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ABSTRACT. — We give a new definition of Subf (V) random variable. This definition is wider
than a previous one, studied by one of the Authors. Moreover we prove some inequalities con-
cerning the Subf-norms in various contexts.

Spazi di variabili aleatorie f-subgaussiane

SUNTO. — Si dà una nuova definizione di variabile aleatoria appartenente allo spazio
Subf (V). Tale definizione è più ampia di una precedente, studiata da uno degli Autori. Inoltre
si provano, in vari contesti, alcune diseguaglianze riguardanti le norme in tale spazio.

1. - INTRODUCTION

The notion of Subf (V) random variable is a very natural generalization of that of
sub-Gaussian random variable, introduced by Kahane in the paper [4] and developed
in [5-9]. The spaces Subf (V) were firstly defined in [1, 2] and studied in the book [3]
as well. In this paper we present a new definition of Subf (V) random variable. This
definition is wider than the previous one, and reveals itself of easier use. Most inequa-
lities for the Subf (V) random variables proved in this paper are new or improve
known inequalities.
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2. - ORLICZ N-FUNCTIONS

DEFINITION 2.1 [10] LET f4 ]f(x), x�R( be a continuous even convex function.
f is called an Orlicz N-function if f(0) 40, f(x) D0 as xc0 and the following con-
ditions hold

(A0 ) lim
xK0

f(x)

x
40, (AQ ) lim

xKQ

f(x)

x
4Q .

EXAMPLE 2.1: The following functions are N-functions:

f(x) 4CNxNa , CD0, aD1;

f(x) 4exp ]NxN(2NxN21;

f(x) 4exp ]aNxNa(21, aD0, aD1;

f(x) 4

.
`
/
`
´

u ea

2
v2/a

x 2 ,

exp ]NxNa(,

as NxNG u 2

a
v1/a

as NxND u 2

a
v1/a

, 0 EaE1.

LEMMA 2.1 [3, 10]: For any N-function f the following statements hold:
a) f(ax) Gaf(x) as x�R , 0 GaG1;
b) f(ax) Faf(x) as x�R , aD1;
c) f(NxN1NyN) Ff(x)1f(y) as x , y�R;
d) there exists a constant cD0, such that f(x) DcNxN as NxND1;

e) the function c(x) 4
f(x)

x
is monotone non-decreasing as xD0;

f ) f(x) 4 s
0

NxN

p(t) dt , where the density p4 ]p(t), tF0( is right continuous not-de-

creasing, p(0) 40 and p(t) KQ as tKQ .

DEFINITION 2.2 [10]: Let f4 ]f(x), x�R( be an N-function. The function f*
defined by

f*(x) 4 sup
y�R

(xy2f(y) )

is called the Young-Fenchel transform of f .

REMARK 2.1: If xD0, then f*(x) 4 sup
yD0

(xy2f(x) ). Moreover we have, for any
x�R , f*(2x) 4f*(x).
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LEMMA 2.2 [10]: The Young-Fenchel transform of an N-function is an N-function
as well and the following inequality holds (Young-Fenchel inequality)

xyGf(x)1f*(y), as xD0, yD0.(2.1)

EXAMPLE 2.2: If f(x) 4
NxNp

p
, pD1, then f*(x) 4

NxNq

q
where q is such that

1

q
1

1

p
41.

If f(x) 4exp ]NxN(2NxN21 then we have f*(x) 4 (NxN11) ln (NxN11)2

2NxN .

CONDITION Q: An N-function f satisfies condition Q if

lim inf
xK0

f(x)

x 2
4cD0.(2.2)

REMARK 2.2: It may happen that c4Q .

EXAMPLE 2.3: The N-function f(x) 4cNxNa as cD0, 1 EaG2, satisfies condition
Q, while the N-function cNxNa , cD0, aD2 doesn’t; on the other hand, it is easy to see
that condition Q holds for the function

f(x) 4
.
/
´

NxN2 , NxNG1

NxNa , NxND1
as aD2.

DEFINITION 2.3 [10]: Let f 1 and f 2 be two N-functions. Then f 1 is said to be su-
bordinate to f 2 (f 1Tf 2) if there exist two constants cD0 and x0D0 such that for
xDx0 the inequality f 1 (x) Ef 2 (cx) holds. The N-functions f 1 and f 2 are said to be
equivalent if both relations f 1Tf 2 and f 2Tf 1 hold.

REMARK 2.3: Let f 1Tf 2 . In this case it is easy to prove that for any x0D0 there
exist two constants x0 and c(x0 ) such that f 1 (x) Ef 2 (c(x0 )x) as NxNDx0 .

THEOREM 2.1: For any N-function f 1 there exists an N-function f 2 which satisfies
condition Q and such that f 1Af 2 .

PROOF: Let f 1 be an N-function. We define f 2 as follows. Let x0D0 be any con-
stant and put

f 2 (x) 4
.
/
´

cx 2 ,

f 1 (x)2f 1 (x0 )1cx0
2 ,

as 0 GxGx0

as xDx0 ,

where c4
p(x0 )

2x0

and p(t) is the density of f 1 . Then it is not difficult to see that

f 1Af 2 and f 2 satisfies condition Q. r
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LEMMA 2.3 [10]: Let f 1 and f 2 be two N-functions. Then
a) if f 1Tf 2 then f 2*Tf 1* ,
b) if f 1Af 2 then f 2*Af 1* .

LEMMA 2.4 [10]: Let f be an N-function and f (21)4 ]f (21) (x), x�R( be the in-
verse function of f . The following assertions hold

a) f (21) (x) is a monotone increasing, concave continuous function such that
f(0) 40, f(x) D0 as xD0, f(x) KQ as xKQ;

b) f (21) (ax) Gaf (21) (x), as aF1;
c) f (21) (ax) Faf (21) (x), as 0 GaE1;
d) f (21) (x1y) Gf (21) (x)1f (21) (y);
e) there exists such constant cD0 that f (21) (ax) Gcx , as xD1;

f ) the function u(x) 4
f (21) (x)

x
, xD0, is monotone decreasing.

3. - SPACES Subf (V). DEFINITIONS AND GENERAL PROPERTIES

Let (V , B, P) be a standard probability space, fixed throughout.

DEFINITION 3.1: Let f be an N-function satisfying condition Q. The random varia-
ble j belongs to the space Subf(V) if Ej40, E exp ]lj( exists for all l�R and there
exists a constant aD0 such that the following inequality holds for all l�R

E exp ]lj( Gexp ]f(la)(.(3.1)

REMARK 3.1: Conditions Q and Ej40 are necessary. In fact,

E exp lj411lEj1
l2

2
Ej21o(l2),

exp f(la) 411f(la)1o(f(la) ),

as lK0,

as lK0.

(3.2)

Inequality (3.1) holds for lD0 if the following holds

Ej1
l

2
Ej21

o(l2)

l
G

f(la)

l
1

o(f(la) )

l
, as lD0.

Since
f(la)

l
K0 as lK0 then EjF0. For lE0 (3.1) holds if

Ej1
l

2
Ej21

o(l2)

l
F

f(la)

l
1

o(f(la) )

l
;
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hence EjF0, so that Ej40. Now from (3.2) it follows that for lK0

Ej21
o(l2)

l2
G

f(la)

l2
1

o(f(la) )

l2
.

If lim inf
lK0

f(l)

l2
40, that there exists a sequence lnK0 such that

f(ln)

ln
2

K0 as nKQ,

that is Ej240 and j40 with probability one.

The condition lim
xKQ

f(x)

x
4Q excludes from our considerations the space of ran-

dom variables which are bounded with probability one. In fact, if for all l�R and some
aD0

E exp ]lj( Gexp ]aNlN(,

then, for all lD0 we get

E exp ]lNjN( G2 exp ]al(.

It follows from Chebyshev inequality that for any eD0, lD0

P]NjNDe( G
E exp ]lNjN(

exp ]lj(
G2 exp ](a2e) l(.

The right part of this inequality tends to zero as lKQ and eDa so that P]NjNDe( 4

40 if eDa .
Consider now the following functional, defined on the space Subf as (V)

tf(j) 4 inf (aF0 : E exp ljGexp f(al), l�R).(3.3)

It is evident that for all l�R the following inequality holds

E exp ]lj( Gexp f(ltf(j) );(3.4)

moreover

tf(j) 4 sup
lc0

f (21) ( ln (E exp ]lj() )

NlN
.(3.5)

LEMMA 3.1: Let j�Subf(V), tf(j) D0, eD0. The following inequalities hold

P]jDe( Gexp {2f*u e

tf(j)
v};

P]jE2e( Gexp {2f*u e

tf(j)
v};

P]NjNDe( G2exp {2f*u e

tf(j)
v}.
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PROOF: It follows from Chebyshev inequality that for all lD0, eD0

P]jDe( G
E exp ]lj(

exp ]le(
Gexp ]f(ltf(j) )2le( .

It follows from this inequality that

P]jDe( 4 inf
lD0

exp ]f(ltf(j) )2le( 4exp ]2sup
lD0

(le2f(ltf(j) ) )(

4exp {2sup
lD0

ultf(j)
e

tf(j)
2f(ltf(j) )v}

4exp {2f*u e

tf(j)
v}.

The first inequality of this lemma is proved. The second inequality can be proved in the
same way. The third inequality follows from

P]NjNDe( GP]jDe(1P]jE2e(, as eD0. r

THEOREM 3.1: The space Subf(V) is a Banach space with respect to the norm
tf(Q).

PROOF: We first prove that Subf(V) is a linear space with norm tf(Q).
If j40 with probability one then tf(j) 40. Conversely, if tf(j) 40 then

E exp ]lj( G1 for all lD0 and for any eD0, lD0

P]NjNDe( G
E exp ]lNjN(

exp ]le(
G (E exp ]lj(1E exp ]2lj() exp ]2le(

G2 exp ]2le(.

Let now lKQ . Then we obtain that for any e P]NjNDe( 40, that is j40 if and only
if tf(j) 40.

It follows from (3.5) that as ac0

tf(aj) 4

4

sup
lc0

f (21) ( ln (E exp laj) )

NlN

4NaN sup
alc0

f (21) ( ln (E exp laj) )

NalN
4NaNtf(j).

Now we prove that for any j , h�Subf(V)

tf(j1h) Gtf(j)1tf(h).
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If tf(j) 40 or tf(h) 40 the above inequality is obvious. Let tf(j) c0 and tf(h)c0.

It follows from Hölder inequality that for all l�R , pD0,
1

p
1

1

q
41,

E exp ]l(j1h)( G (E exp ]plj()
1

p (E exp ]qlj()1/q(3.6)

Gexp { 1

p
f(lptf(j) )1

1

q
f(lqtf(j) )}.

Put in (3.6)

p4
tf(j)1tf(h)

tf(j)
, q4

tf(j)1tf(h)

tf(h)
;

then we obtain

E exp ]l(j1h)( Gexp ]l(tf(j)1tf(h) )(,

hence tf(j1h) Gtf(j)1tf(h).
Now we prove that the space Subf(V) is complete with respect to the norm tf(Q).

Let the random variables jn , nF1, belong to the space Subf(V) and

lim
nKQ

sup
mFn

tf(jn2jm) 40.(3.7)

Therefore

lim
nKQ

sup
mFn

Ntf(jn)2tf(jm)NG lim
nKQ

sup
mFn

tf(jn2jm) 40

and sup
n

tf(jn) 4tEQ . It follows from (3.7) and lemma 3.1 that for any eD0

P]Njn2jmNDe( G2 exp {2f*u e

tf(jn2jm)
v}K0 as n , mKQ ,

so that jn2jmK0 in probability. Hence jn converge in probability to some random
variable jQ . We have now

sup
n

E[ exp]ljn(]11e4 sup
n

E exp l(11e) jn(3.8)

G sup
n

exp ]f(l(11e) tf(jn) )(

Gexp f(l(11e)t) EQ .

From (3.8) and the theorem of uniform integrability it follows that

E exp ]ljQ( 4 lim
nKQ

E exp ]ljn( Gexp f(ltf
Q),
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where tf
Q4 lim sup

nKQ
tf(jn). Hence jQ�Subf(V) and

tf(jQ) G lim sup
nKQ

tf(jn).(3.9)

The random variables jQ2jn belong to Subf(V). Now the inequality

tf(jQ2jn) G sup
mFn

tf(jm2jn)(3.10)

can be proved as we proved (3.9). It follows from (3.10) and (3.7) that tf(jQ2jn) K0
as nKQ . r

REMARK 3.2: If f(x) 4
x 2

2
the space Subf(V) 4Sub(V) is the space of sub-Gaus-

sian random variables.

LEMMA 3.2: Let j be a random variable such that Ej40 and E exp ]lj( 4a(l) exists
for all l�R . Then

(i) we have

E exp ]lj( F1;(3.11)

(ii) there exist all moments ENjNa , aD0, and the next inequality holds

E expNjNaGu a

e
va

inf
lD0

a(l)1a(2l)

la
.(3.12)

(iii) The function c(l) 4 ln (a(l) ) is convex; moreover for any real number x0 there
exists a constant T4T(x0) such that

E exp ]lj( Gexp ]Tl2((3.13)

as NlNEx0 ; we have T4 sup
NlNEx0

ln (E exp lj)

l2
EQ .

PROOF: From Jensen inequality we get E exp ]lj( Fexp ]lEj( 41, and (3.11) is
proved. From the relation

max
xF0

x a exp ]2x( 4u a

e
va

, as aD0

we deduce that for all xD0, aD0 we have

x aGu a

e
va

exp ]x(.(3.14)
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It follows from (3.14) that for all lD0

ENljNaGu a

e
va

E exp ]lj( Gu a

e
va

(E exp ]lj(1E exp ]2lj()(3.15)

4u a

e
va

(a(l)1a(2l) ).

Now (3.12) follows from (3.15).
We have

c9(l) 4
a 9(l) a(l)2 (a 8(l) )2

a 2(l)
.(3.16)

It follows from Hölder inequality, that

(a 8(l) )24 (Ej exp ]lj()2GEj2 exp ]lj( QE exp ]lj( 4a 9(l) a(l),

so that c9(l) F0 and the function c(l) is convex. If lK0 we have E exp ]lj( 411

1
1

2
Ej2 l21o(l2), hence c(l) 4

1

2
lEj21o(l2). Relation (3.13) now follows from the

last inequality and the convexity of c(l). r

THEOREM 3.2: Let f1(l) and f2(l) be two N-functions such that f1Tf2 . Assume
that j�Subf1

(V); then j�Subf2
(V) and there exists a constant c(f1 , f2) such that

tf2
(j) Gc(f1 , f2)tf1

(j).

PROOF: It follows from remark 2.3 that for any x0D0 there exists a number D4

4D(x0) D0 such that f1(x) Gf2(Dx), as NxNDx0 . Let j�Subf1
(V), t14tf1

(j) D0;
then for all lD0 such that NlNt1Fx0

exp ]lj( Gexp ]f1(lt1)( Gexp ]f2(lDt1)(.(3.17)

Let l be such that NlNG
x0

t1

; then it follows from Lemma 3.2 that there exists a number

B(x0) such that for NlNG
x0

t1

we have

exp ]lj( Gexp ]B(x0) t1
2 l2(,(3.18)

B(x0) 4 sup
NlNGx0 /t1

ln (E exp ]lj()

t1
2 l2

EQ .

Since B(x0) decreases when x0 decreases, it follows from (2.2) that there exist two
numbers z0D0 and c1D0 such that for all NxNGz0 we have f2(x) Fc1 x 2 . Let x0 be a

number such that
x0(B(x0) )1/2

c1

Gz0 . (Such a number exists since x0(B(x0) )1/2K0 as
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x0K0.) Then from (3.18) we deduce that for NlNG
x0

t1

E exp ]lj( Gexp {c1

B(x0)

c1

t1
2 l2}Gexp {f2ult1u B(x0)

c1

v1/2v}(3.19)

since

NlNt1u B(x0)

c1

v1/2

Gx0 t1u B(x0)

c1

v1/2

Gz0 .

It follows from (3.17) and (3.19) that E exp ]lj( Gexp ]f2(t1 Ll)(, where

L4 max uu B(x0)

c1

v1/2

, Dv
that is j�Subf2

(V) and tf2
(j) GLtf1

(j). r

EXAMPLE 3.1: Let j be any bounded random variable with Ej40; then j�Subf(V)
for all N-functions f .

In order to prove the above statement, let f be an N-function satisfying condition Q,
a a real number with aD0 and j a random variable with NjNGr with probability one.
Then

f(x) 4fu x

a
avF

NxN

a
f(a) as NxNFa .(3.20)

Hence it follows from (3.20) that

(3.21) E exp ]lj( Gexp { f(a)

a

aNlN

f(a)
r}Gexp {fua

NlN

f(a)
rv} as NlND

f(a)

r
.

Let NlNE
f(a)

r
; then from lemma 3.2 we deduce that there exists a number T(a , r)

such that

E exp ]lj( Gexp ]T(a , r) l2(.(3.22)

It follows from (2.2) that there exist two constants c1D0 and z0D0 such that

f(x) Fc1 x 2 as NxNEz0 ,(3.23)

T(a , r) decreases as a decrease so that we can choose a constant aD0 such that

f(a)T 1/2 (a , r)

r(c1)1/2
Gz0 .
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hence from (3.22) we get

u T(a , r)

c1

v1/2

NlNG
f(a)

r

T 1/2 (a , r)

(c1)1/2
Gz0

and

E exp ]lj( Gexp {c1

T(a , r)

c1

l2}Gexp {fulu T(a , r)

c1

v1/2v}.(3.24)

It follows from (3.23) and (3.24) that E exp ]lj( Gexp ]f(lK)(, where

K4 max gg T(a , r)

c1

h1/2

,
ar

f(a)
h; hence j�Subf(V).

In some particular cases we can find other (more precise) norms in the spaces
Subf(V).

EXAMPLE 3.2: Let j be a random variable uniformly distributed in the interval
[21, 1]. Then j�Subf(V) for all N-functions f and

ta(j) G6
12a

a as 1 EaG2,(3.25)

where ta(j) 4tfa
(j), fa4NxNa . In fact

E exp ]lj( 4
1

2
�

21

1

exp ]lu( du4
1

2l
(e l2e 2l)

4 !
k40

Q l2k

(2k11)!
4 !

k40

Q u l2

6
vk 6k k!

(2k11)!

1

k!

G !
k40

Q u l2

6
vk 1

k!
Gexp { l2

6
}.

If
NlN

k6
G1 then

exp { l2

6
}Gexp {u NlN

k6
va}Gexp {u NlN

6121/a
va}

so that for NlNGk6 we have

E exp ]lj( Gexp {u NlN

6121/a
va}(3.26)

It is obvious that E exp ]lj( 4E exp ]NlNNjN( Gexp ]NlN(.
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If
NlN

k6
D1 then

(3.27) exp ]NlN( Gexp {NlN
NlNa21

(k6)a21
}

4exp { NlNa

(k6)a21
}4exp {u NlN

(k6)
a21

a

va}.

(3.25) now follows from (3.26), (3.27).

EXAMPLE 3.3: If j is a Gaussian random variable, Ej40, Ej24s2D0, then

E exp ]lj(GE expm l2 s2

2
n, that is j�Subf(V), where f(x)4x 2 /2 and tf(j)4s .

EXAMPLE 3.4: Let j be a Poisson random variable, with Ej4a and put h4j2a;
then

E exp ]lh( 4exp ]a(e l2l21)(;

this means that h�Subf(V), where f(l) 4a(e NlN2NlN21) and tf(j) 41. It follows
from example 2.2 that

f*(l) 4a uu NlN

a
11v ln u NlN

a
11v2

NlN

a
v

and from Lemma 3.1 that for eD0 we have

P]hDe( Gexp {2y(e1a) ln u e

a
11v2ez}.(3.28)

4. - CHARACTERIZATION OF THE SPACE Subf(V) AND SOME INEQUALITIES

LEMMA 4.1: Let j�Subf(V). Then for all aD0 the following inequality holds

ENjNaG2 u a

e
va

(tf(j) )a inf
tDa

exp ]f(t)2a ln (t)((4.1)

G2(tf(j) )au a

f (21) (a)
va

as aD0.
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PROOF: It follows from inequalities (3.12) and (3.4) that for lD0 one has

(4.2) ENjNaG2 u a

e
va

l2a exp ]f(ltf(j) )(

42 u a

e
va

(tf(j) )au 1

ltf(j)
va

exp ]f(ltf(j) )(

42 u a

e
va

(tf(j) )a exp ]f(ltf(j) )2a ln (ltf(j) )(.

By setting l4
f (21) (a)

tf(j)
we obtain the second inequality in (4.1). r

COROLLARY 4.1: Let j�Subf(V); then the following inequality holds

tf(j) F
1

k2
uf(j),(4.3)

where

uf(j) 4 sup
nF2

(ENjNn)1/n f (21) (n)

n
.

Moreover uf(j) is a norm on Subf(V).

LEMMA 4.2: Let j�Subf(V). Then for k41, 2, R the following inequality holds

NEjkNGENjNkG2(tf(j) )k e k

(f (21) (k) )k
k!.(4.4)

PROOF: The relation exp ]x( 4 !
k40

Q x k

k!
yields that for xD0 we have

x kGk! exp ]x(.

For x4NjNl (lD0) we get

ENjNkGk! E exp ]lNjN(l2kGk! 2 exp ]f(ltf(j) )(l2k .

By setting l4
f (21) (k)

tf(j)
in the latter inequality we obtain (4.4). r
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COROLLARY 4.2: Let j�Subf(V). Then the following inequality holds

tf(j) F
1

ek2
nf(j),(4.5)

where

nf(j) 4 sup
nF2

NEjnN1/n f (21) (n)

(n! )1/n
.

COROLLARY 4.3: Let j�Subf(V) be a random variable with a symmetrical distribution
(or such that all moments Ej2n1140 for n40, 1, 2, R); then

tf(j) F
1

ek2
nf , 2 (j),(4.6)

where

nf , 2 (j) 4 sup
lF2

gEj2 lh1/2 l f (21) (2 l)

(2 l! )1/2 l
.

COROLLARY 4.4: Let j�Subf(V). Then we have

nf(j) Fuf(j), nf(j) Gexp { 49

48
} uf(j).(4.7)

PROOF: The first inequality is evident. The second one follows from Stirling’s

formula n!4n n e 2n(2pn)1/2 e un where NunNG
1

12n
. Indeed

(n! )2
1

n 4
1

n

e 11un /n

(2pn)1/2n
G

1

n
e 49/48 as nF2.

LEMMA 4.3: Let j be a random variable such that Ej40, f an N-function

satisfying condition Q. Let l0D0 be any number and c04 inf
0ENlNGl0

f(l)

l2
. Assume

that

nf(j) 4 sup
nF2

NEjnN1/n f (21) (n)

(n! )1/n
EQ .

Let g1 be the root of the equation

g4l0 kc0(12g),(4.8)
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g2 the root of the equation g322(12g) 40 and g3 the root of the equation

g4f (21) (2) kc0(12g).
Then j�Subf(V) and the following inequality holds

tf(j) GSf nf(j),(4.9)

where Sf4 max
i4 1,3

g i
21 .

PROOF: Let g be any number such that g� (0, min (g1 , g2) ). Then

gGg14l0 kc0(12g1)Gl0 kc0(12g).(4.10)

Let nf(j) 4n and l14
g

n
f (21) (2). Then from (4.10) we get

l1 n4gf (21) (2) Gl0 kc0(12g)f (21) (2).(4.11)

We now have easily

E exp ]lj( 411 !
n42

Q ln Ejn

n!
G11 !

n42

Q NlNn NEjnN

n!
4S(l).(4.12)

Relation (4.12) yields that

S(l) 411 !
n42

Q NlNn

(f (21) (n) )n

(f (21) (n) )n

n!
NEjnNG11 !

n42

Q u NlNn

f (21) (n)
vn

.(4.13)

For any number l such that NlNEl1 we get

S(l) G11 !
n42

Q u NlNn

f (21) (2)
vn

.(4.14)

From the relation

NlNn

f (21) (2)
G

l1 n

f (21) (2)
4gE1

we obtain

S(l) G11u NlNn

f (21) (2)
v2u12

NlNn

f (21) (2)
v21

G11u NlNn

f (21) (2)
v2 1

12g
(4.15)

411c0u NlNn

kc0k12gf (21) (2)
v2

.
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Relation (4.10) yields that

NlNn

kc0k12gf (21) (2)
G

l1 n

kc0k12gf (21) (2)
4

g

kc0(12g)
Gl0 ,

hence

c0u NlNn

kc0(12g)f (21) (2)
v2

Gf u ln

kc0(12g)f (21) (2)
v.

From the above we deduce that the following inequality holds, as NlNEl1

(4.16) S(l) G11f u ln

kc0(12g)f (21) (2)
vGexp {f u ln

kc0(12g)f (21) (2)
v}.

Let now NlNDl1 . Since

g4
l1 n

f (21) (2)
G

NlNn

f (21) (2)
,

there exists an integer nlF2 such that

NlNn

f (21) (nl11)
EgG

NlNn

f (21) (nl)
.(4.17)

Put now

A1(l) 4 !
n42

nl u NlNn

f (21) (n)
vn

, A2(l) 4 !
n4nl11

u NlNn

f (21) (n)
vn

.

We first bound A1(l). From the inequality f (21) (nl) G
NlNn

g
, for nGnl we get nG

GnlGf g NlNn

g
h, hence

1

n
f u NlNn

g
vF1 (as nGnl).(4.18)
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From Lemma 2.1 and Lemma 2.4 it follows, for every n with 2 GnGnl

NlNn

f (21) (n)
4

G

1

f (21) (n)
f (21)u nf(ln)

fg ln

g
h

fg ln

g
h

n
v

1

n
f u ln

g
v 1

f (21) (n)
f (21)un

f(ln)

f g ln

g
h vG

1

n
f u NlNn

g
v.

Hence

A1(l) G !
n42

nl u 1

n
f u ln

g
vvn

G !
n42

nl 1

n!
uf u ln

g
vvn

G !
n42

Q 1

n!
uf u ln

g
vvn

.(4.19)

We now bound A2(l). From (4.17) we get
NlNn

f (21) (nl11)
EgE1, so that

(4.20) A2(l) G !
n4nl11

Q u NlNn

f (21) (nl11)
vn

4u NlNn

f (21) (nl11)
vnl11u12

NlNn

f (21) (nl11)
v21

Ggnl11 1

12g
Gg3(12g)21Gg2

3(12g2)21

42 GnlGf u ln

g
v.

It follows from (4.19) and (4.20) that

(4.21) E exp ]lj( GS(l) G !
n40

Q 1

n!
uf u ln

g
vvn

4exp {f u ln

g
v} as NlNDl1 .

Relations (4.16) and (4.21) yield that, for all l�R , we have

E exp ]lj( Gexp ]f(Sg nl)(,(4.22)
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where Sg4 max gg21 , ((c0(12g) )1/2 f (21) (2) )21h. It is now easy to prove that

inf
g� (0, min (g1 g2) ]

Sg4Sf4 max
i4 1, 3

g i
21 ,

and inequality (4.8) follows. r

EXAMPLE 4.1: Let f be the N-function f(x) 4NxNa , 1 GaG2 and l0D0 any num-
ber. In this case

c04 inf
0 ENlNGl0

f(l)

l2
4l0

a22 , f (21) (2) 421/a .

Hence g1 is the root of the equation g4l0 kl0
a22(12g), i. e. g14

4
1

2
kl0

a/2 kl0
a42l0

al, g2 is the root of the equation g322(12g) 40, (g2A 0.770917),

g3 is the root of the equation g421/a kl0
a22(12g), i. e.

g34
1

2
k21/a l0

(a/2)21 kl0
a2222/a42l0

a2222/al.

Put z14 g g2
2

12g2
2
h1/a

, z24 g (12g2
2)22/a

g2
2

h1/(22a)

. Then it is not difficult to see that, if

l0D max (z1 , z2), we have g1Dg2 and g3Dg2 . Hence in this case we get Sf4

4g2
21A1.2971565. r

From corollary 4.2 and Lemma 4.3 we get the following result:

THEOREM 4.1: The random variable j belongs to Subf(V) if and only if Ej40 and
nf(j) EQ . The norms nf(j) and tf(j) are equivalent.

5. - ORLICZ SPACES OF EXPONENTIAL TYPE

DEFINITION 5.1. [3]: Let c be an arbitrary N-function. The Orlicz space generated
by the N-function

U(x) 4exp ]c(x)(21, x�R

is called an Orlicz space of exponential type.
We shall be interested in the Orlicz space of exponential type generated by the

Young-Fenchel transform f* of an N-function f . We shall denote such a space by
Expf* (V). The Luxemburg norm in Expf* (V) is denoted by sf* ; for any random vari-
able j we have

sf* (j) 4 inf ]aD0 : E[ exp f*(j/a) ] G2(.

The space Expf* (V) is a Banach space with respect to the norm sf* (Q).
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The following Lemma is a modification of a Lemma from [3].

LEMMA 5.1: Let f be an N-function and j� Expf* (V). Then for any pF1 the follow-
ing inequality holds:

gENjNph1/p
G21/p p

f (21) (p)
sf* (j).(5.1)

PROOF: It will be enough to prove (5.1) if sf* (j) D0. In this case the following
inequalities hold for pD0, x�R:

NxNp exp ]2f*(x)( G sup
x�R

NxNp exp ]2f*(x)(

4 sup
x�R

NxNp expm2sup
lD0

(lNxN2f(l) )n

4 sup
x�R

NxNp exp m inf
lD0

(f(l)2lNxN)n

4 sup
x�R

inf
lD0

NxNp exp ]f(l)2lNxN(

4 inf
lD0

kexp ](f(l)( sup
x�R

NxNp exp (2lNxN)l

4 g p

e
vp

inf
lD0

l2p exp ]f(l)(.

Then for all x�R

NxNpGu p

e
vp

exp ]f*(x)( inf
lD0

l2p exp ]f(l)(.

Substituting x4
NjN

sf* (j)
gives

ENjNpG (sf* (j) )p E exp {f u j

sf* (j)
v}u p

e
vp

inf
lD0

l2p exp ]f(l)(

G2(sf* (j) )pu p

e
vpu e

f (21) (p)
vp

42(sf* (j) )pu p

f (21) (p)
vp

. r
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LEMMA 5.2: Let f be an N-function satisfying condition Q. Let j be a random variable
such that j�Expf* (V) and Ej40. Then j�Subf(V) and

tf(j) GSf e
49

48 sf* (j),(5.2)

where Sf is defined below (4.8).

PROOF: It follows from Lemma 5.1 (inequality 5.1) and Stirling’s formula that

nf(j) 4 sup
nF2

NEjnN1/n f (21) (n)

(n! )1/n
G sup

nF2
21/n n

f (21) (n)
sf* (j)

f (21) (n)

(n! )1/n

G sup
nF2

u21/n sf* (j)
ne

n21/2n p1/2n n 1/2n e un /n
v

Gsf* (j) sup
nF2

21/2n e e 1/12n 2

21/2n p1/2n
Gsf* (j) e

49

48 EQ .

Now from Lemma 4.3 we get that j�Subf(V) and

tf(j) GSf nf(j) GSf e
49

48 sf* (j). r

LEMMA 5.3 [3]: Let j be a random variable such that

P]NjNFx( GC exp {2c u x

p
v},

where c(x) is N-function; then j�Expc(V) and

sc(j) G (11C) D .(5.3)

LEMMA 5.4: Let j�Subf(V); then j�Expf* (V) and the following inequality
holds:

sc* (j) G3tf(j).(5.4)

PROOF: If j�Subf(V) then it follows from Lemma 3.1 that

P]NjNDe( G2 exp {2f*u j

tf(j)
v}.

From Lemma 5.3 we deduce that j�Expf* (V) and inequality (5.4) holds. r

COROLLARY 5.1: The random variable j�Subf(V) if and only if j�Expf* (V) and
the norms sc* (j) and tf(j) are equivalent.
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This corollary follows from Lemmas 5.2 and 5.3.

THEOREM 5.1: The random variable j�Subf(V) if and only if Ej40 and there exist
two constants CD0 and DD0 such that

P]NjNDx( GC exp {2f*u x

D
v}(5.5)

for any xD0. If (5.5) holds then

tf(j) GSf e
49

48 (11C) D ,(5.6)

where Sf is defined below (4.9).

PROOF: If j�Subf(V) then it follows from Lemma 3.1 that (5.5) holds with C42,
D4tf(j). Conversely, if (5.5) holds we get from Lemma 5.2 that j�Expf* (V) and
sc* (j) G (11C) D . Now again from Lemma 5.2 we deduce that j�Subf(V) and

tf(j) GSf e
49

48 sc* (j). r

EXAMPLE 5.1: Let j be a random variable having centered Weibull distribution, i. e.

P]jDx( 4
1

2
exp {2

1

a
x a} as xD0;

P]jEx( 4
1

2
exp {2

1

a
NxNa} as xE0.

Let aD2. Since

P]NjNDx( 4exp {2
1

a
x a} as xD0,

then it follows from Theorem 5.1 that j�Subf (V), where

fb (x) 4
1

b
NxNb ,

1

b
1

1

a
41 and tfb

(j) G2Sfb
e

49

48 ,

where Sfb
is defined in (4.8).

Consider now the particular case f p (x) 4
NxNp

p
with 1 EpE2 or f p (x) 4

NxNp

p
if NxNF1 and f p (x) 4

x 2

p
if NxNE1, pD2. In this case we can improve inequality

(5.4). Our result is the following
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PROPOSITION 5.1: We have the inequality

sf* (j) GLtfp
(j),

where

L4 u 2e
1

12

k2p
11v1/q

PROOF: Consider first the case pD2. A simple calculation shows that

inf
tF1

exp ]f p (t)2 s log t( 4 u e

s
vs/p

, as sD1.

Let tfp
(j) 4t . Then (see Lemma 4.1)

ENjNsG2 u s

e
vs/q

t s(5.7)

Since f p*(x) G
NxNq

q
(qE2) we have by (5.7) (aD0)

E exp ]f*(j/a)( 4E exp ]NjNq /qa q( 4 !
k40

Q 1

k!

ENjNkq

(qa q )k
(5.8)

G112 !
k41

Q u k k

k!e k
v u t

a
vqk

.

It follows from Stirling’s formula that

k k

k!e k
4

1

k2pkke uk
G

e
1

12

k2p
.

Therefore

E exp {f*u j

a
v}G11

2e
1

12

k2p
!

k41

Q u t

a
vkq

.

The above geometric series converges if t/aE1 and in such case its sum is equal to

11
2e

1

12

k2p

(t/a)q

(12 (t/a)q )
.

Then the last quantity in (5.8) is not greater than 2 if a/tDLD1 and this gives the
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statement of Proposition 5.1. If 1 EpE2 the proof is the same

gf*(x) 4
NxNq

q
h. r

6. - A CHARACTERISATION OF THE Subf-NORM tf

FOR SYMMETRIC RANDOM VARIABLES

In this section we shall consider only symmetric random variables, which we shall
call, for the sake of brevity, simply random variables.

For every real number tc0, let Mt be the convex function defined by

Mt (x) 4
cosh (tx)21

e f(t)21
, x�R .

Clearly, for every random variable j , the function t O EMt (j) is symmetric.
Moreover

EMt (j) 4
Ee tj21

e f(t)21
.

Let now j be a fixed random variable. Put, for each t ,

At4 ]aD0 : EMt (j/a) G1(.

We shall assume that At is nonempty. We have

PROPOSITION 6.1: At =A-t. Moreover At is a closed, left bounded half-line.

The proof of Proposition (6.1) is an easy consequence of two lemmas:

LEMMA 6.1: The (symmetric) function t O Ee tj is increasing for tD0 (hence de-
creasing for tE0).

For every t , put

t t (j) 4 inf At .

LEMMA 6.2.

EMtu j

t t (j)
vG1.

The proofs of Lemmas 6.1 and 6.2 are straightforward.
Set now

Et4 ]j : t t (j) EQ(.
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We are interested in analyzing the structure of Et and the properties of t t on Et . Since
At4A2t we have

t t (j) 4t2t (j); Et4E2t .

Hence there is no loss of generality in confining ourselves to the case tF0.
We shall prove the following result

THEOREM 6.1: Et is a vector space and t t is a norm on Et.

PROOF: It is easy to see that Et is a vector space and t t is a seminorm on it (recall
that Mt is convex). It remains to see that t t (j) 40 implies j40. The relation t t (j) 4

40 amounts to saying that, for every aD0, we have

EMtu j

a
vG1,

or, equivalently,

Ee tj/aGe f(t) .

By the exponential Chebicev inequality, we deduce that, for every uD0

P]jDu( 4P]e tj/aDe tu/a( GEe tj/a e 2tu/aGe f(t) e 2tu/a .

By letting a go to zero, we get P]jDu( 40 for every uD0, hence P]jD0( 40 and
also P]jc0( 40 because of the symmetry of j . r

Now, for every random variable j , put

t×(j) 4 sup
t

t t (j),

and consider the set

S(V) 4 ]j�Ot Et : t×(j) EQ(.

We are interested in the structure of the pair (S(V), t×). First of all, S(V) is non-empty,
since all symmetric variables in Subf (V) belong to it. Moreover, it is clear by its very
construction that

PROPOSITION 6.2: S (V) is a vector space and t× is a norm on it.

As we have said just now, we have the inclusion

Subf (V) ’ S(V).

As a matter of fact, the inclusion is a set-theoretic equality:
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PROPOSITION 6.3: S (V) coincides with the subspace of Subf (V) consisting of
the symmetric random variables. Moreover t× 4tf on S(V).

For the proof of proposition 6.3 we need a simple lemma:

LEMMA 6.3: Let j be a random variable. Put

A4 ]aD0 : EMt (j/a) G1, (t( 4 ]aD0 : Ee tj/aGe f(t)(;

B4 ]bD0 : Ee tjGe f(bt) , (t . (

Then we have A4B.

PROOF OF PROPOSITION 6.3: We have A41
t

At ; since At is a left bounded half-line

for each t , the same is true for A . Moreover, by the preceding lemma, for every ran-
dom variable j we have

t×(j) 4 sup
t

t t (j) 4 inf A4 inf B4tf (j). r

7. - COMPARISON OF THE NORMS tf AND sf* . SECOND PART

Let q be the density of f* i.e. the function such that

f*(x) 4 �
0

NxN

q(t) dt .

We assume that q is differentiable and

inf
u

(q 8 (u)1q 2 (u) ) 4HD0.

REMARK 7.1: The above assumption is verified for the functions

f(x) 4
NxNp

p
;

f(x) 4e NxN2NxN21.

Put now

d4f (21) (log 3)

L4 sup
NtNGd

t 2

f(t)
.
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We remark that

LF lim sup
tK0

t 2

f(t)
4

1

c
F0

and that LEQ since cD0.
Last, we set

A4 max ]k10L/3H , 1(.

and

d4f21 (log 3).

We are going to prove the following

PROPOSITION 7.1: For every symmetric random variable j� S(V) we have

sup
NtNGd

t t (j) GAsf* (j).

We need a

LEMMA 7.1: For NtNGd

Mt (x) Ge f*(Ax)21.

PROOF (OF THE LEMMA): For NtNGd we have, by (2.1)

e tu1e 2tuGe Adu1e 2Adu42 !
k40

Q (d(Au) )2k

(2k) !
G2 !

k40

Q (f(d) f*(Au) )2k

(2k) !

42 !
k40

Q (log 3f*(Au) )2k

(2k) !
G

10

3
e f*(Au)

G
10

3HA 2
e f*(Au) (A 2 q 2 (Au)1A 2 q 8 (Au) ).

By recalling the inequality zGe z21 we obtain also

2
f(t)

e f(t)21
(e tu1e 2tu ) G

20

3HA 2
e f*(Au) (A 2 q 2 (Au)1A 2 q 8 (Au) );

now, by an integration in u between 0 and y , with NyNGd we get

2
f(t)

e f(t)21

e ty2e 2ty

t
G

20

3HA 2
e f*(Ay) Aq(Ay);
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by another integration in y between 0 and x , with NxNGd we get finally

Mt (x) 4
cosh tx21

e f(t)21
G

10L

3HA 2
(e f*(Ax)21) G (e f*(Ax)21). r

We are now ready to conclude the proof of the proposition. Let aD0 be such
that

E[e f*(j/a)21] G1;

by the preceding lemma this implies that

EMt (j/(Aa) ) G1,

so that we have the inclusion

A3 ]aD0 : EM(j/a) G1( ’ ]bD0 : EMt (j/b) G1(

and this amounts to saying that

t t (j) GAsf* (j),

hence the statement of Proposition 7.1 by taking the supremum in NtNGd .
The two following lemmas are straightforward

LEMMA 7.2: For every pair of real numbers t, x we have

e tx1e 2txGe f(t)1f*(x)11 Ge f(t)1f*(x)12.

LEMMA 7.3: For every pair of real numbers t , x we have

Mt (x/2) GMt (x) /2 .

Put again d4f (21) (log 3). We have

PROPOSITION 7.2: For every symmetric random variable X we have

sup
NtNDd

t t (j) G2sf* (j).

PROOF: From Lemma 7.2 we easily get the relation

Mt (x) G
1

2
u11

1

e f(t)21
v exp mf*(x)n.(7.1)

Since NtNDd we have

1

2
u11

1

e f(t)21
vG

3

4.
(7.2)
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Let now aD0 be such that

E[e f*(j/a)21] G1;

from relations (7.1) and (7.2) we get

EMt (j/a) G (3/4) E[e f*(j/a)21]13/4 G (3/2) E2.

Hence, we deduce from Lemma (7.3) that

EMt (j/(2a) ) G (1/2) EMt (j/a) G1.

The above relation says that 2a�At , that is

2aFt t (j).(7.3)

On taking the infimum with respect to a in relation (7.3), we get

2sf* (j) Ft t (j);

we now obtain the required relation by taking the supremum in t . r

Proposition 7.1 and 7.2 together with Proposition 6.3 yield

PROPOSITION 7.3: For every symmetric random variable in Subf (V) we have

tf (j) G max ]A , 2( sf* (j),

where A is the number defined in Proposition 7.1. r

We now drop the assumption of symmetry and use an argument of symmetriza-
tion: let j be any variable in Subf (V) and h an independent copy of j . Denote by C
the number max ]A , 2(. By Jensen inequality and Proposition 7.3 we have

Ee tjGEe t(j2h)Gf(tCs(j2h) ) Gf(2 tCs(j) ),

since sf* is a norm and sf* (j) 4sf* (h).
Hence we deduce the

PROPOSITION 7.4: For every random variable j in Subf (V) we have

tf (j) G2Csf* (j).

8. - INDEPENDENT RANDOM VARIABLES IN Subf (V)

THEOREM 8.1 [3]: Let j 1 , j 2 , R , j n�Subf (V) be independent random variables.
If the function f(NxN1/p ), x�R is convex for some p� [1 , 2], then

tf
p g !

k41

n

j khG !
k41

n

tf
p (j k ).(8.1)
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PROOF: Since the function f(NxN1/p ) is convex the statement follows from the
relations:

E exp ml !
k41

n

j kn4 »
k41

n

E exp ]lj k( G »
k41

n

exp ]f(NlNtf (j k )(

4exp m !
k41

n

f gg(NlNtf (j k ) )ph1/phn
Gexp {f ul g !

k41

n

tf
p (j k )h1/pv} . r

COROLLARY 8.1: Let j k�Subf (V), k4 1, Q and assume that the function
f(NxN1/p ), x�R , p� [1 , 2], is convex. Then we have

tf
p g !

k41

Q

j khG !
k41

Q

tf
p (j k ).

EXAMPLE 8.1: Let hk , k41, Q be independent random variables uniformly distri-

buted in [21, 1]. Let u4 !
k41

Q

ak h k . It follows from example 3.2 that h k�Subf (V),

where fa (x) 4NxNa , 1 EaG2, and tfa
(j) G6(12a) /a . If !

k41

Q

ak
aEQ then

tfa
(u) G !

k41

Q

ak
a tfa

(h k ) G612a !
k41

Q

ak
a4AaEQ

that is h�Subf (V). In this case the following inequality holds

P]NuNDe( G2 exp {2fa*u e

Aa

v}42 exp {2cau e

Aa

v
a

a21 } ,

where ca4a
2

1

a21 2a
2

a

a21 .
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