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ABSTRACT. — We study the exactness of some functors defined by spaces of normal se-
quences, measurable functions and normal measurable functions on the category of b-spaces b ,
and we define the integral of functions with values in a b-space.

Su alcuni funtori esatti della categoria dei b-spazi

SUNTO. — Si studia la proprietà di esattezza per alcuni funtori definiti da spazi di successio-
ni normali, di funzioni misurabili e di funzioni misurabili normali nella categoria dei b-spazi b.
Si definisce inoltre un integrale per funzioni a valori in b-spazi.

1. - INTRODUCTION AND NOTATIONS

Spaces of sequences in a Banach space and spaces of functions with values in a Ba-
nach space are well known. In this paper we shall define and study such spaces of se-
quences or of functions with values in b-spaces of L. Waelbroeck [7]. Functors will be
defined first on the category of Banach spaces Ban, and are extended to the category
b. We shall consider spaces of sequences or more generally of families of elements of a
b-space. Our study will be devoted respectively to spaces of measurable and
summable functions.

We shall consider spaces whose elements are families with an arbitrary index set,
always denoted by X . At times, such spaces can be usufel. However most spaces used
in the applications are true sequence spaces.
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In the first time, we shall consider b-subspaces of the space CX , and we will define
normal b-subspaces of CX . If L is a normal b-subspace of CX , we define a functor
L : BanKBan : E O L(E) and we will show that it is possible to extend it to a func-
tor L : bKb : E O L(E).

As examples, we shall consider a complete finite or s-finite measure space
(V , D , m) and the space of Bochner measurable mappings from V into a b-space E ,
that we call L 0 (V , E). If B is a completant bounded subset of the b-space E , the space
L 0 (V , EB ) is a completely metrizable topological vector space. We will prove that the
functor L 0 (V , . ) : bKE.V. : EKL 0 (V , E) is exact. So if E is a b-space and F a
bornologically closed subspace of E , L 0 (V , E/F) is the vector space
L 0 (V , E) /L 0 (V , F).

The problem is that the topology of L 0 (V) is not locally convex and convexity is
important in Functional Analysis. Because of this situation, we will introduce normal
b-subspaces of L 0 (V), and for each normal b-subspace J , we will define an exact
functor J(.) : BanKBan when J is a Banach normal subspace of L 0 (V). Hence it can
be extended to b . In particular, if E is a b-space and F a bornologically closed sub-
space of E , we will define the space L p (V , E/F) and the Orlicz space LW (V , E/F),
where W is an Orlicz convex function.

The classical spaces L p (V) are examples of normal Banach subspaces of L 0 (V).
The preceding results are valid for them. So we can speak of the functor
L p (V , . ) : bKb : EKL p (V , E) and this functor is exact. The space L p (V , E) is a
Banach space, or a b-space, according to the nature of E .

If V and V 8 are two measure spaces, V3V 8 is a measure space, the Fubini theo-
rem shows that if E is a Banach space and f�L p (V3V 8 , E), then for almost all
x�V , the function f (x , . ) : V 8KE : y O f (x , y) is in L p (V 8 , E) and the function
f (. , . ) : VKL p (V 8 , E) : x O f (x , . ) is in L p (V , L p (V 8 , E) ). Thus for any Banach
space E , L p (V3V 8 , E) CL p (V , L p (V 8 , E) ). This isomorphism extends immedi-
ately to the case of b-spaces.

When E is a Banach space, the integral is a bounded linear mapping L 1 (V , E) K

KE . When E is a b-space, any function f�L 1 (V , E) belongs to some Banach space
L 1 (V , EB ), where B is a bounded completant subset of E . We can integrate f in the
Banach space EB . The result is independent of the bounded completant subset B .

Let us fix some notations and recall some definitions that will be used in this pa-
per. Let E.V. denotes the category of vector spaces and linear mappings over the
scalar field R or C , and Ban the category of Banach spaces and bounded linear map-
pings. Let (E , V VE ) be a Banach space. A Banach subspace F of E is a vector subspace
endowed with a Banach norm V VF such that the inclusion (F , V VF ) K (E , V VE ) is
continuous.

Let E be a real or complex vector space, and B be an absolutely convex set of E .
Call EB the vector space generated by B i.e. EB4 0

lD0
lB . The Minkowski functional of

B , VxVB4 inf ]lD0 : x�lB( is a semi-norm on EB . It is a norm if and only if B does
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not contain any nonzero subspace of E . The set B is completant if its Minkowski func-
tional is a Banach norm.

A bounded structure b on a vector space E is defined by a set of «bounded» sub-
sets of E with the following properties:

1) Every finite subset of E is bounded; 2) every union of two bounded subsets is
bounded; 3) every subset of a bounded subset is bounded; 4) a set homothetic to a
bounded subset is bounded; 5) each bounded subset is contained in a completant
bounded subset.

A b-espace (E , b) is a vector space E with a boundedness b . A subspace F of a b-
space E is bornologically closed if the subspace FOEB is closed in the Banach space
EB for every completant bounded disk B of E.

Let (E , bE ) and (F , b F ) be two b-spaces. A linear mapping u : EKF is bounded,
if it maps bounded subsets of E into bounded subsets of F . The mapping u : EKF is
bornologically surjective if for every B 8�b F , there exists B�bE such that u(B) 4B 8 .
Let (E , bE ) be a b-space. A b-subspace of E is a subspace F with a boundedness b F

such that (F , b F ) is a b-espace and b F ’bE. We design by b(E1 , E2 ) the space of all
bounded linear mappings E1KE2 .

We denote by b the category of b-spaces and bounded linear mappings. For more
information about b-spaces we refer the reader to [7] and [4].

2. - NORMAL SEQUENCE SPACES

We shall consider spaces whose elements are families with an arbitrary index set,
always denoted by X . Most of spaces used in the applications are true sequence
spaces.

In this section, we consider b-subspaces of the space CX , and we define normal b-
subspaces of CX . If L is a normal b-subspace of CX , we define a functor L : BanK

KBan : E O L(E) and we show that it is possible to extend it to a functor L : bKb :
E O L(E).

Let X be a set. We recall that the product space CX is a b-space for the following
boundedness: A subset B is bounded in CX if and only if, for all x�X , the set B(x) 4

4 ] f (x) : f�B( is bounded in CX .

DEFINITION 2.1: Let X be a set.
i) A subset B of CX is normal if it is absolutely convex and u . f�B whenever f�B

and u is an element of the unit ball of l Q (X).
ii) A b-subspace L of CX is said to be normal if every bounded subset of L is includ-

ed in a normal bounded subset.
iii) A Banach subspace L of CX is said to be normal if for all f�L and u� l Q (X) we

have u . f�L and Vu . f VLGVuVQ V f VL .

The space CX is a normal b-subspace of itself. The unit ball of a normal Banach sub-
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space of CX is a completant normal bounded subset of CX . Every bounded subset of a
normal b-subspace of CX is included in a normal completant bounded subset.

We define the space L(E) when E is a Banach space.

DEFINITION 2.2: Let E be a Banach space.
1. To each normal b-subspace L of CX , we associate the vector space L(E) 4

4 ] f : XKE : V f (.)V�L(. A subset B of L(E) is bounded iff the set ]V f (.)V : f�B( is
bounded in L .

2. If L is a Banach subspace of CX , the vector space L(E) is normed by NNNfNNNL(E)4

4V(V f (.)VE )VL . It is a Banach space.

If L is a normal Banach subspace of CX , then L(E) is a Banach space. If L is a nor-
mal b-subspace of CX and E is a b-space, then L(E) is a b-space. When E and F are
two Banach spaces and u : EKF is a bounded linear mapping, we can also define
L(u) : L(E) KL(F) as the mapping f O u i f . In this way, we have defined a functor
L(.) on the category Ban of Banach spaces, with values either in Ban or in b depend-
ing whether L is a b-subspace or a Banach subspace of CX .

We can extend the functor L(.) to the category b . If E is a b-space, the b-space
L(E) will be the inductive limit of the b-spaces or Banach spaces L(EB ), where B
ranges over the bounded completant subsets of E . It is clear that for B%C the struc-
tural mapping L(EB ) KL(EC ) is injective, so that the inductive limit lim

B
L(EB ) can

be viewed as an union of b-subspaces. So we let the following definition.

DEFINITION 2.3: Let L be a normal b-subspace of CX and E be a b-space. Then L(E)
is the union of the Banach spaces L(EB ), where B ranges over the bounded completant
subsets of E . If E and F are two b-spaces and u : EKF is a bounded linear mapping,
then L(u) is the bounded linear mapping L(E) KL(F), f O u i f.

Again it is clear that we have defined a functor L(.) : bKb .
Let Y be a set and E a b-space, we denote by b(Y , E) the space of mappings

f : YKE such that f (Y) is bounded in E. We endow b(Y , E) with the equibounded
boundedness (i.e. a subset B of b(Y , E) is bounded if the set ] f (x), f�B , x�Y( is
bounded in E).

In [2], we showed the following result:

PROPOSITION 2.4: If Y is a set and u : EKF is a bornologically surjective bounded
linear mapping between two b-spaces, then the mapping b(Y , u) : b(Y , E) Kb(Y , F),
f O u i f is bornologically surjective.

It follows from the preceding result that if Y is a set, E is a b-space and
F is a bornologically closed subspace of E , then b(Y , E/F) 4b(Y , E) /b(Y , F).
In fact, the functor b(Y , .) : bKb is exact, and then as the sequence 0 KFKEK

KE/FK0 is exact in the category b , its image by the functor b(Y , .), give the
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following exact sequence 0 Kb(Y , F) Kb(Y , E) Kb(Y , E/F) K0, and the as-
sertion follows.

PROPOSITION 2.5: Let E be a b-space, L be a normal b-subspace of CX and f : XKE
be a mapping. Then ( f (x) )x�X�L(E) iff there exist functions l�L and g�b(X , E)
such that f4lg . A subset B of L(E) is bounded iff there exist bounded subsets B1 of L
and B2 of b(X , E) such that B%B1 . B2 .

This is obvious. It is enough to consider the case where E is a Banach space. If

f�L(E) we write f (x) 4l(x) g(x) with l(x) 4V f (x)V and g(x) 4
f (x)

l(x)
, if f (x) c0,

g(x) 40 otherwise, if f (x) 40, we use l(x) 40 and g(x) 40. Thus l�L and
Vg(x)VG1 for all x�X . The last part is proved in the same way.

If E , F and G are Banach spaces, then (u , v) : EKFKG is a complex in the cate-
gory Ban if v i u40. The complex (u , v) : EKFKG is exact in Ban iff; the range of
u is dense in the kernel of v.

We introduc left exact complexes in the category b .

DEFINITION 2.6: A complex (u , v) : EKFKG of the category b is exact if v has a
closed range (i.e. the b-space v(F) is bornologically closed in G) and for all bounded sub-
set C in F , v(C) 40, there exists a bounded completant subset C1 in F such that C%C1 ,
v(C1 ) 40, and there exists a bounded completant subset B in E such that u(B) %C1 and
0

M�R1
M . u(B) is dense in the Banach space FC1

.

We begin by showing the following characterization of left exact complexes in the
category b .

PROPOSITION 2.7: Let E , F , G be b-spaces, and (u , v) : EKFKG be a complex of
of the caetegory b . Then (u , v) is exact iff for all triples, (B , C , D) of bounded subsets
of E , F , G respectively, one can associate a triple of bounded completant subsets
(B 8 , C 8 , D 8 ) of E , F , G respectively, such that B%B 8 , C%C 8 , D%D 8 ; u(B 8 ) %C 8 ,
v(C 8 ) %D 8 , and the complex (uEB 8

, vFC 8
) : EB 8KFC 8KGD 8 is exact in Ban.

An exact complex of b-spaces is an inductive limit of exact complexes of Banach
spaces. Begin with a bounded subset D in G . there exists a bounded completant sub-
set D1 of E such that D%D1 . Since the bounded linear mapping v has a closed range,
the subset D1Ov(F) is completant and bounded in in the b-space v(F), and then there
exists a bounded completant subset C1 in F such that v(C1 ) 4D1Ov(F). Since the set
C1 does not usually contain C , we choose a bounded completant subset C2 in F such
that CNC1%C2 . As the complex (u , v) is exact, there exist subsets B3 and C3 , where
B3 is bounded and completant in E , and C3 is bounded in F such that B%B3 ,
C2Ov 21 (0) %C3 and the subspace u(EB3

) is dense in the Banach space FC3
. We let

B 84B3 , C 84C3 and D 84D3 . The spaces EB 8 , FC 8 , and GD 8 are Banach spaces, uEB 8
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maps EB 8 into FC 8 , vFC 8
maps FC 8 into GD 8 , and v(C 8 ) 4D 8Ov(F). This shows that the

complex (uEB 8
, vFC 8

) : EB 8KFC 8KGD 8 is exact in the category Ban.

PROPOSITION 2.8: The functor L(.) : bKb is exact.

Let G1K
v

G2K
w

G3 be an exact complex in the category b , hence the bounded lin-
ear mapping v is bornologically surjective onto Ker (w). Let B be a bounded subset in
Ker (L(w) ). According to the proposition 2.5, B is included in a product B1 . B2 ,
where B1 is a bounded subset of L and B2 is a bounded subset of b(X , G2 ). Thus we
can write each function f�B as f4l f . gf , with l f�B1 and gf�B2 .

Consider the set B284 ] gf (x) : x�X , f�B(. Since v i f40 for all f�B , the set B28

is included in Ker (w). Moreover it is bounded in the b-space G2 as B28%B2(X)4] f(x) :
x�X , f�B2( and B2 is bounded in b(X , G2). Thus there exists a bounded subset C1 of
G1 such that B284u(C1 ). For all f�B and x�X , we choose (by the axiom of choise) a
mapping hf : XKC1 such that gf (x) 4u(hf (x) ). Then the function l f . hf is an element
of L(G1) such that f4L(u)(l f hf). The set of functions C4]l f hf : f�B( is bounded in

L(G1) and B4L(u)(C). It follows that the complex L(G1) K
L(u)

L(G2)K
L(v)

L(G3) is exact.

COROLLARY 2.9: Let L be a normal b-subspace of CX , E be a b-space and F be a
bornologically closed subspace of E , then L(E/F) 4L(E) /L(F).

Now we give some examples.

EXAMPLES 2.10: 1. The Banach space c0 of all sequences of complex numbers
which converge to 0 , is a normal Banach subspace of CN , and then if L4c0 , we ob-
tain c0 (E/F) 4c0 (E) /c0 (F), when E is a b-space and F is a bornologically closed sub-
space of E .

2. If I is a set, the Banach spaces l p (I), 1 GpGQ are normal Banach subspaces of
CI , and then if E is a b-space and F is a bornologically closed subspace of E , we have
l p (I , E/F) 4 l p (I , E) /l p (I , F).

3. Let W be an Orlicz function (i.e. a convex continuous, non decreasing function
W : R1KR1 such that W(0) 40 and W(x) D0 for all xD0) and (V , D , m) be a s-fi-
nite measure space. The Orlicz disk DW (V , m) is the set of m-measurable functions f on
V such that s

V
W(Nf (x)N) dm(x) G1. The set DW (V , m) is a completant subset of the

space of measurable functions on (V , D , m). The Orlicz space LW (V , m) is the Ba-
nach space absorbed by DW (V , m), with the gauge of this set as norm. If V4N , with
the measure which counts the points, the Banach space LW (V , m) is called lW .

The Banach space lW is a normal Banach subspace of CN , and then if E is a b-space
and F is a bornologically closed subspace of E , we have lW (E/F) 4 lW (E) /lW (F).

By the previous results, the functors l Q (I)(. ) and lW (.) are exacts on b . We shall
write l p (I , E) instead of l p (I)(E). Let us remark that l Q (I , E) 4b(I , E).
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4. Let w0 be the function RnKR : s O w0 (s) 4 (11NsN)1/2 , where NsN4

4 g!
i41

n

NsiN
2h1/2

. We define u(s , w0 ) as the space of function u : RnKC such that the

function w0 (s)N u(s) is bounded for some natural number N�N. A subset B of
u(s , w0 ) is said to be bounded if there exists N�N such that ]w0 (s)N u(s) : s�Rn ,
u�B( is bounded in C. The space u(s , w0 ) is a normal b-subspace of CRn

, and then if
E is a b-space and F is a bornologically closed subspace of E , we have u(s , w0 , E/F) 4

4u(s , w0 , E) /u(s , w0 , F), where u(s , w0 , E) 4 ] f : RKE , there exists N�N such
that the set ]w0 (t)N f (t) : t�R( is bounded in E(, where w0 (t)4(11t 2 )21/2. A subset
B of u(R , w0 , E) is bounded if there exists N�N such that ]wo (t)N f (t); t�R , f�B(

is bounded in E .

REMARK 2.11: In [2], we obtained by different methods, that if E is a b-space and
F is a bornologically closed subspace of E , then c0 (E/F) 4c0 (E) /c0 (F) and
b(Y , E/F) 4b(Y , E) /b(Y , F).

3. - MEASURABLE FUNCTION SPACES

We suppose that the reader is familiar with the results about Bochner measurable
functions with values in a Banach space which were treated in J. Diestel and J. UHL
[3]. We consider a complete finite or s-finite measure space (V , D , m) and the space
L 0 (V , E) of Bochner measurable mappings from V into a Banach space E . It is a
completely metrizable topological vector space.

We prove that the functor L 0 (V , . ) : bKE . V . : EKL 0 (V , E) is exact. So if E is
a b-space and F a bornologically closed subspace of E , L 0 (V , E/F) is the vector space
L 0 (V , E) /L 0 (V , F).

If (V , D , m) is a complete finite or s-finite measure space and E is a Banach space,
L 0 (V , E) is the space of (equivalence classes of) Bochner measurable functions VK

KE . So L 0 (V , .) is a functor BanKE . V . . As the linear mapping L 0 (V , u) :
L 0 (V , E) KL 0 (V , F), f O u i f is injective when u : EKF is an injective bounded
linear mapping, we extend the functor L 0(V , .) in a standard way to the category b :

DEFINITION 3.1: Let (V , D , m) be a complete measure space or s-finite measure
space, and let E be a b-space. Then the space L 0 (V , E) is the inductive limite (i.e.
union) of the vector spaces L 0 (V , EB ), where B ranges over the bounded completant
subsets of E . If u : EKF is a bounded linear mapping between b-spaces, then the map-
ping L 0 (V , u) : L 0 (V , E) KL 0 (V , F) is the inductive limit of the mappings
L 0 (V , u/EB

) : L 0 (V , EB ) KL 0 (V , Fu(B) ).

We shall prove:
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THEOREM 3.2: Let (V , D , m) be a complete measure space or s-finite measure
space and u : EKF be a bornologically surjective bounded linear mapping between b-
spaces. Then the linear mapping L 0 (V , u) : L 0 (V , E) KL 0 (V , F), f O u i f is
surjective.

As the inductive limit is an exact functor on the category b [5], we shall consider
only the case where E and F are Banach spaces. To prove that the linear mapping
L 0 (V , u) is surjective, we try to lift up any function g�L 0 (V , F) to f�L 0 (V , E)
such that g4L 0 (V , u)( f ) 4u i f . We shall use the fact that there exists a constant
AD0 such that for all x�F , we have VxVGAVu(x)V .

The function g takes its values almost everywhere in a separable Banach subspace
F1 of F . Since F1 is separable, for all n�N , we can construct a measurable partition of

F1 by sets Yn , k of diameter smaller than
1

2n
(we start with a countable measurable cov-

ering of F1 by subsets Xn , k of diameter smaller than
1

2n
, and we let Yn , 14Xn , 1 and

Yn , k4Xn , k 0Xn , 1NRNXn , k21 for kD1 (we drop the Yn , k which would be empty)).
The partition (Yn , k )k will now be used to construct, by induction, a series ! fi of

measurable functions from V to E which converges almost everywhere to a function f
such that g4u i f .

First we construct the function f0 . For all k , we let V 0, k4g 21 (Y0, k ) and we
choose x0, k�u 21 (Y0, k ). The function f04!

k
1V0, k

x0, k is a measurable function from

V into E . For almost all x�V 0, k , we have the two relations g(x) �Y0, k and
u( f0 (x) ) 4u(x0, k ) �Y0, k . So Vg(x)2u i f0 (x)VG1.

Suppose that we have defined measurable functions f0 , f1 , R , fn taking their
values in E such that for all i� ]0, R , n( and for almost all x�V , we have

Vg(x)2u( f0 (x)1R fi (x) )V

1

2i
.

Then, we consider the function h4g2u i ( f01R1 fn ) and we let V n11, k4

4h 21 (Yn11, k ) (we keep only the values of k such that h(V)OYn11, kcf). For such a
k , we choose also xn11, k�u 21 (Yn11, k ).

We notice that Vxn11, k VGAVu(xn11, k )V and that

1) u(xn11, k ) �Yn11, k .
2) Yn11, kOh(V) c¯ .
3) For almost all x�V , Vh(x)VG

1

2n
.

4) The diameter of Yn11, k is less than
1

2n11
.

The conclusion is Vu(xn11, k )VG
1

2n21
, and Vxn11, k VG

A

2n21
for all k . Then we

let fn114!
k

1Vn11, k
xn11, k . Clearly, we have the following properties:

1. For all x , V fn11 (x)VG
A

2n11
.
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2. For almost all x , Vh(x)2u i fn11 (x)VG
1

2n11
.

From the first property, we deduce that the series !
n

fn converges to a function

f�L 0 (V , E), and from the second property, we deduce that for almost all x , we have
g(x) 4u( f (x) ), i.e. the mapping L 0 (V , u) is surjective.

COROLLARY 3.3: The functor L 0 (V , .) : bKE . V . is exact.

By the proposition 2.7, it is enough to prove that the functor L 0 (V , . ) : BanK

KE . V . is exact. Let

(0 , v , w , 0 ) : 0 KEKFKGK0

be a short exact complex of Ban, we like to prove the exactness of the se-
quence

(0 , L 0 (V , v), L 0 (V , w), 0 ) : 0 KL 0 (V , E) KL 0 (V , F) KL 0 (V , G) K0

in the category E.V. . The mapping L 0 (V , v) is injective. Indeed, let f�L 0 (V , E) be
such that L 0 (V , v)( f ) 40. Then for almost all x�V , we have v( f (x) ) 40. As the
mapping v is injective, the function f vanishes almost everywhere.

It remains to show that the image of L 0 (V , v) coincides with the kernel of
L 0 (V , w). This is clear, by what we have just proved in theorem 3.2, the image of
L 0 (V , v) is L 0 (V , v(E) ). But this space coincides with L 0 (V , w 21 (0) ) which is ob-
viously the kernel of L 0 (V , w).

COROLLARY 3.4: Let (V , D , m) be a complete finite or s-finite measure space. If E
is a b-space and F a bornologically closed subspace of E , then L 0 (V , E/F) 4

4L 0 (V , E) /L 0 (V , F).

REMARK 3.5: If (X , d) is a metric space, m is an inner regular finite measure on X and
E is a Banach space. A mapping f : XKE is Luzin measurable if for all eD0, there
exists a compact subset Ke of X such that m(X0Ke) Ee and fNKe

�C(Ke , E). We denoted
by LLus

0 (V , E) the space of Luzin measurable mappings. It is a completely metrizable
topological vector space for the topology of convergence in measure. If E is a b-space we
define LLus

0 (V , E) as the inductive limit of the inductive system (LLus
0 (V , EB) )B , where B

ranges over the bounded completant subsets of E . If we use the results of the paper [1]
about continuous functions with values in b-space, we can show the same result as theo-
rem 3.2 for Luzin measurable functions with values in b-spaces.

4. - NORMAL MEASURABLE FUNCTION SPACES

The problem studied in the preceding paragraph has a big flaw. The topology of
the space L 0 (V) is not locally convex. Now, we introduce normal b-subspaces of
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L 0 (V), and for each normal b-subspace J , we define an exact functor J(.) : bKb .
When J is a Banach normal subspace of L 0 (V), the functor J(.) has an exact restric-
tion to the category Ban. In particular, we define L p (V , E/F) as the b-space
L p (V , E) /L p (V , F). If W is an Orlicz convex function, we could in a similar way de-
fine LW (V , E/F).

Let E be a topological vector space, a subset B of E is bounded in the von Neu-
mann boundedness of E if it is absorbed by all neighbourhoods of the origin of E.

The von Neumann boundedness is a vector boundedness, it is separated if and
only if the topological vector space is separated. If E is locally convex, its von Neu-
mann boundedness is convex, but there exist topological vector spaces E whose
topologies are not locally convex but their von Neumann boundedness are convex (for
example, take I a set not countable and C(I) with the strongest vector topology).

If E is a locally convex space in which all bounded closed absolutely convex sub-
sets are completants, then the space E endowed with the von Neumann boundedness
is a b-space. For more information about the the von Neumann boundedness see [4]
and [7].

DEFINITION 4.1: A normal subset B of L 0 (V) is an absolutely convex closed subset,
which is bounded for the von Neumann boundedness and such that u . f�B whenever
f�B and u is a function belonging to the unit ball of L Q (V).

As the topological vector space L 0 (V) is complete, its bounded, closed absolutely
convex subsets are completants. So the normal subsets of L 0 (V) are comple-
tants.

Let us recall that a Banach subspace F of a topological vector space E is a vector
subspace of E with a norm for which F is complete and the embedding FKE is
continuous.

DEFINITION 4.2: A normal Banach subspace J of L 0 (V) is a Banach subspace of
L 0 (V) whose closed unit ball is a normal subset of L 0 (V).

In other words, the Banach subspace J of L 0 (V) is normal if and only if whenever
u�L Q (V) and f�J then u . f�J and Vu . f VJGVuVQ . V . f VJ .

EXAMPLE 4.3: The Banach spaces L p (V) (pF1) are normal Banach subspaces of
L 0 (V).

DEFINITION 4.4: A normal b-subspace J of L 0 (V) is a vector subspace of L 0 (V)
with a boundedness such that each bounded subset is contained in a bounded subset
which is normal in L 0 (V).

Let us introduce now vector valued function spaces.

DEFINITION 4.5: Let J be a normal Banach subspace of L 0 (V).
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1. If E is a Banach space, then J(E) is the space of measurable mappings f : VKE
such that V f (.)V�J . The norm of a function f�J(E) is defined as the norm in J of the
function V f (.)V . It is denoted by V f VJ(E)4VV f (.)VE VJ . This defines a Banach space
J(E).

2. If E is a b-space, then we define J(E) C0
B

J(EB ), where B ranges over the bound-
ed completant subsets of E .

This definition can be extended to the case where J is a normal b-subspace of
L 0 (V).

DEFINITION 4.6: Let J be a normal b-subspace of L 0 (V).
1. If E is a Banach space, then J(E) is the space of measurable mappings f : VKE

such that V f (.)V�J . A subset B of J(E) is bounded if ]V f (.)VNf�B( is bounded in J .
This defines a b-space J(E).

2. If E is a b-space, then we define J(E) C0
B

J(EB ), where B ranges over the
bounded completant subsets of E .

The next step is to show that the functor J(.): bKb is exact:

THEOREM 4.7: Let u : EKF be a bornologically surjective bounded linear mapping
between b-spaces and J be a normal b-subspace of L 0 (V), then the bounded linear map-
ping J(u) : J(E) KJ(F), f O u i f is bornologically surjective.

Since the inductive limit is an exact functor on the category b [5], we shall consid-
er only the case where E and F are Banach spaces. In the proof of the Theorem 3.2, for
all n�N , we have constructed a countable measurable partition ]Yn , k( of F1 (defined

in the theorem 3.2) such that all sets Yn , k have a diameter smaller than
1

2n
. Here, we

shall use a finer partition of F1 . We need a measurable and countable partition (Yn , k )k

such that Yn , 04 ]0( and for kD0, there exists yn , k�F1 such that for all y�Yn , k we

have Vy2yn , k VGmin m 1

2n
, VyVn. Let us show that such a partition exists.

Let (zk )k be a dense sequence of elements of F1 . For all y�F1 , with yc0, there

exists k such that Vy2zk VGmin m 1

2n
, VyVn . So the union of the sets Xn , k4

4 my�F1 : Vy2zk VG min m 1

2n
, VyVnn is F1 0]0(. The partition (Yn , k )k is then defined

by the relations Yn , 04 ]0(, Yn , 14Xn , 1 and Yn , k4Xn , k 0 0
j41

k21

Xn , j .

If one of the sets Yn , k is empty, we drop it and renumber the sequence. Now each
set Yn , k is included in one of the sets Xn , k and so it is associated to one of the vectors
zk . That vector zk will be the vector yn , k . We have constructed the partition that we
wanted.

Consider now g�J . For all k , we let V 0, k4g 21 (Y0, k ) and we choose x0, k�F
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such that u(x0, k ) 4y0, k . As in the proof of the theorem 3.2, we have Vx0, k VGAVy0, k V

for some AD0.
The function f04!

k
1V0, k

x0, k belongs to J(E). Indeed, for almost all x�V 0, k , we

have f0 (x) 4x0, k and g(x) �Y0, k, so that

V f0 (x)VGAVy0, k VGA(Vy0, k2g(x)V1Vg(x)V) G

GA(min m1, Vg(x)Vn1Vg(x)V) G2AVg(x)V .

As J is a normal Banach subspace of L 0 (V), we see that the function V f0 (.)V belongs
to J , thus f0�J(E). Moreover, for almost all x , we have Vg(x)2u i f0 (x)VG1.

We end the proof with an induction analogous to that of the theorem 3.2. Suppose
we have defined measurable functions f0 , f1 , R , fn belonging to J(E) such that for all
i� ]0, R , n( and for almost all x�V , we have

Vg(x)2u( f0 (x)1R1 fi (x) )VG
1

2i
.

Then, we consider the function h4g2u i ( f01R1 fn ) and we let V n11, k4

4h 21 (Yn11, k ) (we keep only the values of k such that h(V)OYn11, kcf). For such k ,
we choose also xn11, k such that u(xn11, k ) 4yn11, k and we let fn114

4!
k

1Vn11, k
xn11, k . The function fn11 belongs to J(E) because for almost all

x�V n11, k , we have

V fn11 (x)V4Vxn11, k VGAVyn11, k VG

GA(Vyn11, k2h(x)V1Vh(x)V) GA umin { 1

2n11
, Vh(x)V}1Vh(x)VvG2AVh(x)V .

As J is normal, V fn11 (.)V belongs to J , fn11 belongs to J(E) and V fn11 VJ(E)G

G2AVhVJ(E)G
A

2n21
.

On this way, we construct by induction a sequence (fi )i of elements of J(E) such
that the series !

i
fi converges in J(E). Moreover, for almost all x�V and for all n ,

Vh(x)2u i fn11 (x)VG
1

2n11
, in other words

Vg(x)2u i ( f0 (x)1R1 fn11 (x) )VG
1

2n11
.

Thus in J(F), we have g4u i (!
i

fi ). This proves that the mapping J(u) is
surjective.

COROLLARY 4.8: The functor J(.): bKb is exact.
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Let (0 , v , w , 0 ) : 0 KEKFKGK0 be a short exact complex of the category b.
First it is clear that the mapping J(v) is injective. By the Theorem 4.7, the mapping
J(w) is bornologically surjective. It remains to prove that the kernel of the mapping
J(w) coincides with the image of J(v) (as b-spaces). This is clear by what we have just
proved, the image of J(v) is J(v(E) ). But this space coincides bornologically with the
b-space J(w 21 (0) ) which is obviously the kernel of J(w).

COROLLARY 4.9: Let J be a normal b-subspace of L 0 (V). If E is a b-space and F a
bornologically closed subspace of E , then J(E/F) 4J(E) /J(F).

5. - SUMMABLE AND LOCALLY SUMMABLE FUNCTION SPACES

The classical spaces L p (V) are examples of normal Banach subspaces of L 0 (V).
The results of the preceding paragraph are valid for them. So we can speak of the
functor L p (V , .) : bKb : EKL p (V , E) and this functor is exact. The space
L p (V , E) is a Banach space or a b-space, according to the nature of E . Some comple-
ments can be added. We consider first the case pcQ .

Let V and V 8 be two measure spaces, V3V 8 is a measure space. The Fubini the-
orem [3] shows that if E is a Banach space and f�L p (V3V 8 , E) then for almost all
x�V , the function f (x , .) : V 8KE : y O f (x , y) is in L p (V 8 , E) and the function
f (. , . ) : VKL p (V 8 , E) : x O f (x , .) is in L p (V , L p (V 8 , E) ). Thus for any Banach
space E , L p (V3V 8 , E) CL p (V , L p (V 8 , E) ). This isomorphism extends immedi-
ately to the case of b-spaces. So we get.

PROPOSITION 5.1: If V and V 8 are two measure spaces, the functors L p (V3V 8 , .):
bKb and L p (V , L p (V 8 , .) ) : bKb are isomorphic.

EXAMPLE 5.2: The Banach space l p is naturally isomorphic to the Banach space
L p (N , D(N), J), where D(N) is the s-algebra of all subsets of N and J is the mea-
sure on D(N) which counts the number of elements. If 1 GpEQ , then
l p (L p (V , E) ) CL p (V , l p (E) ).

We can also consider spaces of locally p-summable functions. If we have to use
only Banach spaces or Fréchet spaces, we could restrict ourselves to finite measure
spaces. In the study of general b-spaces, s-finite measure spaces are usefuls.

DEFINITION 5.3: Let E be a b-space, and let (V , D , m) be a s-finite measure space.
If (V n )n�N is a partition of V such that m(V n ) E1Q for all n , then Lloc

p (V , E) is the

direct product »
n40

Q

L p (V n , E).

In the case where E is a b-space, a consequence of that definition is that the set of
values f (V) of the function f�Lloc

p (V , E) need not be contained in any Banach sub-
space EB of E .
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The proposition 5.1 extends immediately to the case of locally p-summable
functions:

PROPOSITION 5.4: If V and V 8 are two s-finite measure spaces, the functors
Lloc

p (V3V 8 , .) : bKb and Lloc
p (V , Lloc

p (V 8 , .) ) : bKb are isomorphic.

Consider next the case p4Q . We have already defined the exact functor b(X , .) :
bKb. When X is a set and E is a b-space, we have l Q (X , E) Cb(X , E).

If X is a set, we can consider the measure space (X , D(X), J), where J is the mea-
sure which counts the points. If E is a Banach space, the space L Q (X , E) could still
reasonably be called l Q (X , E). However if a mapping f : XKE is an element of that
space, its range is contained in a separable subspace of the Banach space E as the map-
ping has to be measurable. So this space L Q (X , E) is different from what we have
called l Q (X , E) previously, except if the set X is countable. In that case the range f (X)
of f is clearly included in a separable subspace of E .

Thus, it is preferable to keep the old definition of l Q (X , E) as the space of all
bounded functions XKE. With that definition, we can write b(X , l Q (E) ) C

C l Q (b(X , E) ), whether X is countable or not.
The result remains valid if we consider a bornological space X whose boundedness

has a countable basis b(X , l Q (E) ) C l Q (b(X , E) ) for f�b(X , E) iff for all bounded
subset B of X , fNB�b(B , E).

6. - THE INTEGRAL

When E is a Banach space, the integral is a bounded linear mapping L 1 (V , E) K

KE . When E is a b-space, any function f�L 1 (V , E) belongs to some Banach space
L 1 (V , EB ), where B is a bounded completant subset of E . We can integrate f in the
Banach space EB . The result is independent of the bounded completant subset B .

DEFINITION 6.1: Let E be a b-space. The (Bochner) integral on E is the bounded
linear mapping L 1 (V , E) KE , which is the inductive limit of the bounded linear map-
pings L 1 (V , EB ) KEB : f O s

V
f (x) dm(x), where B ranges over the bounded completant

subsets of E .

We can go a step further and define the integral on L 1 (V , E/F) when E is a b-
space and F is a bornologically closed subspace of E.

DEFINITION 6.2: If E is a b-space and F is a bornologically closed subspace of E , then
the integral on L 1 (V , E/F) is the morphism induced by the bounded linear mapping
L 1 (V , E) KE : f O s

V
f (x) dm(x).

This definition is valid as the integral maps L 1 (V , E) into E and L 1 (V , F)
into F .
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