

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni

 $121^{\rm o}$ (2003), Vol. XXVII, fasc. 1, pagg. 95-124

R. GIULIANO ANTONINI - YU. KOZACHENKO T. NIKITINA (*)

Spaces of ϕ -Subgaussian Random Variables (**)

Abstract. — We give a new definition of $Sub_{\phi}(\Omega)$ random variable. This definition is wider than a previous one, studied by one of the Authors. Moreover we prove some inequalities concerning the Sub_{ϕ} -norms in various contexts.

Spazi di variabili aleatorie ϕ -subgaussiane

SUNTO. — Si dà una nuova definizione di variabile aleatoria appartenente allo spazio $Sub_{\phi}(\Omega)$. Tale definizione è più ampia di una precedente, studiata da uno degli Autori. Inoltre si provano, in vari contesti, alcune diseguaglianze riguardanti le norme in tale spazio.

1. - INTRODUCTION

The notion of $Sub_{\phi}(\Omega)$ random variable is a very natural generalization of that of sub-Gaussian random variable, introduced by Kahane in the paper [4] and developed in [5-9]. The spaces $Sub_{\phi}(\Omega)$ were firstly defined in [1, 2] and studied in the book [3] as well. In this paper we present a new definition of $Sub_{\phi}(\Omega)$ random variable. This definition is wider than the previous one, and reveals itself of easier use. Most inequalities for the $Sub_{\phi}(\Omega)$ random variables proved in this paper are new or improve known inequalities.

(*) Indirizzi degli Autori: Dipartimento di Matematica Università di Pisa, via F. Buonarroti 2, 56100 Pisa. E-mail: giuliano@dm.unipi.it

Kyiv University Fac. of Mathematics and Mechanics, Volodymirska str., 64 Kyiv, 01033 Ukraine. E-mail: yvk@mechmat.univ.kiev.ua

(**) Memoria presentata il 10 novembre 2003 da Giorgio Letta, uno dei XL.

2. - Orlicz N-functions

DEFINITION 2.1 [10] Let $\phi = \{\phi(x), x \in \mathbb{R}\}$ be a continuous even convex function. ϕ is called an Orlicz N-function if $\phi(0) = 0$, $\phi(x) > 0$ as $x \neq 0$ and the following conditions hold

$$(A_0)\lim_{x\to 0}\frac{\phi(x)}{x}=0, \quad (A_\infty)\lim_{x\to\infty}\frac{\phi(x)}{x}=\infty.$$

EXAMPLE 2.1: The following functions are *N*-functions:

$$\phi(x) = C|x|^{\alpha}, \quad C > 0, \ \alpha > 1;$$

$$\phi(x) = \exp\{|x|\} - |x| - 1;$$

$$\phi(x) = \exp\{a|x|^{\alpha}\} - 1, \quad a > 0, \ \alpha > 1;$$

$$\phi(x) = \begin{cases} \left(\frac{e\alpha}{2}\right)^{2/\alpha} x^{2}, & \text{as } |x| \le \left(\frac{2}{\alpha}\right)^{1/\alpha} \\ \exp\{|x|^{\alpha}\}, & \text{as } |x| > \left(\frac{2}{\alpha}\right)^{1/\alpha}, \ 0 < \alpha < 1. \end{cases}$$

LEMMA 2.1 [3, 10]: For any N-function ϕ the following statements hold: a) $\phi(\alpha x) \leq \alpha \phi(x)$ as $x \in \mathbb{R}$, $0 \leq \alpha \leq 1$;

- b) $\phi(\alpha x) \ge \alpha \phi(x)$ as $x \in \mathbb{R}$, $\alpha > 1$;
- c) $\phi(|x| + |y|) \ge \phi(x) + \phi(y)$ as $x, y \in \mathbb{R}$;
- d) there exists a constant c > 0, such that $\phi(x) > c|x|$ as |x| > 1;
- e) the function $\psi(x) = \frac{\phi(x)}{x}$ is monotone non-decreasing as x > 0; f) $\phi(x) = \int_{0}^{|x|} p(t) dt$, where the density $p = \{p(t), t \ge 0\}$ is right continuous not-decreasing, p(0) = 0 and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

DEFINITION 2.2 [10]: Let $\phi = \{\phi(x), x \in \mathbb{R}\}$ be an *N*-function. The function ϕ^* defined by

$$\phi^*(x) = \sup_{y \in \mathbb{R}} (xy - \phi(y))$$

is called the Young-Fenchel transform of ϕ .

REMARK 2.1: If x > 0, then $\phi^*(x) = \sup_{y>0} (xy - \phi(x))$. Moreover we have, for any \mathbb{R} $\phi^*(-x) = \phi^*(x)$ $x \in \mathbb{R}, \ \phi^*(-x) = \phi^*(x).$

LEMMA 2.2 [10]: The Young-Fenchel transform of an N-function is an N-function as well and the following inequality holds (Young-Fenchel inequality)

(2.1)
$$xy \le \phi(x) + \phi^*(y), \text{ as } x > 0, y > 0$$

EXAMPLE 2.2: If $\phi(x) = \frac{|x|^p}{p}$, p > 1, then $\phi^*(x) = \frac{|x|^q}{q}$ where q is such that $\frac{1}{q} + \frac{1}{q} = 1$. If $\phi(x) = \exp\{|x|\} - |x| - 1$ then we have $\phi^*(x) = (|x| + 1) \ln(|x| + 1) - 1$ -|x|.

CONDITION Q: An N-function ϕ satisfies condition Q if

(2.2)
$$\liminf_{x \to 0} \frac{\phi(x)}{x^2} = c > 0.$$

REMARK 2.2: It may happen that $c = \infty$.

EXAMPLE 2.3: The *N*-function $\phi(x) = c |x|^{\alpha}$ as $c > 0, 1 < \alpha \le 2$, satisfies condition Q, while the *N*-function $c|x|^{\alpha}$, c > 0, $\alpha > 2$ doesn't; on the other hand, it is easy to see that condition Q holds for the function

$$\phi(x) = \begin{cases} |x|^2, & |x| \le 1\\ |x|^{\alpha}, & |x| > 1 \end{cases} \text{ as } \alpha > 2.$$

DEFINITION 2.3 [10]: Let ϕ_1 and ϕ_2 be two N-functions. Then ϕ_1 is said to be subordinate to ϕ_2 ($\phi_1 < \phi_2$) if there exist two constants c > 0 and $x_0 > 0$ such that for $x > x_0$ the inequality $\phi_1(x) < \phi_2(cx)$ holds. The *N*-functions ϕ_1 and ϕ_2 are said to be equivalent if both relations $\phi_1 < \phi_2$ and $\phi_2 < \phi_1$ hold.

REMARK 2.3: Let $\phi_1 \prec \phi_2$. In this case it is easy to prove that for any $x_0 > 0$ there exist two constants x_0 and $c(x_0)$ such that $\phi_1(x) < \phi_2(c(x_0)x)$ as $|x| > x_0$.

THEOREM 2.1: For any N-function ϕ_1 there exists an N-function ϕ_2 which satisfies condition Q and such that $\phi_1 \sim \phi_2$.

PROOF: Let ϕ_1 be an *N*-function. We define ϕ_2 as follows. Let $x_0 > 0$ be any constant and put

$$\phi_{2}(x) = \begin{cases} cx^{2}, & \text{as } 0 \leq x \leq x_{0} \\ \phi_{1}(x) - \phi_{1}(x_{0}) + cx_{0}^{2}, & \text{as } x > x_{0}, \end{cases}$$

where $c = \frac{p(x_0)}{2x_0}$ and p(t) is the density of ϕ_1 . Then it is not difficult to see that $\phi_1 \sim \phi_2$ and ϕ_2 satisfies condition Q.

LEMMA 2.3 [10]: Let ϕ_1 and ϕ_2 be two N-functions. Then

- a) if $\phi_1 < \phi_2$ then $\phi_2^* < \phi_1^*$,
- b) if $\phi_1 \sim \phi_2$ then $\phi_2^* \sim \phi_1^*$.

LEMMA 2.4 [10]: Let ϕ be an N-function and $\phi^{(-1)} = \{\phi^{(-1)}(x), x \in \mathbb{R}\}$ be the inverse function of ϕ . The following assertions hold

- a) $\phi^{(-1)}(x)$ is a monotone increasing, concave continuous function such that $\phi(0) = 0, \ \phi(x) > 0 \ as \ x > 0, \ \phi(x) \rightarrow \infty \ as \ x \rightarrow \infty;$
- b) $\phi^{(-1)}(\alpha x) \leq \alpha \phi^{(-1)}(x)$, as $\alpha \geq 1$;
- c) $\phi^{(-1)}(\alpha x) \ge \alpha \phi^{(-1)}(x), \text{ as } 0 \le \alpha < 1;$
- d) $\phi^{(-1)}(x+y) \leq \phi^{(-1)}(x) + \phi^{(-1)}(y);$
- e) there exists such constant c > 0 that $\phi^{(-1)}(\alpha x) \le cx$, as x > 1; f) the function $\theta(x) = \frac{\phi^{(-1)}(x)}{x}$, x > 0, is monotone decreasing.

3. - Spaces $Sub_{\phi}(\Omega)$. Definitions and general properties

Let (Ω, \mathcal{B}, P) be a standard probability space, fixed throughout.

DEFINITION 3.1: Let ϕ be an N-function satisfying condition Q. The random variable ξ belongs to the space $Sub_{\phi}(\Omega)$ if $E\xi = 0$, $E \exp{\{\lambda\xi\}}$ exists for all $\lambda \in \mathbb{R}$ and there exists a constant a > 0 such that the following inequality holds for all $\lambda \in \mathbb{R}$

$$(3.1) E \exp{\{\lambda\xi\}} \leq \exp{\{\phi(\lambda a)\}}.$$

REMARK 3.1: Conditions Q and $E\xi = 0$ are necessary. In fact,

(3.2)
$$E \exp \lambda \xi = 1 + \lambda E \xi + \frac{\lambda^2}{2} E \xi^2 + o(\lambda^2), \text{ as } \lambda \to 0,$$
$$\exp \phi(\lambda a) = 1 + \phi(\lambda a) + o(\phi(\lambda a)), \text{ as } \lambda \to 0.$$

Inequality (3.1) holds for $\lambda > 0$ if the following holds

$$E\xi + \frac{\lambda}{2}E\xi^2 + \frac{o(\lambda^2)}{\lambda} \le \frac{\phi(\lambda a)}{\lambda} + \frac{o(\phi(\lambda a))}{\lambda}, \quad \text{as } \lambda > 0$$

Since $\frac{\phi(\lambda a)}{\lambda} \to 0$ as $\lambda \to 0$ then $E\xi \ge 0$. For $\lambda < 0$ (3.1) holds if

$$E\xi+\frac{\lambda}{2}E\xi^{2}+\frac{o(\lambda^{2})}{\lambda}\geq\frac{\phi(\lambda a)}{\lambda}+\frac{o(\phi(\lambda a))}{\lambda};$$

hence $E\xi \ge 0$, so that $E\xi = 0$. Now from (3.2) it follows that for $\lambda \rightarrow 0$

$$E\xi^{2} + \frac{o(\lambda^{2})}{\lambda^{2}} \leq \frac{\phi(\lambda a)}{\lambda^{2}} + \frac{o(\phi(\lambda a))}{\lambda^{2}}$$

If $\liminf_{\lambda \to 0} \frac{\phi(\lambda)}{\lambda^2} = 0$, that there exists a sequence $\lambda_n \to 0$ such that $\frac{\phi(\lambda_n)}{\lambda_n^2} \to 0$ as $n \to \infty$, that is $E\xi^2 = 0$ and $\xi = 0$ with probability one. The condition $\lim_{x \to \infty} \frac{\phi(x)}{x} = \infty$ excludes from our considerations the space of ran-

dom variables which are bounded with probability one. In fact, if for all $\lambda \in \mathbb{R}$ and some a > 0

$$E\exp\left\{\lambda\xi\right\} \leq \exp\left\{a\left|\lambda\right|\right\},\,$$

then, for all $\lambda > 0$ we get

$$E\exp\left\{\lambda|\xi|\right\} \leq 2\exp\left\{a\lambda\right\}.$$

It follows from Chebyshev inequality that for any $\varepsilon > 0$, $\lambda > 0$

$$P\{|\xi| > \varepsilon\} \leq \frac{E \exp\{\lambda |\xi|\}}{\exp\{\lambda\xi\}} \leq 2 \exp\{(a - \varepsilon)\lambda\}.$$

The right part of this inequality tends to zero as $\lambda \to \infty$ and $\varepsilon > a$ so that $P\{ |\xi| > \varepsilon \} =$ = 0 if $\varepsilon > a$.

Consider now the following functional, defined on the space Sub_{ϕ} as (Ω)

(3.3)
$$\tau_{\phi}(\xi) = \inf \left(a \ge 0 : E \exp \lambda \xi \le \exp \phi(a\lambda), \lambda \in \mathbb{R} \right).$$

It is evident that for all $\lambda \in \mathbb{R}$ the following inequality holds

(3.4)
$$E \exp \left\{ \lambda \xi \right\} \leq \exp \phi(\lambda \tau_{\phi}(\xi));$$

moreover

(3.5)
$$\tau_{\phi}(\xi) = \sup_{\lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp{\{\lambda \xi\}}))}{|\lambda|}.$$

LEMMA 3.1: Let $\xi \in Sub_{\phi}(\Omega)$, $\tau_{\phi}(\xi) > 0$, $\varepsilon > 0$. The following inequalities hold

$$P\{\xi > \varepsilon\} \leq \exp\left\{-\phi^*\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\};$$
$$P\{\xi < -\varepsilon\} \leq \exp\left\{-\phi^*\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\};$$
$$P\{|\xi| > \varepsilon\} \leq 2\exp\left\{-\phi^*\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\}$$

PROOF: It follows from Chebyshev inequality that for all $\lambda > 0$, $\varepsilon > 0$

$$P\{\xi > \varepsilon\} \leq \frac{E \exp\{\lambda \xi\}}{\exp\{\lambda \varepsilon\}} \leq \exp\{\phi(\lambda \tau_{\phi}(\xi)) - \lambda \varepsilon\}.$$

It follows from this inequality that

$$\begin{split} P\{\xi > \varepsilon\} &= \inf_{\lambda > 0} \exp\left\{\phi(\lambda \tau_{\phi}(\xi)) - \lambda \varepsilon\right\} = \exp\left\{-\sup_{\lambda > 0}(\lambda \varepsilon - \phi(\lambda \tau_{\phi}(\xi)))\right\} \\ &= \exp\left\{-\sup_{\lambda > 0}\left(\lambda \tau_{\phi}(\xi) \frac{\varepsilon}{\tau_{\phi}(\xi)} - \phi(\lambda \tau_{\phi}(\xi))\right)\right\} \\ &= \exp\left\{-\phi^{*}\left(\frac{\varepsilon}{\tau_{\phi}(\xi)}\right)\right\}. \end{split}$$

The first inequality of this lemma is proved. The second inequality can be proved in the same way. The third inequality follows from

$$P\{ |\xi| > \varepsilon \} \le P\{\xi > \varepsilon\} + P\{\xi < -\varepsilon\}, \quad \text{as } \varepsilon > 0. \quad \blacksquare$$

THEOREM 3.1: The space $Sub_{\phi}(\Omega)$ is a Banach space with respect to the norm $\tau_{\phi}(\cdot)$.

PROOF: We first prove that $Sub_{\phi}(\Omega)$ is a linear space with norm $\tau_{\phi}(\cdot)$.

If $\xi = 0$ with probability one then $\tau_{\phi}(\xi) = 0$. Conversely, if $\tau_{\phi}(\xi) = 0$ then $E \exp{\{\lambda\xi\}} \leq 1$ for all $\lambda > 0$ and for any $\varepsilon > 0$, $\lambda > 0$

$$P\{|\xi| > \varepsilon\} \leq \frac{E \exp\{\lambda|\xi|\}}{\exp\{\lambda\varepsilon\}} \leq (E \exp\{\lambda\xi\} + E \exp\{-\lambda\xi\}) \exp\{-\lambda\varepsilon\}$$
$$\leq 2 \exp\{-\lambda\varepsilon\}.$$

Let now $\lambda \to \infty$. Then we obtain that for any $\varepsilon P\{ |\xi| > \varepsilon \} = 0$, that is $\xi = 0$ if and only if $\tau_{\phi}(\xi) = 0$.

It follows from (3.5) that as $a \neq 0$

$$\begin{aligned} \tau_{\phi}(a\xi) &= \sup_{\lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp \lambda a\xi))}{|\lambda|} \\ &= |a| \sup_{a\lambda \neq 0} \frac{\phi^{(-1)}(\ln (E \exp \lambda a\xi))}{|a\lambda|} = |a| \tau_{\phi}(\xi). \end{aligned}$$

Now we prove that for any ξ , $\eta \in Sub_{\phi}(\Omega)$

$$\tau_{\phi}(\xi + \eta) \leq \tau_{\phi}(\xi) + \tau_{\phi}(\eta).$$

If $\tau_{\phi}(\xi) = 0$ or $\tau_{\phi}(\eta) = 0$ the above inequality is obvious. Let $\tau_{\phi}(\xi) \neq 0$ and $\tau_{\phi}(\eta) \neq 0$. It follows from Hölder inequality that for all $\lambda \in \mathbb{R}$, p > 0, $\frac{1}{p} + \frac{1}{q} = 1$,

(3.6)
$$E \exp \left\{ \lambda(\xi + \eta) \right\} \leq \left(E \exp \left\{ p\lambda\xi \right\} \right)^{\frac{1}{p}} \left(E \exp \left\{ q\lambda\xi \right\} \right)^{1/q}$$
$$\leq \exp \left\{ \frac{1}{p} \phi(\lambda p \tau_{\phi}(\xi)) + \frac{1}{q} \phi(\lambda q \tau_{\phi}(\xi)) \right\}.$$

Put in (3.6)

$$p = \frac{\tau_{\phi}(\xi) + \tau_{\phi}(\eta)}{\tau_{\phi}(\xi)}, \quad q = \frac{\tau_{\phi}(\xi) + \tau_{\phi}(\eta)}{\tau_{\phi}(\eta)};$$

then we obtain

$$E \exp \left\{ \lambda(\xi + \eta) \right\} \leq \exp \left\{ \lambda(\tau_{\phi}(\xi) + \tau_{\phi}(\eta)) \right\},\$$

hence $\tau_{\phi}(\xi + \eta) \leq \tau_{\phi}(\xi) + \tau_{\phi}(\eta).$

Now we prove that the space $Sub_{\phi}(\Omega)$ is complete with respect to the norm $\tau_{\phi}(\cdot)$. Let the random variables ξ_n , $n \ge 1$, belong to the space $Sub_{\phi}(\Omega)$ and

(3.7)
$$\lim_{n \to \infty} \sup_{m \ge n} \tau_{\phi}(\xi_n - \xi_m) = 0.$$

Therefore

$$\lim_{n \to \infty} \sup_{m \ge n} |\tau_{\phi}(\xi_n) - \tau_{\phi}(\xi_m)| \le \lim_{n \to \infty} \sup_{m \ge n} \tau_{\phi}(\xi_n - \xi_m) = 0$$

and $\sup_{n} \tau_{\phi}(\xi_{n}) = \tau < \infty$. It follows from (3.7) and lemma 3.1 that for any $\varepsilon > 0$

$$P\{|\xi_n - \xi_m| > \varepsilon\} \leq 2 \exp\left\{-\phi^*\left(\frac{\varepsilon}{\tau_{\phi}(\xi_n - \xi_m)}\right)\right\} \to 0 \quad \text{as } n, m \to \infty,$$

so that $\xi_n - \xi_m \rightarrow 0$ in probability. Hence ξ_n converge in probability to some random variable ξ_{∞} . We have now

(3.8)
$$\sup_{n} E[\exp\{\lambda\xi_{n}\}]^{1+\varepsilon} = \sup_{n} E\exp\lambda(1+\varepsilon)\,\xi_{n}$$
$$\leq \sup_{n} \exp\{\phi(\lambda(1+\varepsilon)\,\tau_{\phi}(\xi_{n}))\}$$
$$\leq \exp\phi(\lambda(1+\varepsilon)\tau) < \infty.$$

From (3.8) and the theorem of uniform integrability it follows that

$$E \exp \left\{ \lambda \xi_{\infty} \right\} = \lim_{n \to \infty} E \exp \left\{ \lambda \xi_n \right\} \leq \exp \phi(\lambda \tau_{\phi}^{\infty}),$$

where $\tau_{\phi}^{\infty} = \limsup_{n \to \infty} \tau_{\phi}(\xi_n)$. Hence $\xi_{\infty} \in Sub_{\phi}(\Omega)$ and

(3.9)
$$\tau_{\phi}(\xi_{\infty}) \leq \limsup_{n \to \infty} \tau_{\phi}(\xi_{n}).$$

The random variables $\xi_{\infty} - \xi_n$ belong to $Sub_{\phi}(\Omega)$. Now the inequality

(3.10)
$$\tau_{\phi}(\xi_{\infty} - \xi_{n}) \leq \sup_{m \geq n} \tau_{\phi}(\xi_{m} - \xi_{n})$$

can be proved as we proved (3.9). It follows from (3.10) and (3.7) that $\tau_{\phi}(\xi_{\infty} - \xi_n) \rightarrow 0$ as $n \rightarrow \infty$.

REMARK 3.2: If $\phi(x) = \frac{x^2}{2}$ the space $Sub_{\phi}(\Omega) = Sub(\Omega)$ is the space of sub-Gaussian random variables.

LEMMA 3.2: Let ξ be a random variable such that $E\xi = 0$ and $E \exp {\lambda\xi} = a(\lambda)$ exists for all $\lambda \in \mathbb{R}$. Then

(i) we have

$$(3.11) E\exp\left\{\lambda\xi\right\} \ge 1;$$

(ii) there exist all moments $E|\xi|^{\alpha}$, $\alpha > 0$, and the next inequality holds

(3.12)
$$E \exp |\xi|^{\alpha} \leq \left(\frac{\alpha}{e}\right)^{\alpha} \inf_{\lambda>0} \frac{a(\lambda) + a(-\lambda)}{\lambda^{\alpha}}$$

(iii) The function $\psi(\lambda) = \ln (a(\lambda))$ is convex; moreover for any real number x_0 there exists a constant $T = T(x_0)$ such that

$$(3.13) E \exp{\{\lambda\xi\}} \le \exp{\{T\lambda^2\}}$$

as $|\lambda| < x_0$; we have $T = \sup_{|\lambda| < x_0} \frac{\ln (E \exp \lambda \xi)}{\lambda^2} < \infty$.

PROOF: From Jensen inequality we get $E \exp {\lambda \xi} \ge \exp {\lambda E \xi} = 1$, and (3.11) is proved. From the relation

$$\max_{x \ge 0} x^{\alpha} \exp\left\{-x\right\} = \left(\frac{\alpha}{e}\right)^{\alpha}, \quad \text{as } \alpha > 0$$

we deduce that for all x > 0, $\alpha > 0$ we have

(3.14)
$$x^{\alpha} \leq \left(\frac{\alpha}{e}\right)^{\alpha} \exp\left\{x\right\}.$$

-103 -

It follows from (3.14) that for all $\lambda > 0$

$$(3.15) \qquad E|\lambda\xi|^{\alpha} \leq \left(\frac{\alpha}{e}\right)^{\alpha} E\exp\left\{\lambda\xi\right\} \leq \left(\frac{\alpha}{e}\right)^{\alpha} (E\exp\left\{\lambda\xi\right\} + E\exp\left\{-\lambda\xi\right\})$$
$$= \left(\frac{\alpha}{e}\right)^{\alpha} (a(\lambda) + a(-\lambda)).$$

Now (3.12) follows from (3.15).

We have

(3.16)
$$\psi''(\lambda) = \frac{a''(\lambda) a(\lambda) - (a'(\lambda))^2}{a^2(\lambda)}.$$

It follows from Hölder inequality, that

$$(a'(\lambda))^2 = (E\xi \exp\left\{\lambda\xi\right\})^2 \leq E\xi^2 \exp\left\{\lambda\xi\right\} \cdot E\exp\left\{\lambda\xi\right\} = a''(\lambda)\,a(\lambda),$$

so that $\psi''(\lambda) \ge 0$ and the function $\psi(\lambda)$ is convex. If $\lambda \to 0$ we have $E \exp{\{\lambda\xi\}} = 1 + 1$ + $\frac{1}{2}E\xi^2\lambda^2 + o(\lambda^2)$, hence $\psi(\lambda) = \frac{1}{2}\lambda E\xi^2 + o(\lambda^2)$. Relation (3.13) now follows from the last inequality and the convexity of $\psi(\lambda)$.

THEOREM 3.2: Let $\phi_1(\lambda)$ and $\phi_2(\lambda)$ be two N-functions such that $\phi_1 < \phi_2$. Assume that $\xi \in Sub_{\phi_1}(\Omega)$; then $\xi \in Sub_{\phi_2}(\Omega)$ and there exists a constant $c(\phi_1, \phi_2)$ such that $\tau_{\phi_2}(\xi) \leq c(\phi_1, \phi_2)\tau_{\phi_1}(\xi).$

PROOF: It follows from remark 2.3 that for any $x_0 > 0$ there exists a number D = $= D(x_0) > 0 \text{ such that } \phi_1(x) \le \phi_2(Dx), \text{ as } |x| > x_0. \text{ Let } \xi \in Sub_{\phi_1}(\Omega), \ \tau_1 = \tau_{\phi_1}(\xi) > 0;$ then for all $\lambda > 0$ such that $|\lambda| \tau_1 \ge x_0$

(3.17)
$$\exp\left\{\lambda\xi\right\} \leq \exp\left\{\phi_1(\lambda\tau_1)\right\} \leq \exp\left\{\phi_2(\lambda D\tau_1)\right\}.$$

Let λ be such that $|\lambda| \leq \frac{x_0}{\tau_{1x_0}}$; then it follows from Lemma 3.2 that there exists a number $B(x_0)$ such that for $|\lambda| \leq \frac{\tau_{1x_0}}{\tau_1}$ we have) $\tau_1^2 \lambda^2$ },

$$(3.18) \qquad \exp\left\{\lambda\xi\right\} \le \exp\left\{B(x_0)\right\}$$

$$B(x_0) = \sup_{|\lambda| \leq x_0/\tau_1} \frac{\ln \left(E \exp \left\{ \lambda \xi \right\} \right)}{\tau_1^2 \lambda^2} < \infty \,.$$

Since $B(x_0)$ decreases when x_0 decreases, it follows from (2.2) that there exist two numbers $z_0 > 0$ and $c_1 > 0$ such that for all $|x| \le z_0$ we have $\phi_2(x) \ge c_1 x^2$. Let x_0 be a number such that $\frac{x_0(B(x_0))^{1/2}}{c_1} \le z_0$. (Such a number exists since $x_0(B(x_0))^{1/2} \to 0$ as — 104 —

 $x_0 \rightarrow 0.$) Then from (3.18) we deduce that for $|\lambda| \leq \frac{x_0}{\tau_1}$

$$(3.19) \qquad E \exp\left\{\lambda\xi\right\} \leq \exp\left\{c_1 \frac{B(x_0)}{c_1}\tau_1^2\lambda^2\right\} \leq \exp\left\{\phi_2\left(\lambda\tau_1\left(\frac{B(x_0)}{c_1}\right)^{1/2}\right)\right\}$$

since

$$|\lambda| \tau_1 \left(\frac{B(x_0)}{c_1}\right)^{1/2} \le x_0 \tau_1 \left(\frac{B(x_0)}{c_1}\right)^{1/2} \le z_0.$$

It follows from (3.17) and (3.19) that $E \exp \{\lambda \xi\} \leq \exp \{\phi_2(\tau_1 L \lambda)\}$, where

$$L = \max\left(\left(\frac{B(x_0)}{c_1}\right)^{1/2}, D\right)$$

that is $\xi \in Sub_{\phi_2}(\Omega)$ and $\tau_{\phi_2}(\xi) \leq L\tau_{\phi_1}(\xi)$.

EXAMPLE 3.1: Let ξ be any bounded random variable with $E\xi = 0$; then $\xi \in Sub_{\phi}(\Omega)$ for all *N*-functions ϕ .

In order to prove the above statement, let ϕ be an *N*-function satisfying condition Q, *a* a real number with a > 0 and ξ a random variable with $|\xi| \le r$ with probability one. Then

(3.20)
$$\phi(x) = \phi\left(\frac{x}{a}a\right) \ge \frac{|x|}{a}\phi(a) \quad \text{as} \quad |x| \ge a$$

Hence it follows from (3.20) that

(3.21)
$$E \exp\left\{\lambda\xi\right\} \leq \exp\left\{\frac{\phi(a)}{a} \frac{a|\lambda|}{\phi(a)}r\right\} \leq \exp\left\{\phi\left(a\frac{|\lambda|}{\phi(a)}r\right)\right\} \text{ as } |\lambda| > \frac{\phi(a)}{r}.$$

Let $|\lambda| < \frac{\phi(a)}{r}$; then from lemma 3.2 we deduce that there exists a number T(a, r) such that

(3.22)
$$E \exp \{\lambda \xi\} \leq \exp \{T(a, r) \lambda^2\}.$$

It follows from (2.2) that there exist two constants $c_1 > 0$ and $z_0 > 0$ such that

(3.23)
$$\phi(x) \ge c_1 x^2 \text{ as } |x| < z_0,$$

T(a, r) decreases as a decrease so that we can choose a constant a > 0 such that

$$\frac{\phi(a) T^{1/2}(a, r)}{r(c_1)^{1/2}} \leq z_0.$$

hence from (3.22) we get

$$\left(\frac{T(a, r)}{c_1}\right)^{1/2} |\lambda| \leq \frac{\phi(a)}{r} \frac{T^{1/2}(a, r)}{(c_1)^{1/2}} \leq z_0$$

and

(3.24)
$$E \exp\left\{\lambda\xi\right\} \leq \exp\left\{c_1 \frac{T(a, r)}{c_1}\lambda^2\right\} \leq \exp\left\{\phi\left(\lambda\left(\frac{T(a, r)}{c_1}\right)^{1/2}\right)\right\}.$$

It follows from (3.23) and (3.24) that $E \exp \{\lambda \xi\} \leq \exp \{\phi(\lambda K)\}$, where $K = \max \left(\left(\frac{T(a, r)}{c_1}\right)^{1/2}, \frac{ar}{\phi(a)} \right)$; hence $\xi \in Sub_{\phi}(\Omega)$. In some particular cases we can find other (more precise) norms in the spaces

 $Sub_{\phi}(\Omega).$

EXAMPLE 3.2: Let ξ be a random variable uniformly distributed in the interval [-1, 1]. Then $\xi \in Sub_{\phi}(\Omega)$ for all N-functions ϕ and

(3.25)
$$\tau_{\alpha}(\xi) \leq 6^{\frac{1-\alpha}{\alpha}} \quad \text{as} \quad 1 < \alpha \leq 2,$$

where $\tau_{\alpha}(\xi) = \tau_{\phi_{\alpha}}(\xi)$, $\phi_{\alpha} = |x|^{\alpha}$. In fact

$$E \exp \{\lambda\xi\} = \frac{1}{2} \int_{-1}^{1} \exp \{\lambda u\} du = \frac{1}{2\lambda} (e^{\lambda} - e^{-\lambda})$$
$$= \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k+1)!} = \sum_{k=0}^{\infty} \left(\frac{\lambda^2}{6}\right)^k \frac{6^k k!}{(2k+1)!} \frac{1}{k!}$$
$$\leq \sum_{k=0}^{\infty} \left(\frac{\lambda^2}{6}\right)^k \frac{1}{k!} \leq \exp\left\{\frac{\lambda^2}{6}\right\}.$$

If $\frac{|\lambda|}{\sqrt{6}} \leq 1$ then

$$\exp\left\{\frac{\lambda^2}{6}\right\} \le \exp\left\{\left(\frac{|\lambda|}{\sqrt{6}}\right)^{\alpha}\right\} \le \exp\left\{\left(\frac{|\lambda|}{6^{1-1/\alpha}}\right)^{\alpha}\right\}$$

so that for $|\lambda| \leq \sqrt{6}$ we have

(3.26)
$$E \exp\left\{\lambda\xi\right\} \leq \exp\left\{\left(\frac{|\lambda|}{6^{1-1/\alpha}}\right)^{\alpha}\right\}$$

It is obvious that $E \exp \{\lambda \xi\} = E \exp \{ |\lambda| |\xi| \} \le \exp \{ |\lambda| \}.$

$$-106 -$$

If
$$\frac{|\lambda|}{\sqrt{6}} > 1$$
 then
(3.27) $\exp\left\{|\lambda|\right\} \le \exp\left\{|\lambda|\frac{|\lambda|^{\alpha-1}}{(\sqrt{6})^{\alpha-1}}\right\}$
 $= \exp\left\{\frac{|\lambda|^{\alpha}}{(\sqrt{6})^{\alpha-1}}\right\} = \exp\left\{\left(\frac{|\lambda|}{(\sqrt{6})^{\frac{\alpha-1}{\alpha}}}\right)^{\alpha}\right\}$

(3.25) now follows from (3.26), (3.27).

EXAMPLE 3.3: If ξ is a Gaussian random variable, $E\xi = 0$, $E\xi^2 = \sigma^2 > 0$, then $E \exp\{\lambda\xi\} \leq E \exp\{\frac{\lambda^2 \sigma^2}{2}\}$, that is $\xi \in Sub_{\phi}(\Omega)$, where $\phi(x) = x^2/2$ and $\tau_{\phi}(\xi) = \sigma$.

EXAMPLE 3.4: Let ξ be a Poisson random variable, with $E\xi = a$ and put $\eta = \xi - a$; then

$$E\exp\left\{\lambda\eta\right\} = \exp\left\{a(e^{\lambda} - \lambda - 1)\right\};$$

this means that $\eta \in Sub_{\phi}(\Omega)$, where $\phi(\lambda) = a(e^{|\lambda|} - |\lambda| - 1)$ and $\tau_{\phi}(\xi) = 1$. It follows from example 2.2 that

$$\phi^{\star}(\lambda) = a\left(\left(\frac{|\lambda|}{a} + 1\right)\ln\left(\frac{|\lambda|}{a} + 1\right) - \frac{|\lambda|}{a}\right)$$

and from Lemma 3.1 that for $\varepsilon > 0$ we have

(3.28)
$$P\{\eta > \varepsilon\} \le \exp\left\{-\left[(\varepsilon + a)\ln\left(\frac{\varepsilon}{a} + 1\right) - \varepsilon\right]\right\}.$$

4. - Characterization of the space $\mathit{Sub}_\phi(\varOmega)$ and some inequalities

LEMMA 4.1: Let $\xi \in Sub_{\phi}(\Omega)$. Then for all $\alpha > 0$ the following inequality holds

(4.1)
$$E|\xi|^{\alpha} \leq 2\left(\frac{\alpha}{e}\right)^{\alpha} (\tau_{\phi}(\xi))^{\alpha} \inf_{t>a} \exp\left\{\phi(t) - \alpha \ln(t)\right\}$$
$$\leq 2(\tau_{\phi}(\xi))^{\alpha} \left(\frac{\alpha}{\phi^{(-1)}(\alpha)}\right)^{\alpha} \quad \text{as } a > 0.$$

PROOF: It follows from inequalities (3.12) and (3.4) that for $\lambda > 0$ one has

(4.2)
$$E|\xi|^{\alpha} \leq 2\left(\frac{\alpha}{e}\right)^{\alpha} \lambda^{-\alpha} \exp\left\{\phi(\lambda\tau_{\phi}(\xi))\right\}$$
$$= 2\left(\frac{\alpha}{e}\right)^{\alpha} (\tau_{\phi}(\xi))^{\alpha} \left(\frac{1}{\lambda\tau_{\phi}(\xi)}\right)^{\alpha} \exp\left\{\phi(\lambda\tau_{\phi}(\xi))\right\}$$
$$= 2\left(\frac{\alpha}{e}\right)^{\alpha} (\tau_{\phi}(\xi))^{\alpha} \exp\left\{\phi(\lambda\tau_{\phi}(\xi)) - \alpha\ln\left(\lambda\tau_{\phi}(\xi)\right)\right\}$$

By setting $\lambda = \frac{\phi^{(-1)}(\alpha)}{\tau_{\phi}(\xi)}$ we obtain the second inequality in (4.1).

COROLLARY 4.1: Let $\xi \in Sub_{\phi}(\Omega)$; then the following inequality holds

(4.3)
$$\tau_{\phi}(\xi) \ge \frac{1}{\sqrt{2}} \theta_{\phi}(\xi),$$

where

$$\theta_{\phi}(\xi) = \sup_{n \ge 2} (E|\xi|^n)^{1/n} \frac{\phi^{(-1)}(n)}{n}$$

Moreover $\theta_{\phi}(\xi)$ is a norm on $Sub_{\phi}(\Omega)$.

LEMMA 4.2: Let $\xi \in Sub_{\phi}(\Omega)$. Then for $k=1, 2, \ldots$ the following inequality holds

(4.4)
$$|E\xi^{k}| \leq E|\xi|^{k} \leq 2(\tau_{\phi}(\xi))^{k} \frac{e^{k}}{(\phi^{(-1)}(k))^{k}} k!$$

PROOF: The relation $\exp \{x\} = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ yields that for x > 0 we have $x^k \le k! \exp \{x\}.$

For $x = |\xi| \lambda$ ($\lambda > 0$) we get

$$E\left|\xi\right|^{k} \leq k! E \exp\left\{\lambda\left|\xi\right|\right\} \lambda^{-k} \leq k! 2 \exp\left\{\phi(\lambda \tau_{\phi}(\xi))\right\} \lambda^{-k}.$$

By setting $\lambda = \frac{\phi^{(-1)}(k)}{\tau_{\phi}(\xi)}$ in the latter inequality we obtain (4.4).

COROLLARY 4.2: Let $\xi \in Sub_{\phi}(\Omega)$. Then the following inequality holds

(4.5)
$$\tau_{\phi}(\xi) \ge \frac{1}{e\sqrt{2}} \nu_{\phi}(\xi)$$

where

$$\nu_{\phi}(\xi) = \sup_{n \ge 2} \left| E\xi^n \right|^{1/n} \frac{\phi^{(-1)}(n)}{(n!)^{1/n}}$$

COROLLARY 4.3: Let $\xi \in Sub_{\phi}(\Omega)$ be a random variable with a symmetrical distribution (or such that all moments $E\xi^{2n+1} = 0$ for n = 0, 1, 2, ...); then

where

$$\nu_{\phi,2}(\xi) = \sup_{l \ge 2} \left(E \xi^{2l} \right)^{1/2l} \frac{\phi^{(-1)}(2l)}{(2l!)^{1/2l}}$$

COROLLARY 4.4: Let $\xi \in Sub_{\phi}(\Omega)$. Then we have

(4.7)
$$\nu_{\phi}(\xi) \ge \theta_{\phi}(\xi), \quad \nu_{\phi}(\xi) \le \exp\left\{\frac{49}{48}\right\} \theta_{\phi}(\xi).$$

PROOF: The first inequality is evident. The second one follows from Stirling's formula $n! = n^n e^{-n} (2\pi n)^{1/2} e^{\theta_n}$ where $|\theta_n| \leq \frac{1}{12n}$. Indeed

$$(n!)^{-\frac{1}{n}} = \frac{1}{n} \frac{e^{1+\theta_n/n}}{(2\pi n)^{1/2n}} \le \frac{1}{n} e^{49/48} \text{ as } n \ge 2.$$

LEMMA 4.3: Let ξ be a random variable such that $E\xi = 0$, ϕ an N-function satisfying condition Q. Let $\lambda_0 > 0$ be any number and $c_0 = \inf_{0 < |\lambda| \le \lambda_0} \frac{\phi(\lambda)}{\lambda^2}$. Assume that

$$\nu_{\phi}(\xi) = \sup_{n \ge 2} \left| E\xi^n \right|^{1/n} \frac{\phi^{(-1)}(n)}{(n!)^{1/n}} < \infty$$

Let γ_1 be the root of the equation

(4.8)
$$\gamma = \lambda_0 \sqrt{c_0(1-\gamma)}$$

 γ_2 the root of the equation $\gamma^3 - 2(1 - \gamma) = 0$ and γ_3 the root of the equation $\gamma = \phi^{(-1)}(2) \sqrt{c_0(1 - \gamma)}$. Then $\xi \in Sub_{\phi}(\Omega)$ and the following inequality holds

(4.9)
$$\tau_{\phi}(\xi) \leq S_{\phi} \nu_{\phi}(\xi),$$

where $S_{\phi} = \max_{i=\overline{1,3}} \gamma_i^{-1}$.

PROOF: Let γ be any number such that $\gamma \in (0, \min(\gamma_1, \gamma_2))$. Then

(4.10)
$$\gamma \leq \gamma_1 = \lambda_0 \sqrt{c_0(1-\gamma_1)} \leq \lambda_0 \sqrt{c_0(1-\gamma)}$$

Let $\nu_{\phi}(\xi) = \nu$ and $\lambda_1 = \frac{\gamma}{\nu} \phi^{(-1)}(2)$. Then from (4.10) we get

(4.11)
$$\lambda_1 \nu = \gamma \phi^{(-1)}(2) \leq \lambda_0 \sqrt{c_0(1-\gamma)} \phi^{(-1)}(2).$$

We now have easily

(4.12)
$$E \exp \{\lambda \xi\} = 1 + \sum_{n=2}^{\infty} \frac{\lambda^n E \xi^n}{n!} \le 1 + \sum_{n=2}^{\infty} \frac{|\lambda|^n |E\xi^n|}{n!} = S(\lambda).$$

Relation (4.12) yields that

(4.13)
$$S(\lambda) = 1 + \sum_{n=2}^{\infty} \frac{|\lambda|^n (\phi^{(-1)}(n))^n}{(\phi^{(-1)}(n))^n n!} |E\xi^n| \le 1 + \sum_{n=2}^{\infty} \left(\frac{|\lambda|\nu}{\phi^{(-1)}(n)}\right)^n.$$

For any number λ such that $|\lambda| < \lambda_1$ we get

(4.14)
$$S(\lambda) \leq 1 + \sum_{n=2}^{\infty} \left(\frac{|\lambda|\nu}{\phi^{(-1)}(2)} \right)^n$$

From the relation

$$\frac{|\lambda|\nu}{\phi^{(-1)}(2)} \leq \frac{\lambda_1\nu}{\phi^{(-1)}(2)} = \gamma < 1$$

we obtain

(4.15)
$$S(\lambda) \leq 1 + \left(\frac{|\lambda|\nu}{\phi^{(-1)}(2)}\right)^2 \left(1 - \frac{|\lambda|\nu}{\phi^{(-1)}(2)}\right)^{-1} \leq 1 + \left(\frac{|\lambda|\nu}{\phi^{(-1)}(2)}\right)^2 \frac{1}{1 - \gamma}$$
$$= 1 + c_0 \left(\frac{|\lambda|\nu}{\sqrt{c_0}\sqrt{1 - \gamma}\phi^{(-1)}(2)}\right)^2.$$

Relation (4.10) yields that

$$\frac{|\lambda|\nu}{\sqrt{c_0}\sqrt{1-\gamma}\phi^{(-1)}(2)} \leq \frac{\lambda_1\nu}{\sqrt{c_0}\sqrt{1-\gamma}\phi^{(-1)}(2)} = \frac{\gamma}{\sqrt{c_0}(1-\gamma)} \leq \lambda_0,$$

hence

$$c_0\left(\frac{|\lambda|\nu}{\sqrt{c_0(1-\gamma)}\phi^{(-1)}(2)}\right)^2 \leq \phi\left(\frac{\lambda\nu}{\sqrt{c_0(1-\gamma)}\phi^{(-1)}(2)}\right).$$

From the above we deduce that the following inequality holds, as $|\lambda|<\lambda_1$

$$(4.16) \qquad S(\lambda) \leq 1 + \phi\left(\frac{\lambda\nu}{\sqrt{c_0(1-\gamma)}\phi^{(-1)}(2)}\right) \leq \exp\left\{\phi\left(\frac{\lambda\nu}{\sqrt{c_0(1-\gamma)}\phi^{(-1)}(2)}\right)\right\}.$$

Let now $|\lambda| > \lambda_1$. Since

$$\gamma = \frac{\lambda_1 \nu}{\phi^{(-1)}(2)} \leq \frac{|\lambda|\nu}{\phi^{(-1)}(2)},$$

there exists an integer $n_{\lambda} \ge 2$ such that

(4.17)
$$\frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda}+1)} < \gamma \le \frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda})}.$$

Put now

$$A_1(\lambda) = \sum_{n=2}^{n_{\lambda}} \left(\frac{|\lambda|\nu}{\phi^{(-1)}(n)} \right)^n, \quad A_2(\lambda) = \sum_{n=n_{\lambda}+1} \left(\frac{|\lambda|\nu}{\phi^{(-1)}(n)} \right)^n.$$

We first bound $A_1(\lambda)$. From the inequality $\phi^{(-1)}(n_\lambda) \leq \frac{|\lambda|\nu}{\gamma}$, for $n \leq n_\lambda$ we get $n \leq \leq n_\lambda \leq \phi\left(\frac{|\lambda|\nu}{\gamma}\right)$, hence

(4.18)
$$\frac{1}{n}\phi\left(\frac{|\lambda|\nu}{\gamma}\right) \ge 1 \quad (\text{as } n \le n_{\lambda}).$$

From Lemma 2.1 and Lemma 2.4 it follows, for every *n* with $2 \le n \le n_{\lambda}$

$$\frac{|\lambda|\nu}{\phi^{(-1)}(n)} = \frac{1}{\phi^{(-1)}(n)} \phi^{(-1)} \left(\frac{n\phi(\lambda\nu)}{\phi\left(\frac{\lambda\nu}{\gamma}\right)} \frac{\phi\left(\frac{\lambda\nu}{\gamma}\right)}{\phi\left(\frac{\lambda\nu}{\gamma}\right)} \frac{n}{\phi\left(\frac{\lambda\nu}{\gamma}\right)} \frac{1}{\phi^{(-1)}(n)} \phi^{(-1)} \left(n\frac{\phi(\lambda\nu)}{\phi\left(\frac{\lambda\nu}{\gamma}\right)} \right) \leq \frac{1}{n} \phi\left(\frac{|\lambda|\nu}{\gamma}\right).$$

Hence

(4.19)
$$A_1(\lambda) \leq \sum_{n=2}^{n_{\lambda}} \left(\frac{1}{n} \phi\left(\frac{\lambda \nu}{\gamma}\right) \right)^n \leq \sum_{n=2}^{n_{\lambda}} \frac{1}{n!} \left(\phi\left(\frac{\lambda \nu}{\gamma}\right) \right)^n \leq \sum_{n=2}^{\infty} \frac{1}{n!} \left(\phi\left(\frac{\lambda \nu}{\gamma}\right) \right)^n.$$

We now bound $A_2(\lambda)$. From (4.17) we get $\frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda}+1)} < \gamma < 1$, so that

$$(4.20) A_2(\lambda) \leq \sum_{n=n_{\lambda}+1}^{\infty} \left(\frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda}+1)}\right)^n \\ = \left(\frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda}+1)}\right)^{n_{\lambda}+1} \left(1 - \frac{|\lambda|\nu}{\phi^{(-1)}(n_{\lambda}+1)}\right)^{-1} \\ \leq \gamma^{n_{\lambda}+1} \frac{1}{1-\gamma} \leq \gamma^3 (1-\gamma)^{-1} \leq \gamma_2^3 (1-\gamma_2)^{-1} \\ = 2 \leq n_{\lambda} \leq \phi\left(\frac{\lambda\nu}{\gamma}\right).$$

It follows from (4.19) and (4.20) that

(4.21)
$$E \exp\left\{\lambda\xi\right\} \leq S(\lambda) \leq \sum_{n=0}^{\infty} \frac{1}{n!} \left(\phi\left(\frac{\lambda\nu}{\gamma}\right)\right)^n = \exp\left\{\phi\left(\frac{\lambda\nu}{\gamma}\right)\right\} \text{ as } |\lambda| > \lambda_1.$$

Relations (4.16) and (4.21) yield that, for all $\lambda \in \mathbb{R}$, we have

(4.22)
$$E \exp\{\lambda\xi\} \leq \exp\{\phi(S_{\gamma}\nu\lambda)\},\$$

where $S_{\gamma} = \max(\gamma^{-1}, ((c_0(1-\gamma))^{1/2}\phi^{(-1)}(2))^{-1})$. It is now easy to prove that

$$\inf_{\gamma \in (0, \min(\gamma_1 \gamma_2)]} S_{\gamma} = S_{\phi} = \max_{i=\overline{1,3}} \gamma_i^{-1},$$

and inequality (4.8) follows.

EXAMPLE 4.1: Let ϕ be the *N*-function $\phi(x) = |x|^{\alpha}$, $1 \le \alpha \le 2$ and $\lambda_0 > 0$ any number. In this case

$$c_0 = \inf_{0 < |\lambda| \le \lambda_0} \frac{\phi(\lambda)}{\lambda^2} = \lambda_0^{\alpha - 2}, \quad \phi^{(-1)}(2) = 2^{1/\alpha}.$$

Hence γ_1 is the root of the equation $\gamma = \lambda_0 \sqrt{\lambda_0^{\alpha-2}(1-\gamma)}$, i. e. $\gamma_1 = \frac{1}{2} \left[\lambda_0^{\alpha/2} \sqrt{\lambda_0^{\alpha} 4} - \lambda_0^{\alpha} \right]$, γ_2 is the root of the equation $\gamma^3 - 2(1-\gamma) = 0$, $(\gamma_2 \sim 0.770917)$, γ_3 is the root of the equation $\gamma = 2^{1/\alpha} \sqrt{\lambda_0^{\alpha-2}(1-\gamma)}$, i. e.

$$\gamma_{3} = \frac{1}{2} \Big[2^{1/\alpha} \lambda_{0}^{(\alpha/2)-1} \sqrt{\lambda_{0}^{\alpha-2} 2^{2/\alpha} 4} - \lambda_{0}^{\alpha-2} 2^{2/\alpha} \Big].$$

Put $z_1 = \left(\frac{\gamma_2^2}{1-\gamma_2^2}\right)^{1/\alpha}$, $z_2 = \left(\frac{(1-\gamma_2^2)2^{2/\alpha}}{\gamma_2^2}\right)^{1/(2-\alpha)}$. Then it is not difficult to see that, if $\lambda_0 > \max(z_1, z_2)$, we have $\gamma_1 > \gamma_2$ and $\gamma_3 > \gamma_2$. Hence in this case we get $S_{\phi} = = \gamma_2^{-1} \sim 1.2971565$.

From corollary 4.2 and Lemma 4.3 we get the following result:

THEOREM 4.1: The random variable ξ belongs to $Sub_{\phi}(\Omega)$ if and only if $E\xi = 0$ and $\nu_{\phi}(\xi) < \infty$. The norms $\nu_{\phi}(\xi)$ and $\tau_{\phi}(\xi)$ are equivalent.

5. - Orlicz spaces of exponential type

DEFINITION 5.1. [3]: Let ψ be an arbitrary N-function. The Orlicz space generated by the N-function

$$U(x) = \exp\left\{\psi(x)\right\} - 1, \quad x \in \mathbb{R}$$

is called an Orlicz space of exponential type.

We shall be interested in the Orlicz space of exponential type generated by the Young-Fenchel transform ϕ^* of an *N*-function ϕ . We shall denote such a space by $\operatorname{Exp}_{\phi^*}(\Omega)$. The Luxemburg norm in $\operatorname{Exp}_{\phi^*}(\Omega)$ is denoted by σ_{ϕ^*} ; for any random variable ξ we have

$$\sigma_{\phi^*}(\xi) = \inf \left\{ a > 0 : E[\exp \phi^*(\xi/a)] \leq 2 \right\}$$

The space $\operatorname{Exp}_{\phi^*}(\Omega)$ is a Banach space with respect to the norm $\sigma_{\phi^*}(\cdot)$.

The following Lemma is a modification of a Lemma from [3].

LEMMA 5.1: Let ϕ be an N-function and $\xi \in \operatorname{Exp}_{\phi^*}(\Omega)$. Then for any $p \ge 1$ the following inequality holds:

(5.1)
$$(E|\xi|^p)^{1/p} \leq 2^{1/p} \frac{p}{\phi^{(-1)}(p)} \sigma_{\phi^*}(\xi).$$

PROOF: It will be enough to prove (5.1) if $\sigma_{\phi^*}(\xi) > 0$. In this case the following inequalities hold for p > 0, $x \in \mathbb{R}$:

$$|x|^{p} \exp\left\{-\phi^{*}(x)\right\} \leq \sup_{x \in \mathbb{R}} |x|^{p} \exp\left\{-\phi^{*}(x)\right\}$$
$$= \sup_{x \in \mathbb{R}} |x|^{p} \exp\left\{-\sup_{\lambda > 0}(\lambda |x| - \phi(\lambda))\right\}$$
$$= \sup_{x \in \mathbb{R}} |x|^{p} \exp\left\{\inf_{\lambda > 0}(\phi(\lambda) - \lambda |x|)\right\}$$
$$= \sup_{x \in \mathbb{R}^{\lambda > 0}} |x|^{p} \exp\left\{\phi(\lambda) - \lambda |x|\right\}$$
$$= \inf_{\lambda > 0} \left[\exp\left\{(\phi(\lambda)\right\} \sup_{x \in \mathbb{R}} |x|^{p} \exp\left(-\lambda |x|\right)\right]$$
$$= \left(\frac{p}{e}\right)^{p} \inf_{\lambda > 0} \lambda^{-p} \exp\left\{\phi(\lambda)\right\}.$$

Then for all $x \in \mathbb{R}$

$$|x|^{p} \leq \left(\frac{p}{e}\right)^{p} \exp\left\{\phi^{*}(x)\right\} \inf_{\lambda>0} \lambda^{-p} \exp\left\{\phi(\lambda)\right\}.$$

Substituting $x = \frac{|\xi|}{\sigma_{\phi^{*}}(\xi)}$ gives

$$\begin{split} E|\xi|^{p} &\leq (\sigma_{\phi^{*}}(\xi))^{p} E \exp\left\{\phi\left(\frac{\xi}{\sigma_{\phi^{*}}(\xi)}\right)\right\} \left(\frac{p}{e}\right)^{p} \inf_{\lambda>0} \lambda^{-p} \exp\left\{\phi(\lambda)\right\} \\ &\leq 2(\sigma_{\phi^{*}}(\xi))^{p} \left(\frac{p}{e}\right)^{p} \left(\frac{e}{\phi^{(-1)}(p)}\right)^{p} \\ &= 2(\sigma_{\phi^{*}}(\xi))^{p} \left(\frac{p}{\phi^{(-1)}(p)}\right)^{p}. \end{split}$$

LEMMA 5.2: Let ϕ be an N-function satisfying condition Q. Let ξ be a random variable such that $\xi \in \operatorname{Exp}_{\phi^*}(\Omega)$ and $E\xi = 0$. Then $\xi \in \operatorname{Sub}_{\phi}(\Omega)$ and

(5.2)
$$\tau_{\phi}(\xi) \leq S_{\phi} e^{\frac{4\gamma}{48}} \sigma_{\phi^{*}}(\xi),$$

where S_{ϕ} is defined below (4.8).

PROOF: It follows from Lemma 5.1 (inequality 5.1) and Stirling's formula that

$$\begin{split} \nu_{\phi}(\xi) &= \sup_{n \ge 2} |E\xi^{n}|^{1/n} \frac{\phi^{(-1)}(n)}{(n!)^{1/n}} \le \sup_{n \ge 2} 2^{1/n} \frac{n}{\phi^{(-1)}(n)} \sigma_{\phi^{*}}(\xi) \frac{\phi^{(-1)}(n)}{(n!)^{1/n}} \\ &\leq \sup_{n \ge 2} \left(2^{1/n} \sigma_{\phi^{*}}(\xi) \frac{ne}{n2^{1/2n} \pi^{1/2n} n^{1/2n} e^{\theta_{n}/n}} \right) \\ &\leq \sigma_{\phi^{*}}(\xi) \sup_{n \ge 2} \frac{2^{1/2n} e e^{1/12n^{2}}}{2^{1/2n} \pi^{1/2n}} \le \sigma_{\phi^{*}}(\xi) e^{\frac{49}{48}} < \infty \,. \end{split}$$

Now from Lemma 4.3 we get that $\xi \in Sub_{\phi}(\Omega)$ and

$$\pi_{\phi}(\xi) \leq S_{\phi} \nu_{\phi}(\xi) \leq S_{\phi} e^{\frac{49}{48}} \sigma_{\phi^{*}}(\xi). \quad \blacksquare$$

LEMMA 5.3 [3]: Let ξ be a random variable such that

$$P\{ |\xi| \ge x \} \le C \exp\left\{-\psi\left(\frac{x}{p}\right)\right\},\$$

where $\psi(x)$ is N-function; then $\xi \in \operatorname{Exp}_{\psi}(\Omega)$ and

(5.3) $\sigma_{\psi}(\xi) \leq (1+C)D.$

LEMMA 5.4: Let $\xi \in Sub_{\phi}(\Omega)$; then $\xi \in Exp_{\phi^*}(\Omega)$ and the following inequality holds:

(5.4)
$$\sigma_{\psi^*}(\xi) \leq 3\tau_{\phi}(\xi).$$

PROOF: If $\xi \in Sub_{\phi}(\Omega)$ then it follows from Lemma 3.1 that

$$P\{ |\xi| > \varepsilon \} \le 2 \exp\left\{-\phi^*\left(\frac{\xi}{\tau_{\phi}(\xi)}\right)\right\}$$

From Lemma 5.3 we deduce that $\xi \in \operatorname{Exp}_{\phi^*}(\Omega)$ and inequality (5.4) holds.

COROLLARY 5.1: The random variable $\xi \in Sub_{\phi}(\Omega)$ if and only if $\xi \in Exp_{\phi^*}(\Omega)$ and the norms $\sigma_{\psi^*}(\xi)$ and $\tau_{\phi}(\xi)$ are equivalent.

— 115 —

This corollary follows from Lemmas 5.2 and 5.3.

THEOREM 5.1: The random variable $\xi \in Sub_{\phi}(\Omega)$ if and only if $E\xi = 0$ and there exist two constants C > 0 and D > 0 such that

(5.5)
$$P\{|\xi| > x\} \le C \exp\left\{-\phi^*\left(\frac{x}{D}\right)\right\}$$

for any x > 0. If (5.5) holds then

(5.6)
$$\tau_{\phi}(\xi) \leq S_{\phi} e^{\frac{\gamma}{48}} (1+C) D,$$

where S_{ϕ} is defined below (4.9).

PROOF: If $\xi \in Sub_{\phi}(\Omega)$ then it follows from Lemma 3.1 that (5.5) holds with C = 2, $D = \tau_{\phi}(\xi)$. Conversely, if (5.5) holds we get from Lemma 5.2 that $\xi \in \operatorname{Exp}_{\phi^*}(\Omega)$ and $\sigma_{\psi^*}(\xi) \leq (1+C)D$. Now again from Lemma 5.2 we deduce that $\xi \in Sub_{\phi}(\Omega)$ and

$$\tau_{\phi}(\xi) \leq S_{\phi} e^{\frac{49}{48}} \sigma_{\psi^{*}}(\xi). \quad \blacksquare$$

EXAMPLE 5.1: Let ξ be a random variable having centered Weibull distribution, i. e.

$$P\{\xi > x\} = \frac{1}{2} \exp\left\{-\frac{1}{\alpha}x^{\alpha}\right\} \quad \text{as } x > 0;$$
$$P\{\xi < x\} = \frac{1}{2} \exp\left\{-\frac{1}{\alpha}|x|^{\alpha}\right\} \quad \text{as } x < 0.$$

Let $\alpha > 2$. Since

$$P\{|\xi| > x\} = \exp\left\{-\frac{1}{\alpha}x^{\alpha}\right\} \text{ as } x > 0,$$

then it follows from Theorem 5.1 that $\xi \in Sub_{\phi}(\Omega)$, where

$$\phi_{\beta}(x) = \frac{1}{\beta} |x|^{\beta}, \ \frac{1}{\beta} + \frac{1}{\alpha} = 1 \text{ and } \tau_{\phi_{\beta}}(\xi) \leq 2S_{\phi_{\beta}}e^{\frac{49}{48}},$$

where $S_{\phi_{\beta}}$ is defined in (4.8). Consider now the particular case $\phi_p(x) = \frac{|x|^p}{p}$ with $1 or <math>\phi_p(x) = \frac{|x|^p}{p}$ if $|x| \ge 1$ and $\phi_p(x) = \frac{x^2}{p}$ if |x| < 1, p > 2. In this case we can improve inequality (5.4). Our result is the following

PROPOSITION 5.1: We have the inequality

$$\sigma_{\phi^*}(\xi) \leq L \tau_{\phi_p}(\xi),$$

where

$$L = \left(\frac{2e^{\frac{1}{12}}}{\sqrt{2\pi}} + 1\right)^{1/q}$$

PROOF: Consider first the case p > 2. A simple calculation shows that

$$\inf_{t \ge 1} \exp\left\{\phi_p(t) - s \log t\right\} = \left(\frac{e}{s}\right)^{s/p}, \quad \text{as } s > 1.$$

Let $\tau_{\phi_p}(\xi) = \tau$. Then (see Lemma 4.1)

(5.7)
$$E|\xi|^{s} \leq 2\left(\frac{s}{e}\right)^{s/q} \tau^{s}$$

Since $\phi_p^*(x) \leq \frac{|x|^q}{q}$ (q < 2) we have by (5.7) (a > 0)

(5.8)
$$E \exp \left\{ \phi^{*}(\xi/a) \right\} = E \exp \left\{ |\xi|^{q}/qa^{q} \right\} = \sum_{k=0}^{\infty} \frac{1}{k!} \frac{E|\xi|^{kq}}{(qa^{q})^{k}}$$
$$\leq 1 + 2 \sum_{k=1}^{\infty} \left(\frac{k^{k}}{k!e^{k}} \right) \left(\frac{\tau}{a} \right)^{qk}.$$

It follows from Stirling's formula that

$$\frac{k^k}{k! e^k} = \frac{1}{\sqrt{2\pi}\sqrt{k}e^{\theta_k}} \leqslant \frac{e^{\frac{1}{12}}}{\sqrt{2\pi}}$$

Therefore

$$E \exp\left\{\phi^{*}\left(\frac{\xi}{a}\right)\right\} \leq 1 + \frac{2e^{\frac{1}{12}}}{\sqrt{2\pi}} \sum_{k=1}^{\infty} \left(\frac{\tau}{a}\right)^{kq}.$$

The above geometric series converges if $\tau/a < 1$ and in such case its sum is equal to

$$1 + \frac{2 e^{\frac{1}{12}}}{\sqrt{2\pi}} \frac{(\tau/a)^q}{(1 - (\tau/a)^q)} \, .$$

Then the last quantity in (5.8) is not greater than 2 if $a/\tau > L > 1$ and this gives the

statement of Proposition 5.1. If
$$1 the proof is the same $\left(\phi^*(x) = \frac{|x|^q}{q}\right)$.$$

6. - A characterisation of the Sub_{ϕ} -norm τ_{ϕ} for symmetric random variables

In this section we shall consider only symmetric random variables, which we shall call, for the sake of brevity, simply random variables.

For every real number $t \neq 0$, let M_t be the convex function defined by

$$M_t(x) = \frac{\cosh(tx) - 1}{e^{\phi(t)} - 1}, \quad x \in \mathbb{R}$$

Clearly, for every random variable ξ , the function $t \mapsto EM_t(\xi)$ is symmetric. Moreover

$$EM_t(\xi) = \frac{Ee^{t\xi} - 1}{e^{\phi(t)} - 1}.$$

Let now ξ be a fixed random variable. Put, for each t,

$$A_t = \{ a > 0 : EM_t(\xi/a) \le 1 \}.$$

We shall assume that A_t is nonempty. We have

PROPOSITION 6.1: $A_t = A_{t}$. Moreover A_t is a closed, left bounded half-line.

The proof of Proposition (6.1) is an easy consequence of two lemmas:

LEMMA 6.1: The (symmetric) function $t \mapsto Ee^{t\xi}$ is increasing for t > 0 (hence decreasing for t < 0).

For every t, put

$$\tau_t(\xi) = \inf A_t.$$

Lемма 6.2.

$$EM_t\left(\frac{\xi}{\tau_t(\xi)}\right) \leq 1.$$

The proofs of Lemmas 6.1 and 6.2 are straightforward. Set now

$$E_t = \{ \xi : \tau_t(\xi) < \infty \}.$$

We are interested in analyzing the structure of E_t and the properties of τ_t on E_t . Since $A_t = A_{-t}$ we have

$$\tau_t(\xi) = \tau_{-t}(\xi); \quad E_t = E_{-t}.$$

Hence there is no loss of generality in confining ourselves to the case $t \ge 0$. We shall prove the following result

THEOREM 6.1: E_t is a vector space and τ_t is a norm on E_t .

PROOF: It is easy to see that E_t is a vector space and τ_t is a seminorm on it (recall that M_t is convex). It remains to see that $\tau_t(\xi) = 0$ implies $\xi = 0$. The relation $\tau_t(\xi) = 0$ amounts to saying that, for every a > 0, we have

$$EM_t\left(\frac{\xi}{a}\right) \leq 1,$$

or, equivalently,

$$Ee^{t\xi/a} \leq e^{\phi(t)}$$

By the exponential Chebicev inequality, we deduce that, for every u > 0

$$P\{\xi > u\} = P\{e^{t\xi/a} > e^{tu/a}\} \le Ee^{t\xi/a}e^{-tu/a} \le e^{\phi(t)}e^{-tu/a}$$

By letting *a* go to zero, we get $P\{\xi > u\} = 0$ for every u > 0, hence $P\{\xi > 0\} = 0$ and also $P\{\xi \neq 0\} = 0$ because of the symmetry of ξ .

Now, for every random variable ξ , put

$$\widehat{\tau}(\xi) = \sup_t \tau_t(\xi),$$

and consider the set

$$\mathbb{S}(\Omega) = \{ \xi \in \bigcap_t E_t : \hat{\tau}(\xi) < \infty \}.$$

We are interested in the structure of the pair $(S(\Omega), \hat{\tau})$. First of all, $S(\Omega)$ is non-empty, since all symmetric variables in $Sub_{\phi}(\Omega)$ belong to it. Moreover, it is clear by its very construction that

PROPOSITION 6.2: $S(\Omega)$ is a vector space and $\hat{\tau}$ is a norm on it.

As we have said just now, we have the inclusion

$$Sub_{\phi}(\Omega) \subseteq S(\Omega).$$

As a matter of fact, the inclusion is a set-theoretic equality:

PROPOSITION 6.3: $S(\Omega)$ coincides with the subspace of $Sub_{\phi}(\Omega)$ consisting of the symmetric random variables. Moreover $\hat{\tau} = \tau_{\phi}$ on $S(\Omega)$.

For the proof of proposition 6.3 we need a simple lemma:

LEMMA 6.3: Let ξ be a random variable. Put

$$A = \{a > 0 : EM_t(\xi/a) \le 1, \ \forall t\} = \{a > 0 : Ee^{t\xi/a} \le e^{\phi(t)}\};$$
$$B = \{b > 0 : Ee^{t\xi} \le e^{\phi(bt)}, \ \forall t.\}$$

Then we have A = B.

PROOF OF PROPOSITION 6.3: We have $A = \bigcap_{t} A_{t}$; since A_{t} is a left bounded half-line for each t, the same is true for A. Moreover, by the preceding lemma, for every random variable ξ we have

$$\hat{\tau}(\xi) = \sup_{t} \tau_t(\xi) = \inf A = \inf B = \tau_{\phi}(\xi).$$

7. - Comparison of the norms au_{ϕ} and $\sigma_{\phi^{\star}}.$ Second part

Let q be the density of ϕ^* i.e. the function such that

$$\phi^*(x) = \int_0^{|x|} q(t) \, dt.$$

We assume that q is differentiable and

$$\inf_{u} \left(q'(u) + q^2(u) \right) = H > 0.$$

REMARK 7.1: The above assumption is verified for the functions

$$\phi(x) = \frac{|x|^{p}}{p};$$

$$\phi(x) = e^{|x|} - |x| - 1.$$

Put now

$$\delta = \phi^{(-1)}(\log 3)$$
$$L = \sup_{|t| \le \delta} \frac{t^2}{\phi(t)}.$$

We remark that

$$L \ge \limsup_{t \to 0} \frac{t^2}{\phi(t)} = \frac{1}{c} \ge 0$$

and that $L < \infty$ since c > 0.

Last, we set

$$A = \max\{\sqrt{10L/3H}, 1\}.$$

and

$$\delta = \phi^{-1}(\log 3).$$

We are going to prove the following

PROPOSITION 7.1: For every symmetric random variable $\xi \in S(\Omega)$ we have

$$\sup_{|t| \leq \delta} \tau_t(\xi) \leq A \sigma_{\phi^*}(\xi)$$

We need a

Lemma 7.1: For $|t| \leq \delta$

$$M_t(x) \le e^{\phi^*(Ax)} - 1.$$

PROOF (OF THE LEMMA): For $|t| \leq \delta$ we have, by (2.1)

$$e^{tu} + e^{-tu} \leq e^{A\delta u} + e^{-A\delta u} = 2 \sum_{k=0}^{\infty} \frac{(\delta(Au))^{2k}}{(2k)!} \leq 2 \sum_{k=0}^{\infty} \frac{(\phi(\delta) \phi^*(Au))^{2k}}{(2k)!}$$
$$= 2 \sum_{k=0}^{\infty} \frac{(\log 3 \phi^*(Au))^{2k}}{(2k)!} \leq \frac{10}{3} e^{\phi^*(Au)}$$
$$\leq \frac{10}{3HA^2} e^{\phi^*(Au)} (A^2 q^2(Au) + A^2 q'(Au)).$$

By recalling the inequality $z \le e^z - 1$ we obtain also

$$2 \frac{\phi(t)}{e^{\phi(t)} - 1} (e^{tu} + e^{-tu}) \leq \frac{20}{3HA^2} e^{\phi^*(Au)} (A^2 q^2(Au) + A^2 q'(Au));$$

now, by an integration in *u* between 0 and *y*, with $|y| \leq \delta$ we get

$$2 \frac{\phi(t)}{e^{\phi(t)} - 1} \frac{e^{ty} - e^{-ty}}{t} \le \frac{20}{3 HA^2} e^{\phi^*(Ay)} Aq(Ay);$$

by another integration in y between 0 and x, with $|x| \leq \delta$ we get finally

$$M_t(x) = \frac{\cosh tx - 1}{e^{\phi(t)} - 1} \le \frac{10L}{3HA^2} (e^{\phi^*(Ax)} - 1) \le (e^{\phi^*(Ax)} - 1).$$

We are now ready to conclude the proof of the proposition. Let a > 0 be such that

$$E[e^{\phi^*(\xi/a)} - 1] \leq 1;$$

by the preceding lemma this implies that

$$EM_t(\xi/(Aa)) \leq 1,$$

so that we have the inclusion

$$A \times \{a > 0 : EM(\xi/a) \le 1\} \subseteq \{b > 0 : EM_t(\xi/b) \le 1\}$$

and this amounts to saying that

$$\tau_t(\xi) \leq A \sigma_{\phi^*}(\xi),$$

hence the statement of Proposition 7.1 by taking the supremum in $|t| \leq \delta$. The two following lemmas are straightforward

LEMMA 7.2: For every pair of real numbers t, x we have

$$e^{tx} + e^{-tx} \le e^{\phi(t) + \phi^{*}(x)} + 1 \le e^{\phi(t) + \phi^{*}(x)} + 2.$$

LEMMA 7.3: For every pair of real numbers t, x we have

$$M_t(x/2) \le M_t(x)/2.$$

Put again $\delta = \phi^{(-1)}(\log 3)$. We have

PROPOSITION 7.2: For every symmetric random variable X we have

$$\sup_{|t| > \delta} \tau_t(\xi) \leq 2\sigma_{\phi^*}(\xi).$$

PROOF: From Lemma 7.2 we easily get the relation

(7.1)
$$M_t(x) \leq \frac{1}{2} \left(1 + \frac{1}{e^{\phi(t)} - 1} \right) \exp\left\{ \phi^*(x) \right\}.$$

Since $|t| > \delta$ we have

(7.2)
$$\frac{1}{2}\left(1+\frac{1}{e^{\phi(t)}-1}\right) \leq \frac{3}{4}.$$

Let now a > 0 be such that

$$E[e^{\phi^{*}(\xi/a)} - 1] \leq 1;$$

from relations (7.1) and (7.2) we get

$$EM_{\ell}(\xi/a) \leq (3/4) E[e^{\phi^*(\xi/a)} - 1] + 3/4 \leq (3/2) < 2.$$

Hence, we deduce from Lemma (7.3) that

$$EM_t(\xi/(2a)) \le (1/2) EM_t(\xi/a) \le 1.$$

The above relation says that $2a \in A_t$, that is

 $(7.3) 2a \ge \tau_t(\xi).$

On taking the infimum with respect to a in relation (7.3), we get

 $2\sigma_{\phi^*}(\xi) \ge \tau_t(\xi);$

we now obtain the required relation by taking the supremum in t.

Proposition 7.1 and 7.2 together with Proposition 6.3 yield

PROPOSITION 7.3: For every symmetric random variable in $Sub_{\phi}(\Omega)$ we have

 $\tau_{\phi}(\xi) \leq \max\{A, 2\} \, \sigma_{\phi^*}(\xi),$

where A is the number defined in Proposition 7.1.

We now drop the assumption of symmetry and use an argument of symmetrization: let ξ be any variable in $Sub_{\phi}(\Omega)$ and η an independent copy of ξ . Denote by *C* the number max {*A*, 2}. By Jensen inequality and Proposition 7.3 we have

 $Ee^{t\xi} \leq Ee^{t(\xi-\eta)} \leq \phi(tC\sigma(\xi-\eta)) \leq \phi(2tC\sigma(\xi)),$

since σ_{ϕ^*} is a norm and $\sigma_{\phi^*}(\xi) = \sigma_{\phi^*}(\eta)$. Hence we deduce the

PROPOSITION 7.4: For every random variable ξ in $Sub_{\phi}(\Omega)$ we have

$$\tau_{\phi}(\xi) \leq 2C\sigma_{\phi^*}(\xi).$$

8. - Independent random variables in $Sub_{\phi}(\Omega)$

THEOREM 8.1 [3]: Let $\xi_1, \xi_2, ..., \xi_n \in Sub_{\phi}(\Omega)$ be independent random variables. If the function $\phi(|x|^{1/p}), x \in \mathbb{R}$ is convex for some $p \in [1, 2]$, then

(8.1) $\tau^{p}_{\phi}\left(\sum_{k=1}^{n} \xi_{k}\right) \leq \sum_{k=1}^{n} \tau^{p}_{\phi}(\xi_{k}).$

PROOF: Since the function $\phi(|x|^{1/p})$ is convex the statement follows from the relations:

$$\begin{split} E \exp\left\{\lambda \sum_{k=1}^{n} \xi_{k}\right\} &= \prod_{k=1}^{n} E \exp\left\{\lambda \xi_{k}\right\} \leqslant \prod_{k=1}^{n} \exp\left\{\phi(\left|\lambda\right| \tau_{\phi}(\xi_{k})\right)\right\} \\ &= \exp\left\{\sum_{k=1}^{n} \phi\left(\left(\left|\lambda\right| \tau_{\phi}(\xi_{k})\right)^{p}\right)^{1/p}\right)\right\} \\ &\leqslant \exp\left\{\phi\left(\lambda \left(\sum_{k=1}^{n} \tau_{\phi}^{p}(\xi_{k})\right)^{1/p}\right)\right\}. \end{split}$$

COROLLARY 8.1: Let $\xi_k \in Sub_{\phi}(\Omega)$, $k = \overline{1, \infty}$ and assume that the function $\phi(|x|^{1/p})$, $x \in \mathbb{R}$, $p \in [1, 2]$, is convex. Then we have

$$\tau_{\phi}^{p}\left(\sum_{k=1}^{\infty}\xi_{k}\right) \leqslant \sum_{k=1}^{\infty}\tau_{\phi}^{p}(\xi_{k}).$$

EXAMPLE 8.1: Let η_k , $k = \overline{1, \infty}$ be independent random variables uniformly distributed in [-1, 1]. Let $\theta = \sum_{k=1}^{\infty} a_k \eta_k$. It follows from example 3.2 that $\eta_k \in Sub_{\phi}(\Omega)$, where $\phi_{\alpha}(x) = |x|^{\alpha}$, $1 < \alpha \leq 2$, and $\tau_{\phi_{\alpha}}(\xi) \leq 6^{(1-\alpha)/\alpha}$. If $\sum_{k=1}^{\infty} a_k^{\alpha} < \infty$ then

$$\tau_{\phi_{\alpha}}(\theta) \leq \sum_{k=1}^{\infty} a_k^{\alpha} \tau_{\phi_{\alpha}}(\eta_k) \leq 6^{1-\alpha} \sum_{k=1}^{\infty} a_k^{\alpha} = A_{\alpha} < \infty$$

that is $\eta \in Sub_{\phi}(\Omega)$. In this case the following inequality holds

$$P\{|\theta| > \varepsilon\} \le 2 \exp\left\{-\phi_{\alpha}^{*}\left(\frac{\varepsilon}{A_{\alpha}}\right)\right\} = 2 \exp\left\{-c_{\alpha}\left(\frac{\varepsilon}{A_{\alpha}}\right)^{\frac{\alpha}{\alpha-1}}\right\},\$$

where $c_a = \alpha^{-\frac{1}{\alpha-1}} - \alpha^{-\frac{\alpha}{\alpha-1}}$

REFERENCES

- YU. V. KOZACHENKO, Properties of random processes of sub-Gaussian Type, Dokl. Acad. Nauk Ukrain. SSR (Russian), Ser. A, no. 9 (1984), 14-16.
- [2] YU. V. KOZACHENKO E. I. OSTROVSKIY, Banach space of random variables of sub-Gaussian type, Theory Probab. Math. Statist., 32 (1985), 45-46.
- [3] V. V. BULDYGIN YU. V. KOZACHENKO, Metric characterization of random variables and random processes, American Mathematical Society, Providence RI, 2000.
- [4] I. P. KAHANE, Propriétés locales des fonctions à series de Fourier aléatoires Studia Math., 19, no. 1 (1960), 1-25.
- [5] V. V. BULDYGIN YU. V. KOZACHENKO, On sub-Gaussian random variables Ukrain. Math. J., 32, no. 6 (1980), 483-489.

- [6] R. GIULIANO ANTONINI, Exponential bounds for the distribution of the norm of sub-Gaussian random vectors, Note Mat., 18, no. 1 (1998), 113-117.
- [7] R. GIULIANO ANTONINI, Exponential bounds for the distribution of the norm of scalar sub-Gaussian random vector, Preprint, Dipartimento di Matematica Università di Pisa, 2.240957 (May 1996).
- [8] R. GIULIANO ANTONINI, On the asymptotic behaviour of sub-Gaussian processes, Atti Sem. Mat. Fis. Univ. Modena, 46, no. 2 (1998), 339-347.
- [9] R. GIULIANO ANTONINI, Sub-Gaussianity and exponential integrability of real random variables: comparison of the norms, Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 3, no. 1 (2000), 147-157.
- [10] M. A. KRASNOSELSKY Y. B. RUTITSKY, *Convex functions and Orlicz spaces*, Noordhof, Gröningen (1961).

Direttore responsabile: Prof. A. BALLIO - Autorizz. Trib. di Roma n. 7269 dell'8-12-1959 «Monograf» - Via Collamarini, 5 - Bologna