¯u

¯n
z on S

holds in (D(S) )8 that is

aD S (uNS ), zb(D(S) )8 , D(S)4 oy ¯u

¯n
z , zp

(D(S) )8 , D(S)

. r

As a consequence of Theorem 3.7, the (variational) solution of problem (3.18) is
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the solution of problem (P) which can be rigorously stated as follows

(P)

.
`
`
/
`
`
´

2Du i4 f

2D S u4 k ¯u

¯n
l

u40

u 14u 2

u40

in L 2 (Q i ), i41, 2

on (D(S) )8

on H
1

2 (¯Q)

on B 2, 2
df

2

(S)

on B 2, 2
df21

2

(¯S)

j)

jj)

jjj)

jv)

v)

REMARK 3.8: Actually from Proposition 3.1 one deduces that equalities jv) and v) re-

spectively hold in B 2, 2
a (S) and in B 2, 2

a2
1

2

(¯S) with aE1.

4. - VARIATIONAL FORMULATION FOR THE PRE-FRACTAL LAYER PROBLEM

4.1. - The energy forms

By Q we denote the parallelepiped as defined in Section 2 and by Sh we denote the
pre-fractal layer of the type Sh4Fh3 I , h41, 2 , R , Fh is the piecewise linear pre-
fractal approximation of F at the step h (see Section 1). Sh divides Q in two sub-do-
mains Qh

i , i41, 2 .
We give a point P�Sh the Cartesian coordinates P4 (x , y), where x4 (x1 , x2 ) are

the coordinates of the orthogonal projection of P on the plane containing Fh and y is
the coordinate of the orthogonal projection P on the y-line containing the interval I .

We first construct the energy forms ES on the pre-fractal layers Sh4Fh3 I , hF1.
By l we denote the natural arc-length coordinate on each edge of Fh and we introduce
the coordinates x14x1 (l ), x24x2 (l ), y4y on every affine «face» Sh

( j) of Sh . By d l we
denote the one-dimensional measure given by the arc-length l and by ds the surface
measure on each face Sh

( j) of Sh , that is ds4 d l dy . We define ESh
by setting

ESh
[u] 4!

j
u �

Sh
( j)

(s h
1 NDl uN21s h

2 NDy uN2 ) dsv(4.1)

where s h
1 , s h

2 are positive constants and u�H 1 (Sh ), the Sobolev space of functions on
the piece-wise affine set Sh (see Section 2.1). By Fubini theorem, we can write this
functional in the form

ESh
[u] 4s h

1�
I

u �
Fh

NDl uN2 d l v dy1s h
2�
Fh

u�
I

NDy uN2 dyv d l .(4.2)

We denote the corresponding bilinear form by ESh
(u , v).
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Consider now the space of functions u : QKR

V(Q , Sh ) 4 ]u�H0
1 (Q) : uNSh

�H 1
0 (Sh )( ,(4.3)

it is not trivial as it contains D(Q).
Consider now the energy form

E (h) [u] 4�
Q

NDuN2 dQ1ESh
[uNSh

](4.4)

defined on the domain V(Q , Sh ).
By E (h) (u , v) we will denote the corresponding bilinear form

E (h) (u , v) 4�
Q

Du Dv dQ1ESh
(uNSh

, vNSh
)(4.5)

defined on V(Q , Sh )3V(Q , Sh ).

THEOREM 4.1: The form E (h) [u], defined in (4.4), with domain V(Q , Sh ) is a regu-
lar Dirichlet form in L 2 (Q) and the space V(Q , Sh ) is a Hilbert equipped with the scalar
product

(u , v)V(Q , Sh )4�
Q

Du Dv dQ1ESh
(uNSh

, vNSh
)1�

Sh

uNSh
vNSh

ds .

PROOF: The completeness follows from the completeness of H 1
0 (Q) and H 1

0 (Sh )
and from Proposition 2.1 (with s41, G 4Q and G4Sh). The regularity of the form
follows from Proposition 2.2 and from the density of D(Q) in V(Q , Sh ) (see also
Proposition 4.1 in [33] where the two-dimensional case is studied). r

We denote by NNNuNNNV(Q , Sh ) the corresponding energy norm in V(Q , Sh ). By pro-
ceeding as in Section 4.1 one can prove, via the trace theorem that there exists a positi-
ve constant c

VuVL 2 (Sh )GcVuVH 1
0 (Q) ,

thus an equivalent norm in V(Q , Sh ) is

VuV

2
V(Q , Sh )4�

Q

Du Dv dQ1ESh
[uNSh

].(4.6)

PROPOSITION 4.2: Given f�L 2 (Q), for every h�N , there exists a unique
uh�V(Q , Sh ) such that

E (h) (uh , v) 4�
Q

fv dQ(4.7)

for every v�V(Q , Sh ).
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Moreover uh is obtained as the minimizer of the variational problem

E (h) [uh ] 4 min
u�V(Q , Sh ){ 1

2
E (h) [u]2�

Q

fu dQ} .(4.8)

PROOF: The thesis follows by applying Lax-Milgram theorem to the form
E (h) (u , v). r

4.2. - The strong formulation of the transmission problem on the pre-fractal layer Sh

We consider now the problems (Ph ), formally stated as:

(Ph )

.
`
/
`
´

2Du4 f

2D Sh
u4 k ¯u

¯n
l

u40

u 14u 2

u40

in Qh
i , i41, 2

on Sh

on ¯Q

on Sh

on ¯Sh

j)

jj)

jjj)

jv)

v)

(4.9)

where u i4uNQh
i , D Sh

is the «piecewise» tangential Laplacian on Sh associated to the

Dirichlet form ESh
, k ¯u

¯n
l4

¯u 1

¯n1

1
¯u 2

¯n2

is the jump of the normal derivatives of u

across Sh , ni , i41, 2 being the outward normal to Qh
i .

Let uh
i denote the restriction of the variational solution uh to Qh

i . By usual duality

arguments (see Appendix 4 in [3]) the normal derivatives
¯u i

h

¯ni

, i41, 2 , belong to

the dual space of H
1
2
0 , 0 (Sh ) (see (2.2)).

Then, by the Green formula for Lipschitz domains, one can prove that the trans-

mission condition jj) in (4.9) can be interpreted in the sense of the dual of H
1
2
0 , 0 (Sh )

(see Proposition 2.2 in [32]).

THEOREM 4.3: Let uh be the variational solution for problem (4.7) then we have
that

uh�C(Q)(4.10)

uh
1�H

8

5
2e

(Qh
1 ), uh

2�H
7

4
2e

(Qh
2 )(4.11)

¯uh
i

¯ni

�L 2 (Sh ), i41, 2(4.12)

in particular conditions jjj), jv) and v) are satisfied point-wise, j) and jj) almost every-
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where and

D Sh
4s h

1 Dl
2 1s h

2 Dy
2 .(4.13)

Here Dl
2 is the «piecewise» second order tangential derivative along the sides of Fh

and Dy
2 the «usual» second order partial derivative in y .

In order to prove Theorem 4.3 we need some intermediate results.
Consider the weak solutions wh

i , w×h
i in H 1 (Qh

i ) of the following auxiliary prob-
lems

.
/
´

Dw×h
i 40

w×h
i 4uh

in

on

Qh
i

¯Qh
i

(4.14)

.
/
´

2Dwh
i 4 f

wh
i 40

in

on

Qh
i

¯Qh
i

(4.15)

As the link between uh
i and the solutions of problems (4.14) and (4.15) is

uh
i 4wh

i 1w×h
i ,(4.16)

then the regularity of uh
i follows from the regularity of wh

i and w×h
i .

PROPOSITION 4.4: In the assumptions of Theorem 4.3 and notations (4.14) we
have

¯w×h
i

¯ni

�L 2 (Sh )

V

¯w×h
i

¯ni
V

L 2 (Sh )
Gc(h)V˜t uh VL 2 (Sh ) , i41, 2 .

(4.17)

PROOF: The proof follows from an analogous result of Jerison and Kenig (see The-
orem 3 and also the proof of Theorem 2 of [21]).

Note also that the right-hand side of (4.17) can be evaluated in terms of the L 2-
norm of f in Q . r

PROPOSITION 4.5: In the notations of (4.15) we have that

wh
i �H si (Qh

i ), Vwh
i
VH si (Qh

i )Gc(m i , h)V f VL 2 (Qh
i ) , i41, 2(4.18)

where si422m i with
2

5
Em 1E1 and

1

4
Em 2E1; c(m i , h) is a positive constant de-

pending on m i and on h .

PROOF: The bounded domain Qh
i has several intersecting edges on the boundary:

let ]Pt
i , t41, R , T( be the set of the intersection points of the edges, near

each intersection point Pt
i the domain coincides with a cone K t cutting out

a domain Vt
i on the sphere S2 . Let r(P) be the distance from the point P
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to the set M of the edges and rt (P) be the distance from the point P to
the point Pt

i .
From Theorem 10.2.3 in [40] we deduce the following estimates for the second

derivatives of wh
i :

!
NaN42

�
Qh

i

r 2m i »
t41

T

rt
2(st

i 2m i ) NDa wh
iN2 dx dyGc(m i , h)V f V

2
L 2 (Q) , i41, 2(4.19)

the parameters st
i and m i satisfy the following condition

0 E2m i11 E
p

u i

(4.20)

and

4(st
i 21)2E114L 1, t

i(4.21)

where L 1, t
i 4L 1 (Vt

i ) is the first eigenvalue of the Dirichlet problem for the Laplace-
Beltrami operator in Vt

i , t41, R , T .
It is to be pointed out that for functions z supported in a small neighborhood of Pt

i

the product »
t41

T

rt
2(st

i 2m i) in (4.19) can be replaced by the single factor rt
2(st

i 2m i) . Roughly

speaking the loss of the smoothness depends only on the nearest singularity of the
boundary ¯Qh

i , namely either a vertex or an edge, the regularity being a local

property.

Taking into account that the dihedral angles in Qh
1 have opening equal to

2

3
p or

5

3
p it follows that m 1 has to be chosen greater than

2

5
; on the other

hand in Qh
2 , the dihedral angle have opening

p

3
and

4

3
p hence m 2 has to

be chosen greater than
1

4
. As to the choice of st

i , we firstly observe that

any Vt
i , i41, 2 is contained in the «lune»

V4 {v4 (v 1 , v 2 ) � S2 ; v 1� (0 , p), v 2� u0,
5

3
pv} ;

taking into account the monotonicity properties of the first eigenvalue of Laplace-
Beltrami operator (see e.g. [4] and [2]) we conclude that

L 1, t
i 4L 1 (Vt

i ) FL 1 (V).

Finally, Proposition 3.1 in [40] yields the explicit value of L 1 (V) 4
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4p Q
3

5p
g11p

3

5p
h4

3

5
g11

3

5
h, hence condition (4.21) is satisfied by any choice

of st
i F0.

The choice in our case will be st
14m 1 , st

24m 2 , t41, R , T .
Denoting by d the distance from the boundary, we have dm1 D a wh

1�L 2 (Qh
1 ),

NaN42, m 1D
2

5
, and

Vdm1 D a wh
1
VL 2 (Qh

1 )Gc(m 1 , h)V f VL 2 (Qh
1 ) , NaN42, m 1D

2

5
.(4.22)

Analogously, as in Qh
2 the angles have opening equal to

p

3
or

4p

3
, we prove that

dm2 D a wh
2�L 2 (Qh

2 ), NaN42, m 2D
1

4
, and

Vdm2 D a wh
2
VL 2 (Qh

2 )Gc(m 2 , h)V f VL 2 (Qh
2 ) , NaN42, m 2D

1

4
.(4.23)

The interpolation techniques allow us to reformulate in terms of the usual Sobolev
spaces the results obtained in weighted Sobolev spaces. More precisely, by making use
of Proposition 4.15 in [19], we have

Vwh
i
VH 22m i (Qh

i )Gc(m i , h) mVdm i !
NaN42

D a wh
i
VL 2 (Qh

i )
2 1Vwh

i
VH 1 (Qh

i )
2 n

1

2
.(4.24)

We deduce the thesis from (4.22), (4.23) and (4.24): we have wh
1�H s1 (Qh

1 ) (s1E
8

5
and wh

2�H s2 (Qh
2 ) (s2E

7

4
. r

We are now in position to prove Theorem 4.3.

PROOF: From Proposition 4.5 we deduce that

D a wh
1�H

3

5
2e

(Qh
1 ), D a wh

2�H
3

4
2e

(Qh
2 ), NaN41(4.25)

then by trace results (see Proposition 2.1) we obtain for i41, 2

¯wi
h

¯ni

�L 2 (Sh ),
V

¯wi
h

¯ni
V

L 2 (Sh )
Gc(m i , h)V f VL 2 (Q) .(4.26)

It follows from (4.26), (4.17) and (4.16) that
¯ui

h

¯ni

�L 2 (Sh ), i41, 2 , hence the jump

belongs to L 2 (Sh ). As H
1
2
0 , 0 (Sh ) is dense in L 2 (Sh ) (see e.g. [7]), we deduce that the

transmission condition jj) in (4.9) actually holds in the L 2-sense and in particular
D Sh

uh�L 2 (Sh ). As uh�H 1
0 (Sh ), from Theorem 8 in [8], we deduce that uh is in partic-

ular in H
3
2(Sh ).
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Denote by uAh
i the trivial extension of uh in ¯Qh

i

uAh
i 4

.
/
´

uh

0

on Sh

on ¯Qh
i 0Sh ,

then uAh
i N¯Qh

i belongs in particular to H
3

2 (¯Qh
i ) (see Proposition 2.11 in [7]). Let u×h

i 4

4 E
A

xtuAh
i be a function in H 2 (Qh

i ) such that u×h
i N¯Qh

i 4 uAh
i (see Proposition 2.2), then

Du×h
i �L 2 (Qh

i ) and VDu×h
i
VL 2 (Qh

i )Gc(h)V f VL 2 (Q) .
We note that the restriction uh

i 4uh NQh
i is the weak solution in H 1 (Qh

i ), of the
problem

.
/
´

2Duh
i 4 f

uh
i 40

uh
i 4uh

in

on

on

Qh
i

¯Qh
i 0Sh

Sh .

Then the function vh
i »4uh

i 2u×h
i is the weak solution in H0

1 (Qh
i ) of the Dirichlet

problem

.
/
´

2Dvh
i 4 f1Du×h

i

vh
i 40

in

on

Qh
i

¯Qh
i .

By proceeding as in the proof of Proposition 4.5 we can obtain that vh
i �H si (Qh

i )

where s1E
8

5
and s2E

7

4
. Finally uh

i inherits the regularity of vh
i as u×h

i is more regular,

this yields (4.11).
We now prove (4.10), i.e. that u�C(Q). We note that from Morrey-Sobolev em-

bedding it follows that uh�C(Sh ) because H
3
2(Sh ) is embedded in C(Sh ), and that

uh
i �C(Qh

i) as uh
i �H

8
52e (Qh

i ), i41, 2 . We conclude the proof taking into account that
uh

i NSh
4uh , i41, 2 . r

From Theorem 4.3 it follows that the variational solution of problem (4.7) is the
solution of problem (Ph ) which can be rigorously stated as follows

(P)

.
`
`
/
`
`
´

2Du4 f

2D S u4 k ¯u

¯n
l

u40

u 14u 2

u40

in L 2 (Q i
h ), i41, 2

on L 2 (Sh )

on H
1

2 (¯Q)OC(¯Q)

on H 1 (Sh )OC(Sh )

on H
1

2 (¯Sh )OC(¯Sh )

j)

jj)

jjj)

jv)

v).
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