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Spaces of ¢-Subgaussian Random Variables (**)

Asstract. — We give a new definition of Sub, (2) random variable. This definition is wider
than a previous one, studied by one of the Authors. Moreover we prove some inequalities con-
cerning the Sub,-norms in various contexts.

Spazi di variabili aleatorie ¢-subgaussiane

Sunto. — Si da una nuova definizione di variabile aleatoria appartenente allo spazio
Sub, (). Tale definizione ¢ pitt ampia di una precedente, studiata da uno degli Autori. Inoltre
si provano, in vari contesti, alcune diseguaglianze riguardanti le norme in tale spazio.

1. - INTRODUCTION

The notion of Sub,(82) random variable is a very natural generalization of that of
sub-Gaussian random variable, introduced by Kahane in the paper [4] and developed
in [5-9]. The spaces Sub, (£2) were firstly defined in [1, 2] and studied in the book [3]
as well. In this paper we present a new definition of Sub,(82) random variable. This
definition is wider than the previous one, and reveals itself of easier use. Most inequa-
lities for the Sub,(£2) random variables proved in this paper are new or improve
known inequalities.
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Ukraine. E-mail: yvk@mechmat.univ.kiev.ua
(**) Memoria presentata il 10 novembre 2003 da Giorgio Letta, uno dei XL.



96—
2. - Oruicz N-FUNCTIONS

Derinrrion 2.1 [10] Ler ¢ = {¢(x), xe R} be a continuous even convex function.
¢ is called an Orlicz N-function if ¢p(0) =0, ¢(x) >0 as x # 0 and the following con-
ditions hold

Ao tim 2% 200 ) tim 2%

x—0 X xX—>® X

ExampLe 2.1: The following functions are N-functions:
o(x) =Clx|*, C>0,a>1;

¢(x) =exp {|x]} — [x] - 1;
¢(x) =exp{a|x|“} -1, a>0,a>1;

2 1/a
( ) , as |x|$(—)
a

jl exp{|x|*}, as |x|>(§) a,0<a<1.

Lemma 2.1 [3, 10]: For any N-function ¢ the following statements hold:
a) ¢lax) < ap(x) as xeR, 0<a<1;

b) ¢lax) = ap(x) as xeR, a>1;

o) o(|x|+|y|) = ¢(x)+@ly) as x, yeR;

d) there exists a constant ¢ >0, such that ¢(x) >c|x| as |x|>1;

o(x)

e) the funa‘zon Y(x) = is monotone non-decreasing as x > 0;

x
f) ¢(x) = f p(¢) dt, where the density p = {p(¢), t =0} is right continuous not-de-
creasing, p(0) =0 and p(t)— © as t— o,

Dermvition 2.2 [10]: Let ¢ = {¢(x), xe R} be an N-function. The function ¢*
defined by

¢ *(x) = sup(xy — $(»))

yeR

is called the Young-Fenchel transform of ¢.

Remark 2.1: If x>0, then ¢*(x) = sup(xy — ¢(x)). Moreover we have, for any
xeR, ¢*(—x) = ¢p*(x). >0



Lemma 2.2 [10]: The Young-Fenchel transform of an N-function is an N-function
as well and the following inequality holds (Young-Fenchel inequality)

(2.1) xyS@px) +¢*(y), as x>0,y>0.
|x]” « %] ,
ExampLe 2.2: If ¢(x) = ,p>1, then ¢*(x) = where ¢ is such that
p
L
q p
If ¢p(x) =exp{|x|}—|x|] =1 then we have ¢*(x) = (|x| +1)In(|x| +1) -
= |«

Conprtion Q: An N-function ¢ satisfies condition Q if

22) im inf 2 — s 0.
x—0 XZ

Remark 2.2: It may happen that ¢ = .

ExampLe 2.3: The N-function ¢p(x) = ¢|x|* as ¢ >0, 1 < a <2, satisfies condition
Q, while the N-function ¢|x|%, ¢ > 0, a > 2 doesn’t; on the other hand, it is easy to see
that condition Q holds for the function

|x]?, x| <1
P(x) = as a>2.
| x| >1

DerintTioN 2.3 [10]: Let ¢ and ¢, be two N-functions. Then ¢ is said to be su-
bordinate to ¢, (¢p; < ¢») if there exist two constants ¢ > 0 and x, > 0 such that for
x > x, the inequality ¢; (x) < ¢, (cx) holds. The N-functions ¢; and ¢, are said to be
equivalent if both relations ¢; < ¢, and ¢, < ¢ hold.

Remark 2.3: Let ¢ < ¢,. In this case it is easy to prove that for any x, > 0 there
exist two constants x and c(x,) such that ¢, (x) < @,(c(xg)x) as |x| > x,.

TueoreM 2.1: For any N-function ¢, there exists an N-function ¢, which satisfies

condition Q and such that ¢~ ¢,.
Proor: Let ¢; be an N-function. We define ¢, as follows. Let x, > 0 be any con-
stant and put

ex?, as 0 S x<x,

¢2(X) = {
(xo)

D1(x) —@1(x0) +ext, as x> x,

where ¢ =

and p(¢#) is the density of ¢;. Then it is not difficult to see that

X0
¢1~ ¢, and ¢, satisfies condition Q. =
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Lemma 2.3 [10]: Let ¢ and ¢, be two N-functions. Then
a) if §1<¢, then ¢p3 <¢T,
b) i ¢~ ¢, then ¢35~ pF.

Lemma 2.4 [10]: Let ¢ be an N-function and ¢~ = {¢p "V (x), xe R} be the in-
verse function of ¢. The following assertions hold
a) ¢<_1)(x) is a monotone increasing, concave continuous function such that
@(0) =0, ¢p(x) >0 as x>0, ¢p(x) = ®© as x— ;

b) ¢ V(ax) <ap' "V(x), as a=1;

c) ¢<_1)(ax)2a¢(_“(x), as 0<a<l;

d) ¢<—1)(x+y)$¢(—1)(X)+¢(—1)(y);

e) there exists such comta(ntl)c> 0 that ¢~V (ax) <cx, as x> 1;
“Hx)

f) the function 0(x) = ¢— , x>0, is monotone decreasing.
X

3. - SpacEs Sub,(82). DEFINITIONS AND GENERAL PROPERTIES
Let (2, B, P) be a standard probability space, fixed throughout.

DerinitioN 3.1: Let ¢ be an N-function satisfying condition Q. The random varia-
ble & belongs to the space Sub,(2) it EE=0, Eexp {A&} exists for all Ae R and there
exists a constant ¢ > 0 such that the following inequality holds for all e R

B.1) Eexp {5} <exp{¢(la)}.

Remark 3.1: Conditions Q and EE =0 are necessary. In fact,

12
52) EexpAE =1+ AEE + 7E.§2+o(12), as A—0,

exp p(Aa) =1+ ¢p(la) + o(¢p(1a)), as A—0.
Inequality (3.1) holds for A > 0 if the following holds

2
Eet Ltpe s Q4 9 00W) s,
2 A A A

¢(Aa)

Since —0 as A—0 then EE=0. For A <0 (3.1) holds if

2
Et+ iE§2+ o(4%) > ¢(2a) N 0(¢(/1ﬂ));
2 A A A




hence EE =0, so that EE=0. Now from (3.2) it follows that for A—0

(2%) (Aa) (¢(a))

gy 4000 9000 ol

$(4) #(4,)
2

If h/rln ionf/l_Z =0, that there exists a sequence 4,—0 such that

that is EE?=0 and & = 0 with probability one.
The condition xlirxgc il

—0 as n—> o,

n

= o excludes from our considerations the space of ran-

dom variables which are bounded with probability one. In fact, if for all A € R and some
a>0
Eexp {A&} <exp{a|A|},
then, for all A >0 we get
Eexp{A|&|} <2 exp{al}.
It follows from Chebyshev inequality that for any ¢ >0, A >0

< Eexp{A|&]}
exp {4}
The right part of this inequality tends to zero as A— o and & >4 so that P{ || > ¢} =
=0if e>a.
Consider now the following functional, defined on the space Sub, as (£2)

P{|&| > ¢} <2exp{la—¢)i}.

(3.3) 74,(8) =inf(2=0: EexpA& < exp ¢p(ad), e R).
It is evident that for all A€ R the following inequality holds
(3.4) Eexp {AE} < exp ¢p(Ar,(8));
moreover

“1(In (Eexp {2
(3.5) 74(&) = sup ¢ (nEexpi E})).

10 4]

Lemma 3.1: Let EeSuby (), 1,(8) >0, e >0. The following inequalities hold

P{&E>¢} Sexp[—gb""(r fg) )
¢

P{E< —¢} Sexp’—(j)*(

~———

&
T¢(§)

P{|£| > ¢} SZeXp[—qb*(T ;) )]
¢
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Proor: It follows from Chebyshev inequality that for all 1 >0, ¢>0

Eexp {4}
exp {Ae}

It follows from this inequality that

P{E>e} = Aingexp {947, (&) — Ae} = exp{ —jup(le —p(Ar4(8)))}
> >0

Ple>el < < exp {¢p(ir, (&) — Ae}.

A>0

T¢(§)

=l

The first inequality of this lemma is proved. The second inequality can be proved in the
same way. The third inequality follows from

=exp[—sup (lr¢(§) —¢(if¢(§)))]

P{|§|>e} <sP{é>e} +P{E<—¢}, ase>0. =
Tueorem 3.1: The space Suby(L2) is a Banach space with respect to the norm
T¢(').

Proor: We first prove that Sub, (L) is a linear space with norm 7, (-).
If £=0 with probability one then 7,(§) =0. Conversely, if 7,(§) =0 then
Eexp{A£} <1 for all 1>0 and for any ¢>0, 1>0
Eexp{A|&|} -
exp {A¢e}

<2exp{—4e}.

P{|&| > ¢} < (Eexp{A&} + Eexp{ —A&}) exp { — e}

Let now A—> o . Then we obtain that for any ¢ P{|&| > ¢} =0, that is £ = 0 if and only
It follows from (3.5) that as a # 0

¢ "V (In (E exp Aak))

Ty la8) = sup 2]
U(ln(Eexp
= |d| sup ¢ ( ( =P ag)): |61|‘C¢(§).
aA#=0 |ad|

Now we prove that for any &, # € Sub, ()

74,(E+n) ST,(8) +74(n).



— 101 —

If 7,() =0 or 7,(n) =0 the above inequality is obvious. Let 7,(&) # 0 and 7, () =0.

1 1
It follows from Holder inequality that for all 1eR, p>0, —4+ —=1,
P q

1
(3.6) Eexp {A(&+n)} < (Eexp{pA&})7 (Eexp {gAE})""

< exp %¢(/1pr¢(§))+ éq&(lqw(é)) .

Put in (3.6)

_ T¢(§)+T¢(77) _ T¢(‘S)+T¢(7’])'
e R Nt B
then we obtain

Eexp{AE&+mn)} <exp{Alr,(&) +1,(n)},

hence 74(&+n) <7,(8) +17,().
Now we prove that the space Sub, () is complete with respect to the norm 7,(-).
Let the random variables &,, =1, belong to the space Sub,(£2) and

(3.7) ﬂli{%, sup 7,4(&,—&,,) =0.

m=n

Therefore
ﬂangc sup |T¢(§n) - T¢(§m) | = ”li)ngo SUPT¢(§;¢ - gm) = O

m=2n m=2n

and sup 7,(&,) =7 < . It follows from (3.7) and lemma 3.1 that for any ¢ >0
P{|§,— &, |>¢e} <2exp{—0* & —0 as n,m— o,
T¢(§n_§m)

so that £, — &,,—0 in probability. Hence &, converge in probability to some random
variable &, . We have now

(3.8) sup E[exp{1&,}1' "¢ =sup EexpA(1+¢) §,
< sup exp {p(A(1+€)7,(E,))}

Sexpp(AMl+¢€)1) < .,
From (3.8) and the theorem of uniform integrability it follows that

Eexp{A£.} = lim Eexp{A&,} Sexpg(iry),
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where 7 = lim sup 7,,(&,). Hence &, € Sub,(2) and

3.9 74(& ) <lim sup 74(&,).

n—> 0

The random variables &, — &, belong to Sub,(2). Now the inequality

(3.10) Ty(Ew—&,) Ssup 1,5, —&,)

mZn

can be proved as we proved (3.9). It follows from (3.10) and (3.7) that 74(§ ., — &,) =0

as n—> oo, |

2
Remark 3.2: If ¢p(x) = X the space Sub,(Q) = Sub(£2) is the space of sub-Gaus-
sian random variables. 2

Lemma 3.2: Let & be a random variable such that EE = 0 and E exp {A&} = a(4) exists
for all AeR. Then
(1) we have

(3.11) Eexp {18} = 1;

(ii) there exist all moments E|E|*, a >0, and the next inequality holds

0.12) Eexplélas(g)ainfM.
e

A>0 A

(iii) The function Y(A) =1n(a(l)) is convex; moreover for any real number x, there
exists a constant T = T(x,) such that

(3.13) Eexp {A£} <exp{TA%}

In (Eexp AE)
as |A| < xp; we have T'= sup T< ]
2] <5

Proor: From Jensen inequality we get Eexp {Af} = exp {AEE} =1, and (3.11) is
proved. From the relation

a
a
max x“exp{ —x} = (—) , asa>0
x=0 e

we deduce that for all x>0, a >0 we have

a

(3.14) x* < (—) exp {x}.
e
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Tt follows from (3.14) that for all A >0

a

(.15)  E|A&|e< (;) Eexp {A£} < (%) (Eexp {AE} + Eexp{—A£})

Now (3.12) follows from (3.15).
We have

a"(2)ald) — (' ()
3.16 "(A) = .
(5.16) ") 0

It follows from Holder inequality, that
(a' (1)) = (EEexp {AE})? < EE?exp {A&}-Eexp {A&} =a"(A) a(A),
so that " (1) =0 and the function ¥(1) is convex. If 1—0 we have Eexp {A{} =1+
1 1
+ 5E§2/12 + 0(A?), hence y(1) = EAESZ + 0(A?). Relation (3.13) now follows from the
last inequality and the convexity of (1). =
Tueorem 3.2: Let ¢ (A) and ¢,(1) be two N-functions such that ¢, < ¢,. Assume

that & eSuby (Q); then &eSuby,(Q) and there exists a constant (P, ¢,) such that
7y, (&) <@y, @3)Ty, (&)

Proor: It follows from remark 2.3 that for any x, > 0 there exists a number D =
= D(xy) > 0 such that ¢ (x) < ¢,(Dx), as |x| >xo. Let EeSuby (2), 1, =14 (&) >0;
then for all >0 such that |1]|7; = x,

(317) exp{ﬂ.&} $6Xp{¢1(ﬂ.l’1)} $exp{¢2(ﬂD‘L'1)}
Let A4 be such that |1] < Sl : then it follows from Lemma 3.2 that there exists a number
T
B(x,) such that for |1] < X we have
T
(3.18) exp {A€} <exp {B(x) 11},
In(E A
B(Xo) = Sup w < o,
4] <s0/71 7222

Since B(x,) decreases when x, decreases, it follows from (2.2) that there exist two

numbers z, >0 and ¢; >0 Su?}} that for all |x| <z, we have ¢,(x) = ¢, x>. Let x, be a
%o (B(xy)) L
number such that ———2"" < 2,. (Such a number exists since x,(B(x))
a

1/2 —0 as
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%p—>0.) Then from (3.18) we deduce that for |1| < X0
T

1/2
(3.19) Eexp {AE} <exp [CI B(xo)l_%;tz] < exp ¢2(M_1(B(Xo)) )

a a

B 1/2 B 1/2
|/1|rl( (x‘))) Sxorl( (XO)) <z
(41 41

It follows from (3.17) and (3.19) that Eexp {A} <exp {¢,(r,;LA)}, where

1/2
I = max (( Blx) ) , D)
]

that is & eSub;,(Q) and 7,,(§) <Lt, (§). =

since

ExampLe 3.1: Let & be any bounded random variable with E£ = 0; then & € Sub, (£2)
for all N-functions ¢.
In order to prove the above statement, let ¢ be an N-function satisfying condition Q,

a a real number with 2> 0 and & a random variable with |&| <7 with probability one.
Then

(3.20) Plx) = ¢(fa) > ) s x| =a.
a a
Hence it follows from (3.20) that
(321) Eexp{A&} <exp MM;’ <expl¢ aﬂr as |A|> M.
a  ¢la) ¢(a) r
@(a) .
Let |A] < ; then from lemma 3.2 we deduce that there exists a number T(a, 7)
such that 7
(3.22) Eexp {A&} <exp{T(a, r) A%}.

It follows from (2.2) that there exist two constants ¢; >0 and z, > 0 such that
(3.23) p(x) = x?  as |x| <z,
T(a, r) decreases as @ decrease so that we can choose a constant « > 0 such that

¢(a) T (a, r)

< 20
7(61)1/2
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hence from (3.22) we get

Ta, 1)\ ¢(a) T (a, r)
Als — <
( a1 ) I41= r (e)V? S
and
1/2
(3.24) Eexp {A£} <exp {61 1(a, r)iz] <exp ¢(/1( T(a, r)) ) .
a o

It follows from (3.23) and (3.24) that Eexp{Af} <exp{¢(AK)}, where

K= max(( T(:’ L )1/2, (,Z;;) ); hence & eSuby (Q).
1

In some particular cases we can find other (more precise) norms in the spaces

Suby (Q).

Exampie 3.2: Let & be a random variable uniformly distributed in the interval
[—1, 1]. Then &eSub,(R) for all N-functions ¢ and

(3.25) T (E) <67 asl<a<2,
where 7,(§) =7, (&), ¢, = |x|* In fact

Eexp{A&} = % fexp {Au} du = %(el—e%)

A
If u <1 then
6

o) <o ] ool

so that for |A| < /6 we have

(3.26) Eexp{l&}ﬁexp[( 4] )“]

61 - 1/a

It is obvious that Eexp {A§} = Eexp {|4||&|} <exp{|A|}.
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If ﬂ > 1 then
V6

(V6 !

= exp A" = exp 4] - - :
(Ve ! (Vo)

(3.25) now follows from (3.26), (3.27).

|/1|a—1
(3.27) exp{|A|} <exp|A|

Exampie 33: If & is a Gaussian random variable, EE=0, E&>=02>0, then

2 2
Eexp {/'LE}SEexp{ a }, that is &eSub, (), where ¢(x)=x2/2 and 74(8)=0.

Exampre 3.4: Let & be a Poisson random variable, with E§ =4 and put n =& — g
then

Eexp{in} =exp{ale’ =2 —-1)}

this means that 7 € Sub, (Q), where ¢(1) =ale!*! — |1] —1) and 7, (&) = 1. It follows
from example 2.2 that

s ) 2]

and from Lemma 3.1 that for € > 0 we have

(3.28) P{n>e}$expk—l(s+a)ln(£ +1)—8”.
a

4. - CHARACTERIZATION OF THE SPACE Sub,(£2) AND SOME INEQUALITIES

Lemmva 4.1: Let &eSuby (). Then for all a>0 the following inequality holds

4.1) E|g|asz(3) (1,(E)inf exp {p(1) — aln (1)}
e t>a

a

$2(T¢(§))“(m) as a>0.
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Proor: It follows from inequalities (3.12) and (3.4) that for A >0 one has

4.2) E|.§|“s2(3) A" %exp{p(Ar,(8)}
e

a |\ " IR
—2(?) (74(8) (Ar¢(§)) exp {p(47,, (&)}

- (ﬁ) (£ exp {plr, () — aln iy (E)).

gb(*l)(a)
T¢(§)

By setting A = we obtain the second inequality in (4.1). m

CoroLLary 4.1: Let &EeSub,(Q); then the following inequality holds

1
(4.3) 74(8) = ﬁg(p@,
where
(=1)
0,/5(5) = SUp(E|<S|”)1/”¢—(n)
n=2 "

Moreover 6 ,(&) is a norm on Suby(£2).

Lemma 4.2: Let EeSuby(Q). Then for k=1, 2, ... the following inequality holds

ek

(4.4) |EE*| <E|&|*<2(r, (&) W!.

Proor: The relation exp {x} = > Z—' yields that for x >0 we have
£=0 k!

x* < klexp {x}.
For x=|&|4 (A >0) we get
E|E|* <k Eexp {A|E|}A < kl2 exp{p(Ar, () }A~*.
¢(71)(k)

in the latter inequality we obtain (4.4). =
Tq)(f )

By setting A =
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CoroLLary 4.2: Let &EeSub,(Q). Then the following inequality holds

1
45 = (&),
45) T¢(§) €\/§V¢ &
where
i ¢(71)(n)
V‘P(‘S) =31;12|E§ |1/ (n!)l/n !

CoroLLary 4.3: Let & e Suby(2) be a random variable with a symmetrical distribution
(or such that all moments EE*" 1 =0 for n=0,1,2,...); then

(4.6) T, (6) = ——v, (&),

1
eV2
where
120 V(20

Vy,2(8) = ?25(5521) N

CoroLLARY 4.4: Let & € Sub, (). Then we have
49
4.7) v, (&) = 0,(8), v,(8) Sexp[4—8]0¢(§),

Proor: The first inequality is evident. The second one follows from Stirling’s

1
formula 7! = n"e " (27n)"? ¢ where |0,| < T Indeed
n

1 1 €1+0n/n 1
() 7 =———"" < 98 25 n=2.
n 2an)'?"  n

LemMa 43: Let & be a random variable such that EE=0, ¢ an N-function
p(4)

in . Assume
0<|A|<io A2

satisfying condition Q. Let Ay>0 be any number and c,=
that

s @7V ()
vy (&) = sup | EE | NPT

Let v, be the root of the equation

(48) '}/:lo C()(l _V))
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y, the root of the equation y> —2(1—y)=0 and y; the root of the equation

y=0"(2) Ve (l—1y).

Then & e Suby(Q) and the following inequality holds
4.9) T¢(§) S S¢ Vq)(g),

where S, = maxy; .
i=13

Proor: Let v be any number such that y € (0, min(y, y,)). Then

(410) 'ys'yl:lo‘\/CO(l_yl)slo‘\/(,‘o(l_'y)
Let v4,(&§) =v and 1, = Z(,13(_1)(2). Then from (4.10) we get
v

(4.11) Av=yp"V(2) <A Ve (1l —yp 1 (2).

We now have easily

(4.12) Eexp{AE} =1+ 2, i <1+ L’Egl = S(A).
n=2 n. n=2

n.

Relation (4.12) yields that

oz A" (@ V) SO 1A Y
(4.13) S(M_1+n§2(¢‘*l)(n))” - |E§|<1+E2 el

For any number A4 such that |1| <4, we get

(4.14) sw<i+ S (AT
n=2 ¢( 1)(2)

From the relation

[A]v - v
(p(fl)(z) \(p(—l)(z)
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Relation (4.10) yields that

|A|v Av B y

<

VaVI=19'02) VaVT-'""2)  \a(1-y)

<j‘07

hence

. |A]|v \‘ZS(p v \l
\/Co(l—)/)gb(fl)(Z)} \/Co(l_ykb(fl)(z)}

From the above we deduce that the following inequality holds, as || <4,

(4.16) S <1 +¢(

Av \ Av \
Sexpl¢ .
\/Co(l—y)(p(*l)(z)} ‘ [ (\/co(l—y)¢<1)(2) })

Let now |A]|>A4,. Since

there exists an integer 72; =2 such that

Ay 1Ay

4.17 < .
( ) ¢(71)(7Zl+1) 4 ¢(71)(7Z1)

Put now

¢( 1)(7/1 n=mny+1 ¢(71)(n

), l n /1 n
A1<A>=Z(LV)), A= (LV))

|4]v
¥

We first bound A; (1). From the inequality ¢~V () <

, for n<n; we get n<

Sm$¢(m), hence
Y

(4.18) lqﬁ(m)al (as n<m).
n Y
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From Lemma 2.1 and Lemma 2.4 it follows, for every » with 2 <n<un,

Av
Ay 1] et ¢(7)
o n) V() ¢(£) "
Y
Ly(a) 1 o], en )\ 1 (1l
n y oV (n) (/11/) n 14
o=
Y
Hence
@19 AW< i(%(ﬂ)) <> i((p(&)) <> —(¢(ﬂ)).
n=2\ n ’y n=2 pn! 'y n=2 n! ’y
We now bound A,(A). From (4.17) we get — 4l <y <1, so that
¢ "V +1)
< Ay Y
4.20 A, (A) < _—
(4.20) »(4) n%ﬂ(q)(n(mﬂ))
_ |l|1/ ny+1 - M,l’l/ -1
¢ "V +1) ¢ "V +1)
1
<ynt! <Y U=y syil-y)™!
L=y
)
Y

It follows from (4.19) and (4.20) that

(421) Eexp{Af} <S4 < i i((])(ﬂ)) =exp[¢(ﬂ)] as |[A|>4,.
Y Y

n=0 1!

Relations (4.16) and (4.21) yield that, for all Ae R, we have

(4.22) Eexp {A&} <exp {o(S,vA)},
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where S, = max (yil,((co(l _y))1/2¢(71)(2))71)_ It is now easy to prove that

inf  §,=8,= maxy;!
ye (0, min(y1y2)] 4 ¢ i=ﬁyl ’

and inequality (4.8) follows. m

ExampLe 4.1: Let ¢ be the N-function ¢(x) = |x|*, 1 < a <2 and 4, > 0 any num-
ber. In this case

P(A)

= Inf ——
0 0<|A] <o A2

Hence vy, is the root of the equation y=A4,VA{ ?(1—yp), i e y,=
1
=3 [/16‘/2 VAL4 — /18], y, is the root of the equation y°> — 2(1 —y) =0, (y, ~ 0.770917),

y5 is the root of the equation y =2Y*\/A¢72(1—y), i e.
1
y3= EI:Zl/az/‘LE)uz/Z)—l-\ )/18_222/(14_)“(()1_222/(1]-

2 1/ (1_ 2)22/a
Put Zl = ( 72 ) s 22 = (#

1-v3 v3 o
Ao>max (2, 2,), we have y; >y, and y;>y,. Hence in this case we get S, =
=y;'~12971565. =

218—2, (p(—l)(z):zl/a'

1/2-a)
) . Then it is not difficult to see that, if

From corollary 4.2 and Lemma 4.3 we get the following result:

Tueorem 4.1: The random variable & belongs to Suby(2) if and only if EE=0 and
vy (&) < oo, The norms v 4(§) and t4(&) are equivalent.

5. - ORLICZ SPACES OF EXPONENTIAL TYPE

DeriniTioN 5.1, [3]: Let 4 be an arbitrary N-function. The Orlicz space generated
by the N-function

Ulx) =exp{yp(x)} =1, xeR

is called an Orlicz space of exponential type.

We shall be interested in the Orlicz space of exponential type generated by the
Young-Fenchel transform ¢* of an N-function ¢». We shall denote such a space by
Exp,+(£2). The Luxemburg norm in Exp,«(£2) is denoted by o,+; for any random vari-
able & we have

04:(&) =inf{a>0: Elexpp*(&/a)] <2}.

The space Exp,-(£2) is a Banach space with respect to the norm ().
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The following Lemma is a modification of a Lemma from [3].

Lemma 5.1: Let ¢ be an N-function and & € Expy«(Q). Then for any p = 1 the follow-
ing inequality holds:

5.1) (Ele)) " <2 —L 5.8,

¢’(_”(p)

Proor: It will be enough to prove (5.1) if 0,+(&) >0. In this case the following
inequalities hold for p >0, xeR:

[x|?exp{—¢*(x)} < sup |x|”exp{—¢*(x)}
= sup |x|”exp{— sup(A|x| — ¢(/1))}
xeR A>0
- s o0~ 1 )

— supi P _
fl;gllr>1£|x| exp {@(4) — A|x|}

zligﬁ[exp{(d)(i)} sup |x|?exp (— A x| )]

xeR

p 4
- (_) inf P exp {p(1)}.

e

Then for all xeR
»
|x|? < (2) exp{p*(x)} lingi’pexp{qﬁ(ﬂ.)}.
e >

&l
0¢”~'(§)

Substituting x =

gives

P
E|&|? < (04+(§)Eexp [¢( : )] (2) Jnf 277 exp {@(4)}
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LemMA 5.2: Let ¢ be an N-function satisfying condition Q. Let & be a random variable
such that & e Expy«(Q) and EE=0. Then & e Suby(2) and

49

where S, is defined below (4.8).

Proor: It follows from Lemma5.1 (inequality 5.1) and Stirling’s formula that

(p(—l)(n) # ¢<—1)(ﬂ)
v, (&) = sup |EE" |V" ———— < sup 2" 04+ (&)
o{8) = sup | B[ S S sup 2 Sy 0o
1/n ne
S :gg 2 U¢“"(§)nz1/2nﬂ1/2nﬂ1/2n€9n/n
21/27166,1/12%Z w
S 0y+(§) sup————< 0y (§ e < o,

n=2 21/2”.7[1/2”

Now from Lemma4.3 we get that § e Sub, (L) and
49

qu(g) sS(/)V(/)(E) sS(pé’EO'qj*(E). u

Lemma 5.3 [3]: Let & be a random variable such that

P{|&]| = x} SCexp[—lp(f)},
p
where (x) is N-function; then &eExp,, (2) and
(5.3) 0,5 <(1+0)D.

Lemma 5.4: Let EeSuby(); then &eExpy«(2) and the following inequality
holds:

5.4) 0,-(8) <37,4().

Proor: If & eSuby(82) then it follows from Lemma 3.1 that

P{|&| > e} <2 exp[—(,b""(r (i)) .
®

From Lemma5.3 we deduce that & e Exp,-(£2) and inequality (5.4) holds. =

CoroLLary 5.1: The random variable & € Suby () if and only if & € Expy«(2) and
the norms 0 () and 1 4(§) are equivalent.
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This corollary follows from Lemmas5.2 and 5.3.

Tueorem 5.1: The random variable & € Sub,(Q) if and only if EE =0 and there exist
two constants C>0 and D >0 such that

(5.5) P{|&| > x} SCexp[—gb“"(%)]

for any x> 0. If (5.5) holds then

5.6) 1) <S,e (1+C)D,
where S, is defined below (4.9).

Proor: If & e Sub, () then it follows from Lemma3.1 that (5.5) holds with C =2,
D =14(&). Conversely, if (5.5) holds we get from Lemma5.2 that e Exp,;-(2) and
0,+(&) < (14 C)D. Now again from Lemma5.2 we deduce that & e Sub, () and

1,6 <SyeT 0,u(2).

Exampie 5.1: Let & be a random variable having centered Weibull distribution, i. e.

1 1
P{é>x} = Eexp[— ;xa] as x> 0;

1 1
P{é<x} = —exp[—— |x|°‘] as x<0.
2 a
Let a>2. Since

as x>0,

1
P{|&| >x} =exp[—gxa

then it follows from Theorem 5.1 that &eSuby(R2), where

1 1 1 »
Pplx) = E|x|ﬁ, E +E =1 and r¢ﬁ(§)S25¢ﬁe48,
where S, is defined in (4.8). Ix|? P

Consider now the particular case ¢ ,(x) = —— with 1 <p<2or ¢,(x) =
2

x
if [x| =1and ¢,(x) = — if [x| <1, p>2.In this case we can improve inequality

(5.4). Our result is the following
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ProrositioN 5.1: We have the inequality
04:(&) < L‘L’%(S),

where

5 1 1/q
12
L={2" 41
V2rn
Proor: Consider first the case p >2. A simple calculation shows that
e s/p
inf1 exp{¢,(¢) —slogt} = (—) , as s>1.
= Ky

Let r%(f) =7. Then (see Lemma 4.1)

5 s/q
(5.7 E|§|XS2(—) T’
e
Since ¢ (x) < [x1” (g <2) we have by (5.7) (a>0)
q
< 1 E|&|™
« - 9/779% = —
(5.8) Eexp{¢*(&/a)} = Eexp {|&|*/qa"} go T o)

© kk T qk
< — .
2 8 ()

It follows from Stirling’s formula that

1

k* 1 ez
<

kle* - 2w \/ke N V2rm

L& Ze% = [ 7\

The above geometric series converges if 7/a<1 and in such case its sum is equal to

Therefore

2T (ta)
2z (1= (day)

Then the last quantity in (5.8) is not greater than 2 if @/t > L > 1 and this gives the

1+
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statement of Proposition 5.1. If 1<p<2 the proof is the same
e x q
(¢ * (X) — | | ) ]
q

6. - A CHARACTERISATION OF THE Sub¢—NORM ‘L'¢
FOR SYMMETRIC RANDOM VARIABLES

In this section we shall consider only symmetric random variables, which we shall
call, for the sake of brevity, simply random variables.
For every real number ## 0, let M, be the convex function defined by

cosh (zx) — 1

M;(X)Z 200 _ |

, xeR.

Clearly, for every random variable &, the function #~EM,(&) is symmetric.
Moreover

B Ee® —1

EM,(§) = —o—.

Let now & be a fixed random variable. Put, for each ¢,
A,={a>0:EM,(&a) <1}.
We shall assume that A, is nonempty. We have
ProrositioN 6.1: A,=A,. Moreover A, is a closed, left bounded half-line.

The proof of Proposition (6.1) is an easy consequence of two lemmas:

Lemma 6.1: The (symmetric) function t—> Ee® is increasing for t >0 (hence de-
creasing for t <0).

For every #, put

Lemma 6.2.

The proofs of Lemmas 6.1 and 6.2 are straightforward.
Set now

E,= {§ 7,(§) < oo},
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We are interested in analyzing the structure of E, and the properties of 7, on E,. Since
A,=A_, we have

t,(§)=7_,(8); E=E_,.

Hence there is no loss of generality in confining ourselves to the case #= 0.
We shall prove the following result

TueorREM 6.1: E, is a vector space and T, is a norm on E,.

Proor: It is easy to see that E, is a vector space and 7, is a seminorm on it (recall
that M, is convex). It remains to see that 7,(&) = 0 implies £ = 0. The relation 7,(&) =
=0 amounts to saying that, for every 2 >0, we have

EM,(E)SL

a
or, equivalently,
Ee™t < 9,
By the exponential Chebicev inequality, we deduce that, for every « >0
P{E > u} — P{erg/a > em/a} < Eetg/ae —tula < etp(t)e —tu/a’

By letting a go to zero, we get P{& > u} = 0 for every # > 0, hence P{§ >0} =0 and
also P{£# 0} =0 because of the symmetry of £. ®

Now, for every random variable &, put
(&) = sup 7,(&),
t
and consider the set
S(Q2)={enN,E:T(§) < x}.

We are interested in the structure of the pair (S(£2), 7). First of all, S(£2) is non-empty,
since all symmetric variables in Sub, (£2) belong to it. Moreover, it is clear by its very
construction that

ProposiTiON 6.2: S() is a vector space and T is a norm on it.

As we have said just now, we have the inclusion
Sub, (2) c S(Q).

As a matter of fact, the inclusion is a set-theoretic equality:
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ProposITION 6.3: S(2) coincides with the subspace of Sub,(Q) consisting of
the symmetric random variables. Moreover T =1, on S(£2).

For the proof of proposition 6.3 we need a simple lemma:

Lemma 6.3: Let & be a random variable. Put
A={a>0:EM,(&a) <1, Vt} ={a>0: Eet" < e¢(’)};
B={b>0:Ee®<e?™ Vr.}

Then we have A = B.

Proor oF PROPOSITION 6.3: We have A = [1 A,; since A, is a left bounded half-line
t

for each ¢, the same is true for A. Moreover, by the preceding lemma, for every ran-
dom variable £ we have

7(&§) =sup 7,(§) =inf A=inf B=17,(&). ]

7. - COMPARISON OF THE NORMS T, AND O gx. SECOND PART

Let g be the density of ¢* i.e. the function such that
[x]
P*(x) = qu dr.
0

We assume that ¢ is differentiable and

ir;f(q’(u) +q*(u)) =H>0.

Remark 7.1: The above assumption is verified for the functions

Pplx) =el*l —|x| — 1.

Put now
0=¢ V(og3)
2
L= sup ! .
It <o p(£)
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We remark that

L = lim sup

t—0 (P(l‘)

1
=220
C

and that L < o since ¢> 0.
Last, we set

A=max{\V10L/3H, 1}.
and
0=¢ '(log3).

We are going to prove the following

ProrositioN 7.1: For every symmetric random variable & € S(Q) we have

sup 7,(§) S Aoy« (&).

| <o

We need a

Lemma 7.1: For |t| <6

Proor (or tHE LEmmA): For |#] <d we have, by (2.1)

(0(Au))** <5 i (p(0) p* (Au))**
(2k)! k=0 (2k)!

o0
etu+€—tu$€Aéu+€—A6u:2 Z
k=0

i (log 3¢ * (Au))** < E

€¢*(Au)
k=0 (2k)!
10 @ *(Au) 2 2 2
< 3HA2€ (A“q*(Au) + A% g’ (Au)).

By recalling the inequality z < e*—1 we obtain also

¢(t) (€1u+€—tu) < 20

90 _q 3HA2BW(M(AZQZ(AH)+Azq'(AM));
o9 _

now, by an integration in # between 0 and y, with |y| <0 we get

o —t
Pt) e?—e b _ 20

2 <
e — 1 t 3HA?

€¢*<A37)Aq(Ay);
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by another integration in y between 0 and x, with |x| <0 we get finally

coshx — 1 10L
<

?0_1  3HA? eV —1) < (e —1). =
290 _

M,(x) =

We are now ready to conclude the proof of the proposition. Let 2 > 0 be such
that

E[e?"® -1]1<1;
by the preceding lemma this implies that
EM,(&/(Aa)) <1,
so that we have the inclusion
Ax{a>0:EM(E/a) <1} c{b>0:EM,(E/b) <1}
and this amounts to saying that
7,(&) < Aoy (&),

hence the statement of Proposition 7.1 by taking the supremum in |z| <.
The two following lemmas are straightforward

Lemma 7.2: For every pair of real numbers t, x we have

eX 4 e TN eI TIOTW L] g oW 4 o

Lemma 7.3: For every pair of real numbers t, x we have
M, (x/2) < M,(x)/2.
Put again 6 = ¢~V (log 3). We have

ProrositioN 7.2: For every symmetric random variable X we have
sup 7,(§) S204+(8).

[t] >0

Proor: From Lemma 7.2 we easily get the relation

1

Since || >0 we have

1 1 3
(7.2) E(1 + prT— )s T
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Let now @ >0 be such that
E[e?"¥9 —1]1<1,;

from relations (7.1) and (7.2) we get

EM,(E/a) < (3/4)E[e?"¥9 —11+3/4 < (3/2) <2.
Hence, we deduce from Lemma (7.3) that

EM,(&/(2a)) < (1/2) EM,(&/a) < 1.
The above relation says that 24 € A,, that is
(7.3) 2a=1,(8).
On taking the infimum with respect to 4 in relation (7.3), we get
204+(&) =2 1,(8);

we now obtain the required relation by taking the supremum in . ®
Proposition 7.1 and 7.2 together with Proposition 6.3 yield

ProposiTiON 7.3: For every symmetric random variable in Suby(Q) we have
74(8) <max {4, 2} 0,-(8),

where A is the number defined in Proposition 7.1. R

We now drop the assumption of symmetry and use an argument of symmetriza-
tion: let & be any variable in Sub,(£2) and 5 an independent copy of &. Denote by C
the number max {A, 2}. By Jensen inequality and Proposition 7.3 we have

Ee" < Ee'* =" < ¢(tCo(E — 7)) < ¢(21Co(E)),

since 0+ is a norm and 0 4+(§) = 0,+(n).
Hence we deduce the

ProposITION 7.4: For every random variable & in Suby(R2) we have

7,(8) <2Co,-(8).

8. - INDEPENDENT RANDOM VARIABLES IN Sub(£2)

Turorem 8.1 [31: Let &y, &,, ..., &,€Sub,(Q) be independent random variables.
If the function ¢(|x|'"), xeR is convex for some pe[1, 2], then

(8.1) rg(i sk) < 3 .
F=1 E=1
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Proor: Since the function ¢(|x|'”) is convex the statement follows from the
relations:
n

Eexp [z. s &] - ;ﬁl Eexp{i&,} < kli exp {§(| 4|7, (E0)}

=exp {é:l ¢ ((( |1|1¢(§k))”)1/p)}

SexpIqﬁ(i(kilrﬁ,(fk))up)]. .

CoroLLary 8.1: Let &,e8uby(Q), k=1, % and assume that the function
¢(|x|1//’), xeR, pell, 2], is convex. Then we have

Tﬁ;( > Ek) < 2 th(&p).
k=1 k=1
ExampLe 8.1: Let 5, £=1, © be independent random variables uniformly distri-

buted in [—1, 1]. Let 0 = 2 RUs It follows from example 3.2 that 9, e Sub, (),

where ¢, (x) = |x|%, 1<a<2 and 7, (&) <@t - If Eak < o then
=1

Ed/el'¢ 617aEd£=Aa<oo
- K=1

that is 7 € Sub, (). In this case the following inequality holds

& & a—1
P{|O0|>¢e} <2exp{—0¢%| — |} =2exp{ —c,| — ,
{10]> ¢} p{—¢ (Aa p (Aa)
S
where ¢, =a <« —a 1.
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