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ABSTRACT. — We discuss self-similarity in connection with homogeneous p-Lagrangians and
the associated nonlinear energy forms.

p-Lagrangiane omogenee e auto-similarità

SUNTO. — Si studia l’auto-similarità in connessione con p-Lagrangiane omogenee e le corri-
spondenti forme di energia.

1. - INTRODUCTION

The aim of this paper is to discuss self-similarity in connection with homogeneous
p-Lagrangians and the associated nonlinear energy forms (for a study of self-similarity
in the special context of quadratic energy functional, see [16]).

We are motivated by the recent interest in the study of various non Euclidean
structures that are invariant under suitable self-similarities of the structures them-
selves (see [9] and references therein); moreover, nonlinear energy forms have been
recently constructed on these structures, in particular, on the Koch curve type fractals
in [4] and on the Sierpinski type fractals in [10].

By using the approach of variational metrics developed by Mosco in [15], [17],
[18], we introduce suitable quasi metrics of variational nature: in this way, the varia-
tional fractal gives a metric fractal (see [19]) and we can apply the functional inequali-
ties developed in the framework of the theory of p-Lagrangians on homogeneous
spaces (see [13] and [5]).
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More precisely, the plan of the paper is the following.
In the second section, we consider variational fractals, that is, self-similar fractals

possessing non trivial self-similar Lagrangians. In particular, we recall the definition
and some properties of self-similar fractals (according to Hutchinson’s theory [11])
and of homogeneous p-Lagrangians (firstly introduced in the paper of Malý and
Mosco [13]).

In the third section, we introduce a suitable quasi-distance on the variational frac-
tal by defining a new metric d on the fractal such that d p has the same scaling as the p-
Lagrangian. In this setting, the fractal with this metric can be viewed as a homoge-
neous space (see Theorem 3.2). Moreover, by assuming that a global Poincaré inequa-
lity holds, we prove a family of scaled Poincaré inequalities on the homogeneous balls
(see Theorem 3.6). These inequalities are the starting point of the variational theory
for measure-valued Lagrangians in homogeneous spaces developed in [13] and [5].

In section 4, we study the relation between Lagrangian and the corresponding
energy form. In particular, we obtain a representation formula for the homogeneous
p-Lagrangians (see Theorem 4.1). Moreover, we prove that if the total energy is self-
similar then the Lagrangian inherits the same invariance property (the converse being
obvious) (see Theorem 4.2).

In the last section, we describe a basic example. In particular, we reformulate a
result of [4] in terms of the theory of p-Lagrangians on homogeneous spaces. In [4],
we examined the functions of finite nonlinear energy on the Koch curve, that is, the
functions that belong to the domain of the nonlinear form. These functions, by direct
calculations, are shown to be Hölder continuous, with Euclidean Hölder exponent

b e4
p21

p
log3 4 . Now, using the intrinsic approach, this property can be compared

with the Morrey embedding proved in [5]: as the homogeneous dimension n41 Ep ,
the functions of finite energy are Hölder continuous with respect to the intrinsic me-

tric d , with Hölder exponent b412
n

p
.

2. - VARIATIONAL FRACTALS

Throughout this paper, we shall use the following notation: RD is the D-dimen-
sional Euclidean space, DF1,

de (x , y) fNx2yN4 g !
h41

D

Nxh2yhN2h
1

2

the Euclidean distance, Be (x , r) »4 ]y�RD : Nx2yNE r(, x�RD , rD0, are the Eu-
clidean balls (denoted also by Be , r), diame A the Euclidean diameter of a subset
A%RD.
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We suppose that C4 ]c 1 , R , cN( is a given set of contractive similitudes
c i : RDKRD , with contraction factors a21

i E1, that is,

Nc i (x)2c i (y)N4a21
i Nx2yN

for every x , y�RD , i41, R , N. In [11], it is proved that there exists a unique closed
bounded set K , which is invariant under C4 ]c 1 , R , cN(, that is,

K4 0
i41

N

c i (K).(2.1)

The invariant set K of a given family C4 ]c 1 , R , cN( will be called a self-similar
fractal. The real number df , uniquely determined by the relation

!
i41

N

a2df
i 41 ,

is the similarity dimension of K.
Let us choose N constants ri� (0 , 1 ), with !

i41

N

ri41. Then, there exists a unique

Borel regular measure m in RD , with supp m4K and unit total mass, which is invariant
with respect to the given C4 ]c 1 , R , cN( and ]r1 , R , rN(, that is, m satisfies

m4 !
i41

N

ri c iJ m(2.2)

where c iJ m(Q) »4m(c21
i (Q) ), i41, R , N with supp c iJ m4c i ( supp m) (see [11]).

The relation (2.2) can be equivalently written as

�
K

W dm4 !
i41

N

ri�
K

W i c i dm(2.3)

for every W�C(K) (where C(K) is the space of continuous functions on K).
In the following, the measure obtained by the special choice ri »4a i

2df will be sim-
ply called the invariant measure of K : it only depends on the given family
C4 ]c 1 , R , cN(.

More specific metric informations on K and m are available when the family C4

4 ]c 1 , R , cN( satisfies the following open set condition: there exists a bounded open
set U%RD , such that

0
i41

N

c i (U) %U , with c i (U)Oc j (U) 4¯ if ic j .(2.4)

In fact, under this assumption, the following important metric properties hold,
(see [11]): the similarity dimension df equals the Hausdorff dimension of K and
0 EH df (K) EQ , where H df denotes the df-dimensional Hausdorff measure in RD.

The invariant measure m coincides with the restriction to K of the df-dimensional
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Hausdorff measure of RD , H df DK , normalized:

m4 (H df (K) )21 H df DK ;

df is also called the fractal dimension of K. In the special case a 1 , R , aN4aD1, we
have

df4
ln N

ln a
.(2.5)

We will use the notations c i1 R in »4c i1 i c i2 i R i c in , Ai1 R in »4c i1 R in (A) for ar-
bitrary n-tuples of indices i1 , R , in� ]1, R , N( and arbitrary A%K .

We call Ki1 R in 4c i1 R in (K), nF1 i1 , R , in� ]1, R , N(, an n-complex. We
have

K4 0
i1 , R , in41

N

Ki1 R in ,

and

m(K) 4 !
i1 , R , in41

N

m(Ki1 R in ).

We say that two complexes are contiguous if their intersection is not empty.
The diameter of Ki1 R in satisfies

diame Ki1 R in 4a21
i1 R a21

in diame K .(2.6)

We say that Ki1 R in is of size R with 0 EREdiame K if

a21
1 RGdiame Ki1 R in ER ,

(we are assuming that a 14 max ]a 1 , R , aN().
By GR we denote the set

GR »4 ]Ki1 R in of size R(.

Note that GR4 ]K( if R4diame K .
We recall that a self-similar fractal enjoys the following finite-overlapping property

([11], Theorem 5.3; [17], Theorem 2.1). This property says that, if we intersect the
fractal K with a Euclidean ball of radius R , then the intersection KOBe , R is covered
by at most M n-complexes Ki1 R in of size R , where M is independent of the scale R.
More precisely, the following theorem holds.

THEOREM 2.1: Let K be a self-similar fractal satisfying (2.1) and (2.4). Let

M4 u112
c2

diame K
vDua 1

21 c1

diame K
v2D

,
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where c1 is the radius of a Euclidean ball contained in U and c2 is the radius of a Eu-
clidean ball containing U . Then for every x and 0 ERGdiame K the family

Gx , R »4 ]Ki1 R in : Ki1 R in �GR Ki1 R in1Be (x , R) c¯(,

contains at most M distinct complexes and

KOBe (x , R) % 0
Gx , R

Ki1 R in .

We define the boundary G of K as

G4 0
ic j

c i
21 (KiOKj ).

We have that G is a compact subset of KO¯U and m(G)40 (see [17], Theorem 2.3).
In the following, we shall assume that for every nF1 and every for

i1 , R , inc j1 , R , jn we have

Ki1 R in OKj1 R jn 4G i1 R in OG j1 R jn(2.7)

The notion of measure-valued Lagrangians has been introduced in [13] and later
developed by Biroli and Vernole in [2] and in [3]. We now give the definition of ho-
mogeneous p-Lagrangians which best fits in our context in an easier form than that
given in [2]: in particular, we do not require the absolute continuity of the Lagrangian
with respect to the volume measure and the completion of the domain.

Let now X be a locally compact Hausdorff topological space and m a bounded
Radon measure on X with supp m4X . Let L

A(p) be a Radon measure valued nonnega-
tive map defined on a dense subalgebra C(p) of the space Cb (X) of bounded continu-
ous functions on X . We make the following assumptions on L

A(p) , (pD1):

i) L
A(p) is positive semidefinite and convex in the space M of Radon

measure.
ii) L

A(p) is homogeneous of degree p .
iii) L

A(p) is such that

VuV4 u �
X

NuNp dm1�
X

d L
A(p) (u)v

1

p

(2.8)

is a norm in C(p) .
iv) Strong locality: if u2v4 constant on supp W , then

�
X

W(x) d L
A(p) (u) 4�

X

W(x) d L
A(p) (v)

for any W�C(X), u , v� C(p) .
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v) for every u , v� C(p) there exists in the weakly* topology of M the following
limit:

lim
tK0

L
A(p) (u1 tv)2 L

A(p) (u)

t
4 a¯ L

A(p) (u), vb.

We define L(p) : C(p)3 C(p)K M as

L(p) (u , v) 4 a¯ L
A(p) (u), vb.(2.9)

vi) The chain rules: if u , v� C(p) and g�C 1 (R), with g 8 bounded on R ,
then

g(u) : xKg(u(x) )

belongs to C(p) ,

L(p) (g(u), v) 4Ng 8 (u)Np22 g 8 (u) L(p) (u , v),

L(p) (v , g(u) ) 4g 8 (u) L(p) (v , u).

DEFINITION 2.2: The measure L(p) (u , v) in (2.9) satisfying the previous assump-
tions i),R, vi) will be called homogeneous p-Lagrangian.

From the definition of L(p) (u , v), we get the following properties (see [2]).

PROPOSITION 2.3: i) If u� C(p) and g�C 1 (R), with g 8 bounded on R , then
g(u) : xKg(u(x) ) belongs to C(p) and

L(p) (g(u), g(u) ) 4Ng 8 (u)Np L(p) (u , u).

ii) For every u� C(p) ,

L(p) (u , u) 4p L
A(p) (u).

iii) Leibniz rule on the second argument: for any u , v , w� C(p) ,

L(p) (u , vw) 4v L(p) (u , w)1w L(p) (u , v).

We conclude by giving the definition of variational fractal.

DEFINITION 2.4: A variational fractal is a triple Kf (K , m , L(p) ) where
– K is the invariant set of a given family C4 ]c 1 , R , cN( satisfying (2.1), (2.4)

and (2.7);
– m is the invariant measure (2.2) on K ;
– L(p) is a nonlinear p-homogeneous Lagrangian with domain C(p) in L p (K , m) in
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the sense of Definition 2.2 such that, for every u� C(p) and for every W�C(K), we
have

�
K

Wd L(p) [u] 4 !
N

i41
r i

(p)�
K

W i c i d L(p) [u i c i ]

with the real constants r i
(p)D0, i41, R , N , satisfy r i

(p)4m(Ki )s , i41, R , N , for
some real constant sE1, independent of i41, R , N.

3. - METRIC FRACTALS

Given a variational fractal Kf (K , m , L(p) ), we consider quasi-distances d on K
with Euclidean scaling

d(x , y) 4Nx2yNd , x , y�K

indexed by a real parameter dD0.
The quasi-balls associated with d will be denoted by B(x , r), that is, B(x , r) »4

»4 ]y�K : d(x , y) E r(, x�K , rD0. For every x�K and every rD0 we have

B(x , r) 4Be (x , r
1

d )OK . For every A , the diameter of A with respect to the quasi
metric d will be denoted by

diam A4 ( diame A)d .(3.1)

We choose d by requiring d p to obey on K the same scaling as L(p) itself:

d p (x , y) 4 !
i41

N

r (p)
i d p (c i (x), c i (y) ),

for every x , y�K .

LEMMA 3.1: Let K be a variational fractal, with given structural constants N ,
a 1 , R , aN and s . Then, there exists one and only one constant dD0, such that the fol-
lowing identities hold:

d(x , y) 4Nx2yNd

d p (x , y) 4 !
i41

N

r (p)
i d p (c i (x), c i (y) ),

for every x , y�K.
Such a d is uniquely determined by the identity

!
i41

N

r (p)
i a i

2pd41
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and is given by

d4df (12s) /p .

PROOF: By replacing d(x , y) 4Nx2yNd in the scaling identity for d p , we
obtain

Nx2yNpd4 !
i41

N

r (p)
i Nc i (x)2c i (y)Npd4 !

i41

N

r (p)
i a2pd

i Nx2yNpd ,

which gives

!
i41

N

r (p)
i a i

2pd41 .

Taking into account the expression of the scaling factors r (p)
i in (2.10), we have

!
i41

N

r (p)
i a i

2pd4 !
i41

N

m(Ki )s a i
2pd4 !

i41

N

a i
2df s2pd ;

by the definition of df as similarity dimension, we have

df s1pd4df . r

We note that in the special case a i4aD1 and r i
(p)4r (p) for every

i� ]1, R , N(, we have

d4
lna Nr (p)

p
.(3.2)

When endowed with this quasi-metric, the fractal K becomes a space of homoge-

neous type of dimension n4
df

d
: in fact, the following theorem holds (see [17], Theo-

rem 3.1).

THEOREM 3.2: Let Kf (K , m , L(p) ) be a variational fractal endowed with its intrin-
sic metric.

Then K is a homogeneneous space of dimension

n4
df

d
:(3.3)

for every x�K and for every 0 E rGRGdiam K4 ( diame K)d we have

M 21 a 1
2df m(B(x , R) ) u r

R
vn

Gm(B(x , r) ) GMa 1
df m(B(x , R) ) u r

R
vn
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where

M4 u112
c2

diame K
vDua 1

21 c1

diame K
v2D

,

c1 is the radius of a Euclidean ball contained in U and c2 is the radius of a Euclidean ball
containing U . Moreover,

s4 (n2p) /n .(3.4)

We will call d the (intrinsic) homogeneous metric, n the (intrinsic) homogeneous di-
mension of Kf (K , m , L(p) ).

We now show that the scaling laws for the Lagrangian can be stated more precisely
in the intrinsic metric of K .

THEOREM 3.3: Let Kf (K , m , L(p) ) be a variational fractal endowed with its intrin-
sic metric. Then, for every nF1, we have

�
K

Wd L(p) [u] 4 !
i1 , R , in41

N

( diam Ki1 R in /diam K)n2p�
K

W i c i1 R in d L(p) [u i c i1 R in ] ,(3.5)

for every u� C(p) and for every W�C(K).

PROOF: By iterating (2.10) along a finite sequences of indices i1 R in� ]1, R , N(,
nF1,

�
K

Wd L(p) [u] 4 !
i1 , R , in41

N

r (p)
i1 R r (p)

in �
K

W i c i1 R in d L(p) [u i c i1 R in ] .

As r (p)
i 4m(Ki )s , i41, R , N , we have, for some real number sE1 independent of i

r (p)
i1 R r (p)

in 4m(Ki1 )s
R m(Kin )s4a i1

2df s
R a in

2df s ,

hence, for (2.6) and (3.1),

r (p)
i1 R r (p)

in 4 ( diam Ki1 R in /diam K)df s/d .

By (3.3) and (3.4), this gives

r (p)
i1 R r (p)

in 4 ( diam Ki1 R in /diam K)n2p . r

We also obtain the following «change of variable formula» (for p42, see [17],
Theorem 4.5).

THEOREM 3.4: Let Kf (K , m , L(p) ) be a variational fractal endowed with its intrin-
sic metric; let G be the boundary of K . Then, for every nF1 and for every
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i1 , R , in� ]1, R , N(, we have

(3.6) �
Ki1 R in2G i1 R in

Wd L(p) [u]D(Ki1 R in 2G i1 R in ) 4

4 ( diam Ki1 R in /diam K)n2p �
K2G

W i c i1 R in d L(p) [u i c i1 R in ]D(K2G)

for every W�C(K) with supp W%Ki1 R in 2G i1 R in .

PROOF: Let i1 , R , in41 � ]1, R , N( be fixed and let W�C(K) be such that
supp W%Ki1 R in 2G i1 R in . Since Ki1 R in 2G i1 R in is open in K , the restriction of the La-
grangian to Ki1 R in 2G i1 R in depends only on the restriction of the function u to
Ki1 R in 2G i1 R in . Therefore, for W�C(K) with supp W%Ki1 R in 2G i1 R in , we have

�
K

Wd L(p) [u] 4 �
Ki1 R in2G i1 R in

Wd L(p) [u]D(Ki1 R in 2G i1 R in ).(3.7)

On the other hand, let us remark that for every j1 , R , jn� ]1, R , N( with
j1 , R , jnc i1 , R , in , we have (Ki1 R in 2G i1 R in )OKj1 Rjn 4¯ . Therefore, W i c j1 R jn f0
on K , whenever j1 , R , jnc i1 , R , in . Moreover supp W i c i1 R in %K2G .

Thus

(3.8) !
j1 , R , jn41

N

( diam Kj1 R jn /diam K)n2p�
K

W i c j1 R jn d L(p) [u i c j1 R jn ] 4

4 ( diam Ki1 R in /diam K)n2p�
K

W i c i1 R in d L(p) [u i c i1 R in ] 4

4 ( diam Ki1 R in /diam K)n2p �
K2G

W i c i1 R in d L(p) [u i c i1 R in ]D(K2G).

In order to get (3.6) it suffices now to replace both (3.7) and (3.8) into (3.5) of Theo-
rem 3.3. r

COROLLARY 3.5: Under the assumptions of the previous theorem, we have

(3.9) �
Ki1 R in2G i1 R in

d L(p) [u]D(Ki1 R in 2G i1 R in ) 4

4 ( diam Ki1 R in /diam K)n2p �
K2G

d L(p) [u i c i1 R in ]D(K2G).

PROOF: Since the Lagrangian is, in particular, a regular measure, from (3.6) we ob-
tain (3.9). r

We now prove that a family of scaled Poincaré inequalities on the homogeneous
balls holds. In particular, we show that if the structure enjoys a self-similar invariance
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then a much simpler starting point can be given to the whole theory: this is the follow-
ing Poincaré inequality

�
K

Nu2u(z)Np dmGcP �
K2G

d L(p) [u](3.10)

for every u� C(p) and every z�G .
In fact, the following theorem holds (for p=2, see [17], Theorem 5.1).

THEOREM 3.6: Let Kf (K , m , L(p) ) be a variational fractal satisfying (3.10). Then,
there exist two constants CD0 and qF1, such that the following inequalities
hold

�
B(x , r)

Nu2uB(x , r)N
p dmGC(r/diam K)p �

B(x , qr)

d L(p) [u](3.11)

for every u� C(p) , where B(x , r) are the balls of the intrinsic metric d , 0 E rGdiam K
and q42d.

Before proving the theorem, we need some preliminary results.

LEMMA 3.7: For every nF1, for every i1 , R , in� ]1, R , N(, for every z�G , we
have

�
Ki1 R in

Nu2u i c i1 R in (z)Np dmGcP ( diam Ki1 R in /diam K)p �
Ki1 R in

d L(p) [u](3.12)

for every u� C(p) .

PROOF: By (3.10) we have

�
Ki1 R in

Nu2u i c i1 R in (z)Np dm4 ( Lip c i1 R in )df�
K

Nu i c i1 R in 2u i c i1 R in (z)Np dmG

GcP a i1
2df

R a in
2df �

K2G

d L(p) [u i c i1 R in ]4cP ( diam Ki1 R in /diam K)n �
K2G

d L(p) [u i c i1 R in ];

moreover, by Corollary 3.5,

(3.13) �
K2G

d L(p) [u i c i1 R in ] 4 ( diam Ki1 R in /diam K)p2n �
Ki1 R in2G i1 R in

d L(p) [u] G

G ( diam Ki1 R in /diam K)p2n �
Ki1 R in

d L(p) [u]

and so (3.12) follows. r
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LEMMA 3.8: Let Ki1 R in , Kj1 R jn , nF1, i1 , R , inc j1 , R , jn� ]1, R , N( be two
contiguous complexes. Let Q4Ki1 R in NKj1 R jn . Then, there exists a constant C such
that for every u� C(p)

(3.14) �
Q

Nu2uQNp dmGC {( diam Ki1 R in /diam K)p �
Ki1 R in

d L(p) [u]1

1( diam Kj1 R jn /diam K)p �
Kj1 R jn

d L(p) [u]n .

PROOF: As Ki1 R in OKj1 R jn c¯ , there exists j�Ki1 R in OKj1 R jn 4G i1 R in OG j1 R jn

and j4c i1 R in (z 1 ) 4c j1 R jn (z 2 ) with z 1 , z 2�G .
We have, by Lemma 3.7

�
Ki1 R in

Nu2u(j)Np dm4 �
Ki1 R in

Nu2u i c i1 R in (z 1 )NpG

GcP ( diamKi1 Rin /diam K)p �
Ki1 R in

d L(p) [u] .

In a similar way, we obtain

�
Kj1 R jn

Nu2u(j)Np dm4 �
Kj1 R jm

Nu2u i c j1 R jn (z 2 )NpG

GcP ( diam Kj1 R jn /diam K)p �
Kj1 R jn

d L(p) [u] .

Then as

�
Q

Nu2uQNp dmG2p�
Q

Nu2u(j)Np dm42pu �
Ki1 R in

Nu2u(j)Np dm1 �
Kj1 R jn

Nu2u(j)Np dmv ,

we conclude the proof. r

The following lemma allows us to extend Poincaré inequality across two contigu-
ous sets that overlap on a set of positive measure.

LEMMA 3.9: Let Q1 , Q2 be two subsets of K such that m(Q1OQ2 ) D0. Then,

�
Q1NQ2

Nu2uQ1NQ2
Np dmG2p11u m(Q1NQ2 )

m(Q1OQ2 )
vp

max
i41, 2

�
Qi

Nu2uQi
Np dm .(3.15)
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PROOF: We have that

(3.16) �
Q1NQ2

Nu(x)2uQ1NQ2
Np dm(x) G

G2p �
Q1NQ2

Nu(x)2uQ1OQ2
Np dm(x) 4

42pu 1

m(Q1OQ2 )
vp

�
Q1NQ2

N �
Q1OQ2

(u(x)2u(y) ) dm(y) N
p

dm(x) G

G2pu 1

m(Q1OQ2 )
vp

�
Q1

N �
Q1OQ2

(u(x)2u(y) ) dm(y) N
p

dm(x)1

12pu 1

m(Q1OQ2 )
vp

�
Q2

N �
Q1OQ2

(u(x)2u(y) ) dm(y) N
p

dm(x) G

G2pu 1

m(Q1OQ2 )
vp

�
Q1

N �
Q1

(u(x)2u(y) ) dm(y) N
p

dm(x)1

12pu 1

m(Q1OQ2 )
vp

�
Q2

N �
Q2

(u(x)2u(y) ) dm(y) N
p

dm(x) 4

42pu m(Q1 )

m(Q1OQ2 )
vp

�
Q1

Nu(x)2uQ1 N
p

dm(x)1

12pu m(Q2 )

m(Q1OQ2 )
vp

�
Q2

Nu(x)2uQ2
Np dm(x) G

G2p11u m(Q1NQ2 )

m(Q1OQ2 )
vp

max
i41, 2

�
Qi

Nu(x)2uQi
Np dm(x) . r

By iterating Lemma 3.9, we get the following lemma.
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LEMMA 3.10: Let Q1 , R , Qm be mF2 subsets of K such that m(QsOQs11 ) D0 for
every s41, R , m21. Let Q4Q1NRNQm . Then,

(3.17) �
Q

Nu2uQNp dmG

G y2p11u m(Q)

min
s41, R , m21

m(QsOQs11 ) v
pzm21

max
s41, R , m

�
Qs

Nu2uQs
Np dm .

From Lemma 3.10 we get the following lemma.

LEMMA 3.11: Let Ki s
1 R i s

ns
, s41, R , L , LF3 be given ns-complexes, nsF1,

i s
1 , R , i s

ns
� ]1, R , N(. Let Q4 0

s41

L

Ki s
1 R i s

ns
and for each s41, R , L21, let Qs4

4Ki s
1 R i s

ns
NKi s11

1 R i s11
ns11

. Then

(3.18) �
Q

Nu2uQNp dmG

G y2p11u m(Q)

min
s41, R , L22

m(Ki s11
1 R i s11

ns11
) v

pzL22

max
s41, R , L21

�
Qs

Nu2uQs
Np dm .

We now combine the previous result with Lemma 3.8.

LEMMA 3.12: Let Ki s
1 R i s

ns
, s41, R , L , LF3 be given ns-complexes, nsF1,

i s
1 , R , i s

ns
� ]1, R , N( for every s41, R , L , (i s

1 , R , i s
ns

) c (i s11
1 , R , i s11

ns11
) for

every s41, R , L21. Then, there exists a constant C such that, if Q4 0
s41

L

Ki s
1 R i s

ns
, for

every u� C(p) we have

(3.19) �
Q

Nu2uQNp dmGC y2p11u m(Q)

min
s42, R , L21

m(Ki s
1 R i s

ns
) v

pzL22

Q

Q max
s41, R , L

( diam Ki s
1 R i s

ns
/diam K)p �

Ki s
1 R i s

ns

d L(p) [u] .

PROOF: By the previous lemma, the inequality 3.18 holds with Qs4

4Ki s
1 R i s

ns
NKi s11

1 R i s11
ns11

for every s41, R , L21. Moreover, by Lemma 3.8, for each s4

41, R , L21 we have

�
Qs

Nu2uQs
Np dmGC max

l4 s , s11
( diam Ki l

1 R i l
nl

/diam K)p �
Ki l

1 R i l
nl

d L(p) [u] .
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By taking this inequality into account, we get from (3.18)

�
Q

Nu2uQNp dmG y2p11u m(Q)

min
s41, R , L22

m(Ki s11
1 R i s11

ns11
) v

pzL22

Q

Q max
s41, R , L21

�
Qs

Nu2uQs
Np dmGC y2p11u m(Q)

min
s41, R , L22

m(Ki s11
1 R i s11

ns11
) v

pzL22

Q

Q max
s41, R , L21

max
l4 s , s11

( diam Ki l
1 R i l

n
/diam K)p �

Ki l
1 R i l

n

d L(p) [u] G

GC y2p11u m(Q)

min
s42, R , L21

m(Ki s
1 R i s

ns
) v

pzL22

Q

Q max
s41, R , L

( diam Ki s
1 R i s

ns
/diam K) )p �

Ki s
1 R i s

ns

d L(p) [u]

and this proves the lemma. r

We now prove Theorem 3.6.

PROOF OF THEOREM 3.6: Let x�K , 0 E rGdiam K . By Theorem 2.1 we have

B(x , r) 4KOBe (x , r 1/d ) % 0
Gx , R

Ki1 R in

where the family Gx , R , with R4 r 1/d , contains at most M elements. It is not restrictive
to assume, up to renumbering, that the sets Ki s

1 R i s
ns

in Gx , R are such that any two suc-

cessive Ki s
1 R i s

ns
, Ki s11

1 R i s11
ns11

are contiguous complexes and Q4 0
s41

L

Ki s
1 R i s

ns
with LGM.

By Lemma 3.12, we have for LGM ,

(3.20) �
Q

Nu2uQNp dmGC yu m(Q)

min
s41, R , L

m(Ki s
1 R i s

ns
) v

pzL22

Q

Q max
s41, R , L

( diam Ki s
1 R i s

ns
/diam K)p �

Ki s
1 R i s

ns

d L(p) [u] .

We now recall that for every s41, R , L we have

a 1
21 r 1/dEdiame Ki s

1 R i s
ns
G r 1/d Ki s

1 R i s
ns
OBe (x , r 1/d ) c¯ .
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Therefore, Ki s
1 R i s

ns
%KOBe (x , 2 r 1/d ) 4B(x , 2d r) for every s41, R , L . It follows

that

(3.21) �
B(x , r)

Nu(y)2uB(x , r) N
p dm(y) G2p �

B(x , r)

Nu(y)2uQ Np dm(y) G

G2p�
Q

Nu(y)2uQNp dm(y) GC yu m(Q)

min
s41, R , L

m(Ki s
1 R i s

ns
) v

pzL22

Q

Q max
s41, R , L

( diam Ki s
1 R i s

ns
/diam K)p �

Ki s
1 R i s

ns

d L(p) [u] .

We have

m(Q) 4 !
s41

L

m(Ki s
1 R i s

ns
) GLu r 1/d

diam e (K)
vdf

, m(Ki s
1 R i s

ns
) Da 1

2dfu r 1/d

diame (K)
vdf

,

for every s41, R , L.
Therefore,

u m(Q)

min
s41, R , L

m(Ki s
1 , R , i s

ns
) v

p

GL p a 1
pdf .

Moreover,

max
s41, R , L

( diam Ki s
1 Ri s

ns
/diam K)pG u r

diam K
vp

and

�
Ki s

1 R i s
ns

d L(p) [u] G �
B(x , 2d r)

d L(p) [u]

for every s41, R , L .
Thus,

�
B(x , r)

Nu2uB(x , r) N
p dmGC(L p a 1

pdf )L22(r/diam K)p �
B(x , qr)

d L(p) [u]

for every u� C(p) . r
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REMARK 3.1: We recall that if (3.10) holds, then

�
K

Nu2uKNp dmG2p�
K

Nu2u(z)Np dmG2p cP �
K2G

d L(p) [u] ,

where uK4 s
K

u dm. We remark that if K is connected in capacity sense according to the

Definition 5.1 in [17], the starting Poincaré inequality (3.10) can be replaced with by
the weaker assumption

�
K

Nu2uKNp dmGcP �
K2G

d L(p) [u] :

in this case, Lemma 3.8 still holds with suitable changes and Theorem 3.6 can be
achieved with the same proof.

4. - LAGRANGIANS AND ENERGIES

The Lagrangian formalism is based on the definition of a local energy L(p) , that,
when integrated on a structure X , gives the total energy E (p) of X :

E (p)4�
X

d L(p) .

In this section we begin by proving the following «representation formula» (for
the classical case p42, see [8] and [14]). In the following, we use the notations
L(p) [u] 4 L(p) (u , u).

THEOREM 4.1: For any u , W� C(p) , uFeD0, we have

�
X

Wd L(p) [u] 4
1

(p21)2
E (p) (u , uW)2

1

p p21 (p21)2
E (p) (u p , u p(22p) W) .

PROOF: From the Leibniz rule on the second argument and the chain rules, we
have

1

(p21)2
E (p) (u , uW)2

1

p p21 (p21)2
E (p) (u p , u p(22p) W) 4

4
1

(p21)2
�

X

d L(p) (u , uW)2
1

p p21 (p21)2
�

X

d L(p) (u p , u p(22p) W)

4
1

(p21)2
�

X

Wd L(p) (u , u)1
1

(p21)2
�

X

ud L(p) (u , W)2
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2
1

p p21 (p21)2
�

X

Npu p21Np22 pu p21 d L(p) (u , u p(22p) W) 4

4
1

(p21)2
�

X

Wd L(p) (u , u)1
1

(p21)2
�

X

ud L(p) (u , W)2

2
1

p p21 (p21)2
�

X

Npu p21Np22 pu p21 u p(22p) d L(p) (u , W)2

2
1

p p21 (p21)2
�

X

Npu p21Np22 pu p21 p(22p) u p(22p)21 Wd L(p) (u , u) 4

4�
X

Wd L(p) (u , u) . r

The self-similar property of the total energy E (p) follows from the self-similar pro-
perty of the relative Lagrangian trivially.

Next, we prove the converse: more precisely, we prove that if the total energy is
self-similar then the Lagrangian inherits this same invariance property.

THEOREM 4.2: Let E (p) be self-similar, that is, for every u , v� C(p) and for every
W�C(K),

E (p) (u , v) 4 !
N

i41
r i

(p) E (p) (u i c i , v i c i )

with the real constants r i
(p)D0, i41, R , N , satisfy r i

(p)4m(Ki )s , i41, R , N , for
some real constant sE1, independent of i41, R , N.

Then, the Lagrangian L(p) is self-similar, that is,

�
K

W d L(p) [u] 4 !
i41

N

r i
(p)�

K

W i c i d L(p) [u i c i ] ,(4.1)

for every u� C(p) and for every W�C(K).

PROOF: We set u l l–– 4u2min
K

u1e , with eD0. By the strong locality and Theorem

4.1, we have that

(4.2) �
K

W d L(p) [u] 4�
K

W d L(p) [u l l–– ] 4

4
1

(p21)2
E (p) (u l l–– , u l l–– W)2

1

p p21 (p21)2
E (p) ( (u l l–– )p , (u l l–– )p(22p) W) 4
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4 !
i41

N

r i
(p){ 1

(p21)2
E (p) (u l l––

i c i , (u l l––
i c i )(W i c i ) )2

1

p p21 (p21)2
E (p) ( (u l l––

i c i )p , (u l l––
i c i )p(22p) (W i c i ) )}4

4 !
i41

N

r i
(p)�

K

W i c i d L(p) [u l l––
i c i ] 4 !

i41

N

r i
(p)�

K

W i c i d L(p) [u i c i ] . r

5. - AN EXAMPLE

A first example of nonlinear forms on fractals has been given in [4]. More precise-
ly, self-similar energy forms E (p) with domains C(p) have been constructed on the Koch
curve type fractals by using suitable sequences of finite differences schemes.

We now show how we can construct the corresponding Lagrangians on these frac-
tals. For simplicity, we consider the well known Koch curve (on generalized Koch
curves, we can proceed in a analogous way just by making some small proper
changes). The Koch curve K is a nested fractal (see [12]) and, in particular, it is the in-
variant set of a suitable family C4 ]c 1 , R , cN(, with N44, a i4a43 satisfying
(2.1), (2.4) and (2.7). Let C(p) be the domain of the energy form E (p) defined by Theo-
rem 3.1 in [4].

We define, for any set A%K and u� C(p) ,

L
A

n
(p) (u)(A) »4

1

p
(4p21 )n !

j , h�G
!

i1 R in41
c i1 R in (j), c i1 R in (h) �A

N

Nu(c i1 R in (j) )2u(c i1 R in (h) )Np

and

L
A(p) (u)(A) »4 lim

nKQ
L
A

n
(p) (u)(A) .

The previous limit exists by Theorem 3.1 in [4]. Moreover, as L
A(p) (u) is positive and

finitely additive, that is,

L
A(p) (u)(ANB) 4 L

A(p) (u)(A)1 L
A(p) (u)(B)

if AOB4¯ , by the Caratheodory extension theorem (see [7]), L
A(p) (u) extends to a fi-

nite Borel measure that we denote again L
A(p) (u).

By the definition, the assumptions i), ii), iv) are satisfied; assumption iii) follows
from Proposition 4.2 and Theorems 4.1 and 4.2 in [4]. Assumption v) can be verified
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in the following way. First, we observe that

a¯ L
A

n
(p) (u), vb 4 (4p21 )n !

i1 R in41

N

!
j , h�G

Nu(c i1 R in (j) )2u(c i1 R in (h) )Np22 Q

Q (u(c i1 R in (j) )2u(c i1 R in (h) ) ) Q (v(c i1 R in (j) )2v(c i1 R in (h) ) ) .

Since C(p) is reflexive (it is a uniformly convex Banach space by Theorem 4.1 in [4])
and

lim
nKQ

L
A

n
(p) (u) 4 L

A(p) (u) ,

by Theorem 3.66 in [1], we obtain that

¯ L
A

n
(p) (u) K¯ L

A(p) (u) ;

so, we have for u , v� C(p)

L(p) (u , v) 4 lim
nKQ

(4p21 )n !
i1 R in41

N

!
j , h�G

Nu(c i1 R in (j) )2u(c i1 R in (h) )Np22 Q

Q (u(c i1 R in (j) )2u(c i1 R in (h) ) ) Q (v(c i1 R in (j) )2v(c i1 R in (h) ) ) .

Finally, assumption vi) follows by taking into account the previous expression of L(p) .
Then, the Koch curve is a variational fractal according to Definition 2.4. Moreover,
since assumption (3.10) is satisfied by Proposition 3.1 in [4], Theorem 3.6 holds and
hence we obtain the scaled Poincaré inequalities (3.11).

These inequalities establish a further important connection between the homoge-
neous structure and the energy form. As shown in [13] and in [5], in the present gene-
ral setting of measure-valued p-Lagrangians on homogeneous spaces, a whole family
of important inequalities can be obtained from Theorem 3.6. In particular, when the
homogeneous dimension is smaller than p , as in this case, we have the Morrey
embedding.

As a consequence of this intrinsic Morrey embedding, that is, C(p)%C 0, b with

b412
n

p
, we obtain the Euclidean embedding C(p)%Ceucl

0 , b e where now Ceucl
0 , b e

is the space of Hölder continuous functions with Hölder exponent b e4db in
the Euclidean metric of K : so we find the Euclidean estimates (first obtained
by direct calculations in [4])

Nu(x)2u(y)NGCNx2yNb e (E (p) [u] )
1

p
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with

b e4db4d u12
n

p
v4d2

df

p
4

lna Nr (p)

p
2

lna N

p
4

lna r (p)

p
,

where we have taken into account the expressions (2.5) and (3.2).
We recall that similar Euclidean estimates can be obtained by considering the

identification of the domains of the nonlinear energy forms with suitable Lipschitz
spaces (see [6]).
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