Rendiconti
Accademia Nazionale delle Scienze detta dei XL
Memorie di Matematica e Applicazioni 121° (2003), Vol. XXVII, fasc. 1, pagg. 95-124

R. GIULIANO ANTONINI - YU. KOZACHENKO
 T. NIKITINA (*)

Spaces of ϕ-Subgaussian Random Variables (**)

Abstract

We give a new definition of $\operatorname{Sub}_{\phi}(\Omega)$ random variable. This definition is wider than a previous one, studied by one of the Authors. Moreover we prove some inequalities concerning the $S u b_{\phi}$-norms in various contexts.

Spazi di variabili aleatorie ϕ-subgaussiane

Sunto. - Si dà una nuova definizione di variabile aleatoria appartenente allo spazio $\operatorname{Sub}_{\phi}(\Omega)$. Tale definizione è più ampia di una precedente, studiata da uno degli Autori. Inoltre si provano, in vari contesti, alcune diseguaglianze riguardanti le norme in tale spazio.

1. - Introduction

The notion of $\operatorname{Sub}_{\phi}(\Omega)$ random variable is a very natural generalization of that of sub-Gaussian random variable, introduced by Kahane in the paper [4] and developed in [5-9]. The spaces $\operatorname{Sub}_{\phi}(\Omega)$ were firstly defined in [1, 2] and studied in the book [3] as well. In this paper we present a new definition of $\operatorname{Sub}_{\phi}(\Omega)$ random variable. This definition is wider than the previous one, and reveals itself of easier use. Most inequalities for the $\operatorname{Sub}_{\phi}(\Omega)$ random variables proved in this paper are new or improve known inequalities.
(*) Indirizzi degli Autori: Dipartimento di Matematica Università di Pisa, via F. Buonarroti 2, 56100 Pisa. E-mail: giuliano@dm.unipi.it

Kyiv University Fac. of Mathematics and Mechanics, Volodymirska str., 64 Kyiv, 01033 Ukraine. E-mail: yvk@mechmat.univ.kiev.ua
(**) Memoria presentata il 10 novembre 2003 da Giorgio Letta, uno dei XL.

2. - Orlicz N-functions

Definition 2.1 [10] Let $\phi=\{\phi(x), x \in \mathbb{R}\}$ be a continuous even convex function. ϕ is called an Orlicz N-function if $\phi(0)=0, \phi(x)>0$ as $x \neq 0$ and the following conditions hold

$$
\left(A_{0}\right) \lim _{x \rightarrow 0} \frac{\phi(x)}{x}=0, \quad\left(A_{\infty}\right) \lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=\infty .
$$

Example 2.1: The following functions are N-functions:

$$
\begin{aligned}
& \phi(x)=C|x|^{\alpha}, \quad C>0, \alpha>1 ; \\
& \phi(x)=\exp \{|x|\}-|x|-1 ; \\
& \phi(x)=\exp \left\{a|x|^{\alpha}\right\}-1, \quad a>0, \alpha>1 \\
& \phi(x)= \begin{cases}\left(\frac{e \alpha}{2}\right)^{2 / \alpha} x^{2}, \quad \text { as }|x| \leqslant\left(\frac{2}{\alpha}\right)^{1 / \alpha} \\
\exp \left\{|x|^{\alpha}\right\}, \quad \text { as }|x|>\left(\frac{2}{\alpha}\right)^{1 / \alpha}, 0<\alpha<1 .\end{cases}
\end{aligned}
$$

Lemma 2.1 [3, 10]: For any N-function ϕ the following statements bold:
a) $\phi(\alpha x) \leqslant \alpha \phi(x)$ as $x \in \mathbb{R}, 0 \leqslant \alpha \leqslant 1$;
b) $\phi(\alpha x) \geqslant \alpha \phi(x)$ as $x \in \mathbb{R}, \alpha>1$;
c) $\phi(|x|+|y|) \geqslant \phi(x)+\phi(y)$ as $x, y \in \mathbb{R}$;
d) there exists a constant $c>0$, such that $\phi(x)>c|x|$ as $|x|>1$;
e) the function $\psi(x)=\frac{\phi(x)}{x}$ is monotone non-decreasing as $x>0$;
f) $\phi(x)=\int_{0}^{|x|} p(t) d t$, where the density $p=\{p(t), t \geqslant 0\}$ is right continuous not-decreasing, $p(0)=0$ and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Definition 2.2 [10]: Let $\phi=\{\phi(x), x \in \mathbb{R}\}$ be an N-function. The function ϕ^{*} defined by

$$
\phi^{*}(x)=\sup _{y \in \mathbb{R}}(x y-\phi(y))
$$

is called the Young-Fenchel transform of ϕ.
Remark 2.1: If $x>0$, then $\phi^{*}(x)=\sup _{y>0}(x y-\phi(x))$. Moreover we have, for any $x \in \mathbb{R}, \phi^{*}(-x)=\phi^{*}(x)$.

Lemma 2.2 [10]: The Young-Fenchel transform of an N-function is an N-function as well and the following inequality bolds (Young-Fenchel inequality)

$$
\begin{equation*}
x y \leqslant \phi(x)+\phi^{*}(y), \quad \text { as } \quad x>0, y>0 \tag{2.1}
\end{equation*}
$$

Example 2.2: If $\phi(x)=\frac{|x|^{p}}{p}, p>1$, then $\phi^{*}(x)=\frac{|x|^{q}}{q}$ where q is such that $\frac{1}{q}+\frac{1}{p}=1$.

If $\phi(x)=\exp \{|x|\}-|x|-1$ then we have $\phi^{*}(x)=(|x|+1) \ln (|x|+1)-$ $-|x|$.

Condition Q: An N-function ϕ satisfies condition Q if

$$
\begin{equation*}
\liminf _{x \rightarrow 0} \frac{\phi(x)}{x^{2}}=c>0 \tag{2.2}
\end{equation*}
$$

Remark 2.2: It may happen that $c=\infty$.
Example 2.3: The N-function $\phi(x)=c|x|^{\alpha}$ as $c>0,1<\alpha \leqslant 2$, satisfies condition Q, while the N-function $c|x|^{\alpha}, c>0, \alpha>2$ doesn't; on the other hand, it is easy to see that condition Q holds for the function

$$
\phi(x)=\left\{\begin{array}{ll}
|x|^{2}, & |x| \leqslant 1 \\
|x|^{a}, & |x|>1
\end{array} \quad \text { as } \quad \alpha>2 .\right.
$$

Definition 2.3 [10]: Let ϕ_{1} and ϕ_{2} be two N-functions. Then ϕ_{1} is said to be subordinate to $\phi_{2}\left(\phi_{1}<\phi_{2}\right)$ if there exist two constants $c>0$ and $x_{0}>0$ such that for $x>x_{0}$ the inequality $\phi_{1}(x)<\phi_{2}(c x)$ holds. The N-functions ϕ_{1} and ϕ_{2} are said to be equivalent if both relations $\phi_{1}<\phi_{2}$ and $\phi_{2}<\phi_{1}$ hold.

Remark 2.3: Let $\phi_{1}<\phi_{2}$. In this case it is easy to prove that for any $x_{0}>0$ there exist two constants x_{0} and $c\left(x_{0}\right)$ such that $\phi_{1}(x)<\phi_{2}\left(c\left(x_{0}\right) x\right)$ as $|x|>x_{0}$.

Theorem 2.1: For any N-function ϕ_{1} there exists an N-function ϕ_{2} which satisfies condition Q and such that $\phi_{1} \sim \phi_{2}$.

Proof: Let ϕ_{1} be an N-function. We define ϕ_{2} as follows. Let $x_{0}>0$ be any constant and put

$$
\phi_{2}(x)= \begin{cases}c x^{2}, & \text { as } 0 \leqslant x \leqslant x_{0} \\ \phi_{1}(x)-\phi_{1}\left(x_{0}\right)+c x_{0}^{2}, & \text { as } x>x_{0},\end{cases}
$$

where $c=\frac{p\left(x_{0}\right)}{2 x_{0}}$ and $p(t)$ is the density of ϕ_{1}. Then it is not difficult to see that $\phi_{1} \sim \phi_{2}$ and ϕ_{2} satisfies condition Q .

Lemma 2.3 [10]: Let ϕ_{1} and ϕ_{2} be two N-functions. Then
a) if $\phi_{1}<\phi_{2}$ then $\phi_{2}^{*}<\phi_{1}^{*}$,
b) if $\phi_{1} \sim \phi_{2}$ then $\phi_{2}^{*} \sim \phi_{1}^{*}$.

Lemma 2.4 [10]: Let ϕ be an N-function and $\phi^{(-1)}=\left\{\phi^{(-1)}(x), x \in \mathbb{R}\right\}$ be the inverse function of ϕ. The following assertions hold
a) $\phi^{(-1)}(x)$ is a monotone increasing, concave continuous function such that $\phi(0)=0, \phi(x)>0$ as $x>0, \phi(x) \rightarrow \infty$ as $x \rightarrow \infty$;
b) $\quad \phi^{(-1)}(\alpha x) \leqslant \alpha \phi^{(-1)}(x)$, as $\alpha \geqslant 1$;
c) $\phi^{(-1)}(\alpha x) \geqslant \alpha \phi^{(-1)}(x)$, as $0 \leqslant \alpha<1$;
d) $\phi^{(-1)}(x+y) \leqslant \phi^{(-1)}(x)+\phi^{(-1)}(y)$;
e) there exists such constant $c>0$ that $\phi^{(-1)}(\alpha x) \leqslant c x$, as $x>1$;
f) the function $\theta(x)=\frac{\phi^{(-1)}(x)}{x}, x>0$, is monotone decreasing.

3. - Spaces $\operatorname{Sub}_{\phi}(\Omega)$. Definitions and general properties

Let (Ω, \mathcal{B}, P) be a standard probability space, fixed throughout.

Definition 3.1: Let ϕ be an N-function satisfying condition Q . The random variable ξ belongs to the space $\operatorname{Sub}_{\phi}(\Omega)$ if $E \xi=0, E \exp \{\lambda \xi\}$ exists for all $\lambda \in \mathbb{R}$ and there exists a constant $a>0$ such that the following inequality holds for all $\lambda \in \mathbb{R}$

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \{\phi(\lambda a)\} . \tag{3.1}
\end{equation*}
$$

Remark 3.1: Conditions Q and $E \xi=0$ are necessary. In fact,

$$
\begin{array}{rlrl}
E \exp \lambda \xi & =1+\lambda E \xi+\frac{\lambda^{2}}{2} E \xi^{2}+o\left(\lambda^{2}\right), & \text { as } \lambda \rightarrow 0 \tag{3.2}\\
\exp \phi(\lambda a) & =1+\phi(\lambda a)+o(\phi(\lambda a)), & & \text { as } \lambda \rightarrow 0
\end{array}
$$

Inequality (3.1) holds for $\lambda>0$ if the following holds

$$
E \xi+\frac{\lambda}{2} E \xi^{2}+\frac{o\left(\lambda^{2}\right)}{\lambda} \leqslant \frac{\phi(\lambda a)}{\lambda}+\frac{o(\phi(\lambda a))}{\lambda}, \quad \text { as } \lambda>0 .
$$

Since $\frac{\phi(\lambda a)}{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$ then $E \xi \geqslant 0$. For $\lambda<0$ (3.1) holds if

$$
E \xi+\frac{\lambda}{2} E \xi^{2}+\frac{o\left(\lambda^{2}\right)}{\lambda} \geqslant \frac{\phi(\lambda a)}{\lambda}+\frac{o(\phi(\lambda a))}{\lambda} ;
$$

hence $E \xi \geqslant 0$, so that $E \xi=0$. Now from (3.2) it follows that for $\lambda \rightarrow 0$

$$
E \xi^{2}+\frac{o\left(\lambda^{2}\right)}{\lambda^{2}} \leqslant \frac{\phi(\lambda a)}{\lambda^{2}}+\frac{o(\phi(\lambda a))}{\lambda^{2}}
$$

If $\liminf _{\lambda \rightarrow 0} \frac{\phi(\lambda)}{\lambda^{2}}=0$, that there exists a sequence $\lambda_{n} \rightarrow 0$ such that $\frac{\phi\left(\lambda_{n}\right)}{\lambda_{n}^{2}} \rightarrow 0$ as $n \rightarrow \infty$, that is $E \xi^{2}=0$ and $\xi=0$ with probability one.

The condition $\lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=\infty$ excludes from our considerations the space of random variables which are bounded with probability one. In fact, if for all $\lambda \in \mathbb{R}$ and some $a>0$

$$
E \exp \{\lambda \xi\} \leqslant \exp \{a|\lambda|\}
$$

then, for all $\lambda>0$ we get

$$
E \exp \{\lambda|\xi|\} \leqslant 2 \exp \{a \lambda\} .
$$

It follows from Chebyshev inequality that for any $\varepsilon>0, \lambda>0$

$$
P\{|\xi|>\varepsilon\} \leqslant \frac{E \exp \{\lambda|\xi|\}}{\exp \{\lambda \xi\}} \leqslant 2 \exp \{(a-\varepsilon) \lambda\} .
$$

The right part of this inequality tends to zero as $\lambda \rightarrow \infty$ and $\varepsilon>a$ so that $P\{|\xi|>\varepsilon\}=$ $=0$ if $\varepsilon>a$.

Consider now the following functional, defined on the space $\operatorname{Sub}_{\phi}$ as (Ω)

$$
\begin{equation*}
\tau_{\phi}(\xi)=\inf (a \geqslant 0: E \exp \lambda \xi \leqslant \exp \phi(a \lambda), \lambda \in \mathbb{R}) \tag{3.3}
\end{equation*}
$$

It is evident that for all $\lambda \in \mathbb{R}$ the following inequality holds

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \phi\left(\lambda \tau_{\phi}(\xi)\right) \tag{3.4}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\tau_{\phi}(\xi)=\sup _{\lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp \{\lambda \xi\}))}{|\lambda|} \tag{3.5}
\end{equation*}
$$

Lemma 3.1: $\operatorname{Let} \xi \in \operatorname{Sub}_{\phi}(\Omega), \tau_{\phi}(\xi)>0, \varepsilon>0$. The following inequalities hold

$$
\begin{gathered}
P\{\xi>\varepsilon\} \leqslant \exp \left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\} ; \\
P\{\xi<-\varepsilon\} \leqslant \exp \left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\} ; \\
P\{|\xi|>\varepsilon\} \leqslant 2 \exp \left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\} .
\end{gathered}
$$

Proof: It follows from Chebyshev inequality that for all $\lambda>0, \varepsilon>0$

$$
P\{\xi>\varepsilon\} \leqslant \frac{E \exp \{\lambda \xi\}}{\exp \{\lambda \varepsilon\}} \leqslant \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)-\lambda \varepsilon\right\}
$$

It follows from this inequality that

$$
\begin{aligned}
P\{\xi>\varepsilon\} & =\inf _{\lambda>0} \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)-\lambda \varepsilon\right\}=\exp \left\{-\sup _{\lambda>0}\left(\lambda \varepsilon-\phi\left(\lambda \tau_{\phi}(\xi)\right)\right)\right\} \\
& =\exp \left\{-\sup _{\lambda>0}\left(\lambda \tau_{\phi}(\xi) \frac{\varepsilon}{\tau_{\phi}(\xi)}-\phi\left(\lambda \tau_{\phi}(\xi)\right)\right)\right\} \\
& =\exp \left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\} .
\end{aligned}
$$

The first inequality of this lemma is proved. The second inequality can be proved in the same way. The third inequality follows from

$$
P\{|\xi|>\varepsilon\} \leqslant P\{\xi>\varepsilon\}+P\{\xi<-\varepsilon\}, \quad \text { as } \varepsilon>0
$$

Theorem 3.1: The space $\operatorname{Sub}_{\phi}(\Omega)$ is a Banach space with respect to the norm $\tau_{\phi}(\cdot)$.

Proof: We first prove that $\operatorname{Sub}_{\phi}(\Omega)$ is a linear space with norm $\tau_{\phi}(\cdot)$.
If $\xi=0$ with probability one then $\tau_{\phi}(\xi)=0$. Conversely, if $\tau_{\phi}(\xi)=0$ then $E \exp \{\lambda \xi\} \leqslant 1$ for all $\lambda>0$ and for any $\varepsilon>0, \lambda>0$

$$
\begin{aligned}
P\{|\xi|>\varepsilon\} & \leqslant \frac{E \exp \{\lambda|\xi|\}}{\exp \{\lambda \varepsilon\}} \leqslant(E \exp \{\lambda \xi\}+E \exp \{-\lambda \xi\}) \exp \{-\lambda \varepsilon\} \\
& \leqslant 2 \exp \{-\lambda \varepsilon\} .
\end{aligned}
$$

Let now $\lambda \rightarrow \infty$. Then we obtain that for any $\varepsilon P\{|\xi|>\varepsilon\}=0$, that is $\xi=0$ if and only if $\tau_{\phi}(\xi)=0$.

It follows from (3.5) that as $a \neq 0$

$$
\begin{aligned}
\tau_{\phi}(a \xi) & =\sup _{\lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp \lambda a \xi))}{|\lambda|} \\
& =|a| \sup _{a \lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp \lambda a \xi))}{|a \lambda|}=|a| \tau_{\phi}(\xi)
\end{aligned}
$$

Now we prove that for any $\xi, \eta \in \operatorname{Sub}_{\phi}(\Omega)$

$$
\tau_{\phi}(\xi+\eta) \leqslant \tau_{\phi}(\xi)+\tau_{\phi}(\eta)
$$

If $\tau_{\phi}(\xi)=0$ or $\tau_{\phi}(\eta)=0$ the above inequality is obvious. Let $\tau_{\phi}(\xi) \neq 0$ and $\tau_{\phi}(\eta) \neq 0$.
It follows from Hölder inequality that for all $\lambda \in \mathbb{R}, p>0, \frac{1}{p}+\frac{1}{q}=1$,

$$
\begin{align*}
E \exp \{\lambda(\xi+\eta)\} & \leqslant(E \exp \{p \lambda \xi\})^{\frac{1}{p}}(E \exp \{q \lambda \xi\})^{1 / q} \tag{3.6}\\
& \leqslant \exp \left\{\frac{1}{p} \phi\left(\lambda p \tau_{\phi}(\xi)\right)+\frac{1}{q} \phi\left(\lambda q \tau_{\phi}(\xi)\right)\right\}
\end{align*}
$$

Put in (3.6)

$$
p=\frac{\tau_{\phi}(\xi)+\tau_{\phi}(\eta)}{\tau_{\phi}(\xi)}, \quad q=\frac{\tau_{\phi}(\xi)+\tau_{\phi}(\eta)}{\tau_{\phi}(\eta)}
$$

then we obtain

$$
E \exp \{\lambda(\xi+\eta)\} \leqslant \exp \left\{\lambda\left(\tau_{\phi}(\xi)+\tau_{\phi}(\eta)\right)\right\}
$$

hence $\tau_{\phi}(\xi+\eta) \leqslant \tau_{\phi}(\xi)+\tau_{\phi}(\eta)$.
Now we prove that the space $\operatorname{Sub}_{\phi}(\Omega)$ is complete with respect to the norm $\tau_{\phi}(\cdot)$. Let the random variables $\xi_{n}, n \geqslant 1$, belong to the space $\operatorname{Sub}_{\phi}(\Omega)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{m \geqslant n} \tau_{\phi}\left(\xi_{n}-\xi_{m}\right)=0 \tag{3.7}
\end{equation*}
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sup _{m \geqslant n}\left|\tau_{\phi}\left(\xi_{n}\right)-\tau_{\phi}\left(\xi_{m}\right)\right| \leqslant \lim _{n \rightarrow \infty} \sup _{m \geqslant n} \tau_{\phi}\left(\xi_{n}-\xi_{m}\right)=0
$$

and $\sup _{n} \tau_{\phi}\left(\xi_{n}\right)=\tau<\infty$. It follows from (3.7) and lemma 3.1 that for any $\varepsilon>0$

$$
P\left\{\left|\xi_{n}-\xi_{m}\right|>\varepsilon\right\} \leqslant 2 \exp \left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}\left(\xi_{n}-\xi_{m}\right)}\right)\right\} \rightarrow 0 \quad \text { as } n, m \rightarrow \infty
$$

so that $\xi_{n}-\xi_{m} \rightarrow 0$ in probability. Hence ξ_{n} converge in probability to some random variable ξ_{∞}. We have now

$$
\begin{align*}
\sup _{n} E\left[\exp \left\{\lambda \xi_{n}\right\}\right]^{1+\varepsilon} & =\sup _{n} E \exp \lambda(1+\varepsilon) \xi_{n} \tag{3.8}\\
& \leqslant \sup _{n} \exp \left\{\phi\left(\lambda(1+\varepsilon) \tau_{\phi}\left(\xi_{n}\right)\right)\right\} \\
& \leqslant \exp \phi(\lambda(1+\varepsilon) \tau)<\infty
\end{align*}
$$

From (3.8) and the theorem of uniform integrability it follows that

$$
E \exp \left\{\lambda \xi_{\infty}\right\}=\lim _{n \rightarrow \infty} E \exp \left\{\lambda \xi_{n}\right\} \leqslant \exp \phi\left(\lambda \tau_{\phi}^{\infty}\right)
$$

where $\tau_{\phi}^{\infty}=\limsup _{n \rightarrow \infty} \tau_{\phi}\left(\xi_{n}\right)$. Hence $\xi_{\infty} \in \operatorname{Sub}_{\phi}(\Omega)$ and

$$
\begin{equation*}
\tau_{\phi}\left(\xi_{\infty}\right) \leqslant \limsup _{n \rightarrow \infty} \tau_{\phi}\left(\xi_{n}\right) \tag{3.9}
\end{equation*}
$$

The random variables $\xi_{\infty}-\xi_{n}$ belong to $\operatorname{Sub}_{\phi}(\Omega)$. Now the inequality

$$
\begin{equation*}
\tau_{\phi}\left(\xi_{\infty}-\xi_{n}\right) \leqslant \sup _{m \geqslant n} \tau_{\phi}\left(\xi_{m}-\xi_{n}\right) \tag{3.10}
\end{equation*}
$$

can be proved as we proved (3.9). It follows from (3.10) and (3.7) that $\tau_{\phi}\left(\xi_{\infty}-\xi_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Remark 3.2: If $\phi(x)=\frac{x^{2}}{2}$ the space $\operatorname{Sub}_{\phi}(\Omega)=\operatorname{Sub}(\Omega)$ is the space of sub-Gaussian random variables.

Lemma 3.2: Let ξ be a random variable such that $E \xi=0$ and $E \exp \{\lambda \xi\}=a(\lambda)$ exists for all $\lambda \in \mathbb{R}$. Then
(i) we have

$$
\begin{equation*}
E \exp \{\lambda \xi\} \geqslant 1 \tag{3.11}
\end{equation*}
$$

(ii) there exist all moments $E|\xi|^{\alpha}, \alpha>0$, and the next inequality bolds

$$
\begin{equation*}
E \exp |\xi|^{\alpha} \leqslant\left(\frac{\alpha}{e}\right)^{\alpha} \inf _{\lambda>0} \frac{a(\lambda)+a(-\lambda)}{\lambda^{\alpha}} . \tag{3.12}
\end{equation*}
$$

(iii) The function $\psi(\lambda)=\ln (a(\lambda))$ is convex; moreover for any real number x_{0} there exists a constant $T=T\left(x_{0}\right)$ such that

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{T \lambda^{2}\right\} \tag{3.13}
\end{equation*}
$$

as $|\lambda|<x_{0} ;$ we have $T=\sup _{|\lambda|<x_{0}} \frac{\ln (E \exp \lambda \xi)}{\lambda^{2}}<\infty$.
Proof: From Jensen inequality we get $E \exp \{\lambda \xi\} \geqslant \exp \{\lambda E \xi\}=1$, and (3.11) is proved. From the relation

$$
\max _{x \geqslant 0} x^{\alpha} \exp \{-x\}=\left(\frac{\alpha}{e}\right)^{\alpha}, \quad \text { as } \alpha>0
$$

we deduce that for all $x>0, \alpha>0$ we have

$$
\begin{equation*}
x^{\alpha} \leqslant\left(\frac{\alpha}{e}\right)^{\alpha} \exp \{x\} \tag{3.14}
\end{equation*}
$$

It follows from (3.14) that for all $\lambda>0$

$$
\begin{align*}
E|\lambda \xi|^{\alpha} & \leqslant\left(\frac{\alpha}{e}\right)^{\alpha} E \exp \{\lambda \xi\} \leqslant\left(\frac{\alpha}{e}\right)^{\alpha}(E \exp \{\lambda \xi\}+E \exp \{-\lambda \xi\}) \tag{3.15}\\
& =\left(\frac{\alpha}{e}\right)^{\alpha}(a(\lambda)+a(-\lambda))
\end{align*}
$$

Now (3.12) follows from (3.15).
We have

$$
\begin{equation*}
\psi^{\prime \prime}(\lambda)=\frac{a^{\prime \prime}(\lambda) a(\lambda)-\left(a^{\prime}(\lambda)\right)^{2}}{a^{2}(\lambda)} \tag{3.16}
\end{equation*}
$$

It follows from Hölder inequality, that

$$
\left(a^{\prime}(\lambda)\right)^{2}=(E \xi \exp \{\lambda \xi\})^{2} \leqslant E \xi^{2} \exp \{\lambda \xi\} \cdot E \exp \{\lambda \xi\}=a^{\prime \prime}(\lambda) a(\lambda)
$$

so that $\psi^{\prime \prime}(\lambda) \geqslant 0$ and the function $\psi(\lambda)$ is convex. If $\lambda \rightarrow 0$ we have $E \exp \{\lambda \xi\}=1+$ $+\frac{1}{2} E \xi^{2} \lambda^{2}+o\left(\lambda^{2}\right)$, hence $\psi(\lambda)=\frac{1}{2} \lambda E \xi^{2}+o\left(\lambda^{2}\right)$. Relation (3.13) now follows from the last inequality and the convexity of $\psi(\lambda)$.

Theorem 3.2: Let $\phi_{1}(\lambda)$ and $\phi_{2}(\lambda)$ be two N-functions such that $\phi_{1}<\phi_{2}$. Assume that $\xi \in \operatorname{Sub}_{\phi_{1}}(\Omega)$; then $\xi \in \operatorname{Sub}_{\phi_{2}}(\Omega)$ and there exists a constant $c\left(\phi_{1}, \phi_{2}\right)$ such that $\tau_{\phi_{2}}(\xi) \leqslant c\left(\phi_{1}, \phi_{2}\right) \tau_{\phi_{1}}(\xi)$.

Proof: It follows from remark 2.3 that for any $x_{0}>0$ there exists a number $D=$ $=D\left(x_{0}\right)>0$ such that $\phi_{1}(x) \leqslant \phi_{2}(D x)$, as $|x|>x_{0}$. Let $\xi \in \operatorname{Sub}_{\phi_{1}}(\Omega), \tau_{1}=\tau_{\phi_{1}}(\xi)>0$; then for all $\lambda>0$ such that $|\lambda| \tau_{1} \geqslant x_{0}$

$$
\begin{equation*}
\exp \{\lambda \xi\} \leqslant \exp \left\{\phi_{1}\left(\lambda \tau_{1}\right)\right\} \leqslant \exp \left\{\phi_{2}\left(\lambda D \tau_{1}\right)\right\} \tag{3.17}
\end{equation*}
$$

Let λ be such that $|\lambda| \leqslant \frac{x_{0}}{\tau_{1}}$; then it follows from Lemma 3.2 that there exists a number $B\left(x_{0}\right)$ such that for $|\lambda| \leqslant \frac{\tau_{1 x_{0}}}{\tau_{1}}$ we have

$$
\begin{gather*}
\exp \{\lambda \xi\} \leqslant \exp \left\{B\left(x_{0}\right) \tau_{1}^{2} \lambda^{2}\right\}, \tag{3.18}\\
B\left(x_{0}\right)=\sup _{|\lambda| \leqslant x_{0} / \tau_{1}} \frac{\ln (E \exp \{\lambda \xi\})}{\tau_{1}^{2} \lambda^{2}}<\infty .
\end{gather*}
$$

Since $B\left(x_{0}\right)$ decreases when x_{0} decreases, it follows from (2.2) that there exist two numbers $z_{0}>0$ and $c_{1}>0$ such that for all $|x| \leqslant z_{0}$ we have $\phi_{2}(x) \geqslant c_{1} x^{2}$. Let x_{0} be a number such that $\frac{x_{0}\left(B\left(x_{0}\right)\right)^{1 / 2}}{c_{1}} \leqslant z_{0}$. (Such a number exists since $x_{0}\left(B\left(x_{0}\right)\right)^{1 / 2} \rightarrow 0$ as
$x_{0} \rightarrow 0$.) Then from (3.18) we deduce that for $|\lambda| \leqslant \frac{x_{0}}{\tau_{1}}$

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{c_{1} \frac{B\left(x_{0}\right)}{c_{1}} \tau_{1}^{2} \lambda^{2}\right\} \leqslant \exp \left\{\phi_{2}\left(\lambda \tau_{1}\left(\frac{B\left(x_{0}\right)}{c_{1}}\right)^{1 / 2}\right)\right\} \tag{3.19}
\end{equation*}
$$

since

$$
|\lambda| \tau_{1}\left(\frac{B\left(x_{0}\right)}{c_{1}}\right)^{1 / 2} \leqslant x_{0} \tau_{1}\left(\frac{B\left(x_{0}\right)}{c_{1}}\right)^{1 / 2} \leqslant z_{0} .
$$

It follows from (3.17) and (3.19) that $E \exp \{\lambda \xi\} \leqslant \exp \left\{\phi_{2}\left(\tau_{1} L \lambda\right)\right\}$, where

$$
L=\max \left(\left(\frac{B\left(x_{0}\right)}{c_{1}}\right)^{1 / 2}, D\right)
$$

that is $\xi \in \operatorname{Sub}_{\phi_{2}}(\Omega)$ and $\tau_{\phi_{2}}(\xi) \leqslant L \tau_{\phi_{1}}(\xi)$.
Example 3.1: Let ξ be any bounded random variable with $E \xi=0$; then $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ for all N-functions ϕ.

In order to prove the above statement, let ϕ be an N-function satisfying condition Q , a a real number with $a>0$ and ξ a random variable with $|\xi| \leqslant r$ with probability one. Then

$$
\begin{equation*}
\phi(x)=\phi\left(\frac{x}{a} a\right) \geqslant \frac{|x|}{a} \phi(a) \quad \text { as } \quad|x| \geqslant a . \tag{3.20}
\end{equation*}
$$

Hence it follows from (3.20) that
(3.21) $E \exp \{\lambda \xi\} \leqslant \exp \left\{\frac{\phi(a)}{a} \frac{a|\lambda|}{\phi(a)} r\right\} \leqslant \exp \left\{\phi\left(a \frac{|\lambda|}{\phi(a)} r\right)\right\} \quad$ as $|\lambda|>\frac{\phi(a)}{r}$.

Let $|\lambda|<\frac{\phi(a)}{r}$; then from lemma 3.2 we deduce that there exists a number $T(a, r)$ such that

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{T(a, r) \lambda^{2}\right\} \tag{3.22}
\end{equation*}
$$

It follows from (2.2) that there exist two constants $c_{1}>0$ and $z_{0}>0$ such that

$$
\begin{equation*}
\phi(x) \geqslant c_{1} x^{2} \quad \text { as }|x|<z_{0} \tag{3.23}
\end{equation*}
$$

$T(a, r)$ decreases as a decrease so that we can choose a constant $a>0$ such that

$$
\frac{\phi(a) T^{1 / 2}(a, r)}{r\left(c_{1}\right)^{1 / 2}} \leqslant z_{0}
$$

hence from (3.22) we get

$$
\left(\frac{T(a, r)}{c_{1}}\right)^{1 / 2}|\lambda| \leqslant \frac{\phi(a)}{r} \frac{T^{1 / 2}(a, r)}{\left(c_{1}\right)^{1 / 2}} \leqslant z_{0}
$$

and

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{c_{1} \frac{T(a, r)}{c_{1}} \lambda^{2}\right\} \leqslant \exp \left\{\phi\left(\lambda\left(\frac{T(a, r)}{c_{1}}\right)^{1 / 2}\right)\right\} . \tag{3.24}
\end{equation*}
$$

It follows from (3.23) and (3.24) that $E \exp \{\lambda \xi\} \leqslant \exp \{\phi(\lambda K)\}$, where $K=\max \left(\left(\frac{T(a, r)}{c_{1}}\right)^{1 / 2}, \frac{a r}{\phi(a)}\right)$; hence $\xi \in \operatorname{Sub}_{\phi}(\Omega)$.

In some particular cases we can find other (more precise) norms in the spaces $\operatorname{Sub}_{\phi}(\Omega)$.

Example 3.2: Let ξ be a random variable uniformly distributed in the interval $[-1,1]$. Then $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ for all N-functions ϕ and

$$
\begin{equation*}
\tau_{\alpha}(\xi) \leqslant 6^{\frac{1-\alpha}{\alpha}} \text { as } 1<\alpha \leqslant 2 \text {, } \tag{3.25}
\end{equation*}
$$

where $\tau_{\alpha}(\xi)=\tau_{\phi_{\alpha}}(\xi), \phi_{\alpha}=|x|^{\alpha}$. In fact

$$
\begin{aligned}
E \exp \{\lambda \xi\} & =\frac{1}{2} \int_{-1}^{1} \exp \{\lambda u\} d u=\frac{1}{2 \lambda}\left(e^{\lambda}-e^{-\lambda}\right) \\
& =\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k+1)!}=\sum_{k=0}^{\infty}\left(\frac{\lambda^{2}}{6}\right)^{k} \frac{6^{k} k!}{(2 k+1)!} \frac{1}{k!} \\
& \leqslant \sum_{k=0}^{\infty}\left(\frac{\lambda^{2}}{6}\right)^{k} \frac{1}{k!} \leqslant \exp \left\{\frac{\lambda^{2}}{6}\right\}
\end{aligned}
$$

If $\frac{|\lambda|}{\sqrt{6}} \leqslant 1$ then

$$
\exp \left\{\frac{\lambda^{2}}{6}\right\} \leqslant \exp \left\{\left(\frac{|\lambda|}{\sqrt{6}}\right)^{\alpha}\right\} \leqslant \exp \left\{\left(\frac{|\lambda|}{6^{1-1 / \alpha}}\right)^{\alpha}\right\}
$$

so that for $|\lambda| \leqslant \sqrt{6}$ we have

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{\left(\frac{|\lambda|}{6^{1-1 / \alpha}}\right)^{\alpha}\right\} \tag{3.26}
\end{equation*}
$$

It is obvious that $E \exp \{\lambda \xi\}=E \exp \{|\lambda||\xi|\} \leqslant \exp \{|\lambda|\}$.

If $\frac{|\lambda|}{\sqrt{6}}>1$ then

$$
\begin{align*}
\exp \{|\lambda|\} & \leqslant \exp \left\{|\lambda| \frac{|\lambda|^{\alpha-1}}{(\sqrt{6})^{\alpha-1}}\right\} \tag{3.27}\\
& =\exp \left\{\frac{|\lambda|^{\alpha}}{(\sqrt{6})^{\alpha-1}}\right\}=\exp \left\{\left(\frac{|\lambda|}{(\sqrt{6})^{\frac{\alpha-1}{\alpha}}}\right)^{\alpha}\right\}
\end{align*}
$$

(3.25) now follows from (3.26), (3.27).

Example 3.3: If ξ is a Gaussian random variable, $E \xi=0, E \xi^{2}=\sigma^{2}>0$, then $E \exp \{\lambda \xi\} \leqslant E \exp \left\{\frac{\lambda^{2} \sigma^{2}}{2}\right\}$, that is $\xi \in \operatorname{Sub}_{\phi}(\Omega)$, where $\phi(x)=x^{2} / 2$ and $\tau_{\phi}(\xi)=\sigma$.

Example 3.4: Let ξ be a Poisson random variable, with $E \xi=a$ and put $\eta=\xi-a$; then

$$
E \exp \{\lambda \eta\}=\exp \left\{a\left(e^{\lambda}-\lambda-1\right)\right\}
$$

this means that $\eta \in \operatorname{Sub}_{\phi}(\Omega)$, where $\phi(\lambda)=a\left(e^{|\lambda|}-|\lambda|-1\right)$ and $\tau_{\phi}(\xi)=1$. It follows from example 2.2 that

$$
\phi^{*}(\lambda)=a\left(\left(\frac{|\lambda|}{a}+1\right) \ln \left(\frac{|\lambda|}{a}+1\right)-\frac{|\lambda|}{a}\right)
$$

and from Lemma 3.1 that for $\varepsilon>0$ we have

$$
\begin{equation*}
P\{\eta>\varepsilon\} \leqslant \exp \left\{-\left[(\varepsilon+a) \ln \left(\frac{\varepsilon}{a}+1\right)-\varepsilon\right]\right\} \tag{3.28}
\end{equation*}
$$

4. - Characterization of the space $\operatorname{Sub}_{\phi}(\Omega)$ and some inequalities

Lemma 4.1: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$. Then for all $\alpha>0$ the following inequality bolds

$$
\begin{align*}
E|\xi|^{\alpha} & \leqslant 2\left(\frac{\alpha}{e}\right)^{\alpha}\left(\tau_{\phi}(\xi)\right)^{\alpha} \inf _{t>a} \exp \{\phi(t)-\alpha \ln (t)\} \tag{4.1}\\
& \leqslant 2\left(\tau_{\phi}(\xi)\right)^{\alpha}\left(\frac{\alpha}{\phi^{(-1)}(\alpha)}\right)^{\alpha} \text { as } a>0
\end{align*}
$$

Proof: It follows from inequalities (3.12) and (3.4) that for $\lambda>0$ one has

$$
\begin{align*}
E|\xi|^{\alpha} & \leqslant 2\left(\frac{\alpha}{e}\right)^{\alpha} \lambda^{-\alpha} \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)\right\} \tag{4.2}\\
& =2\left(\frac{\alpha}{e}\right)^{\alpha}\left(\tau_{\phi}(\xi)\right)^{\alpha}\left(\frac{1}{\lambda \tau_{\phi}(\xi)}\right)^{\alpha} \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)\right\} \\
& =2\left(\frac{\alpha}{e}\right)^{\alpha}\left(\tau_{\phi}(\xi)\right)^{\alpha} \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)-\alpha \ln \left(\lambda \tau_{\phi}(\xi)\right)\right\}
\end{align*}
$$

By setting $\lambda=\frac{\phi^{(-1)}(\alpha)}{\tau_{\phi}(\xi)}$ we obtain the second inequality in (4.1).
Corollary 4.1: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$; then the following inequality bolds

$$
\begin{equation*}
\tau_{\phi}(\xi) \geqslant \frac{1}{\sqrt{2}} \theta_{\phi}(\xi) \tag{4.3}
\end{equation*}
$$

where

$$
\theta_{\phi}(\xi)=\sup _{n \geqslant 2}\left(E|\xi|^{n}\right)^{1 / n} \frac{\phi^{(-1)}(n)}{n}
$$

Moreover $\theta_{\phi}(\xi)$ is a norm on $\operatorname{Sub}_{\phi}(\Omega)$.

Lemma 4.2: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$. Then for $k=1,2, \ldots$ the following inequality bolds

$$
\begin{equation*}
\left|E \xi^{k}\right| \leqslant E|\xi|^{k} \leqslant 2\left(\tau_{\phi}(\xi)\right)^{k} \frac{e^{k}}{\left(\phi^{(-1)}(k)\right)^{k}} k!. \tag{4.4}
\end{equation*}
$$

Proof: The relation $\exp \{x\}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ yields that for $x>0$ we have

$$
x^{k} \leqslant k!\exp \{x\}
$$

For $x=|\xi| \lambda(\lambda>0)$ we get

$$
E|\xi|^{k} \leqslant k!E \exp \{\lambda|\xi|\} \lambda^{-k} \leqslant k!2 \exp \left\{\phi\left(\lambda \tau_{\phi}(\xi)\right)\right\} \lambda^{-k}
$$

By setting $\lambda=\frac{\phi^{(-1)}(k)}{\tau_{\phi}(\xi)}$ in the latter inequality we obtain (4.4).

Corollary 4.2: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$. Then the following inequality bolds

$$
\begin{equation*}
\tau_{\phi}(\xi) \geqslant \frac{1}{e \sqrt{2}} v_{\phi}(\xi) \tag{4.5}
\end{equation*}
$$

where

$$
v_{\phi}(\xi)=\sup _{n \geqslant 2}\left|E \xi^{n}\right|^{1 / n} \frac{\phi^{(-1)}(n)}{(n!)^{1 / n}}
$$

Corollary 4.3: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ be a random variable with a symmetrical distribution (or such that all moments $E \xi^{2 n+1}=0$ for $n=0,1,2, \ldots$); then

$$
\begin{equation*}
\tau_{\phi}(\xi) \geqslant \frac{1}{e \sqrt{2}} v_{\phi, 2}(\xi) \tag{4.6}
\end{equation*}
$$

where

$$
v_{\phi, 2}(\xi)=\sup _{l \geqslant 2}\left(E \xi^{2 l}\right)^{1 / 2 l} \frac{\phi^{(-1)}(2 l)}{(2 l!)^{1 / 2 l}}
$$

Corollary 4.4: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$. Then we have

$$
\begin{equation*}
v_{\phi}(\xi) \geqslant \theta_{\phi}(\xi), \quad v_{\phi}(\xi) \leqslant \exp \left\{\frac{49}{48}\right\} \theta_{\phi}(\xi) \tag{4.7}
\end{equation*}
$$

Proof: The first inequality is evident. The second one follows from Stirling's formula $n!=n^{n} e^{-n}(2 \pi n)^{1 / 2} e^{\theta_{n}}$ where $\left|\theta_{n}\right| \leqslant \frac{1}{12 n}$. Indeed

$$
(n!)^{-\frac{1}{n}}=\frac{1}{n} \frac{e^{1+\theta_{n} / n}}{(2 \pi n)^{1 / 2 n}} \leqslant \frac{1}{n} e^{49 / 48} \quad \text { as } n \geqslant 2 .
$$

Lemma 4.3: Let ξ be a random variable such that $E \xi=0, \phi$ an N-function satisfying condition Q . Let $\lambda_{0}>0$ be any number and $c_{0}=\inf _{0<|\lambda| \leqslant \lambda_{0}} \frac{\phi(\lambda)}{\lambda^{2}}$. Assume that

$$
v_{\phi}(\xi)=\sup _{n \geqslant 2}\left|E \xi^{n}\right|^{1 / n} \frac{\phi^{(-1)}(n)}{(n!)^{1 / n}}<\infty .
$$

Let γ_{1} be the root of the equation

$$
\begin{equation*}
\gamma=\lambda_{0} \sqrt{c_{0}(1-\gamma)} \tag{4.8}
\end{equation*}
$$

γ_{2} the root of the equation $\gamma^{3}-2(1-\gamma)=0$ and γ_{3} the root of the equation $\gamma=\phi^{(-1)}(2) \sqrt{c_{0}(1-\gamma)}$.

Then $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ and the following inequality bolds

$$
\begin{equation*}
\tau_{\phi}(\xi) \leqslant S_{\phi} v_{\phi}(\xi) \tag{4.9}
\end{equation*}
$$

where $S_{\phi}=\max _{i=\overline{1,3}} \gamma_{i}^{-1}$.
Proof: Let γ be any number such that $\gamma \in\left(0, \min \left(\gamma_{1}, \gamma_{2}\right)\right)$. Then

$$
\begin{equation*}
\gamma \leqslant \gamma_{1}=\lambda_{0} \sqrt{c_{0}\left(1-\gamma_{1}\right)} \leqslant \lambda_{0} \sqrt{c_{0}(1-\gamma)} \tag{4.10}
\end{equation*}
$$

Let $v_{\phi}(\xi)=v$ and $\lambda_{1}=\frac{\gamma}{v} \phi^{(-1)}(2)$. Then from (4.10) we get

$$
\begin{equation*}
\lambda_{1} v=\gamma \phi^{(-1)}(2) \leqslant \lambda_{0} \sqrt{c_{0}(1-\gamma)} \phi^{(-1)}(2) \tag{4.11}
\end{equation*}
$$

We now have easily

$$
\begin{equation*}
E \exp \{\lambda \xi\}=1+\sum_{n=2}^{\infty} \frac{\lambda^{n} E \xi^{n}}{n!} \leqslant 1+\sum_{n=2}^{\infty} \frac{|\lambda|^{n}\left|E \xi^{n}\right|}{n!}=S(\lambda) \tag{4.12}
\end{equation*}
$$

Relation (4.12) yields that

$$
\begin{equation*}
\left.S(\lambda)=1+\sum_{n=2}^{\infty} \frac{|\lambda|^{n}\left(\phi^{(-1)}(n)\right)^{n}}{\left(\phi^{(-1)}(n)\right)^{n}} n!E \xi^{n} \right\rvert\, \leqslant 1+\sum_{n=2}^{\infty}\left(\frac{|\lambda| v}{\phi^{(-1)}(n)}\right)^{n} . \tag{4.13}
\end{equation*}
$$

For any number λ such that $|\lambda|<\lambda_{1}$ we get

$$
\begin{equation*}
S(\lambda) \leqslant 1+\sum_{n=2}^{\infty}\left(\frac{|\lambda| v}{\phi^{(-1)}(2)}\right)^{n} \tag{4.14}
\end{equation*}
$$

From the relation

$$
\frac{|\lambda| v}{\phi^{(-1)}(2)} \leqslant \frac{\lambda_{1} v}{\phi^{(-1)}(2)}=\gamma<1
$$

we obtain

$$
\begin{align*}
S(\lambda) & \leqslant 1+\left(\frac{|\lambda| v}{\phi^{(-1)}(2)}\right)^{2}\left(1-\frac{|\lambda| v}{\phi^{(-1)}(2)}\right)^{-1} \leqslant 1+\left(\frac{|\lambda| v}{\phi^{(-1)}(2)}\right)^{2} \frac{1}{1-\gamma} \tag{4.15}\\
& =1+c_{0}\left(\frac{|\lambda| v}{\sqrt{c_{0}} \sqrt{1-\gamma} \phi^{(-1)}(2)}\right)^{2} .
\end{align*}
$$

Relation (4.10) yields that

$$
\frac{|\lambda| v}{\sqrt{c_{0}} \sqrt{1-\gamma} \phi^{(-1)}(2)} \leqslant \frac{\lambda_{1} v}{\sqrt{c_{0}} \sqrt{1-\gamma} \phi^{(-1)}(2)}=\frac{\gamma}{\sqrt{c_{0}(1-\gamma)}} \leqslant \lambda_{0}
$$

hence

$$
c_{0}\left(\frac{|\lambda| v}{\sqrt{c_{0}(1-\gamma)} \phi^{(-1)}(2)}\right)^{2} \leqslant \phi\left(\frac{\lambda v}{\sqrt{c_{0}(1-\gamma)} \phi^{(-1)}(2)}\right)
$$

From the above we deduce that the following inequality holds, as $|\lambda|<\lambda_{1}$

$$
\begin{equation*}
S(\lambda) \leqslant 1+\phi\left(\frac{\lambda v}{\sqrt{c_{0}(1-\gamma)} \phi^{(-1)}(2)}\right) \leqslant \exp \left\{\phi\left(\frac{\lambda v}{\sqrt{c_{0}(1-\gamma)} \phi^{(-1)}(2)}\right)\right\} \tag{4.16}
\end{equation*}
$$

Let now $|\lambda|>\lambda_{1}$. Since

$$
\gamma=\frac{\lambda_{1} v}{\phi^{(-1)}(2)} \leqslant \frac{|\lambda| v}{\phi^{(-1)}(2)},
$$

there exists an integer $n_{\lambda} \geqslant 2$ such that

$$
\begin{equation*}
\frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}+1\right)}<\gamma \leqslant \frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}\right)} . \tag{4.17}
\end{equation*}
$$

Put now

$$
A_{1}(\lambda)=\sum_{n=2}^{n_{\lambda}}\left(\frac{|\lambda| v}{\phi^{(-1)}(n)}\right)^{n}, \quad A_{2}(\lambda)=\sum_{n=n_{\lambda}+1}\left(\frac{|\lambda| v}{\phi^{(-1)}(n)}\right)^{n} .
$$

We first bound $A_{1}(\lambda)$. From the inequality $\phi^{(-1)}\left(n_{\lambda}\right) \leqslant \frac{|\lambda| v}{\gamma}$, for $n \leqslant n_{\lambda}$ we get $n \leqslant$ $\leqslant n_{\lambda} \leqslant \phi\left(\frac{|\lambda| v}{\gamma}\right)$, hence

$$
\begin{equation*}
\frac{1}{n} \phi\left(\frac{|\lambda| v}{\gamma}\right) \geqslant 1 \quad\left(\text { as } n \leqslant n_{\lambda}\right) \text {. } \tag{4.18}
\end{equation*}
$$

From Lemma 2.1 and Lemma 2.4 it follows, for every n with $2 \leqslant n \leqslant n_{\lambda}$

$$
\begin{aligned}
\frac{|\lambda| v}{\phi^{(-1)}(n)}= & \frac{1}{\phi^{(-1)}(n)} \phi^{(-1)}\left(\frac{n \phi(\lambda v)}{\phi\left(\frac{\lambda v}{\gamma}\right)} \frac{\phi\left(\frac{\lambda v}{\gamma}\right)}{n}\right) \\
& \stackrel{1}{\hbar} \phi\left(\frac{\lambda v}{\gamma}\right) \frac{1}{\phi^{(-1)}(n)} \phi^{(-1)}\left(n \frac{\phi(\lambda v)}{\phi\left(\frac{\lambda v}{\gamma}\right)}\right) \leqslant \frac{1}{n} \phi\left(\frac{|\lambda| v}{\gamma}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
A_{1}(\lambda) \leqslant \sum_{n=2}^{n_{\lambda}}\left(\frac{1}{n} \phi\left(\frac{\lambda v}{\gamma}\right)\right)^{n} \leqslant \sum_{n=2}^{n_{\lambda}} \frac{1}{n!}\left(\phi\left(\frac{\lambda v}{\gamma}\right)\right)^{n} \leqslant \sum_{n=2}^{\infty} \frac{1}{n!}\left(\phi\left(\frac{\lambda v}{\gamma}\right)\right)^{n} \tag{4.19}
\end{equation*}
$$

We now bound $A_{2}(\lambda)$. From (4.17) we get $\frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}+1\right)}<\gamma<1$, so that

$$
\begin{align*}
A_{2}(\lambda) & \leqslant \sum_{n=n_{\lambda}+1}^{\infty}\left(\frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}+1\right)}\right)^{n} \tag{4.20}\\
& =\left(\frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}+1\right)}\right)^{n_{\lambda}+1}\left(1-\frac{|\lambda| v}{\phi^{(-1)}\left(n_{\lambda}+1\right)}\right)^{-1} \\
& \leqslant \gamma^{n_{\lambda}+1} \frac{1}{1-\gamma} \leqslant \gamma^{3}(1-\gamma)^{-1} \leqslant \gamma_{2}^{3}\left(1-\gamma_{2}\right)^{-1} \\
& =2 \leqslant n_{\lambda} \leqslant \phi\left(\frac{\lambda v}{\gamma}\right) .
\end{align*}
$$

It follows from (4.19) and (4.20) that
(4.21) $\quad E \exp \{\lambda \xi\} \leqslant S(\lambda) \leqslant \sum_{n=0}^{\infty} \frac{1}{n!}\left(\phi\left(\frac{\lambda v}{\gamma}\right)\right)^{n}=\exp \left\{\phi\left(\frac{\lambda v}{\gamma}\right)\right\} \quad$ as $|\lambda|>\lambda_{1}$.

Relations (4.16) and (4.21) yield that, for all $\lambda \in \mathbb{R}$, we have

$$
\begin{equation*}
E \exp \{\lambda \xi\} \leqslant \exp \left\{\phi\left(S_{\gamma} \nu \lambda\right)\right\} \tag{4.22}
\end{equation*}
$$

where $S_{\gamma}=\max \left(\gamma^{-1},\left(\left(c_{0}(1-\gamma)\right)^{1 / 2} \phi^{(-1)}(2)\right)^{-1}\right)$. It is now easy to prove that

$$
\inf _{\gamma \in\left(0, \min \left(\gamma_{1} \gamma_{2}\right)\right]} S_{\gamma}=S_{\phi}=\max _{i=\overline{1,3}} \gamma_{i}^{-1}
$$

and inequality (4.8) follows.
Example 4.1: Let ϕ be the N-function $\phi(x)=|x|^{\alpha}, 1 \leqslant \alpha \leqslant 2$ and $\lambda_{0}>0$ any number. In this case

$$
c_{0}=\inf _{0<|\lambda| \leqslant \lambda_{0}} \frac{\phi(\lambda)}{\lambda^{2}}=\lambda_{0}^{\alpha-2}, \quad \phi^{(-1)}(2)=2^{1 / \alpha}
$$

Hence γ_{1} is the root of the equation $\gamma=\lambda_{0} \sqrt{\lambda_{0}^{\alpha-2}(1-\gamma)}$, i. e. $\gamma_{1}=$ $=\frac{1}{2}\left[\lambda_{0}^{\alpha / 2} \sqrt{\lambda_{0}^{\alpha} 4}-\lambda_{0}^{\alpha}\right], \gamma_{2}$ is the root of the equation $\gamma^{3}-2(1-\gamma)=0,\left(\gamma_{2} \sim 0.770917\right)$, γ_{3} is the root of the equation $\gamma=2^{1 / \alpha} \sqrt{\lambda_{0}^{\alpha-2}(1-\gamma)}$, i. e.

$$
\gamma_{3}=\frac{1}{2}\left[2^{1 / \alpha} \lambda_{0}^{(\alpha / 2)-1} \sqrt{\lambda_{0}^{\alpha-2} 2^{2 / \alpha} 4}-\lambda_{0}^{\alpha-2} 2^{2 / \alpha}\right]
$$

Put $z_{1}=\left(\frac{\gamma_{2}^{2}}{1-\gamma_{2}^{2}}\right)^{1 / a}, z_{2}=\left(\frac{\left(1-\gamma_{2}^{2}\right) 2^{2 / \alpha}}{\gamma_{2}^{2}}\right)^{1 /(2-\alpha)}$. Then it is not difficult to see that, if $\lambda_{0}>\max \left(z_{1}, z_{2}\right)$, we have $\gamma_{1}>\gamma_{2}$ and $\gamma_{3}>\gamma_{2}$. Hence in this case we get $S_{\phi}=$ $=\gamma_{2}^{-1} \sim 1.2971565$.

From corollary 4.2 and Lemma 4.3 we get the following result:
Theorem 4.1: The random variable ξ belongs to $\operatorname{Sub}_{\phi}(\Omega)$ if and only if $E \xi=0$ and $\nu_{\phi}(\xi)<\infty$. The norms $v_{\phi}(\xi)$ and $\tau_{\phi}(\xi)$ are equivalent.

5. - Orlicz spaces of exponential type

Definition 5.1. [3]: Let ψ be an arbitrary N-function. The Orlicz space generated by the N -function

$$
U(x)=\exp \{\psi(x)\}-1, \quad x \in \mathbb{R}
$$

is called an Orlicz space of exponential type.
We shall be interested in the Orlicz space of exponential type generated by the Young-Fenchel transform ϕ^{*} of an N-function ϕ. We shall denote such a space by $\operatorname{Exp}_{\phi^{*}}(\Omega)$. The Luxemburg norm in $\operatorname{Exp}_{\phi^{*}}(\Omega)$ is denoted by $\sigma_{\phi^{*}}$; for any random variable ξ we have

$$
\sigma_{\phi^{*}}(\xi)=\inf \left\{a>0: E\left[\exp \phi^{*}(\xi / a)\right] \leqslant 2\right\}
$$

The space $\operatorname{Exp}_{\phi^{*}}(\Omega)$ is a Banach space with respect to the norm $\sigma_{\phi^{*}}(\cdot)$.

The following Lemma is a modification of a Lemma from [3].
Lemma 5.1: Let ϕ be an N-function and $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$. Then for any $p \geqslant 1$ the following inequality bolds:

$$
\begin{equation*}
\left(E|\xi|^{p}\right)^{1 / p} \leqslant 2^{1 / p} \frac{p}{\phi^{(-1)}(p)} \sigma_{\phi^{*}}(\xi) \tag{5.1}
\end{equation*}
$$

Proof: It will be enough to prove (5.1) if $\sigma_{\phi^{*}}(\xi)>0$. In this case the following inequalities hold for $p>0, x \in \mathbb{R}$:

$$
\begin{aligned}
|x|^{p} \exp \left\{-\phi^{*}(x)\right\} & \leqslant \sup _{x \in \mathbb{R}}|x|^{p} \exp \left\{-\phi^{*}(x)\right\} \\
& =\sup _{x \in \mathbb{R}}|x|^{p} \exp \left\{-\sup _{\lambda>0}(\lambda|x|-\phi(\lambda))\right\} \\
& =\sup _{x \in \mathbb{R}}|x|^{p} \exp \left\{\inf _{\lambda>0}(\phi(\lambda)-\lambda|x|)\right\} \\
& =\sup _{x \in \mathbb{R}^{\lambda}>0}|x|^{p} \exp \{\phi(\lambda)-\lambda|x|\} \\
& =\inf _{\lambda>0}\left[\exp \left\{(\phi(\lambda)\} \sup _{x \in \mathbb{R}}|x|^{p} \exp (-\lambda|x|)\right]\right. \\
& =\left(\frac{p}{e}\right)^{p} \inf _{\lambda>0} \lambda^{-p} \exp \{\phi(\lambda)\} .
\end{aligned}
$$

Then for all $x \in \mathbb{R}$

$$
|x|^{p} \leqslant\left(\frac{p}{e}\right)^{p} \exp \left\{\phi^{*}(x)\right\} \inf _{\lambda>0} \lambda^{-p} \exp \{\phi(\lambda)\}
$$

Substituting $x=\frac{|\xi|}{\sigma_{\phi^{*}}(\xi)}$ gives

$$
\begin{aligned}
E|\xi|^{p} & \leqslant\left(\sigma_{\phi^{*}}(\xi)\right)^{p} E \exp \left\{\phi\left(\frac{\xi}{\sigma_{\phi^{*}}(\xi)}\right)\right\}\left(\frac{p}{e}\right)^{p} \inf _{\lambda>0} \lambda^{-p} \exp \{\phi(\lambda)\} \\
& \leqslant 2\left(\sigma_{\phi^{*}}(\xi)\right)^{p}\left(\frac{p}{e}\right)^{p}\left(\frac{e}{\phi^{(-1)}(p)}\right)^{p} \\
& =2\left(\sigma_{\phi^{*}}(\xi)\right)^{p}\left(\frac{p}{\phi^{(-1)}(p)}\right)^{p} .
\end{aligned}
$$

Lemma 5.2: Let ϕ be an N-function satisfying condition Q . Let ξ be a random variable such that $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$ and $E \xi=0$. Then $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ and

$$
\begin{equation*}
\tau_{\phi}(\xi) \leqslant S_{\phi} e^{\frac{49}{48}} \sigma_{\phi^{*}}(\xi) \tag{5.2}
\end{equation*}
$$

where S_{ϕ} is defined below (4.8).
Proof: It follows from Lemma 5.1 (inequality 5.1) and Stirling's formula that

$$
\begin{aligned}
v_{\phi}(\xi) & =\sup _{n \geqslant 2}\left|E \xi^{n}\right|^{1 / n} \frac{\phi^{(-1)}(n)}{(n!)^{1 / n}} \leqslant \sup _{n \geqslant 2} 2^{1 / n} \frac{n}{\phi^{(-1)}(n)} \sigma_{\phi^{*}}(\xi) \frac{\phi^{(-1)}(n)}{(n!)^{1 / n}} \\
& \leqslant \sup _{n \geqslant 2}\left(2^{1 / n} \sigma_{\phi^{*}}(\xi) \frac{n e}{n 2^{1 / 2 n} \pi^{1 / 2 n} n^{1 / 2 n} e^{\theta_{n} / n}}\right) \\
& \leqslant \sigma_{\phi^{*}}(\xi) \sup _{n \geqslant 2} \frac{2^{1 / 2 n} e e^{1 / 12 n^{2}}}{2^{1 / 2 n} \pi^{1 / 2 n}} \leqslant \sigma_{\phi^{*}}(\xi) e^{\frac{49}{48}}<\infty .
\end{aligned}
$$

Now from Lemma 4.3 we get that $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ and

$$
\tau_{\phi}(\xi) \leqslant S_{\phi} v_{\phi}(\xi) \leqslant S_{\phi} e^{\frac{49}{48}} \sigma_{\phi^{*}}(\xi)
$$

Lemma 5.3 [3]: Let ξ be a random variable such that

$$
P\{|\xi| \geqslant x\} \leqslant C \exp \left\{-\psi\left(\frac{x}{p}\right)\right\}
$$

where $\psi(x)$ is N-function; then $\xi \in \operatorname{Exp}_{\psi}(\Omega)$ and

$$
\begin{equation*}
\sigma_{\psi}(\xi) \leqslant(1+C) D \tag{5.3}
\end{equation*}
$$

Lemma 5.4: Let $\xi \in \operatorname{Sub}_{\phi}(\Omega)$; then $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$ and the following inequality bolds:

$$
\begin{equation*}
\sigma_{\psi^{*}}(\xi) \leqslant 3 \tau_{\phi}(\xi) \tag{5.4}
\end{equation*}
$$

Proof: If $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ then it follows from Lemma 3.1 that

$$
P\{|\xi|>\varepsilon\} \leqslant 2 \exp \left\{-\phi^{*}\left(\frac{\xi}{\tau_{\phi}(\xi)}\right)\right\} .
$$

From Lemma 5.3 we deduce that $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$ and inequality (5.4) holds.
Corollary 5.1: The random variable $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ if and only if $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$ and the norms $\sigma_{\psi^{*}}(\xi)$ and $\tau_{\phi}(\xi)$ are equivalent.

This corollary follows from Lemmas 5.2 and 5.3.
Theorem 5.1: The random variable $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ if and only if $E \xi=0$ and there exist two constants $C>0$ and $D>0$ such that

$$
\begin{equation*}
P\{|\xi|>x\} \leqslant C \exp \left\{-\phi^{*}\left(\frac{x}{D}\right)\right\} \tag{5.5}
\end{equation*}
$$

for any $x>0$. If (5.5) holds then

$$
\begin{equation*}
\tau_{\phi}(\xi) \leqslant S_{\phi} e^{\frac{49}{48}}(1+C) D \tag{5.6}
\end{equation*}
$$

where S_{ϕ} is defined below (4.9).
Proof: If $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ then it follows from Lemma 3.1 that (5.5) holds with $C=2$, $D=\tau_{\phi}(\xi)$. Conversely, if (5.5) holds we get from Lemma 5.2 that $\xi \in \operatorname{Exp}_{\phi^{*}}(\Omega)$ and $\sigma_{\psi^{*}}(\xi) \leqslant(1+C) D$. Now again from Lemma 5.2 we deduce that $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ and

$$
\tau_{\phi}(\xi) \leqslant S_{\phi} e^{\frac{49}{48}} \sigma_{\psi^{*}}(\xi)
$$

Example 5.1: Let ξ be a random variable having centered Weibull distribution, i. e.

$$
\begin{gathered}
P\{\xi>x\}=\frac{1}{2} \exp \left\{-\frac{1}{\alpha} x^{\alpha}\right\} \quad \text { as } x>0 \\
P\{\xi<x\}=\frac{1}{2} \exp \left\{-\frac{1}{\alpha}|x|^{\alpha}\right\} \quad \text { as } x<0
\end{gathered}
$$

Let $\alpha>2$. Since

$$
P\{|\xi|>x\}=\exp \left\{-\frac{1}{\alpha} x^{\alpha}\right\} \quad \text { as } x>0
$$

then it follows from Theorem 5.1 that $\xi \in \operatorname{Sub}_{\phi}(\Omega)$, where

$$
\phi_{\beta}(x)=\frac{1}{\beta}|x|^{\beta}, \quad \frac{1}{\beta}+\frac{1}{\alpha}=1 \quad \text { and } \quad \tau_{\phi_{\beta}}(\xi) \leqslant 2 S_{\phi_{\beta}} e^{\frac{49}{48}}
$$

where $S_{\phi_{\beta}}$ is defined in (4.8).
Consider now the particular case $\phi_{p}(x)=\frac{|x|^{p}}{p}$ with $1<p<2$ or $\phi_{p}(x)=\frac{|x|^{p}}{p}$ if $|x| \geqslant 1$ and $\phi_{p}(x)=\frac{x^{2}}{p}$ if $|x|<1, p>2$. In this case we can improve inequality (5.4). Our result is the following

Proposition 5.1: We have the inequality

$$
\sigma_{\phi^{*}}(\xi) \leqslant L \tau_{\phi_{p}}(\xi)
$$

where

$$
L=\left(\frac{2 e^{\frac{1}{12}}}{\sqrt{2 \pi}}+1\right)^{1 / q}
$$

Proof: Consider first the case $p>2$. A simple calculation shows that

$$
\inf _{t \geqslant 1} \exp \left\{\phi_{p}(t)-s \log t\right\}=\left(\frac{e}{s}\right)^{s / p}, \quad \text { as } s>1
$$

Let $\tau_{\phi_{p}}(\xi)=\tau$. Then (see Lemma 4.1)

$$
\begin{equation*}
E|\xi|^{s} \leqslant 2\left(\frac{s}{e}\right)^{s / q} \tau^{s} \tag{5.7}
\end{equation*}
$$

Since $\phi_{p}^{*}(x) \leqslant \frac{|x|^{q}}{q} \quad(q<2)$ we have by $(5.7)(a>0)$

$$
\begin{align*}
E \exp \left\{\phi^{*}(\xi / a)\right\} & =E \exp \left\{|\xi|^{q} / q a^{q}\right\}=\sum_{k=0}^{\infty} \frac{1}{k!} \frac{E|\xi|^{k q}}{\left(q a^{q}\right)^{k}} \tag{5.8}\\
& \leqslant 1+2 \sum_{k=1}^{\infty}\left(\frac{k^{k}}{k!e^{k}}\right)\left(\frac{\tau}{a}\right)^{q k}
\end{align*}
$$

It follows from Stirling's formula that

$$
\frac{k^{k}}{k!e^{k}}=\frac{1}{\sqrt{2 \pi} \sqrt{k} e^{\theta_{k}}} \leqslant \frac{e^{\frac{1}{12}}}{\sqrt{2 \pi}}
$$

Therefore

$$
E \exp \left\{\phi^{*}\left(\frac{\xi}{a}\right)\right\} \leqslant 1+\frac{2 e^{\frac{1}{12}}}{\sqrt{2 \pi}} \sum_{k=1}^{\infty}\left(\frac{\tau}{a}\right)^{k q}
$$

The above geometric series converges if $\tau / a<1$ and in such case its sum is equal to

$$
1+\frac{2 e^{\frac{1}{12}}}{\sqrt{2 \pi}} \frac{(\tau / a)^{q}}{\left(1-(\tau / a)^{q}\right)}
$$

Then the last quantity in (5.8) is not greater than 2 if $a / \tau>L>1$ and this gives the
statement of Proposition 5.1. If $1<p<2$ the proof is the same $\left(\phi^{*}(x)=\frac{|x|^{q}}{q}\right)$.

$$
\begin{aligned}
& \text { 6. - A characterisation of the } \operatorname{Sub}_{\phi} \text {-NORM } \tau_{\phi} \\
& \text { FOR SYMMETRIC Random variables }
\end{aligned}
$$

In this section we shall consider only symmetric random variables, which we shall call, for the sake of brevity, simply random variables.

For every real number $t \neq 0$, let M_{t} be the convex function defined by

$$
M_{t}(x)=\frac{\cosh (t x)-1}{e^{\phi(t)}-1}, \quad x \in \mathbb{R} .
$$

Clearly, for every random variable ξ, the function $t \mapsto E M_{t}(\xi)$ is symmetric. Moreover

$$
E M_{t}(\xi)=\frac{E e^{t \xi}-1}{e^{\phi(t)}-1}
$$

Let now ξ be a fixed random variable. Put, for each t,

$$
A_{t}=\left\{a>0: E M_{t}(\xi / a) \leqslant 1\right\}
$$

We shall assume that A_{t} is nonempty. We have
Proposition 6.1: $A_{t}=A_{-t}$. Moreover A_{t} is a closed, left bounded balf-line.
The proof of Proposition (6.1) is an easy consequence of two lemmas:
Lemma 6.1: The (symmetric) function $t \mapsto E e^{t \xi}$ is increasing for $t>0$ (hence decreasing for $t<0$).

For every t, put

$$
\tau_{t}(\xi)=\inf A_{t}
$$

Lemma 6.2.

$$
E M_{t}\left(\frac{\xi}{\tau_{t}(\xi)}\right) \leqslant 1
$$

The proofs of Lemmas 6.1 and 6.2 are straightforward.
Set now

$$
E_{t}=\left\{\xi: \tau_{t}(\xi)<\infty\right\} .
$$

We are interested in analyzing the structure of E_{t} and the properties of τ_{t} on E_{t}. Since $A_{t}=A_{-t}$ we have

$$
\tau_{t}(\xi)=\tau_{-t}(\xi) ; \quad E_{t}=E_{-t}
$$

Hence there is no loss of generality in confining ourselves to the case $t \geqslant 0$.
We shall prove the following result
Theorem 6.1: E_{t} is a vector space and τ_{t} is a norm on E_{t}.
Proof: It is easy to see that E_{t} is a vector space and τ_{t} is a seminorm on it (recall that M_{t} is convex). It remains to see that $\tau_{t}(\xi)=0$ implies $\xi=0$. The relation $\tau_{t}(\xi)=$ $=0$ amounts to saying that, for every $a>0$, we have

$$
E M_{t}\left(\frac{\xi}{a}\right) \leqslant 1
$$

or, equivalently,

$$
E e^{t \xi / a} \leqslant e^{\phi(t)} .
$$

By the exponential Chebicev inequality, we deduce that, for every $u>0$

$$
P\{\xi>u\}=P\left\{e^{t \xi / a}>e^{t u / a}\right\} \leqslant E e^{t \xi / a} e^{-t u / a} \leqslant e^{\phi(t)} e^{-t u / a} .
$$

By letting a go to zero, we get $P\{\xi>u\}=0$ for every $u>0$, hence $P\{\xi>0\}=0$ and also $P\{\xi \neq 0\}=0$ because of the symmetry of ξ.

Now, for every random variable ξ, put

$$
\widehat{\tau}(\xi)=\sup _{t} \tau_{t}(\xi)
$$

and consider the set

$$
S(\Omega)=\left\{\xi \in \cap_{t} E_{t}: \widehat{\tau}(\xi)<\infty\right\} .
$$

We are interested in the structure of the pair $(S(\Omega), \hat{\tau})$. First of all, $S(\Omega)$ is non-empty, since all symmetric variables in $\operatorname{Sub}_{\phi}(\Omega)$ belong to it. Moreover, it is clear by its very construction that

Proposition 6.2: $S(\Omega)$ is a vector space and $\hat{\tau}$ is a norm on it.
As we have said just now, we have the inclusion

$$
\operatorname{Sub}_{\phi}(\Omega) \subseteq S(\Omega)
$$

As a matter of fact, the inclusion is a set-theoretic equality:

Proposition 6.3: $S(\Omega)$ coincides with the subspace of $\operatorname{Sub}_{\phi}(\Omega)$ consisting of the symmetric random variables. Moreover $\hat{\tau}=\tau_{\phi}$ on $\mathcal{S}(\Omega)$.

For the proof of proposition 6.3 we need a simple lemma:
Lemma 6.3: Let ξ be a random variable. Put

$$
\begin{gathered}
A=\left\{a>0: E M_{t}(\xi / a) \leqslant 1, \forall t\right\}=\left\{a>0: E e^{t \xi / a} \leqslant e^{\phi(t)}\right\} ; \\
B=\left\{b>0: E e^{t \xi} \leqslant e^{\phi(b t)}, \forall t .\right\}
\end{gathered}
$$

Then we have $A=B$.

Proof of proposition 6.3: We have $A=\bigcap_{t} A_{t}$; since A_{t} is a left bounded half-line for each t, the same is true for A. Moreover, by the preceding lemma, for every random variable ξ we have

$$
\widehat{\tau}(\xi)=\sup _{t} \tau_{t}(\xi)=\inf A=\inf B=\tau_{\phi}(\xi)
$$

7. - Comparison of the norms τ_{ϕ} and $\sigma_{\phi^{*}}$. Second part

Let q be the density of ϕ^{*} i.e. the function such that

$$
\phi^{*}(x)=\int_{0}^{|x|} q(t) d t
$$

We assume that q is differentiable and

$$
\inf _{u}\left(q^{\prime}(u)+q^{2}(u)\right)=H>0 .
$$

Remark 7.1: The above assumption is verified for the functions

$$
\begin{gathered}
\phi(x)=\frac{|x|^{p}}{p} ; \\
\phi(x)=e^{|x|}-|x|-1 .
\end{gathered}
$$

Put now

$$
\begin{aligned}
& \delta=\phi^{(-1)}(\log 3) \\
& L=\sup _{|t| \leqslant \delta} \frac{t^{2}}{\phi(t)} .
\end{aligned}
$$

We remark that

$$
L \geqslant \limsup _{t \rightarrow 0} \frac{t^{2}}{\phi(t)}=\frac{1}{c} \geqslant 0
$$

and that $L<\infty$ since $c>0$.
Last, we set

$$
A=\max \{\sqrt{10 L / 3 H}, 1\}
$$

and

$$
\delta=\phi^{-1}(\log 3) .
$$

We are going to prove the following
Proposition 7.1: For every symmetric random variable $\xi \in S(\Omega)$ we have

$$
\sup _{|t| \leqslant \delta} \tau_{t}(\xi) \leqslant A \sigma_{\phi^{*}}(\xi) .
$$

We need a
Lemma 7.1: For $|t| \leqslant \delta$

$$
M_{t}(x) \leqslant e^{\phi^{*}(A x)}-1
$$

Proof (of the Lemma): For $|t| \leqslant \delta$ we have, by (2.1)

$$
\begin{aligned}
e^{t u}+e^{-t u} & \leqslant e^{A \delta u}+e^{-A \delta u}=2 \sum_{k=0}^{\infty} \frac{(\delta(A u))^{2 k}}{(2 k)!} \leqslant 2 \sum_{k=0}^{\infty} \frac{\left(\phi(\delta) \phi^{*}(A u)\right)^{2 k}}{(2 k)!} \\
& =2 \sum_{k=0}^{\infty} \frac{\left(\log 3 \phi^{*}(A u)\right)^{2 k}}{(2 k)!} \leqslant \frac{10}{3} e^{\phi^{*}(A u)} \\
& \leqslant \frac{10}{3 H A^{2}} e^{\phi^{*}(A u)}\left(A^{2} q^{2}(A u)+A^{2} q^{\prime}(A u)\right) .
\end{aligned}
$$

By recalling the inequality $z \leqslant e^{z}-1$ we obtain also

$$
2 \frac{\phi(t)}{e^{\phi(t)}-1}\left(e^{t u}+e^{-t u}\right) \leqslant \frac{20}{3 H A^{2}} e^{\phi^{*}(A u)}\left(A^{2} q^{2}(A u)+A^{2} q^{\prime}(A u)\right) ;
$$

now, by an integration in u between 0 and y, with $|y| \leqslant \delta$ we get

$$
2 \frac{\phi(t)}{e^{\phi(t)}-1} \frac{e^{t y}-e^{-t y}}{t} \leqslant \frac{20}{3 H A^{2}} e^{\phi^{*}(A y)} A q(A y) ;
$$

by another integration in y between 0 and x, with $|x| \leqslant \delta$ we get finally

$$
M_{t}(x)=\frac{\cosh t x-1}{e^{\phi(t)}-1} \leqslant \frac{10 L}{3 H A^{2}}\left(e^{\phi^{*}(A x)}-1\right) \leqslant\left(e^{\phi^{*}(A x)}-1\right)
$$

We are now ready to conclude the proof of the proposition. Let $a>0$ be such that

$$
E\left[e^{\phi^{*}(\xi / a)}-1\right] \leqslant 1
$$

by the preceding lemma this implies that

$$
E M_{t}(\xi /(A a)) \leqslant 1
$$

so that we have the inclusion

$$
A \times\{a>0: E M(\xi / a) \leqslant 1\} \subseteq\left\{b>0: E M_{t}(\xi / b) \leqslant 1\right\}
$$

and this amounts to saying that

$$
\tau_{t}(\xi) \leqslant A \sigma_{\phi^{*}}(\xi)
$$

hence the statement of Proposition 7.1 by taking the supremum in $|t| \leqslant \delta$.
The two following lemmas are straightforward
Lemma 7.2: For every pair of real numbers t, x we have

$$
e^{t x}+e^{-t x} \leqslant e^{\phi(t)+\phi^{*}(x)}+1 \leqslant e^{\phi(t)+\phi^{*}(x)}+2 .
$$

Lemma 7.3: For every pair of real numbers t, x we have

$$
M_{t}(x / 2) \leqslant M_{t}(x) / 2
$$

Put again $\delta=\phi^{(-1)}(\log 3)$. We have
Proposition 7.2: For every symmetric random variable X we have

$$
\sup _{|t|>\delta} \tau_{t}(\xi) \leqslant 2 \sigma_{\phi^{*}}(\xi) .
$$

Proof: From Lemma 7.2 we easily get the relation

$$
\begin{equation*}
M_{t}(x) \leqslant \frac{1}{2}\left(1+\frac{1}{e^{\phi(t)}-1}\right) \exp \left\{\phi^{*}(x)\right\} . \tag{7.1}
\end{equation*}
$$

Since $|t|>\delta$ we have

$$
\begin{equation*}
\frac{1}{2}\left(1+\frac{1}{e^{\phi(t)}-1}\right) \leqslant \frac{3}{4} \tag{7.2}
\end{equation*}
$$

Let now $a>0$ be such that

$$
E\left[e^{\phi^{*}(\xi / a)}-1\right] \leqslant 1 ;
$$

from relations (7.1) and (7.2) we get

$$
E M_{t}(\xi / a) \leqslant(3 / 4) E\left[e^{\phi^{*}(\xi / a)}-1\right]+3 / 4 \leqslant(3 / 2)<2 .
$$

Hence, we deduce from Lemma (7.3) that

$$
E M_{t}(\xi /(2 a)) \leqslant(1 / 2) E M_{t}(\xi / a) \leqslant 1
$$

The above relation says that $2 a \in A_{t}$, that is

$$
\begin{equation*}
2 a \geqslant \tau_{t}(\xi) \tag{7.3}
\end{equation*}
$$

On taking the infimum with respect to a in relation (7.3), we get

$$
2 \sigma_{\phi^{*}}(\xi) \geqslant \tau_{t}(\xi) ;
$$

we now obtain the required relation by taking the supremum in t.
Proposition 7.1 and 7.2 together with Proposition 6.3 yield
Proposition 7.3: For every symmetric random variable in $\operatorname{Sub}_{\phi}(\Omega)$ we have

$$
\tau_{\phi}(\xi) \leqslant \max \{A, 2\} \sigma_{\phi^{*}}(\xi)
$$

where A is the number defined in Proposition 7.1.
We now drop the assumption of symmetry and use an argument of symmetrization: let ξ be any variable in $\operatorname{Sub}_{\phi}(\Omega)$ and η an independent copy of ξ. Denote by C the number $\max \{A, 2\}$. By Jensen inequality and Proposition 7.3 we have

$$
E e^{t \xi} \leqslant E e^{t(\xi-\eta)} \leqslant \phi(t C \sigma(\xi-\eta)) \leqslant \phi(2 t C \sigma(\xi)),
$$

since $\sigma_{\phi^{*}}$ is a norm and $\sigma_{\phi^{*}}(\xi)=\sigma_{\phi^{*}}(\eta)$.
Hence we deduce the
Proposition 7.4: For every random variable ξ in $\operatorname{Sub}_{\phi}(\Omega)$ we have

$$
\tau_{\phi}(\xi) \leqslant 2 C \sigma_{\phi^{*}}(\xi)
$$

8. - Independent random variables in $\operatorname{Sub}_{\phi}(\Omega)$

Theorem 8.1 [3]: Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \operatorname{Sub}_{\phi}(\Omega)$ be independent random variables. If the function $\phi\left(|x|^{1 / p}\right), x \in \mathbb{R}$ is convex for some $p \in[1,2]$, then

$$
\begin{equation*}
\tau_{\phi}^{p}\left(\sum_{k=1}^{n} \xi_{k}\right) \leqslant \sum_{k=1}^{n} \tau_{\phi}^{p}\left(\xi_{k}\right) . \tag{8.1}
\end{equation*}
$$

Proof: Since the function $\phi\left(|x|^{1 / p}\right)$ is convex the statement follows from the relations:

$$
\begin{aligned}
E \exp \left\{\lambda \sum_{k=1}^{n} \xi_{k}\right\} & =\prod_{k=1}^{n} E \exp \left\{\lambda \xi_{k}\right\} \leqslant \prod_{k=1}^{n} \exp \left\{\phi\left(|\lambda| \tau_{\phi}\left(\xi_{k}\right)\right\}\right. \\
& =\exp \left\{\sum_{k=1}^{n} \phi\left(\left(\left(|\lambda| \tau_{\phi}\left(\xi_{k}\right)\right)^{p}\right)^{1 / p}\right)\right\} \\
& \leqslant \exp \left\{\phi\left(\lambda\left(\sum_{k=1}^{n} \tau_{\phi}^{p}\left(\xi_{k}\right)\right)^{1 / p}\right)\right\}
\end{aligned}
$$

Corollary 8.1: Let $\xi_{k} \in \operatorname{Sub}_{\phi}(\Omega), k=\overline{1, \infty}$ and assume that the function $\phi\left(|x|^{1 / p}\right), x \in \mathbb{R}, p \in[1,2]$, is convex. Then we have

$$
\tau_{\phi}^{p}\left(\sum_{k=1}^{\infty} \xi_{k}\right) \leqslant \sum_{k=1}^{\infty} \tau_{\phi}^{p}\left(\xi_{k}\right)
$$

Example 8.1: Let $\eta_{k}, k=\overline{1, \infty}$ be independent random variables uniformly distributed in $[-1,1]$. Let $\theta=\sum_{k=1}^{\infty} a_{k} \eta_{k}$. It follows from example 3.2 that $\eta_{k} \in \operatorname{Sub} b_{\phi}(\Omega)$, where $\phi_{\alpha}(x)=|x|^{\alpha}, 1<\alpha \leqslant 2$, and $\tau_{\phi_{\alpha}}(\xi) \leqslant 6^{(1-\alpha) / \alpha}$. If $\sum_{k=1}^{\infty} a_{k}^{\alpha}<\infty$ then

$$
\tau_{\phi_{\alpha}}(\theta) \leqslant \sum_{k=1}^{\infty} a_{k}^{\alpha} \tau_{\phi_{\alpha}}\left(\eta_{k}\right) \leqslant 6^{1-\alpha} \sum_{k=1}^{\infty} a_{k}^{\alpha}=A_{\alpha}<\infty
$$

that is $\eta \in \operatorname{Sub}_{\phi}(\Omega)$. In this case the following inequality holds

$$
P\{|\theta|>\varepsilon\} \leqslant 2 \exp \left\{-\phi_{\alpha}^{*}\left(\frac{\varepsilon}{A_{\alpha}}\right)\right\}=2 \exp \left\{-c_{\alpha}\left(\frac{\varepsilon}{A_{\alpha}}\right)^{\frac{\alpha}{\alpha-1}}\right\}
$$

where $c_{\alpha}=\alpha^{-\frac{1}{\alpha-1}}-\alpha^{-\frac{a}{\alpha-1}}$.

REFERENCES

[1] Yu. V. Kozachenko, Properties of random processes of sub-Gaussian Type, Dokl. Acad. Nauk Ukrain. SSR (Russian), Ser. A, no. 9 (1984), 14-16.
[2] Yu. V. Kozachenko - E. I. Ostrovskiy, Banach space of random variables of sub-Gaussian type, Theory Probab. Math. Statist., 32 (1985), 45-46.
[3] V. V. Buldygin - Yu. V. Kozachenko, Metric characterization of random variables and random processes, American Mathematical Society, Providence RI, 2000.
[4] I. P. Kahane, Propriétés locales des fonctions à series de Fourier aléatoires Studia Math., 19, no. 1 (1960), 1-25.
[5] V. V. Buldygin - Yu. V. Kozachenko, On sub-Gaussian random variables Ukrain. Math. J., 32, no. 6 (1980), 483-489.
[6] R. Giuliano Antonini, Exponential bounds for the distribution of the norm of sub-Gaussian random vectors, Note Mat., 18, no. 1 (1998), 113-117.
[7] R. Giuliano Antonini, Exponential bounds for the distribution of the norm of scalar subGaussian random vector, Preprint, Dipartimento di Matematica Università di Pisa, 2.240957 (May 1996).
[8] R. Giuliano Antonini, On the asymptotic behaviour of sub-Gaussian processes, Atti Sem. Mat. Fis. Univ. Modena, 46, no. 2 (1998), 339-347.
[9] R. Giuliano Antonin, Sub-Gaussianity and exponential integrability of real random variables: comparison of the norms, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 3, no. 1 (2000), 147-157.
[10] M. A. Krasnoselsky - Y. B. Rutitsky, Convex functions and Orlicz spaces, Noordhof, Gröningen (1961).

