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ABSTRACT. — Critical point problems involving Dirichlet forms on functions on a Hausdorff
space, equipped with shifts by a noncompact invariance group, lack compactness due to the
shifts. We use the functional-analytic version of cocentration-compactness to address variation-
al semilinear problems in our general framework that applies, in particular, to semilinear ellip-
tic problems on symmetric spaces, non-compact Lie groups, metric graphs, self-similar fractal
tiles and point lattices.

Equazioni semilineari su spazi di hausdorff con simmetrie

SUNTO. — I problemi di punto critico relativi ad una forma di Dirichlet su uno spazio di Hau-
sdorff con un gruppo di traslazioni mostrano una mancanza di compattezza dovuta alle traslazioni.
Nel presente articolo si usa una versione funzionale analitica del principio di concentrazione-com-
pattezza adatta a trattare problemi variazionali semilineari nel nostro quadro generale, che si appli-
ca, in particolare a problemi ellittici semilineari su spazi simmetrici, su gruppi di Lie non compatti,
su grafi metrici, su frattali con struttura autosimilare e su reticoli di punti.

1. - INTRODUCTION

This paper studies existence problems for minimizers in Sobolev inequalities for
Dirichlet forms on spaces of homogeneous type (cf. [4], [5]) and for related semilinear
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elliptic equations Au4 f(u) on the Hausdorff space. Existence in such problems is
typically derived from compactness of Sobolev imbedding. The latter, in the general
Dirichlet forms setting, has been proved for two cases. In one, [6], the problems are
studied on a relatively compact space. In the other, [7], compactness in the Sobolev
embedding is a result of adding a penalizing term term to the Dirichlet form, roughly
speaking, a L 2-functional with a weight whose infimum over complements of compact
sets grows to infinity with the set. Several existence results for semilinear elliptic prob-
lems based on the compactness results of [6] and [7], are proved in [16].

The present paper deals with elliptic problems associated with energy forms on
Dirichlet spaces, where the Sobolev imbedding is not compact. It also addresses two
instances of compact Sobolev embedding when the underlying Dirichlet space is not
compact.

Many specific problems where the Sobolev embedding lacks compactness (e.g.
Laplace operator on R N , subelliptic operators on Lie groups, Laplace-Beltrami opera-
tors on symmetric Riemannian spaces, elliptic operators on metric graphs and infinite
fractal tiles) possess a non-compact group acting on the underlying space (e.g. parallel
translations on R N , left Lie group shifts, isometry group of the symmetric space),
which preserves both the energy form and the L p-norms, but generates sequences of
the form u i h k � 0. This phenomenon has been addressed by P.-L.Lions ([15] and
subsequent papers) in the case of shifts on RN , by means of the concentration com-
pactness principle. One can find in literature numerous adaptations of Lions’ method
to different problems that we don’t quote here, following instead the unifying ap-
proach of [18], where the concentration compactness is studied for a general Hilbert
space equipped with a dislocation group (cf. the definition in Section 3 below).

Invariance with respect to actions of a non-compact group is an intuitive attribute
of an infinite homogeneous medium or an empty space: speaking metaphorically, the
shift invariance means that under a transformation group that changes the location of
observer without causing him destructive deformations and without altering the glob-
al energy, the medium should «still look the same». We assume that the group of shifts
is robust enough, namely that there exists a compact neighborhood that any point can
be brought into by an appropriate shift (condition (I)), and that the group is small
enough so that compactness of a subset of the group (in the CO-topology) is subordi-
nate to compactness of the subset’s actions at a single point (condition (II)). From the
technical angle, these conditions suffice to satisfy the definition of the dislocation
group in the functional-analytic framework of concentration compactness.

Condition (III) can be understood as a requirement that the operator associated
with the quadratic form will be in a way quasi-local or have a diagonal-heavy kernel.
This paper postulates the local Sobolev inequality (condition IV), although condition
(IV) is derived in the framework of [4], [5], [6] from general assumptions that include
the scaled Poincaré inequality, an assumption on the space dimension in the Coifman-
Weiss sense and the definition of the Dirichlet form. However, to require from the
start that the quadratic form would be a Dirichlet form is to exclude applications with
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non-local elliptic operators, for instance the discrete Laplace operator on ZN ad-
dressed in Section 5.

In Section 2 we list the assumptions on the space, the shifts and the energy form.
In Section 3 we formulate the concentration compactness results in the present set-
tings. In Section 4 we prove compactness of Sobolev imbedding in two cases where
the domain is not compact, in restriction to symmetric functions (generalization of
14], [10]) and for domains that are slim at infinity (generalization of [1]). In Section 5
we provide existence results and list applications for elliptic and sub-elliptic problems
on Lie groups, Riemannian manifolds, lattices, fractal tiles and metric graphs.

2. - ASSUMPTIONS AND DEFINITIONS

Let X be a locally compact Hausdorff space supplied with a group G acting con-
tinuously on X , and with a G-invariant Radon measure m , supp (m) 4X . The group G
is assumed to be a topological group in the compact-open (in what follows, CO-)
topology.

We assume that

(I) there exists a relatively compact open set V%X , such that Nh�G hV4X .

Let us define the set of shifts that keep two given sets intersected:

QM (A , B) »4 ]h�M : hAOBc¯(, M%G , A , B%X ,(2.1)

(II) for any compact sets K1 , K2%X , the intersection set QG (K1 , K2 ) is compact
in G .

This condition is fulfilled, in particular, by parallel translations on R n and, more
generally, by Lie group shifts and by isometries on Riemannian manifolds. Equivalent-
ly it may be formulated as a requirement that the map X3GKX3X ,
(x , h) O (x , hx) to be a proper map.

Let us introduce the following sequence of sets. Let V1%X . By induction we
define

Vn11 »4QG (Vn , Vn ) Vn4 0
h�G : hVnOVnc¯

hVn , n�N .(2.2)

Note that the sequence Vn is monotone increasing. In what follows we will use the se-
quence Vn with the set V14V , V as in (I).

The set of actions of G on L 2 (X , m)

gh u»4u i h , h�G ,(2.3)

will be denoted as D .
Let H0 be a D-invariant subspace of C0 (X), dense in L 2 (X , m) (where C0 (X) de-

notes the space of real valued continuous functions with compact support in X) and
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equipped with a positive symmetric quadratic form a : H03H0KR , satisfying
a(u , u) FCs

X
u 2 dm , u�H0 , with some CD0 and D invariant on H0 , i.e.

(u , v�H0 , h�G , a(u i h , v) 4a(u , v i h21 ) .

We define H as a Hilbert space by taking a completion of H0 with respect to the norm
a(Q , Q)1/2 . Obviously, H will be continuously imbedded into L 2 (X , m) and dense there.
In what follows, all Hilbert space notations, unless specified otherwise, will refer to
H . Note that density of H0 in L 2 (X , m) assures the domain D(A) of the operator asso-
ciated with the form a is dense in L 2 (X , m) and that a is invariant with respect to the
group actions on H:

(u , v�H , h�G , a(u i h , v) 4a(u , v i h21 ).(2.4)

The group D acts on H as a group of unitary operators.
We assume finally that there exist two open sets U , U0%X , such that

V2 %U0% U0 %U%V3 and a bounded non-negative real-valued function x with support
in U , such that u O xu is a bounded operator on H , and that the following
holds:

(III) If J%G is such that ]hU(h� J covers X with uniformly finite multiplicity, then
there is a CD0 such that for every u�H ,

!
h� J

a(x i hu , x i hu) GC a(u , u).(2.5)

(IV) There is a number 2XD2 such that for every p� [2 , 2X ] there exist a CD0
such for every u�H ,

�
U0

NuNp dmGC a(xu , xu)p/2 .(2.6)

Moreover, if pE2X , then the set of traces of u on L p (U0 , m), that satisfy inequality
a(xu , xu) E1 is relatively compact.

One may implement the conditions (I-IV) in the framework of Riemannian strong-
ly local Dirichlet forms (see [2], [3], [4], [5]) as follows. We may assume that the ac-
tion of G transforms intrinsic balls into intrinsic balls with the same radius, we may set
without loss of generality V4B(0 , 1 ) and require that N]hB(0 , 1 )(h� J , J%G , covers
X with uniformly finite multiplicity (the intrinsic ball B(0 , r) is the ball centered in 0
with radius r relative to the intrinsic distance on X , see [2], [3]. Condition (II) is to be
posed. Let U4B(0 , 6 ), U04B(0 , 3 ), the assumptions (III) and (IV) hold choosing
xu4fu , where f denotes the cut-off functions between the balls B(0 , 3 ) and B(0 , 6 )

and 2X4
2n

n22
if nD2 or 2X any finite number greater than 2 if nG2, where n is the

intrinsic dimension relative to the duplication property for m , which is assumed to
hold.
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PROPOSITION 2.1: If a sequence h k�G , is discrete (has no convergent subsequence),
then (u�H , u i h k � 0 in H.

PROOF: By density, it suffices to take u with compact support and to consider weak
convergence in L 2 (X , m) with test functions v having a compact support. From (II) it
follows that for all k sufficiently large supp (u) will be disjoint from h k supp (v) (or else
h k will have a convergent subsequence), so that supp (u) i h k will be disjoint from
supp (v) and s

X
u i h k v dm40 for all k large. r

PROPOSITION 2.2: If h kKh�G in G and u�H , then u i h kKu i h in H.

PROOF: Without loss of generality we can assume that h4e . By (2.4) the actions of
group shifts on H are unitary operators, so it suffices to prove weak convergence. By
the density assumptions, it suffices to verify that for u , v�C0 (X), s

X
u i h k v dmK

K s
X

u v dm . The latter follows from the Lebesgue dominated convergence theorem, since

the CO-convergence of h k implies pointwise convergence for u i h k . r

3. - CONCENTRATION COMPACTNESS FOR GROUP SHIFTS ON HAUSDORFF SPACES.

DEFINITION 3.1: Let H be a separable Hilbert space. We say that a group D of uni-
tary operators on H is a group of dislocations if

(*) any sequence gk�D that does not converge to zero weakly has a strongly conver-
gent subsequence.

DEFINITION 3.2: Let u , uk�H. We will say that uk converges to u weakly with con-
centration (under dislocations D), which we will denote as

uk �
(D)

u ,

if for all W�H ,

lim
kKQ

sup
g�D

(g(uk2u), W) 40 .(3.1)

THEOREM 3.3: ([18]) Let uk�H be a bounded sequence. Then there exists w (n)�H ,
gk

(n)�D , k , n�N such that for a renumbered subsequence

gk
(1)4 id , gk

(n)21
gk

(m) � 0 for ncm ,(3.2)

w (n)4w lim gk
(n)21 uk(3.3)

!
n�N

Vw (n)
V

2G limsup Vuk V

2(3.4)

uk2 !
n�N

gk
(n) w (n) �

(D)
0 .(3.5)
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We recall that a sequence uk is called a (PS)c-sequence for a functional F�C 1 (H)
if F(uk ) Kc and F 8 (uk ) K0. The critical set of F will be denoted as K»4

»4 ]u�H : F 8 (u) 40(.

PROPOSITION 3.4: Let F�C 1 (H) satisfy the following conditions:
(i) F is invariant under D : (g�D , F i g4F ,

(ii) F 8 is continuous in the weak topology: uk � u ¨ F 8 (uk ) � F 8 (u). Then any
bounded (PS)c-sequence for F has a subsequence satisfying (3.5) with w (n)�K .

PROOF From (i) and the definition of Gateaux derivative follows immediately that
for every g�D , F 8 i g4g i F 8 . Let uk be a bounded (PS)c-sequence for F and let
w (n) , gk

(n) be as in Theorem 3.3. Then, by (ii),

F 8 (w (n) ) 4wlim F 8 (gk
(n)21 uk ) 4wlim gk

(n)21 F 8 (uk ) 40 . r(3.6)

Let now H , G and D be defined as in Section 2.

LEMMA 3.5: The group D is a group of dislocations.

PROOF: Since the operators gh are unitary, it suffices to verify (*). If ghk
�O 0, then

by Proposition 2.1, h k has a subsequence convergent in the CO-topology to some
h�G . Then by Proposition 2.2 ghk

Kgh in the strong operator sense. r

LEMMA 3.6: There is a subset J of G such that the sets in the collection ]hV1 )(h� J

are mutually disjoint, while ]hV2(h� J covers X. Moreover, the open cover ]hV3(h� J has
a uniformly finite multiplicity.

PROOF: The second assertion of the lemma follows from the first one by the follow-
ing argument. Without loss of generality consider multiplicity of the covering at a
point in V3 . The multiplicity will not exceed the number of h� J , such that
hV3OV3c¯ . This number is not larger than the number of h� J such that hV1%V4 .

Since these sets are disjoint, the multiplicity of the covering does not exceed
m(V4 )

m(V1 )
.

Note that m(V1 ) D0 by assumption, and m(V4 ) EQ since m is Radon measure and V4

is relatively compact due to (II).
Now let us construct the subset J%G: Since X is paracompact, we may first replace

G with a subset J0%G , such that X4 0
h� J0

hV1 is a locally finite cover. Namely, we find

first a locally finite refinement hVh%hV1 , h� J0 . We can show then that finite multi-
plicity persists even if we replace every Vh with V1 . Since V3 is relatively compact, the
multiplicity of its covering by hVh’s is uniformly finite. All hVh’s that intersect V2 lie in
V3 . Therefore, by a finite measure argument, there are finitely many hVh’s that inter-
sect V2 . If we show that

V2OhVh4¯ ¨ V1OhV14¯ ,(3.7)
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then there will be finitely many h� J0 such that hV1 intersects V1 . Let us prove (3.7). If
hV1OV1c¯ , then h�QG (V1 , V1 ) and so hV1%V2 and consequently, hVh%V2 ,
which is a contradiction. It remains to note that argument above extends to covering
of any shifted set hV1 , h� J0 with the same upper bound for multiplicity.

By induction we define subsets Jk4AkNBk%G such that the number of elements
in Ak equals k and

X4 0
h�Ak

hV2N 0
z�Bk

hV ,

and hVOzV4¯ for any h�Ak , z� Jk , hcz . Furthermore Ak%Ak11 for all k , while

Bk&Bk11 with 1
k40

Q

Bk4¯ . Since the cover ]hV(h� J0
was locally finite, the latter implies

that any compact set K%X is contained in 0
h�Ak

hV2 for sufficiently large k . Finally take

J»4 0
k40

Q

Ak . Begin with A0 »4¯ , B0 »4 J0 . Write J0 as a sequence J04 ]h 1 , h 2 , R(. So

assume Ak , Bk have already been constructed. Let mk4min ]m : hm�Bk(. Set
Ak11 »4AkN ]hmk

( and let Bk11 »4 ]h�Bk ; hVOhmk
V4¯(. r

LEMMA 3.7: Let r� (2 , 2X ) and let uk�H be a bounded sequence. Then

uk �
(D)

0 ` ukK0 in L r (X , m).(3.8)

PROOF: First, assume that ukK0 in L r . Then for every sequence h k�G ,
uk i h k � 0 in L r . However, since uk is bounded in the Hilbert norm, uk i h k � 0 in H

and therefore, uk �
(D)

0 .
Assume now that uk �

(D)
0 . By (IV), there is a CD0 such that

�
hV2

NukNr dmGCa(x i hu , x i hu) u �
hV2

NukNr dmv122/r

, h�G .(3.9)

Due to Lemma 3.6, there is a countable set J%X such that for i42, 3 the sets hVi , h� J ,
form a cover of finite multiplicity for X , so by adding terms in (3.9) over h� J and using
(III), we obtain

(3.10) �
X

NukNr dmGCa(uk , uk ) sup
h� J

u �
V2

Nuk i h21Nr dmv122/r

G

G2C u �
V2

Nuk i h k
21Nr dmv122/r

for an appropriately chosen «near-supremum» sequence h k� J . It remains to note that
by the compactness in (IV) one has uk i h kK0 in L r (X , m), so that the assertion of the
lemma follows from (3.10). r
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We conclude the section with the proof of the global Sobolev inequality.

LEMMA 3.8: For every p� [2 , 2X ] there is a CD0 such that for all u�H

�
X

NuNp dmGCa(u , u)p/2 .(3.11)

PROOF: We use the covering from Lemma 3.6. By (IV),

�
hV2

NuNp dmGCa(x i hu , x i hu)p/2 , h� J .(3.12)

Adding the terms in (3.12) over J , and taking into account that shifts of V2 and
of V3 form a covering of X of finite multiplicity, we arrive, using (III) in the right hand
side, at

�
X

NuNp dmGC sup
h� J

a(x i hu , x i hu)p/221 a(u , u) GCa(u , u)p/2 . r(3.13)

4. - SOME COMPACT IMBEDDINGS

In this section we prove compactness of Sobolev imbeddings in two cases: compact-
ness in presence of symmetries and compactness on non-compact domains thin at
infinity.

Let us introduce the following condition on X , G:

(G) There is a subgroup G of G such that for every discrete sequence h k�G there is
an infinite subset G 8 of G such that for every g�G 8 , the sequence h k

21 gh k is
discrete.

This condition is fulfilled, for example, when X4RN , ND2, G is the group of ro-
tations, and G is the product of G and the group of parallel shifts.

THEOREM 4.1: Assume that X , G satisfy (G). Let HG be a subspace of H consisting of
functions satisfying u i g4u for every g�G. Then HG is compactly imbedded into L p,
p� (2 , 2X ).

PROOF: Let uk�HG be a weakly convergent subsequence in H . Assume that
for so m e d i s c r e t e s e q u e n c e h k , th e f u n c t i o n w»4w l i m uk i h k

21
c0 . Si n c e f o r

a n y g�G , u4u i g 21 , we ha v e a l s o w4w l i m uk i g 21
i h k

21 a n d w i g4

4w l i m uk i g 21
i h k

21
i g4w l i m uk i (g 21 h k

21 g) .
Let h k

g4gh k g21 . Then (h k
g )21 h k

g 8 is discrete if and only if h k
21 g21 g 8 h k is dis-

crete, which due to (G) occurs for infinitely many pairs g , g 8 . Therefore, taking into
account Proposition 2.1, we can choose a sequence g n�G 8 such that the assumptions
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of Theorem 3.3 hold for the sequence gk
(n) uk4uk i h k

gn The asymptotic expansion of
uk in Theorem 3.3 will so contain infinitely many terms w (n) corresponding to h k

gn,
each of them with the same norm as w . Then (3.4) implies that w (n)40 for all nD1.

Thus, uk2wlim uk �
(D)

0 and by Lemma 3.7, ukKwlim uk in L p for any
p� (2 , 2X ). r

Let us define, for an open set V%X , the space H(V) as a closure in the H-norm of
the set of elements of H whose supports lie in V . We note immediately that (3.11)
yields a continuous imbedding of H(V) into L p (V , m).

We now introduce the following class of domains.

DEFINITION 4.2: An open set V%X will be called asymptotically null if for every
discrete sequence h k�G , m( liminf h k V) 40.

(We recall that for a sequence of sets Xk , liminf Xk »40
n

1
kFn

Xk and limsup Xk »4

»41
n

0
kFn

Xk .)

For some open sets that are not relatively compact, the embedding into L p can still
be compact if there is not so much of the set left at infinity. The result is analogous to
sufficient conditions of compactness in literature for the Euclidean case (e.g. [1]) and
for the sub-laplacian on Lie groups ([8]).

THEOREM 4.3: Let V%X be an open asymptotically null set. Then for every
p� (2 , 2X ), H(V) is compactly embedded into L p (V , m).

PROOF: We prove sequential compactness. Let uk be a bounded sequence in H(V)
regarded as a subspace of H . According to Theorem 3.3, all sequences h k

(n)4h k
gn in

the preceding theorem (nD1) are discrete. Note that by the condition (IV), weak con-
vergence in H implies convergence m-a.e., so, up to a set of measure zero, the set in X
where w (n) (x) c0 (because picking an infinite sequence of values outside V yields
zero in the limit) is contained in the set of points that can be written as x4h k xk ,
xk�V , for all kFk0 (x), i.e. in liminf h k V , which by the definition of asymptotically
null set has measure zero. We conclude that for nD1, w (n) (x) 40 a.e. Then Theorem
3.3 implies then that a subsequence of uk converges weakly with concentration to w (1) .
By Lemma 3.7, ukKw (1) in L p (X , m). Since both uk and w (1) are supported in
L p (V , m), the convergence in L p (V , m) follows. r

5. - APPLICATION TO ELLIPTIC PROBLEMS

5.1. - Existence results

THEOREM 5.1: Let p� (2 , 2X ). Under assumptions of Section 2, there is a minimizer
in the Sobolev inequality (3.11).
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PROOF: Let uk be a minimizing sequence for the relation

c(p) 4 inf
VuVL p (X , m)41

a(u , u).(5.1)

We apply to uk Theorem 3.3. Then

! Vw (n)
V

2
H(X)Gc(p).(5.2)

At the same time it is easy to see that

!Vw (n)
V

p
L p (X , m)4 lim Vuk V

p
L p (X , m)41.(5.3)

From (5.1) and (5.2) follows that

!Vw (n)
V

2
H(X)Fc(p) ! tn

2/p ,(5.4)

where tn4Vw (n)
V

p
L p (X , m) . Note now that (5.3) can be written now as ! tn41, so that

with pD2, ! tn
2/pG1 only if all but one of tn , say for n4n0 equals zero. We conclude

that w (n0 ) is the minimizer. r

Let F�C 1 (R), f (s) 4F 8 (s), Assume that

lim
NsNKQ

Nf (s)N/NsN2X2140(5.5)

and

lim
sK0

f (s)

s
40.(5.6)

Let

W(u) »4�F(u) dm , F(u) 4a(u , u)22W(u), u�H .(5.7)

Under (5.5) the functional F is of the class C 1 (H). Let

s»4 sup
u�H

W(u) /a1 (u).(5.8)

Let A denote the operator associated with the form a with respect to
L 2 (X , m).

THEOREM 5.2: Let the assumptions of Section 2 hold and V4X or let the assump-
tions of Section 2,4 hold and V be an asymptotically null open set, moreover let (5.5)
and (5.6) hold and

sD1,(5.9)
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then for every eD0 there exists an a� [12e , 1] and a u�H(V)0]0( satisfying

Au4af (u)(5.10)

in the variational and then semi-strong sense.

Note that condition (5.9) is satisfied if F(s) /s 2KQ when sK1Q .

THEOREM 5.3: Assume in addition to the conditions of Theorem 5.2 that there
exists a mD2 such that

f (s) sFmF(s), s�R .(5.11)

Then there exists a u�H(V)0]0( satisfying

Au4 f (u)

in the variational and then semi-strong sense.

Note that in this case the condition (5.9) follows from (5.11).
Proofs of Theorem 5.2 and Theorem 5.11 are analogous to those in [19] for Theo-

rem 4.1 and Theorem 4.2 respectively and can be omitted. We only sketch here a proof
for having satisfied a weakened Palais-Smale condition.

For any bounded critical sequence uk for the functional F with F(uk ) Kcc0,
and any sequence h k�G , the sequence uk i h k remains critical with the same critical
value, and the wlim uk i h k (on a renumbered subsequence) will be a critical point.
If for any choice of h k , uk i h k � 0, then by Lemma 3.7, ukK0 in L 2 (X , m),
W 8 (uk ) 40 and so ukK0 in H , which implies F(uk ) K0, a contradiction. We con-
clude, that there is a sequence of shifts h k such that weak limit of the critical sequence
uk i h k is non-zero.

In a similar manner one can prove existence of critical points for semilinear elliptic
problems based on different saddle point geometries ([16]), with a reservation that,
except for isoperimetric problems, it is much harder in non-compact problems to find
critical sequences that converge to a point on a critical level and if uc0 is a critical
point and h k�G is a discrete sequence, the sequence u1u i h k is critical and di-
verges. This complicates proofs of existence of multiple solutions that rely on distinc-
tion of critical points by their critical values.

5.2. - Applications

We list below examples where the conditions of Section 2 are satisfied.

1. Euclidean case ([15]).
Here X4RN , ND2, G4RN acting additively on X , m is the Lebesgue measure,

H04C0
Q (RN ), a(u , u) 4 s

RN
N˜uN21u 2 , 2X42N/(N22). Concentrated weak con-

vergence is equivalent to L p-convergence, 2 EpE2X .
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2. Lattice-invariant problems on RN .
X4RN , ND2, G4ZN , a(u , u) 4 s

RN
p(x)N˜uN21u 2 , where p(x) is a continuous

ZN-periodic function on RN , 2X42N/(N22). Concentrated weak convergence is
equivalent to L p-convergence, 2 EpE2X . The case is fully analogous to RN .

3. Grid-symmetric Riemannian manifolds ([11]).
X is a complete N2dimensional Riemannian manifold, ND2. G is the group of

isometries on X . Condition (I) (co-compactness, satisfied, in particular, by symmetric
Riemannian spaces) is required. Condition (II) is a known property of the isometry
group ([13]). m is the Riemannian measure on X . The form a is the quadratic form of
Laplace-Beltrami operator, with an added term s

X
u 2 dm . Condition (III) follows from

locality of the energy form, condition (IV) is the standard Sobolev inequality on a
bounded subset, 2X42N /(N22). Concentrated weak convergence is equivalent to
L p-convergence, 2 EpE2X .

4. Subelliptic problems on Lie groups ([19]).
X is a connected Lie group, G4X acts on X by left shifts, so that condition (I) is

satisfied by any relatively compact set V . Condition (II) is implied by local compact-
ness on the Lie group. m is the left Haar measure on X . The form a is the quadratic
form of a sub-elliptic operator (sum of squares of tangent vector fields satisfying Hör-
mander condition) with an added term s

X
u 2 dm . Condition (III) follows from locality

of the energy form, condition (IV) is the local Sobolev inequality for subelliptic forms
(e.g.[22]); compactness of imbedding for bounded sets is due to [9], 2X42Q/(Q2

22), where Q is the homogeneous dimension of the group. Concentrated weak conver-
gence is equivalent to L p- convergence, 2 EpE2X .

5. Metric graphs.
Let V%RN be an open bounded domain with a cusp-free piecewise C 1-boundary.

Let X4V3N be a formal countable union of identical copies V i , i�N of V , and let
G ij%¯V i , j� Ji%N , be a finite disjoint collection of C 1-hypersurfaces. Assume that
some of G ij are glued together in the sense that for every i , i 8� IN there exists a set
(possibly empty) Jii 8% Ji , a bijection p ii 8 : Jii 8K Ji 8 i , mappings T j

ii 8�O(N) and vectors
v j

ii 8�RN with j� Jii 8 , such that T j
ii 8 G ij1v j

ii 84G i 8 p ii 8 ( j) . We assume that for every i there
are only finitely many i 8 such that Jii 8c¯ . An elementary example is provided by a
collection of faces of a unite cube translated by a unit cubic lattice, ¯(0 , 1 )N111

1ZN11 , with V4 (0 , 1 )N .
Let H0 (X) be a subspace of C Q (X) defined by conditions ui (x) 4ui 8 (T j

ii 8 x1v j
ii 8 ),

x�G ij , j� Jii 8 . We may further restrict the space by assuming that ui (x) 40 for x in a
neighborhood of ¯V i 0 0

j� Jii 8 , i 8� IN
G ij . Let H(X) be the closure of H0 (X) in the standard

Sobolev norm given by the quadratic form a(u , u) 4!(V˜ui V2
21Vui V2

2 ).

Let G be a subgroup of permutations of N that preserves the structure
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of the metric graph on X (i.e. the boundary identifications). The measure on
X is the Lebesgue measure on V extended to X by countable additivity.

Condition (I) is generally not satisfied and has to be required. It is fulfilled in the
example above with G4ZN11 acting additively on RN11 .

Condition (II) is immediate. Condition (III) follows from the locality of the form
and condition (IV) is the standard Sobolev inequality. Elliptic equations Au4 f hold
as differential equations on the copies of V supplied with the boundary conditions for
¯V i : !

i 8
¯uii 8 (x) /¯n(x) 40, x�G ij where uii 8 are the traces of relevant ui 8 on the identi-

fied above portions of ¯V i 8 . If the space H0 (X) were restricted to functions vanishing
near the portions of ¯V i that are not glued to another ¯V i 8 , i.e., do not belong to any
of the G ij , then the Dirichlet condition holds on that portion of the boundary, other-
wise the Neumann condition will hold.

Obviously, 2X42N/(N22). Concentrated weak convergence is equivalent to L p-
convergence, 2 EpE2X . We remark that same symmetry groups play a role also in ex-
istence of band spectrum in problems with lattice symmetry on RN as well as on metric
graphs (cf. [20] and references therein).

6. Fractal tiles.
Let pi�RN , i40, R , N , NF2, p040, be vertices of a symmetric simplex in R N

and let Y be the Sierpinski gasket defined by these points pi and maps Fi (x) 4
1

2
x1

1
1

2
pi . Let G be the lattice group in RN generated by the points pi and let X4 0

g�G
gY .

Let m be the standard measure on Y extended by translations and countable additivity
to the whole X (note that the copies of Y overlap only at the vertices that have measure
zero). We remark that X is not a blow-up ([21]). Conditions (I) and (II) are immedi-
ate. Let H04C0

Q (X) and let a0 be the quadratic form of the fractal Laplacian on Y ap-
pended with s

Y
u 2 dm . Let x be the characteristic function on Y . We define

a(u , u) 4 !
g�G

a0 (xu i g , xu i g)1�
X

u 2 dm .(5.13)

The form a is invariant by construction. Condition (III) is immediate from construc-
tion and the condition (IV) is the local Sobolev inequality (with compactness) with an
arbitrarily large subcritical exponent p0 2 EpE2X4Q .

7. Discrete Laplacian.
Let ND2, X4ZN , G4ZN acting additively on X and let m be the counting mea-

sure on X . Conditions (I) and (II) are immediate. We define the space H0 here as the
space of all functions on X with compact support. let

a(u , u) 4 !
x�ZN

y(N1l) u(x)22 !
i41

N

u(x1ei ) u(x)z , lD0,(5.14)
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where e14 (1 , 0 , R , 0 ), R , eN4 (0 , R , 0 , 1 ). The shift invariance of the form is
obvious and the condition (III) follows immediately from the construction. Condition
(IV) is the well-known discrete version of the local Sobolev inequality (the form
(5.14)) with l40 is, up to a scalar multiple, the quadratic form of the discrete Lapla-
cian !

i
[u(x1ei )1u(x2ei )22u(x) ]), 2X42N/(N22). Weak concentrated com-

pactness is equivalent to L p-convergence on ZN , 2 EpE2X .
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