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SUMMARY. — Let f be a continuous semiflow of holomorphic maps of the open unit ball D
of a complex Banach space. Any fixed point of f can obviously be viewed as a periodic point of
f with any arbitrary period. Under which conditions on the geometry of D and on the be-
haviour of f does the existence of proper (i.e., non-fixed) periodic points of f imply the exis-
tence of fixed points? The answer to this question turns out to be affirmative in the case in
which D is the open unit ball of a complex Hilbert space and the elements of f are holomorphic
isometries for the hyperbolic metric of D. In this case, the periodicity of f coupled with the dif-
ferentiability of all orbits implies furthermore that the dimension of D is finite. The case in
which f has neither periodic nor fixed points in D provides some information on the behaviour
of the continuous extension of f to the boundary of D. As a consequence, the hypothesis con-
cerning the existence of periodic points of the flow f can be replaced by the weaker condition
whereby the orbit by f of some point is relatively compact in D.

Punti periodici e punti fissi di semiflussi continui di applicazioni olomorfe del disco
unità di uno spazio di Hilbert

SUNTO. — Sia f un semiflusso continuo di applicazioni olomorfe del disco unità aperto D di
uno spazio di Banach complesso. Un punto fisso di f può essere considerato un punto periodi-
co di f con periodo arbitrario. Sotto quali condizioni su D e su f , la presenza di punti periodici
di f in senso stretto implica l’esistenza di punti fissi? Questo problema ha una soluzione positi-
va nel caso in cui D è il disco unità aperto di uno spazio di Hilbert, e gli elementi di f sono iso-
metrie olomorfe per la metrica iperbolica di D. In questo caso, la periodicità di f , insieme alla
differenziabilità di tutte le orbite, impone inoltre che la dimensione di D sia finita. Infine, l’as-
senza di punti periodici e di punti fissi fornisce indicazioni sul comportamento di f sulla fron-
tiera di D. Questi risultati consentono di rimpiazzare l’esistenza di punti periodici per il flusso
f con la condizione più debole secondo cui l’orbita di un punto è relativamente compatta in D.

(*) Indirizzo dell’Autore: Politecnico di Torino, Dipartimento di Matematica, Corso Du-
ca degli Abruzzi 24, 10129 Torino, Italy.

(**) Memoria presentata il 30 dicembre 2002 da Edoardo Vesentini, uno dei XL.
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Let D be a bounded domain in a complex Banach space, endowed with a metric
invariant under the action of the group Aut (D) of all holomorphic automorphisms of
D. Let f : R13DKD be a continuous semiflow of holomorphic isometries. Fixed
points and periodic points play a crucial role in the dynamics of f. The question: un-
der which conditions does the existence of a periodic orbit G imply that f itself is
periodic (and therefore is the restriction to R1 of a continuous flow R3DKD of ho-
lomorphic automorphisms of D) was investigated in [11] in the case in which D is the
open unit ball of a J *-algebra A. One of the main conclusions of [11] was that f is
periodic when G spans a dense affine subspace of A: a result that was made more pre-
cise in the cases in which the J *-algebra A is a Cartan factor of type one or of type
four. The most relevant example of a Cartan factor of type one is represented by any
complex Hilbert space. It was considered in [11] and [8] and will be investigated mo-
re systematically in the present paper proving, among other things, that the existence
of a periodic orbit of f implies that the set Fix (f) of all fixed points of f is non-em-
pty. On the opposite extreme, the absence of periodic points implies the existence of
fixed points of the (unique) continuous extension f× of f to the closure D of D. It turns
out that, if f is a flow, Card Fix (f×) 42, and f× has no (non-fixed) periodic
points.

1. Let D be the open unit ball of a complex Hilbert space K ( dimC K D1), and
let

J4 uIK

0

0

21
v� L(K 5C).

For x� K, l�C , let

z4 ux

l
v� K 5C .(1)

Then, any y� K is contained in D (respectively, in D) if, and only if, there are
x� K and l�C0]0( such that

y4
1

l
x

and (JzNz) E0 (respectively, (JzNz) G0).
Let A� L(K 5C) be such that

A * JA4 J ,(2)

where A * is the adjoint of A.
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Setting

A4 u A11

(lNA21 )

A12

A22

v ,

with A11� L(K ), A12 , A21� K ) and A22�C , (2) is equivalent to the following
equations:

NA22N2411VA12V

2 ,(3)

A214
1

A22

A11* A12 ,(4)

A11* A114 IK 1
1

NA22N2
(lNA11* A12 )K A11* A12 .(5)

The operator A is invertible in L(K 5C) if, and only if, A11 is invertible in
L(K).

According to [3] (see also [8]), if y�D ,

(yNA21 )K 1A22c0,(6)

and the function A
A defined by

A
A : D�yO

1

(yNA21 )K 1A22

(A11 y1A12 )(7)

is a holomorphic isometry for the hyperbolic metric (Kobayashi-Carathéodory metric)
of B. It turns out, [8], that A

A is a holomorphic automorphism of D if, and only if, A is
invertible in L(K 5C).

It is shown in [3] that, if F is a holomorphic isometry of D , there exists
A� L(K 5C) satisfying (2) such that F4 A

A.
The Fréchet differential dA

A(x) � L(K) of A
A at a point x�D , whose action on

v� K is expressed by

dA
A(x) v4

1

(xNA21 )K 1A22

yA11 v2
1

A22

(A11 vNA12 )K A
A(x)z ,

is an isometry for the hyperbolic metric, in the sense that, if NvNx is the lenght of v at
the point x�D , then

NdA
A(x) vNAA(x)4NvNx .(8)

The hyperbolic metric has the following expression, which is computed in ([3],
pp. 153-154). For x�D , let v1 , v2K ]v1 , v2(x be the continuous, sesquilinear, positive
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definite, hermitian form defined by

]v1 , v2(x4 (12VxVK
2 )22 ( (v1 Nx)K (xNv2 )K 1 (12VxVK

2 ) (v1 Nv2 )K ) .

Then

NvNx
24 ]v , v(x .

As a consequence, the polarization formula

]v1 , v2(x4
1

4
[Nv11v2 Nx

22Nv12v2Nx
21 i(Nv11 iv2Nx

22Nv12 iv2Nx
2 ) ] ,

together with (8), yields the following lemma.

LEMMA 1: If F is a holomorphic isometry of the hyperbolic metric of D , then

]dF(x) v1 , dF(x) v2(F(x)4 ]v1 , v2(x

for all x�D and all v1 , v2� K.

In other words, holomorphic isometries are conformal maps of the hyperbolic me-
tric of D.

In the following, A will be replaced by the value T(t) of a strongly continuous se-
migroup T : R1K L(K 5C) such that

T(t)* JT(t) 4 J(9)

for all t�R1 .
Setting

T(t) 4 u T11 (t)

(lNT21 (t) )

T12 (t)

T22 (t)
v ,

with T11 (t) � L(K), T12 (t), T21 (t) � K) and T22 (t) �C , the above considerations still
hold when A11 , A12 , A21 , A22 and A

A are replaced by T11 (t), T12 (t), T21 (t), T22 (t) and
T(t)A, which is now expressed by

T(t)A : D�yK
1

(yNT21 (t) )K 1T22 (t)
(T11 (t) y1T12 (t) ) .(10)

As a consequence, T defines a continuous semiflow

f : tOft4 T(t)A(11)

of holomorphic isometries of the open unit ball B of K.
It turns out, [8], that f is the restriction to R1 of a continuous flow of holo-

morphic automorphisms of D if, and only if, T is the restriction to R1 of a group
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RK L(K 5C) (that will be denoted by the same symbol T) for which (9) holds whe-
never t�R.

According to Theorem VI.4.5 of [8], for any tF0 there is a neighbourhood W of
D in K such that (6) holds for all y�W , and consequently ft , is the restriction to D of
a holomorphic map, still expressed by (10). Denoting by ft

× the restriction of this map
to D, then ft

×(D) % D and ft11t2
×4 ft1

× i ft2
× for all t1 , t2 in R1. Since ft

× is continuous for
the weak topology on D, which is weakly compact in K, the Schauder-Tychonoff theo-
rem implies that

Fix gft
×h

c¯(12)

for all t�R1 .

Let y4
1

l
x� D, with lc0, and let z be given by (1).

By (10), ft
×(y) 4y for some tD0 if, and only if, there is some z�C such

that

T(t) z4ezt z .(13)

Thus, looking for the fixed points of ft
× is the same as looking for the eigenvectors

z of T(t) with non-vanishing eigenvalues, and such that (JzNz) G0. This search invol-
ves the spectral structure of the infinitesimal generator of the semigroup T.

2. If

X : D(X) % K 5CK K 5C

is the infinitesimal generator of the semigroup T , X is closed, JX is skew-symmetric,
and, [8], there is a dense linear subspace D % K such that

D(X) 4 D 5C .

Thus, [8], X is represented by the matrix

X4 u X11

(lNX12 )K

X12

iX22

v ,(14)

where X22�R , X12� K, and X11 is a skew-symmetric, closed, linear operator in K with
domain D(X11 ) 4 D, whose resolvent set r(X11 ) & ]z�C : DzD0(.

Vice versa, if X11 , X12 , X21 and X22 satisfy these conditions, the operator X repre-
sented by (14) is the infinitesimal generator of a strongly continuous semigroup
T : R1K L(K 5C) for which (9) holds for all t�R1 .

The semiflow f is the restriction to R1 of a continuous flow of holomorphic auto-
morphisms of D if, and only if, X11 is skew-self adjoint.
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If (13) holds, there is a sequence ]zn( in D(X) for which

.
`
/
`
´

z

Xzn

n 8

4! zn

4 uz1
2pi

t
nnv zn

cn" ¨ nn 8cnn" .

(nn�Z)(15)

If z 8 , z"� (K 5C)0]0( are two eigenvectors of X with eigenvalues z 8 and z" , and
if z 81z" c0, then

(Jz 8Nz 9 )K 5C4
1

z 81z 9
(z 81z 9)(Jz 8Nz 9 )K 5C

4
1

z 81z 9
[ (JXz 8Nz 9 )K 5C1 (Jz 8NXz 9 )K 5C ]

4
1

z 81z 9
( (JX1X * J) z 8Nz 9 )K 5C40

because JX is skew-symmetric. Hence,

z 81z" c0 ¨ (Jz 8Nz" )K 5C40 .(16)

As a consequence, (15) implies that, if (13) holds, then

(JzNz)K 5C4!(JznNzn )K 5C .(17)

If x� D is fixed by ft
× for some tD0, then, for

z4 ux

1
v� K 5C ,(18)

(JzNz)K 5CG0, being (JzNz)K 5CE0 if, and only if, y�D. In this latter case, (16) and
(17) imply that

(JznNzn )K 5CG0

for some n , and therefore

T(t) zn4e
2p

t
nn it

zn

for all t. That proves
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THEOREM 1: If the semiflow f has a periodic point (1), then Fix (f) c¯.

By (12), for every tF0 there is some x� D for which ft (x) 4x. Since (JzNz)K 5CG

G0 for z given by (18), the same argument as before yields

Fix (f×) c¯ .(19)

If Fix (f) 4¯ , there are no periodic points of f , and therefore Fix (ft ) 4¯ for
every tD0. Since, by Theorem VI.4.9 of [3] (2),

1 GCard Fix (fs
×) G2 ,(20)

for all sF0 (and all s�R when f is a flow), and because

Fix (f×) %Fix (fs
×),

then Fix (f×) consists of one or two points.

3. Further information on Fix (f×), involves the point spectrum ps (X) of X ,
which, by (19), is not empty.

Suppose first that Fix (f) c¯. Since D is homogeneous, there is no restriction in
assuming 0 �Fix (f).

Inspection of (10) yields then

T12 (t) 40 ( t�R1 ,(21)

and therefore

ft4dft (0)ND ,

where dft (0) (the Fréchet differential of ft at 0) is a linear isometry (3).
That proves

PROPOSITION 1: If the continuous semiflow f has a periodic point, f is conjugate, by
a holomorphic automorphism of D , to the restriction to D of a strongly continuous se-
migroup V : R1K L(K) of linear isometries of the Hilbert space K. This semigroup is
the restriction to R1 of a strongly continuous group U : RK L(K) if, and only if, f is
the restriction to R1 of a continuous flow of holomorphic automorphisms of D.

By (21), X1240. Since X11 is skew-symmetric and r(X11 ) & ]z�C : DzD0(, (14)
implies

(1) A point y is periodic with period tD0 if ft (y) 4f0 (y) 4y and ft (y) cy for all
t� (0 , t).

(2) Which extends to holomorphic isometries a theorem established by T. L. Hayden and T.
J. Suffridge, [5], for holomorphic automorphisms of D; see also [8] for a different proof.

(3) This follows also from the fact that H. Cartan’s linearity theorem holds for all holomor-
phic isometries of D , [8].
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LEMMA 2: If Fix (f) c¯ , then r(X) & ]z�C : DzD0(. If moreover f is the re-
striction to R1 of a continuous flow of holomorphic automorphisms of D , the spectrum
s (X) % iR.

The infinitesimal generator of V is the closed skew-symmetric operator

Y4X112 iX22 : D(X11 ) % K K K

which is skew-self adjoint if, and only if, V is the restriction to R1 of the unitary group
U. (In which case, U is generated by the skew-self adjoint operator Y.)

By the spectral mapping theorem,

Fix (f) 4Fix (V) 4ker Y .(22)

Since, [3], any holomorphic automorphism of D maps onto itself the family of the
intersections of D with all closed, affine subspaces of K, (22) yields

PROPOSITION 2: If f is any continuous semiflow of holomorphic isometries of D ,
and ft (x) 4x for some x�D and some tF0, Fix (f) is the intersection of D with a
closed, affine subspace of K.

Going back to the case in which 0 �Fix (f), let P be the orthogonal projector of
K onto ker Y. For all x , y� K,

(V(t) x2xNPy) 4 (V(t) xNPy)2 (xNPy)

4 (V(t) xNV(t) Py)2 (xNPy)

4 (xNPy)2 (xNPy) 40,

i.e., PV(t) x4Px for all x� K.
Since furthermore,

VV(t) x2PxV4VV(t) x2V(t) PxV4Vx2PxV ,

then

LEMMA 3: If 0 �Fix (f), the orbit by f of any x�D is contained in the intersection
of the sphere with center Px and radius Vx2PxV with the closed affine subspace of K

which contains x and is orthogonal to ker Y.

As a consequence, the following theorem holds.

THEOREM 2: If the orbit G(x) of some x�D by the semiflow f spans a dense, affine
subspace of K, then f fixes one point of D at most.

According th Theorem 3 of [11], if furthermore x is a periodic point with period
tD0, f is the restriction to R1 of a periodic flow, with period t , of
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holomorphic automorphisms of D.
Choose now Fix (f) 4 ]0(. The structure of the spectrum s (Y) of Y is described

by a theorem of H. Bart, [1], whereby

s (Y) 4ps (Y) % i
2p

t
Z

consists entirely of poles of the resolvent function of Y , and the corresponding eigen-
spaces span a dense linear subspace of K. Since 0 is the unique fixed point of U ,
ker Y4 ]0(. Furthermore, according to [11], all eigenspaces have complex dimen-
sion one. Finally, by Theorem 4 of [11], if the group T associated to the flow f is even-
tually differentiable, then dimC K EQ.

It was shown in [8] that, for every y�DO D(X11 ), the map tOft (y) is differentia-
ble and satisfies the Riccati equation

d

dt
ft (y) 4X11 ft (y)2 ( (ft (y)NX12 )K 1 iX12 ) ft1X12 .(23)

Some of the results established so far can be rephrased in terms of this Riccati
equation. For example, the following theorem holds.

THEOREM 3: If the Riccati equation (23) has a periodic integral, it has also a con-
stant integral. If the periodic integral spans a dense affine subspace of K, the constant
integral is unique.

4. We consider now the case in which the affine space H(t) spanned by the orbit
of a periodic point x�D of the semiflow f is not necessarily dense in K.

Let tD0 be the period of x. For 0 G sE tEt , the intersection, R , of D with the
complex affine line which is the support of the unique complex geodesic for the
hyperbolic metric of D containing both fs (x) and ft (x).

Since

ft (fs (x) ) 4ft1 s (x) 4fs (ft (x) ) 4fs (x)

and

ft (ft (x) ) 4ft1 t (x) 4ft (ft (x) ) 4ft (x),

then ft is the identity on R.
Thus, if 0 E sE tEt , ft is the identity on the intersection of D with the complex

affine space determined by x , fs (x) and ft (x). A trivial inductive argument implies
then that ft is the identity on H(t)OD.

Since ([3], Corollary VI.4.4, p. 176),

ft (DOH(t) )4DOH(t) ( t�R1 ,

the following proposition holds.
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PROPOSITION 3: The map tOftNDOH(t) is the restriction to R1 of a continuous flow
f
A : R� tO f

A
t of holomorphic automorphisms of the ball DOH(t), which is periodic

with period t.

By Theorem 2, Card ( Fix (fA) ) 41, or, equivalently,

Card ( Fix (f)OH(t)) 41,

a result more precise than Theorem 1.
Suppose now that f itself is a flow, and choose 0 �Fix (f). In this case, H(t) is a

closed linear subspace of K which is invariant under the action of the unitary group
U , whose restriction, UNH(t) , to H(t) is periodic with period t.

The intersection H(t)O D(Y) is dense in H(t), and

YNH(t)O D(Y) : H(t)O D(Y) % H(t) K H(t)

is the infinitesimal generator of UNH(t).
Hence,

s(YNH(t)O D(Y) )4ps(YNH(t)O D(Y) )% i
2p

t
Z0]0( ,

and the eigenspaces are all one-dimensional and span a dense linear subspace of
H(t).

Note that

ps(YNH(t)O D(Y) )%ps (Y).(24)

Let now x 8�D be another periodic point of the flow f , whose period t 8D0 is
such that t 8 /t�Q.

Since the eigenvalues of YNH(t 8 )O D(Y) are non-vanishing integer multiples of i
2p

t 8
,

(24) implies that

H(t) » H(t 8 ) .

Summing up, the following facts have been established.

PROPOSITION 4: Let 0 �Fix (f), and let x 1 , x 2 , R be periodic points of the flow f ,
with periods t 1D0, t 2D0, R . If t 1 , t 2 , R are linearly independent over Q , the in-
variant spaces H(t 1 ), H(t 2 ), R are mutually orthogonal. If f is eventually differentia-
ble, they are all finite-dimensional.

If the Hilbert space H is separable the set ]t 1 , t 2 , R( is at most countable.

5. We consider finally the case in which the flow f is such that Fix (f) 4¯ , i.e.,
the case in which f has neither periodic nor fixed points in D.



— 177 —

By (19), there is some x�¯D such that

ft
×(x) 4x ( t�R .

Hence, for z given by (18), there is some z�C such that

T(t) z4ezt z .(25)

By Lemma 1.4 of [8], NzNc1.
As before, there are sequences ]zn( in D(X) and ]nn( in Z for which (15) holds,

and in particular

T(s) zn4e
(z1

2pnn i

t
s)

zn(26)

for every n and all s�R.
Since now VxVK 41, then

(JzNz)K 5C40.(27)

Because furthermore Fix (ft ) 4¯ , then (Jzn Nzn )K 5CF0 for all n. Hence, this latter
inequality becomes an equality for all indices n.

Because of (20), the set of all these indices consists of at least one and at most two
distinct elements. In the latter case, denoting by n 8 and n" these two elements, and
setting

zn 84 uxn 8

1
v� K 5C , zn"4 uxn"

1
v� K 5C ,

(26) shows that ft fixes every point in the (non-empty) intersection of D with the com-
plex affine line joining xn 8 and xn" , contradicting the hypothesis whereby Fix (f) 4¯.
Hence, (25) holds for all t�R , and therefore

Xz4zz .(28)

The values of z satisfying (28) can be characterized among the zeros of a Wein-
stein-Aronszajn determinant, [6], v(z , X 8 , Z), associated to the perturbation X of the
skew-self adjoint operator

X 84 uX11

0

0

iX22

v
by the degenerate operator

Z4 u 0

(lNX12 )K

X12

0
v .
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A direct computation (see [8], pp. 294-296 and 301-302) shows that, for any
z� r(X11 )0iX22 ,

v(z , X 8 , Z) 412
((zIK 2X11 )21 X12 NX12 )

l2 iX22

.

As was shown in [8], the function v(l , X 8 , Z) has two zeros in r(X11 )0iR , which
are symmetric with respect to the imaginary axis, are poles of the resolvent function of
X and therefore are eigenvalues of X. They are the values of z which satisfy (25) and
(27), yielding the set f×.

Hence, the following theorem holds.

THEOREM 4: If the continuous flow f has neither periodic nor fixed points in D ,
then there are two points in ¯D which are the only fixed points of ft

× for any
t�R.

As a consequence, f× has no properly periodic points.

6. As an application of Theorem 4 we will now improve Theorem 1 replacing the
existence of a periodic point by that of a relatively compact orbit.

As before, let f be a continuous semigroup of holomorphic isometries of D , defi-
ned by a strongly continuous semigroup T : R1K L ( K 5C) satisfying (9), and sup-
pose now that there is a point xo�D whose orbit G(x0 ) does not get too close to ¯D.
More precisely, suppose that there is r� (0 , 1 ) such that

G(x0 ) %Dr »4 ]x� K : VxVK E r( .(29)

The invariance property of the hyperbolic metric implies that a similar fact holds
then for all points of D.

A sufficient condition (also necessary if dimCEQ) for (29) to hold is that G(x0 ) be
relatively compact in D.

The invariance property of the hyperbolic metric implies that a similar fact holds
then for all points of D.

Since D is homogeneous, there is no restriction in assuming x040.
If ft is expressed by (11) and (10),

Vft (0)VK 4VT12 (t)VK /NT22 (t)NE r

for all tF0.
Hence, (3) - with T12 (t) and T22 (t) replacing A12 and A22-yields

VT12 (t)VK
2 G

r 2

12 r 2
, NT22 (t)N2G

1

12 r 2
.
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Replacing A11 and A21 by T11 (t) and T21 (t), (4) and (5) yield then

VT11 (t) xVK
2 4 (T11 (t)* T11 (t) xNx)K

4VxVK
2 1

1

NT22 (t)N2
N(T11 (t) xNT12 (t) )K N2

GVxVK
2 1VT11 (t) xVK

2
VT12 (t)VK

2

NT22 (t)N2

GVxVK
2 1 r 2

VT11 (t) xVK
2 ,

whence

VT11 (t) xVK
2 G

1

12 r 2
VxVK

2 ( x� K .

For z4 ux
l
v� K 5C , with x� K and l�C ,

T(t) z4 u T11 (t) x1lT12 (t)

(xNT21 (t) )K 1lT22 (t)
v ,

and

VT11 (t) x1lT12 (t)VK GVT11 (t) xVK 1NlNVT12 (t)VK

G
1

k12 r 2
(VxVK 1 rNlN)

G
1

k12 r 2
(VxVK 1NlN) ,

N(xNT21 (t) )K 1lT22 (t)NGN(xNT21 (t) )K N1NlNNT22 (t)N

4 NuT11 (t) xN
1

T22 (t)
T12 (t)v

K

N1NlNNT22 (t)N

G
r

k12 r 2
(VxVK 1NlN)

G
1

k12 r 2
(VxVK 1NlN) .
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Hence

VT(t) zVK 5C
2 4VT11 (t) x1lT12 (t)VK

2 1N(xNT21 (t) )K 1lT22 (t)N2

G
2

12 r 2
(VxVK

2 1NlN2 )2

G
4

12 r 2
(VxVK

2 1NlN2 ) 4
4

12 r 2
VzVK 5C

2 ,

and therefore

VT(t)VG
2

k12 r 2
( t�R1 .

The fact that the semigroup T is uniformly bounded provides some information on
s (X); namely, (see, e.g., [7] and [12]): every isolated point of s (X) is an eigenvalue,
and – denoting by rs (X) the residual spectrum of X – rs (X)O iR4¯.

According to Lemma 8.2 and Propositions 8.1, 8.4 of [8], if iX11 is self adjoint,
s (X)0iR consists of two eigenvalues at most, whereas, if iX11 is symmetric but not self
adjoint, then ]z�C : DzE0( minus one point at most is contained in rs (X).

Summing up, denoting by cs (X) the continuous spectrum of X , the following pro-
position has been established.

PROPOSITION 5: If (29) holds for some r� (0 , 1 ), the semigroup T is uniformly
bounded, every isolated point of s (X) is an eigenvalue, and

s (X)O iR%ps (X)Ncs (X).

If f is the restriction to R1 of a continuous flow of holomorphic automorphisms of
D , then rs (X) 4¯.

According to Propositions 8.1, 8.4 of [8], s (X)O ]z�C : DzD0(, if not empty,
consists of one eigenvalue z of X. Thus (25) yields

LEMMA 4: If

s (X)O ]z�C : DzD0( c¯ ,

the semigroup T is not uniformly bounded.

Hence, Theorem 4, implies the first part of the following theorem, which improves
Theorem 1.

THEOREM 5: Let f be a flow of holomorphic automorphisms of D. Then,
Fix (f) c¯ if, and only if, there exist x0�D and r� (0 , 1 ) satisfying (29).
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The «only if» part of the theorem follows from the fact that holomorphic automor-
phisms are isometries for the hyperbolic distance in D.

COROLLARY 1: If G(x0 ) is relatively compact in D , then Fix (f) c¯.

Arguing as in n. 3, one can extend to any flow f of holomorphic automorphisms of
D satisfying (29) for x0�D and r� (0 , 1 ) some of the results on the structure of
Fix (f) established there in the case of periodic orbits.

In particular, the following proposition holds.

PROPOSITION 6: If (29) holds, Fix (f) is the intersection of D with a closed affine
subspace of K.
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