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ABSTRACT. — We establish the existence of bounded, periodic, almost periodic and asymp-
totically almost periodic classical solutions of semilinear equations. The key of our approach is
the employment of the theory of fractional powers of operators.

Potenze frazionarie di operatori e soluzioni quasi periodiche
per equazioni semilineari

SUNTO. — Per equazioni semilineari si stabiliscono risultati di esistenza di soluzioni classi-
che limitate che siano periodiche, quasi periodiche o asintoticamente quasi periodiche. Lo stru-
mento chiave è costituito dalla teoria delle potenze frazionarie di operatori.

1. - INTRODUCTION

Periodic and almost periodic solutions of semilinear equations are of great interest
both in applications and theory. Various methods were developed to ensure the exis-
tence of periodic and almost periodic solutions, see for instance [2, 18, 19, 20, 21, 22].

Consider the evolution equation

x 8 (t) 4A(t) x(t)1 f (t).(1)

Equations (1.0) with almost periodic A(t) are treated in [4, 9, 11].
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It is shown in [10] that U (the evolution family solving the homogeneous problem)
has an exponential dichotomy with an almost periodic Green’s function if and only if
there is a unique almost periodic mild solution of (1.0).

Recently, L. Maniar and R. Schnaubelt in [13] proved the (asymptotic) almost pe-
riodicity of the bounded solution to the parabolic evolution equation (1.0) on R (on
R1) assuming that the linear operators A(t) satisfy the «Acquistapace-Terreni» condi-
tions, that the evolution family generated by A( . ) has an exponential dichotomy, and
R(v , A(t) ) and f are (asymptotically) almost periodic. The method used is similar to
Henry’s approach in [9, § 7.6] who derived the almost periodicity of Green’s function
corresponding to U .

I n [ 3 ] B a l l o t t i , G o l d s t e i n a n d P a r r o t t g a v e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n s
f o r t h e e x i s t e n c e o f a l m o s t p e r i o d i c s o l u t i o n s o f t h e a s s o c i a t e d h o m o g e n e o u s
e q u a t i o n o f ( 1 . 0 ) :

x 8 (t) 4A(t) x(t)

where A(t) is the generator of a C0 semigroup on a Banach space.
These authors used the mean ergodic theorem.
In this paper we consider the semilinear equation

x 8 (t)1Ax(t) 4 f (t , x(t) )(1.1)

where 2A is the infinitesimal generator of an analytic C0 semigroup S(t) verifying the
exponential stability and investigate inheritance of asymptotic almost periodicity or
uniform almost periodicity from f to a (classical) solution of (1.1).

In [17], Prüss proved the existence of periodic mild solution of (1.1) under some
conditions of compactness.

In [2], we proved that if 2A is the infinitesimal generator of a compact semigroup
]S(t)(tF0 satisfying NS(t)NL(X)Ge bt (bE0), then equation (1.1) has at least one al-
most periodic mild solution.

In the case when f is uniformly Lipschitz continuous with a Lipschitz constant
small enough, existence and uniqueness of an almost periodic mild solution of (1.1)
were proved in [19].

We will be interested in imposing further conditions on f so that the almost peri-
odic mild solution becomes a almost periodic (classical) solution and thus proving,
under these conditions, the existence of almost periodic solution of (1.1).

Throughout this work, we denote by X a real or complex Banach space endowed
with a norm N.N and L(X) stands for the Banach algebra of bounded linear operators
defined on X with a norm N.NL(X) . If A is a linear operator, we denote by D(A), resp.
R(A), the domain, resp. the range of A , and by r(A) the resolvent set of A .

If 2A is the infinitesimal generator of an analytic semigroup in a Banach space
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and 0 �r(A), for any aD0 we define the fractional power A 2a by

A 2a4
1

G(a)
�

0

Q

t a21 S(t) dt .

Let 0 EaG1, set

A a4 (A 2a )21 .

Note that A a is closed linear operator whose domain D(A a ) &D(A) is dense in X . The
closedness of A a implies that D(A a ) endowed with the graph norm of A a :

NxND(A)4NxN1NA a xN , x�D(A a )

is a Banach space. Since 0 �r(A), A a is invertible, its graph norm is equivalent to the
norm NxNa4NA a xN . Thus D(A a ) equipped with the norm N.Na is a Banach space
which we denote Xa .

(Fore more details, we refer the reader to [8,16]).
Our main assumptions in this work will be:

1. The operator 2A is the infinitesimal of an analytic semigroup ]S(t)(tF0 sat-
isfying NS(t)NL(X)GM exp (2dt), (tD0, (dD0).

2. (A1) The function f : R3XaKX verifies the assumption:

Nf (t1 , x1 )2 f (t2 , x2 )NGL(R)(Nt12 t2Nu1Nx12x2Na )

if x1 , x2�Xa , Nx1Na , Nx2NaGR , and t1 , t2�R where L : [0 , 1Q) K [0 , 1Q) is a
continuous nondecreasing function such that L(0) 40,

(A2) The function f (t , 0 ) vanishes for all t �R .
We shall prove that under these assumptions, then if is uniformly asymptotically

almost periodic (resp. uniformly almost periodic), equation (1.1) has a unique asymp-
totically almost periodic (resp. almost periodic) solution.

The proof makes use of the theory of fractional powers of operators.
More precisely, our main effort is to establish that the map

(Tx)(t) 4 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) ds

is a strict contraction.
Our work is organized as follows. The second section is devoted to a review of

some results almost periodic functions with values in a Banach space. In section 3 we
state and prove our main results. The last section is devoted to giving some examples
illustrating the abstract results.
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2. - ALMOST PERIODIC FUNCTIONS IN BANACH SPACES

The theory of almost periodic functions with values in a Banach space was devel-
oped by H. Bohr, S. Bochner, J. von Neumann, and others; cf., e.g., [1,5].

We mention several known results which will be used in this work.
We let Cb (R , X) denote the usual Banach space of bounded continuous functions

from R into X under the supremum norm N.NQ. Further, given a function f : RKX
and v�R , the v-translate fv of f is defined by fv (t) 4 f (t1v), t�R , and H( f ) 4

4 ] fv : v�R( will denote the set of all translates of f .

DEFINITION 2.1 (Bochner’s characterization of almost periodicity): A function
f�Cb (R , X) is said to be almost periodic if and only if H( f ) is relatively compact in
Cb (R , X).

Of course, almost periodic functions can as well be characterized in terms of rela-
tively dense sets in R of t-almost periods.

DEFINITION 2.2: A function f : RKX is called almost periodic if

i) f is continuous, and

ii) for each eD0 there exists l(e) D0, such that every interval I of length l(e)
contains a number t with the property that:

Nf (t1t)2 f (t)NEe for all t�R .

An almost periodic function is bounded, uniformly continuous on R and has a rel-
atively compact range in X .

Next. Y denotes a Banach space and V is an open subset of Y .

DEFINITION 2.3: A continuous function f : R3VKX is called uniformly almost
periodic if for every eD0 and every compact set K%V there exists a relatively dense set
Pe in R such that Nf (t1t , x)2 f (t , x)NGe for all t�R , t�Pe and all x�K .

The essential result is the following ([18], theorem I.2.7)

LEMMA 2.1: Let f : R3VKX be uniformly almost periodic and y : RKV be an
almost periodic function such that R(y) %V , then the function tK f (t , y(t) ) also is al-
most periodic.

The space of almost periodic functions with values in X will be denoted
AP(X).

The concept of asymptotic almost periodicity was introduced by M. Fréchet in [6, 7].
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DEFINITION 2.4: A function f : R1KX is called asymptotic almost periodic (a.a.p) if

i) f is continuous, and
ii) for each eD0, )T(e) F0 and l(e) D0, such that every interval I of length

l(e) contains a number t with the property that:

sup
tFT(e)

Nf (t1t)2 f (t)NEe .

An asymptotically almost periodic function is bounded, uniformly continuous on
R1 and the set ] f (t), t�R1( is relatively compact in X .

DEFINITION 2.5: A continuous function f : R13VKX is called uniformly a.a.p
(abbreviated, u.a.a.p.) if, for every eD0 and every compact set K%V , there exists a rela-
tively dense set Pe in R1 and T(e) D0 such that

Nf (t1t , x)2 f (t , x)NEe for all tFT(e), t�Pe , and all x�K .

LEMMA 2.2: Let f : R13VKX be u.a.a.p. and y : R1KV be an a.a.p. function
such that R(y) %V , then the function tK f (t , y(t) ) also is a.a.p.

The space of a.a.p. functions with values in X will be denoted AAP(X).

3. - MAIN RESULTS

The following Proposition presents a simplified version of the results in [12]
where the reader is referred to [9, 12] for more details on the subject. Here, a direct
approach by means of fractional powers was proposed.

PROPOSITION 3.1: Assume (A1) and (A2) hold, then Equation (1.1) has a unique
bounded solution.

PROOF: Let R be chosen so that

L(R) Ed 12a sin paG(a) Ma
21

(0 EaE1) and set D4 ]x� Cb (R ; X) : NxNQGR(.
On D we define a mapping T by

(Tx)(t) 4 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) ds(3.1)
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We have to show that T maps D into itself.

N(Tx)(t)NG

G

�
2Q

t

NA a S(t2s)[ f (s , A 2a x(s) )2 f (s , 0 ) ]Nds

Ma RL(R) �
0

1Q

s2a exp (2ds) ds4Ma RL(R) da21 G(12a)

where G( . ) is the classical gamma function.
We use the well known identity

G(a) G(12a) 4
p

sin pa
for 0 EaE1.

Then a simple computation yields that T : DKD is a contraction.
Therefore there exists x�D such that

x(t) 4 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) ds(3.2)

Next we want to show that tK f (t , A 2a x(t) ) is Hölder continuous on R . To this end
we show first that the solution x(t) of (3.2) is Hölder continuous on R .

We note that for every b satisfying 0 EbE12a we have:

N(S(h)2 I) A a S(t2s)NGCb h b NA a1b S(t2s)N(3.3)

(3.4) Nx(t1h)2x(t)NGN �
2Q

t

(S(h)2I) A aS(t2s) f (s,A 2ax(s)) dsN1

1N �
t

t1h

A a S(t1h2s) f (s , A 2a x(s) ) dsN.

We estimate each of the terms of (3.4) separately.
Using [16, p. 74, theorem 6.13 c] and (3.3) we have

N �
2Q

t

(S(h)2 I) A a S(t2s) f (s , A 2a x(s) )2 f (s , 0 ) dsN G

GMa1b RL(R) Cb h b �
2Q

t

(t2s)2(a1b) exp (2d(t2s) ) ds .
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We also have, by (A1), (A2) and [16, p. 74, theorem 6.13 c], that:

N �
t

t1h

A a S(t1h2s) f (s , A 2a W(s) ) dsN GMa RL(R) �
t

t1h

(t1h2s)2a ds

GMa RL(R)
h 12a

12a
.

Combining (3.4) with these estimates it follows that there is a constant C such
that

Nx(t1h)2x(t)NGCh b

and therefore x is Hölder continuous on R .
Finally, we show now that tK f (t , A 2a x(t) ) is Hölder continuous on R . So, in

view of (A1), we have:

Nf (t , A 2a x(t) )2 f (s , A 2a x(s) )NGL(R)(Nt2 sNu1Nx(t)2x(s)N).

Therefore tK f (t , A 2a (t) ) is Hölder continuous on R .
Let x be the solution of (3.2) and consider the equation

dy(t)

dt
1Ay(t) 4 f (t , A 2a x(t) )(3.5)

This equation has a unique bounded solution y given by

y(t) 4 �
2Q

t

S(t2s) f (s , A 2a x(s) ) ds .(3.6)

Moreover, we have y(t) �D(A) for all t�R and a fortiori y(t) �D(A a ). Operating on
both sides of (3.6) with A a we have

A a y(t) 4 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) ds(3.7)

4x(t)

From (3.5) and (3.7) we easily see that y(t) 4A 2a x(t) is a solution of (1.1). On the
other hand if x , y� Cb (R ; X) are bounded solutions of (1.1), let R such that NxNQ ,
NyNQGR.

x(t)2y(t) 4 �
2Q

t

A a S(t2s)[ f (s , A 2a x(s) )2 f (s , A 2a y(s) ) ] ds .

Nx(t)2y(t)NGL(R) Ma �
2Q

t

(t2s)2a exp (2d(t2s) )Nx(s)2y(s)Nds ,

then the Gronwall-Bellman lemma implies that x(t) 4y(t).



— 152 —

REMARK 3.1: 1. Observe that the proof of proposition 3.1 ensures the existence of
closed, convex bounded subset of Cb (R ; X) invariant for T , which will be used in the
sequel.

2. Existence and boundedness results in Hölder spaces obtained without making
use the above assumptions, but using techniques of interpolation spaces and interpo-
latory estimates, may be found in [12].

More precisely, in her book [12, chap. 7] A. Lunardi treated equations of the type
(1.1), where A : D(A) KX is a linear sectorial operator, f is a continuous function de-
fined in [0 , T]3Xa , X04X , and for 0 EaE1, Xa is any Banach space continuously
embedded in X and such that: DA (a , 1 ) %Xa%DA (a , Q) and the part of A in Xa is
sectorial in Xa . Under several regularity assumptions on f, the author gives some suffi-
cient conditions for the existence of bounded solutions.

It has been shown in [15] that if there is a bounded solution of a periodic ordinary
differential equation and the solutions can be continued for all futures times then the
O.D.E. has a periodic solution. In [21], a similar result was extended to semilinear
equations. By using the Massera approach, a similar result is valid in this case.

COROLLARY 3.1: Suppose that the hypotheses of proposition 3.1 hold and that f (t , x)
is v-periodic at t , then there is an v-periodic classical solution of (1.1).

PROOF: Let x be the bounded solution of (3.2) and let T the map given by (3.1).
Defining y(t) 4x(t1v) t�R , it is easy to see that

y(t) 4

4

4

4

4

x(t1v)

�
2Q

t1v

A a S(t1v2s) f (s , A 2a x(s) ) ds

�
2Q

t

A a S(t2s) f (s1v , A 2a x(s1v) ) ds

�
2Q

t

A a S(t2s) f (s , A 2a y(s) ) ds

(Ty)(t).

Therefore, from the uniqueness of the fixed point of T , it follows that y4x , which
implies that x is v-periodic.

THEOREM 3.1: If the hypotheses of proposition 3.1 hold and f is uniformly asymptot-
ically almost periodic, then there is a unique asymptotically almost periodic solution of
equation (1.1).

PROOF: We consider the set D
A

4DOAAP . It is clear that D
A is a closed subset of

Cb ( [0 , 1Q); X).
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Let x� D
A, we show first that the function

(Tx)(t) 4 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) ds

when restricted to R1 is asymptotic almost periodic.
Note that the function tK f (t , A 2a x(t) ) is a.a.p (see lemma 2.2).
Given eD0, consider numbers T(e) and L(e) corresponding to tK

K f (t , A 2a x(t) ).
In any interval [a , a1L] %R1 , take a t such that

Nf (t1t , A 2a x(t1t) )2 f (t , A 2a x(t) )NEe for all tFT(e).

Then we have that

N(Tx)(t1t)2 (Tx)(t)N4

4 N �
2Q

t1t

A a S(t1t2s) f (s , A 2a x(s) ) ds2 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) dsN G

G �
2Q

t

NA a S(t2s)[ f (s1t , A 2a x(s1t) )2 f (s , A 2a x(s) ) ]NdsG

G2RL(R) �
2Q

T(e)

NA a S(t2s)NL(X) ds1

1 �
T(e)

t

NA a S(t2s)NL(X) N[ f (s1t , A 2a x(s1t) )2 f (s , A 2a x(s) ) ]NdsG

G2RL(R) �
t2T(e)

1Q

s2a e 2ds ds1e �
0

t2T(e)

s2a e 2ds dsG

G2RL(R) �
t2T(e)

1Q

s2a e 2ds ds1eda G(12a).

Take now any e 8D0, then choose e such that eda G(12a) E
e 8

2
and then

T1 (e 8 ) DT(e) such that, for tDT1 ,

2RL(R) �
t2T(e)

1Q

s2a e 2ds dsE
e 8

2
,

therefore N(Tx)(t1t)2 (Tx)(t)NEe 8 if tDT1 (e 8 ), which shows that the function Tx
also is a.a.p. We proceed as in the proof of proposition 3.1, we can establish that the
map T : D

A
K D

A is a contraction, which implies the existence of an asymptotic almost
periodic solution.
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Now we give sufficient conditions for the existence of almost periodic sol-
utions.

THEOREM 3.2: If the hypotheses of proposition 3.1 hold and f is uniformly almost
periodic, then there is a unique almost periodic solution of equation (1.1).

PROOF: We show first that maps AP(X) into itself.
If x�AP(X), it follows from lemma 2.2 that tK f (t , A 2a x(t) ) is almost periodic.

Hence, for each eD0 there exists a set Pe relatively dense in R such that

Nf (t1t , A 2a x(t1t) )2 f (t , A 2a x(t) )NGe for all t�R and t�Pe .

Therefore, the map T defined by (3.1) satisfies

NTx(t1t)2Tx(t)N4

4N �
2Q

t1t

A a S(t1t2s) f (s , A 2a x(s) ) ds2 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) dsN 4

4N �
2Q

t

A a S(t2s) f (s1t , A 2a x(s1t) ) ds2 �
2Q

t

A a S(t2s) f (s , A 2a x(s) ) dsN G

G �
2Q

t

NA a S(t2s)NL(X) Nf (s1t , A 2a x(s1t) )2 f (s , A 2a x(s) )Nds

GeMa �
2Q

t

(t2s)2a exp (2d(t2s) ) ds .

Which shows that the function Tx also is almost periodic and that T : AP(X) K

KAP(X). We proceed as in the proof of proposition (3.1). In this case we can see that
the map T : AP(X) KAP(X) is a contraction, which implies the existence of an almost
periodic solution.

4. - EXAMPLE

1) Consider the following partial differential equation

.
/
´

¯u(j , t)

¯t
4d

¯ 2 u(j , t)

¯j 2
1h(t) g u ¯u(j , t)

¯j
v

u(0 , t) 4u(1 , t) 40

for all (j , t) � [0 , 1]3R where d is positive constant).
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To represent this problem in a abstract frame, we take X4L 2 ( (0 , 1 ); R) and
x(t) :4u(. , t). We define an operator A by the operator

Au42du 9 for u�D(A) 4 mu�H0
1 ( (0 , 1 ); R); u 9�Xn.(4.1)

The operator 2A is self-adjoint, with a compact resolvent and is the infinitesimal gen-
erator of an analytic semigroup S(t) on L 2 ( (0 , 1 ); R). Furthermore, A has a discrete
spectrum with simple eigenvalues n 2 p 2 d , n�N . The set of normalized eigenvectors

is complete in X , which shows that NS(t)NGe 2dp2 t ([14]). We take a4
1

2
, that is

X1/24 (D(A 1/2 ),N.N1/2).
Define the function f : R3X1/2KX , by

f (t , u) 4h(t) g(u 8 ), for each t�R and all u�X1/2

where h : RKR is almost periodic in R and there exist k1D0 and u�]0 , 1[ such
that

Nh(t)2h(s)NGk1 Nt2 sNu , for all t , s�R(4.2)

and g : XKX is Lipschitz continuous on X . A concrete example of the function g is
notably

g(u) 4sin (u)

g(u) 4ku

g(u) 4arctan (u).

We give first some known results concerning the operators A defined by (4.1) and
A 1/2 . Let u�D(A) and l�R , such that

Au42du 94lu

that is,

du 91lu40(4.3)

We have

aAu , ub 4 alu , ub

that is

2adu 9 , ub 4dNu 8NL 2
2 4lNuNL 2

2

so l�R1 .
The solutions of equation (4.3) have the form

u(x) 4C cos uo l

d
xv1D sin uo l

d
xv
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we have u(0) 4u(1) 40, so, C40 and o l

d
4np (n�N). Put l n4dn 2 p 2 . The sol-

utions of equation (4.3) are

un (x) 4D sin (kl nx), n�N* .

We have aun , um b 40, for ncm and aun , un b 41. So D4k2 and

un (x) 4k2sin (kl nx)

u�D(A), so there exists a sequence (a n ) �R , such that

u(x) 4 !
n�N*

a n un (x), !
n�N*

(a n )2E1Q and !
n�N*

(l n )2 (a n )2E1Q .

We have

A 1/2 u(x) 4 !
n�N*

kl na n un (x)

with u�D(A 1/2 ), that is

!
n�N*

(a n )2E1Q and !
n�N*

l n (a n )2E1Q .

We show now that f satisfies the hypothesis (A1). In fact, Let t1 , t2�R and
u1 , u2�X1/2 , we have

f (t1 , u1 )2 f (t2 , u2 ) 4

4

h(t1 ) g(u18 )2h(t2 ) g(u28 )

[h(t1 )2h(t2 ) ] g(u18 )1h(t2 )[g(u18 )2g(u28 ) ] .

So,

(4.4) Nf (t1 , u1 )2 f (t2 , u2 )NL 2 GNh(t1 )2h(t2 )NNg(u18 )NL 21h(t2 )NNg(u18 )2g(u28 )NL 2

GNgNQ Nh(t1 )2h(t2 )N1NgNLip Nh(t2 )NNu182u28 NL 2

h is almost periodic, so, there exists k2D0, such that

Nh(t2 )NGk2 .(4.5)

Therefore from (4,2), (4.4), (4.5), and the fact that g(u 8 ) is Lipschitz on X1/2 (see for
instance [9, p. 75]) we have

Nf (t1 , u1 )2 f (t2 , u2 )NXGk1 NgNQ Nt12 t2 Nu1k2 NgNLip Nu12u2N1/2

GL(Nt12 t2Nu1Nu12u2N1/2 ).

So, f satisfies the hypothesis (A1), with L4 max (k1 NgNQ , k2 NgNLip ).

2) A semilinear evolution equation in R3 .

Let V be a bounded domain with smooth boundary ¯V in R3 and consider the fol-
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lowing semilinear equation

.
/
´

¯u

¯t
4Du1!

i41

3

u
¯u

¯xi

1 f (t , x)

u(t , 0 ) 40

in R3V

in R3¯V

(4.6)

Where f : R3VKL 2 (V) satisfies,

Nf (t1 , x)2 f (t2 , x)NL 2 (V)GCNt12 t2 Nu (0 EuE1).

Let X4L 2 (V) and define an operator A by

Au42Du , D(A) 4H 2 (V)OH0
1 (V).

The operator 2A self-adjoint, and is the infinitesimal generator of an analytic semi-
group on L 2 (V).

Denote by g(u) 4 !
i41

3

u
¯u

¯xi

.

In [16, p. 240, lemma 3.4] it was established that the function g verifies the esti-

mate, if gD
3

4
then

Ng(u1)2g(u2)NL 2 (V)GC(Nu1NgNu12u2N1/21Nu2N1/2Nu12u2Ng) for all u1,u2�D(A g).

Since Xg%X1/2 and the imbedding is continuous, we may conclude that the map g sat-
isfies the hypothesis (A1) in R3Xg .

COROLLARY 4.1: For each f , asymptotically almost periodic (resp. almost periodic),
equation (4.6) has a unique a.a.p (resp. a.p) strong solution. This result is an immediate
consequence of theorem 3.1 and theorem 3.2.
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