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AsstracT. — We consider the asymptotic behavior of the solutions of a relaxed Dirichlet
problem in a bounded open set © associated with the p-Lapacian relative to the vector fields
X =(Xy, ..., X,,) satisfying an Hormander condition and to measures u,, that do not charge
sets of zero p-capacity (with respect to X). We prove that there exists a subsequence of u, that
I'-converges to a measure u of the same type and we give also correctors for the convergence of
the solutions in Hy'? (2, X).

Comportamento asintotico di certi problemi di Dirichlet rilassati
non lineari e sottoellittici

Sunto. — Si considera il comportamento asintotico delle soluzioni di un problema di Diri-
chlet rilassato relativo al p-Laplaciano associato con dei campi vettori X = (X, ..., X,,) soddi-
sfacenti una condizione di Hormander e a misure u,, che non caricano insiemi di p-capacita
zero (rispetto a X). Si prova che esiste una sottosuccessione di u, che I'-converge ad una misura
u dello stesso tipo e si danno correttori relativi alla convergenza delle soluzioni in
HE?(Q, X).

1. - INTRODUCTION

In this paper we study the asymptotic behavior of solutions of some subellitic non-
linear relaxed Dirichlet problems of monotone type. In the case of the Laplace opera-
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tor the notion of relaxed Dirichlet problems is defined in [15] and their asymptotic
behavior is studied in terms of the I'-convergence of the functional associated to the
relaxed Dirichlet problem, [16]. For the extension of those results to the case of uni-
formly elliptic symmetric operators we refer to [7] and [11]. For the case of uniformly
elliptic operators (also non symmetric) see [14]. The case of relaxed Dirichlet prob-
lems relative to a subdifferential of an integral convex functional defined on Hy 7 (£2),
with 1 <p < + oo, is studied in [13]. The case relative to a partial differential opera-
tor on Hy 7 (L), with a degree p homogeneity, has been studied in [17] which is the
main reference of our paper, we also recall the more recent paper [19] where more
general nonlinear elliptic problems in varying domains are studied. Concerning the
general case of a symmetric Dirichlet form the notion of I'-convergence has been in-
troduced and studied in [28]; the asymptotic behavior of relaxed Dirichlet problems
has been studied in the strongly local symmetric case in [4]1[12] and in [27] in some
strongly local non symmetric case. Here we will study the asymptotic behavior of re-
laxed Dirichlet problems in the case of subelliptic operators generated by Horman-
der’s vector fields with a p-homogeneity in the fields and in particular of the subellip-
tic p-Laplacian. We use methods, which are an adaptation to the subelliptic frame-
work of the one in [17]; we prefer this type of methods since they allow us to exhibit
correctors. Finally we recall that the importance of the class of relaxed Dirichlet is that
this class contains the class of Dirichlet problems in varying domains and that results
concerning the asymptotic behavior of the Dirichlet problem for the Heisenberg
p-Laplacian in periodically varying domains have been given in [3].
We now precise our framework.

N

3 . o . . .

Let X,= > 1= 1, ..., m,be C* vector fields on R satisfying an Hérman-
j=1 X
der condition, i.e. the vector X; and their commutators up to the order 4 span RN at
N

. " 3 .. .

every point. e denote by X7 = — >, = (a;.) the formal adjoint of the vector field X;,
Jj=1 0%

moreover we denote by X the gradient with respect to the vector fields X;.
We recall that there is a distance d(x, y) connected with the vector fields, which
may be defined as

(1.1) d(x,y) =sup{o(x) —9(y); peCy, | Xp| <1}

[20, 21, 25, 26, 29, 30]. The distance d(x, y) defines a topology on R ™ which is equiva-
lent to the Euclidean one, [21, 29]; moreover for every compact set Kc RN there exists
£>0 and a constant ¢x such that

|x —y| <d(x,y) <cx|x—y]|".

We denote by B(x, r) the ball relative to the distance 4 with center in x and radius
r. We fix now an open bounded set 2 c B, where B is a ball with center in  and
radius 4 diam (Q).

We recall, [21, 25, 29, 30], that for the balls with center in B and radius » < R, we



have a duplication property
(1.2) m(Bx, 7)) = c(%) m(B(x, R))

r< — ,R<R,, where v=N + £, we define v as the «intrinsic dimension» (or an esti-

R
2
mate of) of our problem (where 7z denotes the Lebesgue measure).

We recall that in our case we have a Poincaré inequality on balls, i.e. there exists a

constant R, such that for xeB, <R, and p =1

(1.3) [ lu—wlraxscr [ |Xulrdx

B(x, r) B(x, r)

where C is a constant independent of x and » and #, denotes the average of « on B(x, 7)
and e CH(Q), [22, 25, 26]. Using Poincaré inequality (1.3) we can prove that also
Sobolev-Morrey-Campanato type inequality (relative to ») holds, [1, 2, 22].

We denote by H?(2, X), 1 <p< + o the completion of the functions in
C>(R) such that (1.4) is finite for the norm

1/,
(1.4) ||H||Hl,[)(9’X) = ( j |u|de+ J |Xu|17dx) p
Q Q

Remark 1.1: The space H'?(2, X) coincides with the space of all functions
uel?(Q) such that the gradient Xz (in distribution sense) belongs to L?(Q),
[23].

The space Hy ? (2, X) will be the completion of Cy* (£2) for the norm (1.4). We
observe that the inequality (1.3) and the Sobolev-Morrey-Campanato type inequalities
hold again for functions in H"?(B(x, ), X).

Lemma 1.2: Let ue H?(B(x, r), X) then

J |u|? dx < Cr? J | Xot | dx
B(x, r) B(x, r)

R . .
where xeB, r< 70 and C is a constant independent of x, r.

Proor: We observe that the extension of # by 0 to B(x,2r) is in
H ?(B(x, 27), X), then from (1.3) we have

(1.5) J |t — vy, | dx < Cyr? J’ | Xot | dx.

B(x, 2r) B(x, 27)
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From (1.5) we have

P
m({xeB(x, 2r); u= 0})3(

|u, |P < C | Xot | dox.

X, r)

We observe that from (1.2) there exists a ball B,ccB(x, 27) — B(x, r) such that
m(By) = Cym(B(x, ). Then

PR L f | Xu|? dx.
G, m(Blx, 7))

B(x, r)
From (1.5) we obtain
[ lulrdx <Gl P m(Blx, 20 + Cor? [ |Xu|?dse<Csrt | |Xu|"dx
B(x, r) B(x, r) Bl(x, r)

and the result follows. =

A consequence of the Lemma 1.2. is that
1/p
loll 0, 0 = ( | |Xu|ﬁdx)
o

is a norm on Hy'? (L, X) equivalent to the norm |#[;y1.0(q. x). Finally we observe that
H'7(Q, X) and H}'? (L, X) are uniformly convex Banach spaces, [4]. We denote by

H 1 7(Q, X) the dual of the space Hy'* (R, X), LI - 1;again H 29(Q2, X)isa
p q

reflexive Banach space. We have easily that Hy 7 (L, X) is dense and compactly em-
bedded in L?(Q), [4], then L7(Q) is dense in and compactly embedded
H 11, X).

Lemva 13: Let ue Hy ? (2, X) N L*(); there exists an uniformly bounded se-
quence u, € Cy° () such that u, converges to u in Hj " (Q, X).

Proor: By definition there exists a sequence v,, in C,” () such that v, converges to
uin H 7 (2, X).

Consider a non decreasing function ;€ C*(R), M = sup#, such that
Q

Bu@)=t, |t|<sM; Byl)=M+1, |[t|=2M+1)
1
Bu(0)=0; pu)<1; Byl =1, |t|<M+5.

let U, = ﬁM(Uﬂ)'
The sequence #, is uniformly bounded and in Cy* (Q).
We have also #,—u a.e. in  and |Xu,| =By (v,) |Xv,|, then |Xu,| < |Xv,|



and Xu,—Xu ae. in 2. We end the proof by the dominated convergence
theorem. ®

We give now the notion of p-capacity associated with the fields X;,.
Let O be a bounded open set and Ecc O we define

cap,(E, O; X) = inf[ j | Xv|Pdx; ve Cy°(O), v=1 in a neighborhood of E
Q

Lemma 1.4: Let Ecc Oj then cap,(E, O; X) =0 if and only if cap,(E, O'; X) =
=0, where O’ is a bounded open set with EccO’'.

Proor: It is enough to prove the result in the case OcO'.
From the definition we have

cap,(E, O"; X) < cap,(E, O; X)

then cap,(E, O; X) =0 implies cap,(E, O'; X) =0.

Let now cap,(E, O'; X) =0. Let ¢ be a function in C;*(O) with ¢ =1 on a
neighborhood of E; there exists a sequence v, in Cy° (O') such that v, = 1 on a neigh-
borhood of E and of |Xv, |?dx—0.

Let w, = ¢v,; we have w, e Cy” (O), w, =1 on a neighborhood of E and Xw, =
= ¢Xv, +v,X¢. Since v, converges to 0 in Hy'?(O', X) we have [ |Xw, |?dx—0,
then cap,(E, O; X) =0. = ©

We say that a property holds p-g.e. in € if holds up to a set of null p-capacity
(with respect to £ or to every bounded open set containing ).

We say that a function # is p-quasi-continuous in Q if for every & > 0 there exists a
set A,cQ with cap,(4,, 2; X) <& such that the restriction of # to Q — A, is
continuous.

We say that a sequence «, converges p-quasi-uniformly to # in £ if for every £ > 0
there exists a set A, C Q with cap,(4,, 2; X) < e such that «, converges uniformly to
uin Q—A,.

It is easily proved that if v, € C;° (£2) is a sequence converging in Hy 7 (£, X), then
v, (at least after extraction of subsequences) converges p-quasi-uniformly in 2,
[10](see also [24] for the case p =2).

Denote by 7 the g.e. limit of the v, and by v the limit of the v, in Hy*? (£, X), then
v is a p-quasi-continuous representative (g.e.) of v.

We observe that from Proposition 6.1. and Corollary 6.7. of [10] two p-quasi-con-
tinuous representatives are equal g.e.. In the following we identify v with its p-quasi-
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continuous representative and we consider v as defined up to set of null p-capacity
(with respect to Q).

We observe that from the above results every function in H"7(Q, X) has a p-
quasi-continuous representative and that the convergence in H"?(Q, X) implies, at
least after extraction of subsequence the convergence g.e. in Q.

Finally we say that a subset U of £ is p-quasi-open if for every ¢ > 0 there exists a
subset V of © with cap,(V, 2; X) <& and UU V open.

Let O be an open bounded set and Ecc O; we have

cap, (E, O; X) =inf[ [ 1Xv]7dx; ve HY7(0, X), 0= 1 ge. on E
Q

The infimum is really a minimum that is achieved by a function up called the potential
of the set E with respect to O and we have #z = 1 q.e. on E. Moreover we observe that
ug can also be defined as the solution of the following variational inequality

uge H?(0, X), up=1 qe. on E

f | Xoag |? 2 Xoup X(v — ug) dx =0
0

YoeH}?(0,X), wv=1qe onE

We recall the following result:

Lemma 1.5: Let E be a closed subset of Q. If ue Hy'* (2, X) and u =0 g.e. on E,
then ue H'?(Q — E, X)

Proor: We can assume without loss of generality # =0 and #e L *(Q).

We consider a sequence v, = 0 in Cy” () uniformly bounded and converging to
u=0in H{ 7 (2, X). Up to extraction of subsequences we have that v, converges to
p-quasi-uniformly and that we can choose v, such that

1

1
cap, [|v”—u| > —
n

, QX< —
n

+
Let E, be the set EN {|vﬂ—u| > i} and let w, = (v,,— l) , we have again that w,
n n

converges to # in Hy'?(£, X). We observe that w, are Lipschitz functions and

supp (w,) € (2 — E) U E, moreover we have cap,(E,, 2; X) < L

n
There exists a sequence %, € Hy 7 (2, X) N C(2) with #,=10onE,, 0 <u,<1on
Q and such that #, converges to 0 in Hj 7 (2, X).
Consider the functions w, = (1 — «,) w,; we have that the support of w, is con-
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tained in 2 — E, so w,e H}*?(Q2 — E, X). Moreover it is easily proved that w, con-
verges to # in Hy*?(Q, X); then, since the supports of w, are contained in 2 — E, w,
converges to # in Hy'?(Q—E, X). =

Remark 1.6: Let Q and Q' be bounded open sets with Qc Q’, let « be in
Hi?(2,X). We denote again by u the extension of # by 0 to '; then
ueHH (2, X).

We shall frequently use the following Lemma about the approximation of the
characteristic function of a p-quasi-open set.

We recall that the characteristic function 15 of a set E in Q is defined as 1; =1 if
xeE and 1;=0 if xe 2 — E.

Lemma 1.7: For every p-quasi-open set U of 2, there exists an increasing sequence
v, of functions in Hy * (2, X) which converges to 1y q.e. in L.

Proor: Let U be p-quasi-open in Q. Then there exists a sequence U, of open sets
of Q with cap, (U, 2; X) < % such that the sets A, = U U U, are open. Therefore for

every b there exists an increasing sequence of non-negative functions ¢§ in
L*(Q)NH? (2, X) and with |X¢%| < Mf converging to 1,, pointwise g.e. in Q.

Since cap, (U, 2; X) < % for every & there exists u, € Hy'? (L2, X) such that z, =1
qe. in Uy, #,=0in Q and [ |Xu,|? dx < % This implies that a subsequence of #,
e

converges to 0 q.e.. Moreover as ¢} < 14,, we have (pF —up)t <1y qe.. Let us
define

v, = max (@f—u)t, Y = sup vy.
< b

Then v, e Hy ? (2, X), v, =0 q.e. in 2, moreover the sequence v, is increasing and
P <1y qe. in 2. For every b = k we have v, = (¢p§ — u). As UCA, we get 1 = (1 —
—u) qe. in U.

Taking the limit as £— + o along a suitable subsequence We obtain 9 =1 g.e. in
U. This shows 9 = 1;; which concludes the proof. =

2. - THE SPACE OF MEASURES IS (£, X) AND THE OPERATOR

Measures. A Radon measure on 2 is a continuous linear functional on Cy(£2) the
space of all continuous functions with compact support in 2, € as in section 1. It is
well known that for every Radon measure 4 on @ there is a countably additive set
function u, defined on the family of all relatively compact Borel subsets of £, such
that A(#) = [udu for every ue Cy(R). In the following we identify 4 with the set
function u.*

A non-negative Borel measure will be a non-negative countably additive set func-
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tion defined on the Borel o-field of © with values in [0, + % ]. It is well known that
every non-negative Borel measure which is finite on compact subsets of £ is a non-
negative Radon measure (Hamos, Measure Theory, section 13). Let u be a non-nega-
tive Borel measure, we denote by L,;(£2), 1 <7< + o, the usual Lebesgue space with
respect to the measure u.

We denote by (L2, X) the sets of all non-negative Borel measures such that

(i) u(B) =0 for every Borel set Bc 2 with cap,(B, 2; X) =0
(ii) u(B) = inf{u(U), U quasi-open, Bc U}.

Property (ii) is a weak regularity property of the measure «. Since any quasi-open
set differs from a Borel set by a set of p-capacity 0, every quasi-open set is y-measur-
able for every non-negative Borel measure ¢ which satisfies (i). Therefore u(U) is well
defined when U is quasi-open and condition (ii) make sense.

Remark 2.1: The condition (ii) appears in [17] but does not appear in some previ-
ous definitions but will be essential in the proof of the uniqueness of the y“-limit (Re-
mark 7.4).

For every open set Uc Q we consider the Borel measure uy defined as

2.1)  wy(B)=0 if cap,(B\U, 2; X) =0, uy(B) =+ © otherwise.

As U is open it is easy to see that this measure belongs to NG (2, X). The measure
will be useful in the study of the asymptotic behavior of sequences of Dirichlet pro-
blems in varying domains (see Remark 3.4 and Theorem 7.6).

If ue NG, X) the space Hy'? (2, X) N L2(R) is well defined since the func-
tions in Hy'” (L, X) are defined u-almost everywhere in €.

It is easy to see that Hy?(Q, X)NL. () is a Banach space for the norm
[y XNLp@) = ety 2, ) + H%”[igm)-

Finally we say that a Radon measure o belongs to H " (8, X) if there exists
feH 14, X) such that

(2.2) (f, )= quda Vo eCr ()
Q

where (.,.) denotes the pairing between H " %(2, X) and H'? (2, X), Tyloq
p q
We identify f and 0. We observe that for every non-negative fe H 1'7(L, X) there

exists a non-negative Radon measure ¢ such that (2.2) holds. Moreover every non-
negative Radon measure in H ~17(Q, X) belongs to % (2, X).

The Monotone operator.

We will describe here the more generals operators to which our results apply; the

proofs will be developed in the case of the subelliptic p-Laplace operator and are al-
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N
. e] . X
most the same in the general case. Let X, = X a; -l 1, ..., m, be vector fields on
=17 %,

RN with C* coefficients. We assume that the vector fields satisfy an Hérmander con-

dition (i.e. the vector fields and their commutators up to the order 4 span RN at every

point). N

We denote X" = — El( % aﬁ.) the formal adjoint of the field X;. We denote by X
j= 2

the vector (X, ..., X,,).
Let a: 2 X R”—R"” be a Borel function satisfying the following homogeneity
condition

(2.3) alx, t&) = |t|? 72t alx, &)

for every xe 2,+eR, EeR”, 1 <p < + o, with the convention |#|?~?#=0 for ¢ =
=0and 1 <p<2.

We list now some algebraic inequalities that we assume and that are different in
the two cases 1 <p <2 and p=2.

In the case p =2 we assume that there exists constants Cy, C; >0 such that

(2.4) (alx, §1) —alx, &), §1—&)=Cy|§1— &, |7
(2.5) |cz(x, &) —alx, 52)| SC1(|§1| + |§2|)F72 |§1_§2|

for every x € Q and for every &, £, R”, where (.,.) denotes the scalar product in R"”.
In the case 1 <p <2 we assume that here exists constants C,, C;>0 such
that

(2.6) (a(x, 51)_61(96, Ez), 51_52) 2Co(|§1| + |§2|)P72 |§1_§2|2
2.7) la(x, &) —alx, &) | <C & =& |71

for every xe Q and for every &, £,eR”, £, # &,.
We observe that (2.3) implies that

(2.8) alx, —&) = —alx, &)

for every x € Q and for every £ R”, hence

(2.9) a(x,0) =0

for every x € 2 while (2.4)-(2.7) and (2.9) imply that
(2.10) (alx, §), 8) = C, |&]”

(2.11) la(x, &) | < C &P}

for every xe 2 and for every £e R”.
We now define A:H"?(2,X)—H 4R, X),
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(Au, v) = f(a(x, Xu), Xv) dx

Q

for every ue H'?(Q, X), ve Hy'?(2, X). This operator is strongly monotone on
Hi? (2, X).
The model case is the subelliptic p-Laplacian Z X (| Xu|? =2 Xu), which corre-

sponds to the choice a(x, &) = |£|?~?&. We observe that in the case p = 2 the condi-
tions (2.4) (2.5) are satisfied with Cy=2?"? C; = (p — 1) and for 1 < p <2 the condi-
tions (2.6) (2.7) are satisfied with C, =1, C; =227, In the following we develop the
proofs mainly in the case of subelliptic p-Laplacian, but easy modifications gives also
the result under the above assumptions.

We say that « is a superharmonic (subharmonic) relative to the operator A in Q if
ueH"?(Q, X) and

(Au, v) = ()0

VYoe HI?(Q2, X), v=0.
We recall here some properties of sub- or superharmonics:

ProposiTioN 2.2: Let u, ve H?(Q, X) be two superbarmonic relative to A in Q;
then min (u, v) is again a superbarmonic relative to A in Q, [10].

ProrosiTiON 2.3: Let v be a nonnegative subbarmonic relative to A in the ball
Bcc Q, then

1
<C fd
S,?pr A(m(B)B v x)

for Ae (0, 1) fixed and C; constant dependent on 1, [8, 10].

ProrosITION 2.4: Let v be a nonnegative superbarmonic relative to A in Q. There is

" ifv<p,

a positive number ry such that for 0 <r<r,, 0<s<yxlp—1) (y=

where v is the intrinsic dimension relative to Q, y>1 if p=v), then

1 1/s
— fﬂ‘dx <Cinfo
m(B) 5 B

where B = Bl(x,, r) is such that 4Bc Q, [8, 10].
We say that ue H"? (£, X) is a local solution of

(2.13) Au=0

in  if « is both a super- and subsolution relative to A in £.
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ProrosiTioN 2.5: Let u be a positive local solution of (2.13) in B = Bl(x,, r),
0<r<ry, with 4BcQ, then

supu<Cinfu
B B

where C does not depend on x,, r [8, 10].
To end this section we give the following result which is an easy corollary of

Proposition 2.4.
Let w, be the solution of the problem

(2.14) woeHP (2, X);  (Awy, v) = Jydx, Yoe HI? (2, X)
2

Cororrary 2.6: We have wy>0 qg.e. in Q

Proor: We have that w, is a non-negative supersolution in Q relative to A.
Assume that for a ball B=B(x,, »), 0 <r<r,, 4Bc Q, we have ilgf wy = 0; then
irgf(wo +é) =¢.

Since w, + € is a nonnegative supersolution in £ relative to A from Proposition 2.4

1 1/s
—_— J’wgdx < Ce
m(B) 5

where C does not depend on e.
Letting £ —0 we obtain

we have

Jwgdx=0.
B

Since w, is non-negative in B we have w, =0 a.e. and then q.e. in B.
We have

(2.15) Aw,=0 in @ (B)

and (2.15) contradicts (2.14). Then w, >0 q.e. in Q. (From [8, 10] we also have that
woe C(Q) then wy>0in Q). =

Let u,e H"?(2, X) be the solutions of the problem

(Au,v>=(f1€,v>+jvdyk

Q

where ,e H 1 1(Q, X), =1, and u,; are Radon measures on Q.

1 1
p q



— 66 —

Assume that
(2.16) up,— u weakly in H>?(Q, X)
(2.17) fisfin H19(Q, X)

wp—u weakly* in the Radon measures on Q

COROLLARY 2.6: Assume that (2.16)-(2.18) are satisfied. Then Xu, converges to Xu
strongly in L7(Q), 1 <r<p.

We have also that u,—u in HV" (2, X) and that (at least after extraction of subse-
quences) a(x, Xuy) converges strongly in L*(Q) to a(x, Xu), 1 <s5<gq, moreover
Xup— Xu and a(x, Xup) = alx, Xu) a.e. in Q.

Proor: The proof of the first part of the Theorem is given in the Appendix at the
end of the paper.

For the second part of the theorem we recall that from embedding theorems we
have u,—u in L?(Q) then u;—u in L'(Q), since Q is bounded; so #,—u in
HY7"(2, X).

At least after extraction of subsequences we have Xu,—Xu ae. in Q and
Qﬂa(x, Xuy) |7dx<C, so we have a(x, Xu,) —>a(x, Xu) ae. in 2 and in

L'(Q). =

3. - RELAXED DIRICHLET PROBLEMS

Estimates for the solutions.

Let ue N(Q, X), feH 11(Q, X),
laxed Dirichlet problem

+ = =1, we consider the following re-

!
p q
ueHol”"(Q,X)ﬂL,f(Q)
3.1) <Au,v)+f|u|p_2uvd,u=<f, v)
o
Voe HiP(Q, X) N LL(RQ)

More generally for p e H"? (2, X) N L2 () we consider a problem of type (3.1) with
non-homogeneous boundary conditions

ueHl‘p(.Q,X)ﬂL/f(Q), (u—vy)eH (2, X)

(3.2) <Au,v)+J’|u|/’72uvd,u=<f, v)
g

Yve H? (2, X) NL7 ()
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TueoreM 3.1: Let ue IG(R, X), pye H (2, X) NLL(RQ). The problem (3.2)
has a unique solution. Moreover the solution of (3.2) satisfies the estimate

63 [|Xulrdst | |”|Pd#sc(”f||?1w(9,)<)+ [1xplrde | |¢|pdﬂ)
1) Q Q Q
where C is a structural constant.

Proor: Let B: Hy»?(Q, X) N L2 () — (Hy " (2, X) N L (2))" be the operator
defined as

(Bz, vy = (Alz+9), o)+ [ |2+ 9|72+ ) du
Q

where ve H'?(2, X) N L2 (£2). The operator B is monotone, continuous and coer-
cive; then there exists a solution ze H"?(£, X) N L?(R) of the problem Bz = f and
u=2z+1 is a solution of (3.2).

We take v = (u — 1) as test function in (3.2); we obtain

(Auy =)+ [ )P 2l =) du < (f, u =)
Q
then

Co [ |Xul?ds+ [ |u]?du<
Q

Q

1/q 1/p
S D ( | |Xu|wx) ( | |Xw|”dx) ;
Q Q

+cl(gj |u|Pdu)W(Qj |1/)|pd/4)

1/p

which implies (3.3) by Young’s inequality. —®

The following lemma will be used to prove the continuous dependence on f of the sol-
ution of (3.2).

Tueorem 3.2:  Let ue (2, X); let wy, ;e H"?(Q, X)NLL(Q), let
peH"(Q,X)NL"(Q), p=0 ge in Q.
If2<p<+o

(34) Coj|Xﬁ1_XZ/l2|P¢dX+227PJ’|Zfl1_lflzlp¢d‘u$
Q

o
< J(|Xu1|p_2Xu1— | Xuiy |P 72 Xuy) p dx + J.(|u1|p_2u1— o |72 uy) @ du.
5 @
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If1<p<2

2/p
Q

<K, (uy, uy, ¢)j(|xu1|1>-2xu1 — | Xty |2 X)Xty — Xuty) b dx

Q

(3.5") j(|u1—uz|P¢dm2/Ps

Q
< Kylon, 1, 9) [(fan 27200 = | P72y = ) .
Q
where
(36) Kl(ul,uz,(l)):Z(J|Xu1|p¢dx+J|Xu2|P¢dx) P
Q Q

p

(2-p)
KZ(Z'{l)uZ)q)):Z(f|ul|p¢dﬂ+f|u2|p¢dﬂ)2 4
Q Q

Proor: The proof is the same as in [17] and is founded on inequalities (2.4)-(2.7)
and on the Holder inequality. ®

The following result shows that the continuous dependence on f of the solutions of
(3.2) is uniform with respect to u.

TuEOREM 3.3: Let ue MNG(2, X); let f,, e H 11(Q, X), LI - 1, let uy, u,
p q
be the solutions of (3.2) corresponding to f=f; and f=f.
If p=2, then
(G.7) ey = 22 |02, ) + Nlots = 02|y < I = Follti-1.002, 50

If1<p<2, then
(.8) ||”1 U ||§1g’”<9,x> + ||”1 ) ||i§(9) <CI(A, £ 1/))||f1 5 ||12Lr1’q<9,x>

where C is a structural constant and

2(2—p)

(A, o ) = (Al -0 0 + AN 10 x + J | X |?dx + J |¢|pdﬂ)
o o
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Proor: Let p =2; we use v =u; — u, as test function in (3.2) and we obtain

(39) <Au1 _Alflz, Uy — u2>+ J’(lZﬁ |p72u1 - |H2|p72M2)(H1 - uz) d,u =
Q

=(h—Ffm—u) < IA~1 ||H’1~4(Q,X)||u1 U ||H01’”(Q,X)

If p =2 the result follows from (2.4) and (2.5) by a Young inequality.
Let us consider the case 1 <p < 2. From (3.5) and (3.9) we obtain by (2.6), (2.7)
and Theorem 3.2.

(3.10)  Colluy = wollfy 20, x) + lls = w2 2 00) <
< K(uy, u5, l)Hﬂ -/ ”H’W(Q,X) ”%1 — U ”HOI’P(Q,)O

where the constant K(zy, u,, 1) is given by the Theorem 3.2.
By (3.3) we have K(uy, up, 1?><CI(f, f,v), so (3.8) follows from
(3.10). =

A connection between classical Dirichlet problems on open subsets of € and re-
laxed Dirichlet problems of type (3.1) is given by the following remark.

Remark 3.4: If U is an open subset of  and v is a function in Hy 7 (£, X) such
that =0 q.e. in Q\U then the restriction of » to U belongs to Hy'*(U, X), [23].
Conversely if we extend a function v € Hy*? (U, X) by setting » = 0 in Q\U, then »
is p-quasi-continuous and belongs to Hy'? (£, X). Therefore if u is the measure de-

fined by
u(B) =0 if cap,(B\U, 2, X) =0; u(B) = + o otherwise

where B is a Borel set, then z e Hy? (£, X) is a solution of the problem (3.1) if and
only if the restriction of # to U is the solution of the classical boundary value
problem

ueHH?(U, X), Au=fin @' (U)

and in addition z =0 g.e. on Q\U.

Estimates for the solutions.

The solutions of relaxed Dirichlet problems satisfy the comparison principles
given in the following propositions.
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ProposiTioN 3.5: Let ue NG(R, X); let feH 11(Q2, X), = +

! =1, and let u
be the solution of 3.1). If f=0 in Q then u=0 ge. in Q b

Q| =

Proor: Let v=u A0 then ve Hy? (2, X) N L2 ().
Using v as test function in (3.1) we obtain ||v||H01,p(QEX) =0, then v=0 q.e. in
Q. =

PROPOSITION 3.6: Let py, pr€ NME(Q2, X); let £, heH (2, X), LI 1,
P q

and let uy, u, be the solution of (3.1) corresponding to fi, u, and f,, u,. Assume 0 <
SAs<fHb and u, <u, in Q. Then uy < u, ge. in Q

Proor: By Proposition 3.5. #, =0 q.e. in 2.

Let v = (u; —u,)". Since 0 Sv<u;" and p, <p; we have vel] (2)cL} (Q).
Then we can use v as test function in both the relaxed Dirichlet problems and we
obtain

(Auy — Auy, v) + J’(|u1|p72u1— luy |? 72 uy) vdu =/ —fo, v) <O

Q

which implies

J (| Xoay |72 Xty — | Xoay |7~ 2 Xoay)( Xty — Xuy) dx <0

Uy > Uy

Then [|(2; — )" ||[1()1’1’(ny) =0 qe in 2,50 y<u, qe.in Q. =

PROPOSITION 3.7: Let py, y€ NE(Q2, X); let f1, LeH 12, X), 14l 1,
p q

be Radon measures and let uy, u, be the solution of (3.1) corresponding to f;, u, and
o ta. If VA | S5 and py <y, then |uy| < u,.

Proor: By Proposition 3.6 we have #; < u, q.e. in 2. We observe that the function
—u, is the solution of (3.1) corresponding to —f; and u; so by Proposition 3.6 we ob-
tain also —u; <u, q.e. in Q.

Estimates involving auxiliary Radon measures.

We consider now some further estimates for the gradient of the solution « of (3.2).
We begin by proving that if fe L7(R), LA - 1, then the solutions of (3.2) are ac-
p q
tually solutions in distribution sense of a new equation involving a Radon measure 1,

which depends on «, u, f, and whose variation on compact sets can be estimated in
terms of |||« and ||Xul|;rq).
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ProrosiTiON 3.8: Let ue NG(Q, X); let fe L1(R), LA - 1, and let u be the
q

P
solution of (3.2) for some peH"?(Q, X) NL(Q). Let A, Ay, A, be elements of
H V9, X) defined by Au+i=f, Au™ + i, =f", Al(—u")—A,= —f". Then
A, Ay, Ay are Radon measures, Ay, Ay =0, A=24,—4,, |A| <A, +4,. Moreover for
every compact set K we have

(3.11) |AK) | < cap, (K, 2; )" (2¢,[Xell 7 ) + ¢, 0|l f

where ¢ and ¢, o are structural constants.

Proor: Let ve H)'?(2, X),v=0q.e. in 2 and let v, = Ly Au*t.Thenv,=0

n
qe,v,eH (2, X)NL(Q). As |u|” ?uv,=0qe in Qand fo,<f"v,ae in 2,
by taking v, as test function in (3.2) we obtain

1
(Au, v,) < Jf+ v,dx < — ff+vdx.
Q "
Since Xvn=lXu ae. in {v<mu™} and Xv,=Xu" ae. in {v=nu"} we obtain
n
1 —2 + 1 +
- j | Xu|? 2 XuXv dx + j | Xu |pdx$—ff vdx
n n
{v<nut} {vznut} Q
so
J’ | Xu|? ™% XuXv dx < J’]”va’x.
{v<nu™} Q
Taking the limit as #— + % we obtain
f | Xu|? ™% XuXv dx < J']”vdx.
{ut>0} Q

Then

J’|Xu|P72XudexS J’]”z)a’x
Q

Q

for every ve H)'?(2, X), v=0 qe. in 2. This implies 1, =0 so A, is a Radon
measure.

In a similar way we deduce that also 4, is a non-negative Radon measure, hence
A=A,—A, is also a Radon measure and || <1, +4,.
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We have
12, HHO’“’(Q, 0 S o Xu ™ e + 60 £+ Lo

The same estimate holds also for 4,. To prove (3.11) for every € > 0 we fix a function z
in Hy?(2, X) such that z=0 q.e. in 2, z=1 q.e. in a neighborhood of K and
||z||€101,p(9)x) < cap, (K, 2; X) + €. Then

|4|(K) < jUMl + de/'Lz < el e, 0 U2 oo, x0 + 122l oo, x0) <
Q

Q
< 2(cap, (K, 2; X) +&)"7 (¢, [|Xelltri&) + 5, 2| fllLo@)

Taking the limit as e —0 we obtain (3.11). e

Remark 3.9: Under the assumptions of Proposition 3.8, if /=0 then #=u" and
A=2A,. Therefore in this case 1=0, hence Au<f in Q in the sense of
H19(Q, X).

The following theorem together with Proposition 3.8 will be used in the proof of
the main result (Theorem 3.11) of this section.

TueorReM 3.10: Let g, be a sequence in H ™1 7(Q, X), =1, let X, be a se-

1 1
p q
quence of Radon measures and for every n let u,e Hi (2, X) be a solution of the
equation

Au,=g,+ 1,

Assume that u, converges weakly in H} " (2, X) to some function u, g, converges
strongly in H™V9(Q, X) and 1, is bounded in the space of Radon measures (i.e. for
every compact set KC Q there exists a constant Cy such that |A,(K)| < Cy).

Then u, converges strongly in H™""(2, X), 1 <r<p, |Xu,|" ~*Xu, converges to
| Xu|? =% Xu weakly in L4(Q) and strongly in L°(2), 1 <s<gq.

Proor: The sequence #, converges to # strongly in L”(£2). Moreover in the Ap-
pendix we prove that Xu, converges to Xu weakly in L?(£) and strongly in L"(£),
then u, converges to # in H"7(£, X). Let us fix a subsequence still denoted by ,
such that u, converges to # and Xu, converges to Xu pointwise a.e., then | Xu, |”~? Xu,
converges to | Xu|? ™2 Xu pointwise a.e.. The sequence |Xu,|””*Xu, is bounded in
L49(82). By Vitali’s convergence theorem |Xu,|””?Xu, converges to |Xu|? *Xu
strongly in L*(£), then weakly in L7(Q). =

As a consequence of Proposition 3.8 and Theorem 3.10 we have the following
result:

THEOREM 3.11: Let g, be a sequence in H ™" 1(Q, X), =1, which converges

Q| =

1
p
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to some g in H 1 1(Q, X), let u, be a sequence in NE(2, X) and let v, be a sequence
bounded in H""(Q, X) N L} () such that [ |y, |du, <M. Assume that the solution
u, of (3.2) corresponding to u =, f= g,, Y =, converges weakly in H*?(Q, X) to
some function u. Then u, converges to u in H""(2, X), 1 <r<p, and |Xu,|" *Xu,
converges to |Xu|? =2 Xu weakly in L4(Q) and strongly in L*(Q), 1 <s<gq.

Proor: For the proof of the result we follow the proof of the analogous result in
elliptic framework given in [17].

Given ee (0, 1) we fix a function h e L9(R) such that ||h — g|H >9(Q, X) <e
and we consider the solution z, of (3.2) corresponding to u =u,, f=h, Yy =v,. By
Theorem 3.3 we have

(3.12) 2, — «, ||H01vﬂ(g, 0 <db =gl x

1
where a =

ifp=2and a=1if 1 <p <2, while Cis a constant depending on

structural constants M, and sup g, |ls-1.4(@. x). This implies that z, is bounded in
n

H'7(Q, X). Therefore, at least after extraction of subsequences, we may assume that

z, converges weakly in H"?(Q, X) to some function z and (3.12) gives

(3.13) llz — ””HO]”’(.Q,X) <dlh - g”?f*lwg, x < Ce”.

By Proposition 3.8 there exists a sequence 4, of Radon measures in H ~1'7(£, X) such
that Az, +4,=5 in Q.

By (3.11) for every compact set Kc 2 the sequence (|4, |(K)) is bounded. There-
fore Theorem 3.10 implies that z, converges strongly to z in H"" (£, X). Using
Poincaré’s and Holder’s inequality we obtain

et = tllirr i@, 30 < Cp, @l — 2, ”HO"”(Q, ) + [l = Z”HO]""(Q,X)) +lz, = g0, %)

where C, , ia constant depending on structural constants and 2. The above inequali-
ty together with (3.12)and (3.13) gives

lim sup o, — tllprr0. 0 < 2C, €%

n— +

As ¢ is arbitrary we have that «, converges to # in H"' (£, X); then we can easily
prove that | Xz, |? =2 Xu, converges to |Xu|?~?Xu weakly in L4(£2) and strongly in
L(R2). =

4. - CORRECTOR RESULT

Definition of the corrector.

Let 1, be a sequence in NG (2, X) and let fe L * (2) Let us consider #, as the so-
lution of the problem (3.1) with u =u,. By the estimate (3.3) «, is bounded in
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H{ 7 (2, X), thus we may assume that #, converges weakly in Hy'? (£, X) to some
function «. By Theorem 3.11 Xu, converges to Xz in HV7(2, X), 1 <r<p. We may
inprove the convergence of Xu, and obtain the convergence in L? () by means of a
corrector; we define a Borel function P,: 2 — R” depending on the sequence u, but
independent of #, #, u,. such that if R, is defined by

4.1) Xu,=Xu+ uP,+R,

then the sequence R, converges to 0 strongly in L?(Q).

In order to construct P,, let us consider the solution w, of the problem (3.1) with
u=u,and f= 1. By the estimate (3.3) w, is bounded in Hj'?(£2, X), then we may as-
sume that w, converges weakly in Hy 7 (£, X) to some function w. Then we define
the Borel function P,: 2 —R”

(42) P = 20X e 030, P.0) =0 if w(x) =0
w

We are now in position to state the main theorem of this section:

TueoreM 4.1: Let u, be a sequence of measures in NE(Q, X). Let u, and w, the
solution of problem (3.1) with u=u, and u=u,, f=1. Assume that u, and w, con-
verge weakly in H}? (2, X) to some function u and w and define P, and R, by (4.1)
and (4.2). Then R, converges to 0 in L?(Q).

Remark 4.2: Let w, be the unique function in Hy? (£, X) such that Aw,=1 in
Q. By The comparison principle in Proposition 3.7 and the homogeneity of A we have
|u,| < Cw, < Cw, q.e. in Q with C= ||f||i/o(cp(;2)l), hence || < Cw < Cw, q.e.in 2. As
wye L *(Q) the sequences #, and w, are bounded in L *(£).

Remark 4.3: Before proving Theorem 4.1 let us observe that if fe L * () the se-
quence R, defined by (4.1) (4.2) converges to 0 weakly in L?(£) and strongly in

L7(Q), 1 <r<p. Indeed “z eL”({w>0}) by Remark 4.2 and
w
43) R, =Xu, — Xu in {w=0)
(4.4) R, = (Xu, — Xu) + = (Xw, — Xw) in {w>0}
w

while (Xz, — Xu) and (Xw, — Xw) converge to 0 weakly in L?(L) and strongly in
L7 (Q),1<r<p.
The corrector result of Theorem 4.1 is formally equivalent to the strong conver-

gence of [u, — mu”) to 0in H'? (£, X). This assertion, which is only formal since w

w
may be 0 on a set of positive Lebesgue measure, becomes correct in H"? (U, X) if U is
an open subset of 2 where w=¢>0.
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Preliminary results.

To prove Theorem 4.1 we use the following lemmas:

Lemma 4.4: Assume that the conditions in Theorem 4.1 hold. For every € >0 de-

fine U= {w>e} U {|u|>ew}. Then for every e >0 the functions ——— belong to
Hy? (2, X)NLL () and one has wve
. uw, \|° uw, |?
45)  lim qun—x dx+f y — du, | =0
Undls wVe wV e
U, U,
Proor: Define for every & > 0 the functions
3 uto, € €
uf = , ri=u,—uf
wV e

First step. We will prove that u}, r{ e Hy? (2, X) NL*(2) N L? () and inves-
tigate their convergence as #— + o for &£ >0 fixed.
are in Hi'?(2, X) N L* () and that

w &
the sequences «, and w, are bounded in L * () (see Remark 4.2) and converge to «
and w weakly in H}'7(2, X). We recall that Hj ?(2, X) NL*(Q2)cL,” (L) for

every e NB(2, X) so —
w

We observe that the functions # and

eL,” (2). The functions #; and 7, are bounded in

and #z — L\/ weakly in Hy?(2, X). By Theorem
&

w & w
3.11 u, and w,, converge to # and w strongly in H'" (2, X), 1 < r < p; so u} converges

&
L~ () and converge to

strongly in H'"(£2, X). At least after extraction of subsequences we have
uw

to

w

that u,, w,, Xu,, Xw,, Xu, converge ae. to u, w, Xu, Xw, X ; then

wV e
| Xu, |? =% Xu,, | Xw, |?* Xw,, | Xuf |~ Xuf converge to |Xu|? > Xu, | Xw|” > Xw,

p—2
’X( e ) X( “ ) weakly in L7(Q) and a.e. in Q. As u —
wVe w\ e
U,, we obtain that 7{ converges to 0 strongly in L?(U,) and | Xu} |” =2 Xuf converges
to | Xu|?~?Xu weakly in L?(U,) Consider now a Lipschitz function @, defined by
D, (t)=0fort<e, @,(2) = L 1 for e<t<2e, @.(t) =1 for t = 2¢; we define
&
p=0,w) D, % . We have ¢ e HP(2, X)NL=(2), 0<$p<1in Q qe,
w &

¢ =1in U,,, ¢ =0 in Q\U,. By the previous remarks the sequence 7 ¢ converges to
0 weakly in Hj'7(2, X) and strongly in L?(£).

=0 a.e. in

wV e

Second step. We define

8= [(|Xu, |72 Xu, — | Xuf |2 Xu) Xr ¢ dx +
Q
S (A e A L e
Q
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In this step we prove that for ¢ fixed we have

lim 85=0

n— + o

We write &% as

46) &= J( | Xty |P 2 X, — | Xuf |2 Xurf) X(rS ) dx +
Q

+J'(|uﬂ|P*2uﬂ— P r;¢d/,¢n—J'(|xuﬂ|P*2xun— | Xurf |2 Xuu) Xep 1 de=
Q U,

:j|Xun|P72XuﬂX(r,f¢)dx+J‘|un|1’72uﬂr,f¢)d/,tn—
Q

p—2 u

w\ e

XwﬂX(r,fgbdx— j |u,f|”2u,f) répdu, +

Q

Q
—J" “ Xw,
wV e

Q

+J(‘ Y Xw,
wV e
U,

€

p—2

X(prt) dx —

2 Xw, — |Xuf|? " Xu?
wVe

- I(|Xun|p_2Xu”— | Xuuf |?72 Xuf) Xp rf dx.
Ue

-2

We have ¢ =0 q.e. in Q\U,, then the function z = ‘ i’/ ! L\/(ﬁ belongs to
w & w &

Hi (2, X)NL>*(R) (in the case 1 <p <2 we have to take into account that ¢ =0

if -2 <e¢).

w €
We have
-2
—J" i Xw, ! i Xw, X(rf¢p) dx =
w\V e wV e
e}
-2
—J|Xwn|P_2Xwn ! “ X(prt) dx =
g wVe wVe
-2
—J|Xw”|P_2XwnX ’ “ | i orl | dx +
g wVe wV e
p—2
+(p—1>f|Xwn|”’2XwnX ‘ . 1, dx.
g wVe wV e
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. . p=2 .
We have w, —— = u?, taking as test ful’lCthI’lZ)Z‘ i Y ¢r? in the equa-
. . wVe ) w\V e w\V e
tion defining w, we obtain
-2 U p=2 u &
- | Xw,|” " Xw,X orl | dx —
wVe wV e
o
U P2 y
_ e|lp—2 ¢ € — €
| | uqﬁrdy—f‘ orldx.
QJ' n n n n i w\/g w\/e n

Taking v = ¢} as test function in the equation defining #, from (4.6) we obtain

s= [ [| = |7 g+
a T ‘ wVe wVe T
U. U,
-2
+(p—1)J‘|Xw”|P72Xw”X ! | “ ! ¢ridx +
U wVe wVe

p—2 U

wV e

+J‘ “ Xw,
wV e

Xwn) — | Xuf P72 Xuf | X(prf) dx —

&

- J<|Xuﬂ|f>*2xuﬂ— | Xuf |72 Xuu?) Xepr dc =
U,

€

R P P S G S M

u

Since eL*(U,), v} is bounded in L*(£) and converges strongly to O in

w &
L?(U,), while the sequences |Xw, |? ?Xw,, |Xu,|"~*Xu,, |Xuf|?~?Xu} converge
weakly in L7(U,) it follows that J}, 32, i, 4> converge to 0. To conclude the proof of
our result it is enough to show that

(4.7) lim $4=0

n— + o

Since Xw, and Xu? converge to Xw and Xu a.e. in U, it follows that

p—2
( ! Xw”)—|Xu,f|p_2Xu,f -

wV e

p=2 u
w ( Xw)— |Xu|P’2Xu
wV e

wV e
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(‘ * Xw,
w\ e

i’/ eHL?(2, X) NL*(R) and w, is bounded
&

w
in L= () there exists a constant C such that

q .
18

a.e. in U,. Let us prove that
equi-integrable.
Consider the case p = 2. Since

-2
’ ( : Xwﬂ)—|Xu,f|p_2Xu,f)
wV e

p—2 U q
4.9) | ‘ Xw, Xw, | = | Xuf [P 2 Xuf || <
wV e wV e
q(p—2)
< Cf|2 | i Xw, | + ’wﬂX “ w, X “ qS
wV e wV e wV e
<C| X, |0~ | x| == q+‘x )
wV e wV e

where we use Lagrange’s formula.
By Holder’s inequality for every measurable set Ec Q

p—2

! |qu$ J|Xwﬂ|pdx =0 j|X i
wVe K ; wVe

By (4.9) the equi-integrability is proved.
In the case 1 <p <2 we have

then the sequence in the left hand side is equi-integrable.
By the Dominated Convergence Theorem (4.8) implies that

Z
»

14

X

J |Xw,z |q(p72>
E

p

q
<y

Xw, w, X

‘ u

w\ e

p—2
(wan)— | Xu? |? =2 Xu
wV e

wV e

u

wV e

Xw,

w\V e

p—2
(waﬂ)— |Xu;|P—2Xu;)—>

U

w\V e

—

|Xw|”2( Xw)— |Xu|p2Xu)

w\V e
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in LY(RQ). As X(r¢ ¢) converges to 0 weakly in L”(£) we obtain (4.7) which implies (4.5).

Third step. If 2 <p then Lemma 3.2 gives

(4.10) [1Xr 17 g s+ 2270 |rf )P g, < &5
Q Q

If 1 <p <2, we observe that the sequences ||z, ”Lf (@ and ||w, ||L: () are bounded by
the estimate (3.3). Since # and ;v belong to Hy'?(2, X) N L *(2) we conclude
&€

that Hu,f”L‘f (@) is bounded too. .

Since u, and «; are bounded in H}'?(2, X) by Lemma 3.2 there exists a constant

K such that

(4.11) j|xr;|P¢dx+22*Pj 757 p du, <K&
Q Q
Taking (4.10) and (4.11) into account we obtain from (4.5) that

lim (f|Xr,f|p¢dx+22_pf|r,f|p¢d,uﬂ) =0

n— + ©
Q Q
hence
(4.12) lim (j|xr;|de+22Pj|r;|mﬂﬂ):o_
n— + 9 5
uw,

Asw\V2e=w\ e qe. in U,, we have 7} = u, — q.e. in U,, and Xr; = Xu, —

uww . .wv?8 .
_X( v; ) ae. in U,,. Therefore (4.12) implies (4.5) with ¢ replaced by
w &€

2¢. u

Lemma 4.5: Let fe L *(Q), let u, be solution of (3.1) with u=u,. For every € >0
define V.= {w <e}. Then

(4.13) lim lim sup( j | Xu, | dx + j |, |7, | = 0.
Ve Ve

=0 , 540

Proor: For every € > 0 let @ be the Lipschitz function defined at the end of the
first step of the proof of Lemma 4.4 and let 2° € H}*?(2, X) N L * () be the function
defined by z°=1— ®*(w).
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As z°=0 qge. in Q and z°=1 ge. in V, by (3.1) we have

[ 1,7+ [ |7 du, < [ | X, |2 dc+ [ |, 72" due, =
Ve Ve Q Q

= j | Xut, |2 Xt X(u, ") dox + j |, |? 2 du, — f(|Xun|P’2Xuan£) u, dx =
Q Q Q

= quﬂzgdx - J( | Xu, |7 =2 Xu, X2°) u,,dx.
o 5

Since u, converges strongly to # in L?(L) and is bounded in L *(2) (Remark 4.2)
while | Xu, |? =2 Xu, converges to |Xu|?~?Xu weakly in L4(£2) (Theorem 3.11), we
can take the limit of the last two terms as #— + © obtaining

(4.14)  lim sup j|Xuﬂ|de+j|un|PdM <
v, A

n— + o

< jfuz““dx - J( | Xu|?™? XuXz*) udx.
o

Q

As z° is bounded in L (L) and converges to the characteristic function of the set
{w=0}, while #=0 ae. in {w =0} (Remark 4.2), we have that #z° converges to 0
strongly in L?(9Q).

In the other hand by Remark 4.2 we have |#| <Cw q.e. in Q, then

CP
[lar e paes = [ wrixepa<eor [ X
g 8{8<w<28} {e<w<2¢e}

so that #Xz° converges to 0 in L?(Q). Taking the limit in (4.14) as e — 0 we obtain
(413). =

Lemma 4.6: Let fe L*(Q) and u, be the solution of (3.1) for u=u,. For every
e>0 define W.={w>e} N {|u| Sew}. Then

(4.15) lim lim sup( j | Xu, | dx + j |un|ﬁdﬂﬂ)=o
W, W,

=0 5,540

Proor: For every € > 0 let @° be the Lipschitz function defined at the end of the
first step of the proof of Lemma 4.4. As i‘/ eHy 7 (2, X)NL”(Q) (Remark 4.2)
w &
the function z¢=1— QY(%) belongs to H?(2, X)NL~ (). As z°=0 g.e. in
w &




2 and z°=1 on W, by the same computations as in Lemma 4.5 we obtain

Q

I|Xu,,|1’a’x+ j |u”|PdIuﬂ)Squzedx—f(|Xun|pZXu”Xze)uﬂa’x.
W, W, Q

Since u, converges strongly to # in L?(£) and is bounded in L *(2) (Remark 4.2)
while |Xu, |?~?Xu, converges to |Xu|? > Xu weakly in L/(Q) (Theorem 3.11) we
can take the limit of the last two terms as #»— + o obtaining

n— +

(4.16)  lim sup( j | Xu, |” dic + j |un|pdﬂn)s
W, W,

< J'fuz“"dx - J( | Xu|? 2 XuXz®) udx.
9

Q

As z, is bounded in L ” () and converges to the characteristic function of {# =0},
we have that «#z° converges strongly to 0 in L?(£). Moreover

1 P
f|u|ﬁ|Xzf|des_p j e | x [ el ‘ dx <
Q € {0<|u| <2ewVe)} w\/e
! lu] Y la| |
<= L g 2 ) X | de<
€ {0< |u| <2e(wVe)} wVe wVe
< j (|Xu|? + (260 | Xw|?)) dx

{0<|u| <2elwVe)}

and so #Xz® converges strongly to 0 in L?(L) as ¢ —0. Therefore (4.15) follows from
(4.16) taking the limit as e—0. m

Proor oF Tueorem 4.1: Recall that U, UV, U W, = Q, then

[IR7dx= [|R,|7dx+ [ R, [7dx+ [ |R,|"dx
Q U, Ve W,

Since r, = Xu, — Xu —

2 (Xw, — Xw) in {w >0} we deduce from (4.4) that for ¢ >0
fixed v

n— + o

lim [ |R,|7dx=0
Ur
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On the other hand we shall prove

(4.17) lim sup [ |R,|”dx=0
n—> + © v,

(4.18) lim sup [ [R, |7dx=0.
n— + o WE

Since |u| < Cw q.e. in 2 (Remark 4.2) we have Xu =Xw =0 in {w =0}.

This fact with Lemma 4.5 (applied to the sequences «, and w,) allows us to obtain
(4.17) from the previous inequality.

As |u| < Cw g.e. in 2 (Remark 4.2), we have |R, | < | Xu, — Xu| + &|Xw, — Xw|
g.e. in W, (Remark 4.3). Therefore

n— +x

41~ ’lim sup J |R, | dx <
We

< lim SHPLJ | Xu, |” dx + j | Xot|P dx + €” [|Xwn|”dx+ J | Xow|? dx

n— + ©
s W,

As the characteristic function of W, converges to the characteristic function of
{w>0}N{z=0} and Xu =0 a.e. on the set {# =0}, the previous inequality and
the Lemma 4.6 give (4.17), so the proof is concluded. =

Theorem 4.1 gives the correction of Xu, to obtain strong convergence. We observe
that in general the function X« + «P, is not a X-gradient. The following result gives a
corrector in Hi'?(R, X) for the functions u,.

TueoreM 4.7: Let u, be a sequence of measures in NG(Q, x) and let
feL*(Q).

Assume that u, and w, are the solutions to are the solution of problem (3.1) corre-
sponding to u=u, and to u=u,, f=1 and that u, and w, converge weakly in
H)?(2, X) to some function u and w. Define ri by

_ lulw,

w\ e

+rf

"

Uy

Then

lim lim sup ||7’,18||H1v1’(g x=0
e—0 0 ’

n— + o
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Proor: Since U, UV, U W, =Q we have

(4.19) [Irrdx= [{ri1rds+ [{ri|7ds+ [ |rf)7d
Q U, Ve W,

By the Lemma 4.4 Xr} converges to 0 strongly in L?(U,) as #— 0, so we have only to
estimate the last two terms in (4.19) As
wﬂ

Xw, — Xu +
w\ e w\V e (wV e)?

uw,

Xrf = Xu, — X(wV e)

and |#| < Cw qe. in 2 (Remark 4.2) we have

w,

p
i | Xw|?.
Ve w\ e

P
41‘/’|Xr,f|f’s|Xu,7|P+CP|XwW|/’+( il )|Xu|p+C/’(
w

We observe that w, is bounded in L ® (£2) (Remark 4.2) and converges to w weakly in
Hi 7 (2, X), then

n—> + ®©

4'~7lim supf | Xrs |?dx <
Ve

n— + o

< lim supl( J | Xu, |? dx + J |Xu|de)+Cp( J|Xwﬂ|pdx+ J |Xw|de)].
v, v, V. v,

Since |u| < Cw q.e. in 2 (Remark 4.2) we have Xu = Xw =0 in {w =0}.
This fact with Lemma 4.5 (applied to the sequences #, and w,) gives

=0 , 540

lim lim sup J | Xri|?dx=0
Ve

Since w=wV e and |u#| <ew q.e. on W, we have

w, \P w, \
40 X P < | Xy |? + € | Xuoy P + ) | Xul|? + C” | X
w w

g.e. in W, and thus
4'~?lim sup [ | Xri|?dx <
Ve

n— + o

< lim Sup[( [ 1Xu,|7dx+ | |Xu|1’dx)+8p( f|Xwﬂ|de+J|Xw|pdx)].
W, W, Q Q

n— + o
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As the characteristic function of W, converges to the characteristic function of
{w>0}N{u=0} and Xu =0 ae. on the set {# =0}, the term f | Xut,, |? dx con-
verges to 0 as €—0; then by Lemma 4.6 we have

lim lim sup J|Xr |?dx=0.

=0 , 510

The result then follows. =

5. - CORRECTOR RESULT

Let 1, be a sequence of measures in NG (2, X) and fe L * () Assume that #, and
w,, are the solutions to are the solution of problem (3.1) corresponding to u = u, and
tou =u,, f=1and that u, and w, converge weakly in H;'?(£2, X) to some function z
and w. In this section we will study the behavior of the following sequences

(5.1) (Au,, wl¢)— {Aw A L wl ¢
' me "l wVe wVe "
p—2
(5.2 f P2 u,wlpdu, H 7 pdu,
) ] ot @ Gl wVe w\/ew b au

where 8= (p— 1)V 1and p e H} 7 (2, X) N L*(L2). The estimates will be useful in
p— 2 u
wV e wVe
does not belong to Hy'? (£, X), then the formula (5.1) (5.2) are not correct. We intro-
duce the locally Lipschitz function ¥,(#) defined by

the proof of the main result of section 6. For 1 < p < 2 the function ‘

(5.3) W)= |t|P 2t if |t] >e, W) =|e|P ?rif |¢| <e
u

wVe w\ €
mate in the set U, = {w>¢e} N {|u|>ew}.

and we replace in (5.1) (5.2)

by '118( = ) We begin with an esti-
w\ e

Lemma 5.1: Let wu, be a sequence of measures in NE(Q, x) and let
FfeL>*(Q).

Assume that u, and w, are the solutions to are the solution of problem (3.1) corre-
sponding to u=u, and to u=u,, f=1 and that u, and w, converge weakly in
H?(2,X) to some function u and w. Let €>0 and B=1, define v,=

= Wg( ) eHy " (2, X)NL*(Q). Then the sequence

wVe

| Xot,, |72 Xu, X(wf) = | Xuw,, |P =% Xw, X(v, 0]
converges weakly in L'(U,) as n— ® to the function

| Xu|? 2 XuX(wf) — | Xw|? ? XwX (v, w By
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Proor: By Theorem 4.1 we have

(5.4) Xu,=Xu+ ﬁXwﬂ— ﬁXuH—R,, a.e. in U,
w w
-2
where R, converges strongly to 0 in L?(£). Since v, = | £ P77 e in U,, we
have v v
(55) | Xu,|? 2 Xu, X(wf) — | Xw, |? ? Xw, X(v,wl) =
p—2
=ﬁw,f*1|Xuﬂ|p72Xuanﬂ—ﬂ—wffl 2 ﬁ|Xwﬂ|’”—
w

—wh | Xw, |?~* Xw, Xv,

a.e. in U,.
In a similar way we obtain

(5.6) |Xu|P72XuX(wﬂ)— |Xw|”72XwX(zzsw5)=

r=2 y

“ — | Xw|? — wf | Xw|?~? XwXo,
w

= w1 | Xu|? 2 XuXw — pw’ !

a.e. in U,.
By Theorem 3.11 the sequences #, and w, converge to # and w in H} " (R, X),

1 <r<p and so, at least after extraction of subsequences we may assume that «,, w,,,

Xu,, Xw, converge to u, w, Xu, Xw ae. in 2. This implies that |Xu, |’ *Xu,,

| Xw, |? 2 Xw, converge to |Xu|” ?Xu, |Xw|” ?Xw ae. in U,. So we have that

_ u p-2 u p-2

| Xu, |? =% Xu,, ’ —Xwﬂ‘ — Xw

. w w

in U,.

_ u — u
We prove now that |Xu,|’ ?Xu,— —Xw,|’ > —Xw, converges to
w

u
—Xw a.e.

U —
— Xw, converge to |Xu|? 2 Xu,
w w

w
| Xu|? =2 X — £ Xw|? 2 £ Xw strongly in L7(U,). Tt is enough to prove that the se-
w w
quence | Xu, |~ Xu, — *Xw, |72 2 Xw, is equi-integrable.
w

w
Consider the case p =2. We recall that 22 e L *(U,) (Remark 4.2); by (5.4) there
exists a constant C such that v

=2 y
— Xw,
w

)W -2)

Xu— L Xw+R,
w

q
<

=<

(5.7) | | Xu,|? 2 Xu, —

u
— Xw,
w

q
<

<

Xu— 2 Xw+R,
w

+ ‘Xu— 2 Xw+R,
w

< Cf(z ‘ 2 Xw,
w

sc(|xwﬂ|q<p-2>

q u
+ ‘Xu— — Xw + R,
w

|

a.e. in U, (where we use Lagrange’s formula).
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We integrate on an arbitrary measurable set Ec Q; by Holder’s inequality we
obtain

Xu— L Xw+R,

w

<

[
E

p—2

T " » \7
$(J|Xwn|1’) J‘Xu——Xw-i—Rn dx
o) E

w

We recall that Xw, is bounded in L?(£) and that R, converges to 0 strongly in L?(£),
so the previous inequality and (5.7) gives the result.
Consider now the case 1 <p <2. We have

rP=2 y

— Xw,
w

q
<Cf

‘|Xu”|p_2XuW— Xu— L Xw+R,

w

u
— Xw,
w

The result follows from the strong convergence of R, to 0 in L?(Q). Then
| X, |/’ ZXu — ‘ -

—Xw converges (in both the cases) to | Xu|? > Xu —
—Xw strongly in L7(U,).

\We recall that Xw, converges to Xw in L?(U,) and that w, is bounded in L * (£)
(Remark 4.2) and converges to w a.e. in 2, then
p—2
N Xwn)
w

ﬂwﬁ1(|Xuﬂ|”2Xuﬂ— ‘ 2 Xw
w

converges to

p—2

ﬂwﬁ1(|Xu|”2Xu— ‘ 2 Xw 2 Xw
w w

weakly in L'(U,).

We have that |Xw, |?~?Xw, converges weakly in L/() to |Xw|”™?Xw, then

wh | Xw, |? ~* Xw, Xv, converges to w’ | Xw|? ™2 XwXv, weakly in L' (). The result
follows now from (5.5) (5.6). =

LemmMa 5.2: Let u, be a sequence of measures in NG(Q2, X).
Assume that u, and w, are the solutions to are the solution of problem (3.1)

corresponding to u=u, and to u=u,, f=1 and that u, and w, converge weakly

in Hy?(2,X) to some function u and w. Let €>0 and B=1, define v,=
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=¥’g( J )eHo"”(Q,X)ﬂL“(Q). Then
wyV e
(Au,, wf §) = (Aw,, vw] ¢) = (Au, P §) = (Aw, v’ p) + K]

where lim lim sup R; = 0.

e—=0 , 54w
Proor: For every ¢ >0 we have
(Au,, wl @) — (Aw,, v,wl P) = AL + B +

where

;= [ @1Xu, 1772 Xu, Xwf dx ~ [ ] Xiw, '~ X0, X(0,10) d
U, Ue

R = j & | Xu, |? ™2 X, Xewf dx — J | Xw, |?? Xw, X(v,wf) dx
V,U'W, v,uw,

CL = Jwﬁ | Xut,, |7 % Xu, Xep dx — fvgwf | Xw, |? 2 Xw, X(¢) dx.
2 U,
In a similar way we define A°, $°, C° by replacing «, and w, by « and w, so
(Au, wP ¢y — (Aw, v,wP @) = A° + B + C°.
By the Lemma 5.1 we have

(5.8) lim @;=a:

n— + o

for every e >0.

We have that |Xu, |’ ?Xu,, |Xw,|” ?Xw, converges weakly in LY(Q) to
| Xu|? =2 Xu, | Xw]|”~? Xw (Theorem 3.11) and that w, is bounded in L * (£2) (Remark
4.2) and converges strongly to w in L?(£), while v,e L *(2) (Remark 4.2) we con-
clude that

(5.9) lim €= ¢,

n— + o

We now consider the term &, — B°. For every measurable set BCc 2 we define

J1(B) Zﬂ‘[q)wf*l | Xu,, |7~ % Xu, Xw,, dx
B
J2(B) =ﬂf¢vswffl | Xw, |P72XwnX(wn) dx
B

55 (B) = [ puwf | Xuw, P2 Xw, X(0,) dx
B



In a similar way we define 3!, %2, 3%’ by replacing #, and w, by # and w. We
have

(5.100 | B —F| < |[IHV,UW,) |+ |5 (V,UW,)| +
F L2 (V) |+ [ 392 (Vo) | + [952(W,) | +

+IO2W) | + |35 (V.U W,) =33 (V,UW,)|.

Since 8= 1 the sequence w/ ™" is bounded in L * (£2) (Remark 4.2). Moreover |u| <
< Cw (Remark 4.2), by (5.3) we have v, < (CV £)? " ! q.e. in 2. Moreover there exists a
constant K such that

| (V. UW) | + | 552(V,) | <K

[ 1w, |Xw,,|dx+j|an|l>dx)s
Ve

V,U W,

1/q 1
sK[( | |Xuﬂ|de) (j|an|1’dx)
Veu Q

U W,

/p

+ J | Xw, |de]
V.

Then by Lemma 4.5 and 4.6 we have
5,(V.UW) |+ [5;2(V) ) =0

(5.11) lim lim sup (

n— +
In a similar way we prove

(5.12) lim (

e—0

SHV,UW) |+ 352V, ) =0

We have |#| < ew q.e. in W, so we have also |v,| <&”~ ' q.e. in W,. The boundness
of wf~'in L* () (Remark 4.2) implies

| 352 (W) | <Ket [ | Xaw, | d
Q

for a suitable constant K. We recall that w, is bounded in H}*?(£2, X), hence we con-
clude that

(5.13) lim lim sup | 352(W,)| =0

=0 5,540

In a similar way we prove

(5.14) lim lim sup | 352(W,)| =0

=0 ;540

Since |Xw, |?~?Xw, converges to | Xw|”~? Xw weakly in L?(£2) and w, is bounded
in L*(2) (Remark 4.2) and converges strongly in L”(£), we conclude that

(5.15) lim 552 (V,UW,) =3°(V,UW,).

n— + ©
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From (5.10)-(5.15) we have
(5.16) lim lim sup | B, — B°| =0.

e—=0 , 54w
We recall that R; = Q% — A° + B° — $B° + C5 — C° the result follows from (5.8), (5.9)
and (5.16).

Lemma 5.3: Let u, be a sequence of measures in NG(Q2, X).

Assume that u, and w, are the solutions to are the solution of problem (3.1) corre-
sponding to u=u, and to u=u,, f=1 and that u, and w, converge weakly in
H{ (R, X) to some function u and w. Let € >0 and B= (p — 1)\ 1, define uf =

n

= " s in Lemma 4.4. Then
w &

[l 2 a,wf g du, = [ i 7720 wf g de,
U, U

tends to 0 as n— + © for every pe Hy " (2, X) NL*(Q).

Proor: Let ¢ e H (2, X)NL*(Q) and rf=u,—u. We recall that the se-
quences #, and #«; are bounded in L * () (Remark 4.2), then there exists a constant C
such that

| e, |? 2 typ — | |? 2 uf | < Crf

We recall that w, is bounded in L * (£2) (Remark 4.2), then there exists a constant K
such that w/? < Kw/? =YV then

[l 2wl pdun, = [ug |2 uiwf g du,| <
U€ Us

1 1

SCR [ g7V =V g, < CK | [ |7 |7 de, [whdn,
& UE

U US

The result follows now from the estimate (3.3) and from the Lemma 4.3. =

Lemma 5.4: Let u, be a sequence of measures in NG(2, X).

Assume that u, and w, are the solutions to are the solution of problem (3.1) corre-
sponding to u=u, and to u=u,, f=1 and that u, and w, converge weakly in
Hi (2, X) to some function u and w. Let € >0 and B = (p—1)\/ 1, define v, =

:lI’s( “ )eHol”’(Q,X)ﬁL“(Q) and let

Ve

822 f |un|p_2unw£¢d‘un - fvew17ﬂ+P_l¢dﬂﬂ
Q Q

Then lin%) lim sup | 85| = 0.

n— + ©
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Proor: We observe that w!~'v, = |uf|” " ?u} q.e. in u,. By Lemma 5.3 for every
£ >0 the sequence

f lot, |~ 2w, w0l § du, — fvgwf“"lqﬁd#n
U, Ue

tends to 0 as #— + .
As ¢ is bounded for the proof of the result is enough to prove

(5.17) lim lim sup J o, |? ' wPdu,=0
0 ey
(5.18) hn% lim sup fvgwf“’*ldun =0
e n— + v,
(5.19) lim0 lim sup J’vew,f*P*ld/Aﬂ:O.
e— n— + o
W,

Taking into account that =1 we have [wf ||, = o) < K for a suitable constant K
(Remark 4.2), then

f |”n|pilwfdﬂnsKJ’Vgqu |%ﬂ|p71wnd,un$
V.uW,

1/q
sK( | |un|Pdu,¢) (j|wﬂ|f’dm)
V.U

W, Q

thus (5.17) follows from (3.3) and from the Lemmas 4.5 and 4.6.
We recall that |#| < Cw (Remark 4.2), so by (5.3) we have |v,| < (CVe)l ! qe.
in Q; then

[1elwf 2=V du, < (€ v ey K [wydu,
Ve, Ve

The relation (5.18) follows from Lemma 4.5.
We recall that |u| <ew qe. in W,, then

f |v£|wf“’*ldyn$epflj'w,fdptﬂ
1% W,

E &

and (5.19) follows from (3.3). =
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6. - The case f=1

In this section we will study the properties of the set X(£) of the function w such
that

weH"(2,X), w=0gqge in Q and Aw<1 w=0 in @' ().

The results of the present section will be used in the proofs of theorems 7.3, 7.5, and
are independent of the results in sections 4 and 5.
For every we X(Q) we have

j|Xw|pdx$ (Aw, w) < fwdx
g é

the function w in X(Q) are uniformly bounded, so () is bounded and weakly rela-
tively compact in Hj?(2, X).
We also observe that if wj is the solution of the Dirichlet problem

wyeHy " (2, X), Aw,=1 in @' (Q)

by Proposition 3.6 we have 0 < w < w,, Ywe X(Q) (and it is easily proved that
wye L~ (9Q)).
Given we X(2) we define

o=1-Aw

By the definition of KX(£2) we have 0 = 0 in @’ (), so 0 is a non-negative Radon mea-
sure. As AweH 11(Q, X), L + Lo 1, we have ce H 11(Q, X).
p q

Our aim in this section is to prove the following characterization of X(£) as the
set of the solutions of all relaxed Dirichlet problems corresponding to f=1

THEOREM 6.1: The set R(Q) is compact in the weak topology of Hi'? (2, X). A
function weHg " (2, X) belongs to RK(Q) if and only if there exists a measure
we NG, X) such that w is the solution of the problem

weHH (R, X) NL7(Q)

(6.1) (Aw, v) + f |w|? ™ ?wodu = fvdx
0 )

Voe Hy " (2, X) N L (RQ)

The measure w is uniquely determined by we RX(Q). More precisely for every
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we RX(Q) and for every Borel set BC Q we have

do

u(B) :J e

if cap,(BN{w=0}, 2;X)=0,
(6.2)

u(B) = + o if cap,(BN{w=0}, 2;X)>0

where o is the non-negative Radon measure in H™19(Q, X) defined by o=1—
— Aw.

Observe that from (5.2) we have

6.3) 0(Bﬂ{w>0})=Jw/’_1dp¢
B

for every Borel set Bc Q.
To prove the Theorem we need some preliminary results:

Lemma 6.2: Let ue NG(R, X) and let ue Hy? (2, X) N LE (). Let u, be the sol-
ution of the problem

u,e Hi?(Q, X) N LY (RQ)

(6.4) (Au,, v) + j o, |P 2 u,vdu +nJ' |u,1|”’2uﬂvdx=nj ||? 2 udx
) I’ )

YoeHI?(2, X)N L/(Q)
Then u, converges to u strongly in Hy'? (2, X) and in L} (L)
Proor: The proof is in some way standard using the algebraic inequality on our

operator and we give the details for sake of completeness. We use #, — u as test func-
tion in (5.4) and we obtain

(Au,, u, —u)y+ f o1, |? 2w, (s, — ) du +
9

+nJ(|uﬂ|7’72uﬂ— lae|? =2 u)(u, — u) dx = 0.
2

Hence

6.5)  (Au, = Au, s, = )+ [at, P20, || 2 0) a0, — ) d +
Q

+n-"(|uﬂ|”72un— lee|? =2 u)w, — u) dx = —(Au, u, — u) — j |oe|? =2 ulu, — u) du.
9 Q
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If 2 <p we have
©.6)  Collu, = ulltyrro, x) + 2277 (lu, = i r ) + rlle, — allp o ) <
< —(Au, u, — u) — f |o|P =2 ulu, — u) du
9
hence
Collet, = s v, 30 + 2277 ((Ju, — ””}i:(m + i, — o) <

= ||Au||H’1"’(.Q, X) ||Mn - Z"”HOI”’(Q, 0+t ||H||1L727(9) ||Mn - M”L;j(gw
By Young’s inequality we obtain

2270

C _
= e, — ull’ﬁgm, 0t et ””if(m + 22 P llu, — dlff o)) <

cgt

<

2
lAalffy-1.00, 5 + p o 1700

Then , converges to « weakly in H)>? (2, X) and in L?(£2); so (6.6) gives the strong
convergence in both the spaces.

Consider now the case 1 <p <2. From Theorem 3.2 (where we take u as the
Lebesgue measure) we have

et = llF oy < 20, 7)) + Nl oy J( a4, |? =2 00, = | =2 ) (e, — ) de
o

Then from Theorem 3.2 and (6.5) we have

Colley = ulltsg ri0, 3 + et — allf pio) + #lles, — ellf o @) <

H(u,, u) (I(AM, ty, = u)| +

J|u|”’2u(u,,—u) d,u‘)S
9

H(u,, w)(|Aully 1000, xlle, = allizgrio, x) + 1 re et - ””L,f(!)))
where

H(u,, u) = 2(|a, [Fig 50, 0 + o, 5oy + s, 7)) +

+2(ulligh o, 0 + Itz + el <

2(([os,, — ””%1075(9, x + ||, — u if(fz) + o, — alF i) +

+ 4|l bo, 0 + el iy + 7 o))-
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By Young’s inequality we have

or,, — ””’ﬁ(}vp(sz, x) T [jot,, — 2 Trio) t ller, — ﬂ”iﬁ(g) s

2y + nll, — dllt i) <

a

< K, (u)(|jur,, — %”%101‘7’(9, x) + o, —u

S 3 (JJee,, - ”Hﬁf‘p(g, 30+ lle, — ””ﬁlﬂm + ille, — 2l 0) + K, ()

where K, (u), K,(u) are constant depending on #.
We have

[t — ””713”’(9,}() + [l — M”Z’j(m + (27 = Dl =l r(0) < 2K, (w)
then u, converges to « weakly in Hy ?(2, X) and in L/ (2). The constant H(u,, «) is

bounded (with respect to #, then (6.7) give the strong convergence in Hy'? (L, X)
and in L/ (). =

The weak regularity condition in the definition of NG (L2, X) has a fundamental
role in the following Lemma:

Lemma 6.3: Let ue NG(R2, X) and let w be the solution of (6.1). Then u(B)=+ o
for every Borel set BC Q with cap,(BN {w=0}, 2; X)>0.

Proor: Let ue Hy? (2, X) VL. (2). We have 0 <« <1 qe. in Q. Let u, be the

solution of (6.4). By the comparison principles we have 0 < #, <77 w q.e. in 2 (re-
call that # <1 qg.e. in ), so we have #,=0 g.e. in {w =0}. By Lemma 6.2 #, con-
verges strongly to « in Hy'?(£2, X), then #=0 q.e. in {w=0}.

Let U be a p-quasi-open set in £ such that u(U) < + o,

We recall that from Lemma 1.7 we have an increasing sequence z, of non-negative
functions in Hy'? (2, X) that converge to 1 g.e. in 2 (we observe that 0 <z, <1 q.e.
in Q).

Since u(U) < + o we have z,e L/ (), then by the previous step z,=0 q.e. in
{w =0}, this implies cap,(BN {w =0}, 2; X) =0.

Consider now a Borel set Bc 2 such that cap,(BN {w=0}, 2; X) >0. For
every p-quasi-open set containing B we have cap,(UN {w =0}, 2;X) >0, so
w(U) = + o by the previous step. The weak regularity property of the measure u
gives u(B) = +©., =

LemMa 6.4: Let A, ue N(Q, X). Assume that there is a function w in
Hy 7 (2, X) NLIH(2) N LY(KQ) such that

(6.8) (Aw, v) + J |w|? 2w dl = fvdx
) o

(6.9) (Aw, v) + J |w|? 2w du = Jvdx.
° o

Then A= u.



Proor: From the comparison principles we have w =0 q.e. in Q. Consider the
measures A, and u, defined as

Ao (B) = Jw/]‘ld/l, o(B) = jwp-ldﬂ
B B

where B is a Borel set in Q.
The first step of the proof is prove that 1, = u,.
For every ¢ >0 we define the measures 1,, u, by

2.(B) = j w? YAl u,(B) = j w? ' du

BN {w>e} Bn{w>e}

where B is a Borel set in Q.

To prove that 1= u, it is enough to prove that A, =u, Ve > 0. We have that
well(2)NLJ(Q), then 4,, u, are bounded measures, then to prove the result we
have to prove that A,(U) = u,(U) for every open set U in Q.

Let us fix U and define U, = U N {w > ¢}. The set U, = is p-quasi-open. We recall
that from Lemma 1.7 we have an increasing sequence z, of non-negative functions in
Hy (82, X) that converge to 1y_q.e. in 2 (we observe that 0 <z, < 1 q.e. in £). Since
welf(Q)NL(R) and w>e ge. on u, we obtain A(U,), u(U,) < + o, then
z,€ L () NLL(L). From (6.8) (6.9) we have

jw”’lznd/1= Jw”’lznd,u.
Q Q

Taking the limit as #— + o we have

A.(0) = Jw”*lzndﬂ. = Jw”*lzﬂdﬂ =u,(U).
U, U,

The above relation prove 1, =u, Ve >0, then 1, =u,. For every Borel set B con-
tained in {w >0} we have

A(B)=j ! dzo,mB):j L
B

w? ! wP !

Consider now a Borel set contained in {w =0} and cap,(B, 2; X) >0, by Lemma
6.3 we have A(B) =u(B) = + . For an arbitrary Borel set B in Q we have

AB)=ABN{w>0}H+ABN{w=0})=
=uBN{w>0})+uBN{w=0}) =uB)

and the result is proved. =
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Proor oF THEOREM 6.1: Let us prove that X(£) is compact in the weak topology of
H{? (2, X). Let w, be a sequence in X(£R2). Since RX(R2) is bounded in H}? (2, X),
we may assume that w, converges weakly in Hj”(2, X) to a function w.

We have to prove that we X(Q).

Consider the measures 0,=1— Aw,, 0, is a sequence of Radon measures in
H™19(Q, X), which is bounded in H "1 9(L, X). Since ¢, = 0, we have that ¢, (K) is
bounded for every compact set Kc . By Theorem 3.10 we have that Aw, converges
to Aw weakly in H 17(Q, X), then Aw <1 and we X(Q).

Assume p e NG (L2, X) and let w be the solution of (6.1), then from comparison
principles we have w =0 q.e. in Q.

From Proposition 3.8 and Remark 3.9 we have that Aw <1 in @' (), then
we RX(Q).

Assume now w e X(Q). Define 0 =1 — Aw and let u the measure defined by (6.2).

We first prove that ue NE(Q, X).

The measure o is in H~17(2, X) and non-negative, then o(B) = u(B) =0 for
every Borel set B with cap,(B, 2; X) =0. We have to prove

(6.10) u(B) = inf {u(U), U p-quasi-open, Bc U}

for every Borel set in Q with u(B) < + .
We define the measure u, by u,(B) Zﬂ(B N [w > i})
n
Observe that

[w> i])$n”10((w> i])SnPJ'de:(l—Aw, w).

We fix now a Borel set B with u(B) < + . From the definition of u we have
cap,(BN{w=0}, 2; X) =0.For»n =2 define B,=BN {% <wsS — ] and B, =
=BN{w>1}, then u(B) = > u(B,).

We have u,(2) < + for”every € > 0, moreover for every # there exists an open
set V, with B,cV,cQ and u(V,) <u,(B,) +2 "7e=u(B,) +2 "¢. Define U, =
=V,N L <!l Sincewis p-quasi-continuous we have that the set U, is p-quasi-open.

We have leo B,cU, and u(U,) <u(V,) <u(B,) +2 —ne. Define Uy=UN {w =
=0}, then U= U,>,U,. Since U, are p-quasi-open, U is p-quasi-open and we have
w(U) < u(B) + ¢. We recall that ¢ >0 is arbitrary, then (6.10) follows.

We now prove that w is the solution of (6.1).
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From (6.2) we have

jwpd/F prd//t= [wda=<1—Aw,w><+oo
Q2 {w>0} {w>0}

so welL[(Q). Let veH()l’p(Q,X)ﬂLf(Q), from (6.2) we have v=0 g.e. on
{w=0}. We have

(Aw, v) + J' |w|?~?wodu = (Aw, v) + j w? vdu=
Q {w>0}

=(Aw, v) + f vdaz(Aw,v)+Jvd0=fvdx

{w>0} Q

which proves (6.1). The uniqueness of u follows from Lemma 6.4. =

LemMa 6.4: Let ue NG(R2, X), let w be the solution of (6.1) and let B = 1. Then
the set {wP ¢, pe M(Q)} is dense in H*"(2, X) N LE(RQ).

Proor: We have weHy"? (2, X)NL*(Q)NL(RQ) (Remark 4.2) and f=1,
then the function wf¢ is in Hy?(2, X) NL*(2) N LI () for every ¢ e ().

To prove the result for every u € Hy (2, X) N L? (L) we have to find a sequence
¢, € () such that w’¢, converges to « both in Hy'?(2, X) and in L} (£2).

By an approximation by truncation we may assume zeL () and # =0 q.e.
in Q.

Let «, be the solution of (6.4). By comparison principles we have 0 < «, < Cw q.e.
in Q where C?~'=uu|f} (o). From the Lemma 6.2 u, converges to # both in
Hy?(2, X) and in L7 (). As consequence we may assume without loss of gener-
ality that there exists a constant C such that 0 <z < Cw q.e. in 2. We observe that
{(u—=Ce)* >0} c{w>¢e} and that (u—Ce)* converges as e—0 to « both in
Hy?(2,X) and in L7 (8), then we may assume also that {#>0}c {w>e¢} for

Y We recall that weH{?(2,X)NL*(R), then

u
some €¢>0 so — =
w? (wVe)

— eH)"(Q, X) N L"(Q).

w
There exists a sequence ¢,e M(L) bounded in L “ (L) which converges to

7= iﬂ in H}'?(2, X) and q.e. in 2, then also u-a.e. in Q.
w

We recall that we H?(Q2,X)NL~*(Q) and =1, then wf¢, converges to
wPz=uin H?(2, X). We have wel,(2)NLJ(Q) (Remark 4.2) and f =1, then
w? in L7 (Q)NLH(R).

We recall that ¢, are bounded and converge to z = ﬁ u-a.e., so we have that the

sequence w” ¢, converges to w”z = u strongly in L/ () (use the Dominated Conver-
gence Theorem). ®
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7. - Tue y“-convergence

Definition of the y 4-convergence.

In this section we introduce the notion of y* convergence in M (£2, X), which is
defined as the convergence of the solutions f the corresponding relaxed Dirichlet
problems.

DeriNiTION 7.1: Let u,, be a sequence in I (2, X) and ue I (2, X). We say
that w, y*-converges to u if for every feH 14(Q2,X) the solutions of the
problem

u, e H(Q, X)N L} (Q)

(7.1) (A, ) + [ |2, 0du, = (f, 0)
Q

Voe H) ?(2,X)NLE (Q)
converge weakly in HH " (2, X) as n— + ® to the solution u of the problem

ueHy " (2, X)NLL(Q)

(7.2) <Au,v)+f|u|p_2uvdﬂ=<f, v)
o

Ve Hy (2, X) N LK)

Let us emphasize the fact that the notion of y“-convergence depends on the oper-
ator A.

Although the definition depends also on £ and on the boundary conditions we
shall see in Theorems 7.11, 7.12 that the boundary condition on 9 does not play an
important role in this problem.

DeriNiTioN 7.2: The solutions of the problem (6.1) depends continuously on f uni-
formly with respect to u (Theorem 3.3). Then a sequence u,, y“-converges to u if the sol-
ution of (6.1) weakly converges in Hy (2, X) to the solution of (6.2) for every f in a
dense subset of H (2, X).

Let u, be a sequence of measures in I (2, X), let w, be the solution of the
problem

w,eHy"(2, X)NLL (Q)
(7.3) (Aw,, v) + J |w,|? ?w,vdu, = Jvdx
9 2

Yoe HI?(2, X)N L} (2)



and let w the solution of the problem

weH$? (2, X) NL7 ()

(7.4) (Aw, v) + f |w|? ™ ?wo du = fvdx
0

0
Voe Hy ?(2, X) NL(Q).

The following result characterize the y“-convergence of the u, to u in terms of the
weak convergence in Hj?(2, X) of w, to w.

TuEOREM 7.3: Let u, be a sequence of measures in SIZ;,)(Q, X), let w, (w) be the sol-
ution of the problem (7.3) ((7.4)). The following conditions are equivalent:

(a) w, weakly converges to w in H " (2, X)

(b) w, y*-converges to u

Proor: The fact (b) = (a) derives from the definition of y“-convergence taking
f=1.

Assume that (a) holds. Given fe L ®(Q) let «, be the solutions of problem (7.1).
From (3.3) we have that #, is bounded in Hy'? (£, X), then we may assume that z,
weakly converge in Hy'?(2, X) to some function «.

We have to prove that # is a solution of (7.2).

By the comparison principles we have |#,| < Cw, where C =||f || Pata As n— +
+ o we have |#| <Cw ge. in Q.

For ¢ > 0 ¥, will be the locally Lipschitz function defined by (5.3) and define v, =

=‘P€( it/ ) We have v,eHy'"(Q,X)NL*(Q). Fix f=((p—-1)V1 and
w &
P e D).

We recall that w,e H}'?(2, X) N L*(2) (Remark 4.2); we take v = w/ ¢ as test
function in (7.1) and v = v, wf ¢ as test function in (7.3). We obtain

(A, wf o)+ [ |, " 2,0l p du, = [, w] g d
Q Q

(Aw,, vewf9) + [, 172 w,v0f pdu, = [v,f ¢ dx
Q

Q

Then

(7.5  (Au,, wl¢)—(Aw,, vewfgb)-i-f |u,¢|p_2u,1wf¢)dﬂﬂ—J-wf”_lve(pdﬂ”:
el IS

= Jf, wqu)dx—J‘vgwf(pdx
9

Q
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From Lemmas 5.2 and 5.4 we obtain

(76) <AZ£,¢, wrf(p) - <Awﬂ» errf(p) + J‘ |uﬂ |p_2”ﬂw1§¢dﬂﬂ - wa+p_lve¢dﬂﬂ =
Q Q

= (Au,, wl¢)— (Aw,, v,wl @) + K
with

lim lim sup | R, | =0

=0 , 54w

We recall that w, is bounded in L * () then converges strongly in L?(£) to w. For
every ¢ >0 we have

lim (Jf, wf(i)dx—fvgwfqﬁdx):ff, wﬁ(pdx—jvswﬁqﬁdx
Q Q 9

n— + oo
Q
The above relation with (6.5) (6.6) gives

(Au, w ¢y — (Aw, v,wP P) = Jf, wh ¢ dx — ngwﬁ(pdx—k R*
o @

where

lim | &°| = 0.

Define 0 =1 — Aw; from Theorem 6.1 we have that o is a non-negative Radon mea-
sure in H 19(82, X). We have

(7.7) (Au,wﬁ¢>+fvgwﬂ¢d0=igtf, wP § dx + R
Q

We recall that |#| <Cw qe. in 2 (Remark 4.2), then from (5.3) we have v, <
< (CVe) 'qe. in Q. Recalling the definition of ¥, we obtain the convergence g.e. in

Q of v,w” to |u|? " 2uw P2+ We recall that o is a non-negative Radon measure in
H %92, X) and w? is bounded, so we have w’ ¢ eLl(Q) and

lin%) J'vsw’3¢d0= J' |u|? 2w PPV do.
g g

Then from (7.7) we have

(7.8) (Au, wﬁ¢)+f|u|p_2uw(ﬁ_p“)¢d0= ff, w? ¢ dx
0 0
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We recall that |#|<Cw qe. in Q (Remark 4.2) and weL](Q), so ueL[(R2) and

J|u|[”2uw(’37”“)¢)d0= J |u|”72uw(ﬂf‘““)¢dcx=J|u|[’72uwﬁ¢)d,u
Q {030} Q

then from (7.8)
(Au, wP ¢+ J |oe|? ™% urw? ¢ du = ff, w? ¢ dx
Q Q

We recall that the set {wf ¢, ¢ e D(Q)} is dense in Hi?(2, X) N L2 (), then u is
the solution of (7.2) and u, y“-converges to u (Remark 7.2). =

Remark 7.4: The uniqueness of the y“-limit is an easy consequence of Theorem
7.3 and Lemma 6.4.

Compactness and density results.

The following result proves the compactness of ) (2, X) with respect to the
y“-convergence

Tueorem 7.5: Every sequence in (R, X) contains a y*-convergent subse-
quence.

Proor: Let u, be a sequence in ) (£2, X) and let w, be the solutions of (7.3). By
Theorem 6.1 w, € K(Q) (where X(L) is defined at the beginning of section 6). We re-
call that X(L) is compact in the weak topology of Hy'? (2, X), then a subsequence of
w, converges weakly in H'? (2, X) to some function we X(2). By Theorem 6.1
there is a measure u € 37(2(9, X), such that w is solution of (7.4). The result follows
from Theorem 6.3. =

The case of Dirichlet problems in perforated domains is a particular case and it is
considered in the following theorem:

THEOREM 7.6: Let 2, be an arbitrary sequence of open subsets of Q. Then there
exists a subsequence, still denoted by Q,,, and a measure u e N(Q, X) such that for
every fe H V1(Q, X) the solution u, of the problem

u,e HH?(2,, X), Au,=fin @' (R,)
extended by 0 to Q, converges weakly in H)'* (2, X) to the solution u of problem (7.2).

Proor: The conclusion follows easily from Theorem 7.5 and Remark 3.4. m

Using Theorem 7.3 we prove now the following density result in 91) (2, X):
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Tueorem 7.7: Every measure ue (R, X) is the y*-limit of a sequence ., of
Radon measures in N2, X) such that the solution w, of (1.3) converges strongly in
Hi (2, X) to the solution of (7.4).

Proor: By (6.2) a measure u in ) (2, X) is a Radon measure if the solution w of
(7.4) is such that

(7.9) igfw >0 for every compact setKc Q2

We denote by w, e Hj? (2, X) the solution of the equation Aw, = 1, then w, satisfies
(7.9) [8].
Fix ue M)(R, X) and denote by we RK(2) the solution of (7.4). We define

1 . . . . .
w,=w\ —w,. It is easy to see that w, is a non-negative subsolution of the equation
n

Au=1,s0 w, e R(L). Moreover the function w, satisfies (7.9) and converges strongly
to w in H}*?(2, X). Then the measures u, associated with w,, which are Radon mea-
sures according to (7.9), y? converge to # by Theorem 7.3. ®

Strong convergence and correctors.

The following result deals with the convergence of solutions, momenta and en-
ergies, when also f varies.

Tueorem 7.8: Let u,, be a sequence of measures in Ny (2, X), which y*-converges
to the measure u e fﬂZg(Q, X) and let f, be a sequence in H™"1(Q, X), which con-
verges to f in H™19(Q, X). Define u, as the solution of the problem

u,eHH (2, X) N L} (2)

(7.10) <Auﬂ,v>+J|un|P72uﬂvdu”=(/ﬂ,v}
9

Voe HI (2, X)NLL(Q)

and u as the solution of problem (7.2). Then the sequence u, converges to u weakly in
H)"(Q, X) and strongly in Hy>' (2, X), 1 <r < p. Moreover | Xu, |" ~* Xu, converges
to | Xu|?~? Xu weakly in L1(2) and strongly in L*(2), 1 <s < gq. Finally the energies
| Xot, |P dx + |u,|"du, converge to |Xu|?dx + |u|”du weakly* in the sense of Radon
measures on 2, i.e.

(7.11) 111300( j|xuﬂ|f>¢dx+j|uﬂ|ﬁ¢dﬂﬂ)=( J|Xu|p¢dx+J|u|p¢du)
Q Q Q

Q

for every ¢ e Cy(L).
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Proor: Define v, as the solution of problem (7.1). From Theorem 3.3 the sequence
(u, — v,) converges to 0 strongly in H}'?(£2, X). Using Theorem 3.11 we easily obtain
that «, converges to « weakly in Hy'?(£2, X) and strongly in H} " (2, X), 1 <r<p.
Moreover |Xu,|”~? Xu, converges to |Xu|? > Xu weakly in L?(£2) and strongly in
L(R), 1<s5s<gq.

By (7.10) for every ¢p € M(2) we have

J|Xun|P¢dx+J|uﬂ|P¢dﬂn=
Q Q
=J|Xuﬂ|P_2XunX(uﬂ¢)dx+f|u,1|"¢d,u”—Jun|Xun|p_2Xu”X¢dx=
Q 9 Q
={f,, t, ) — fu”|Xu,,|p_2XuﬂX¢dx.
e

We recall that f, converges to f in H "9(Q, X), u, converges to u weakly in
Hy?(2, X) and |Xu,|"~?Xu, converges to |Xu|”~?Xu weakly in L9(R) then

n—> + ©

lim ( J'|Xuﬂ|p¢dx+j|un|P¢duﬂ) =
Q Q

=(/, M¢>—Ju|Xu|P*2XuX¢dx= (J|X%|p¢dx+“u|”¢dﬂ)
Q

Q Q

for every ¢p € () (in the second equality we use the fact that « is the solution of (7.2)).
An easy approximation give now (7.11) for all p e Cj(R2). =

We consider now a corrector result for the strong convergence in Hy'? (£, X).

TueoreM 7.9: Under the assumptions of Theorem 7.8 let P, be the correctors de-
fined by (4.4), where u, and w are the solutions of (1.3), (7.4). Then for every ¢ >0
there exists a function u® in Hy>? (2, X) N L= () N L2 () such that [l — Z/l”HleP(Q) X
and |u®| < C*w for same constant C*, such that the sequence R, defined by

(7.12) Xu,=Xu—+u*P,+ R}

satisfies

(7.13) lim supl|R; ”LP(Q) Se.
n— 4+

If fe L*(Q) we can take € =20 and u* = u.

Proor: If fe L ® () the result follows from Theorem 4.1. When fe H ~19(Q, X)
for every e >0, a > 0, K > 0 we can choose /* € L * () such that ||f = f*[5-1.40. x) <

< (Ke)*. If p=2we choosea =p —1and K = %C“”, where C is the constant appear-
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ing in (7.9). If 1 <p <2 we choose a =1, K=M A1 where
1 1222 p-2
M= EC_ 27 (IAll-1000, %) + €)1
and C is the constant appearing in (3.10).
We define v, as the solution of problem (7.1), v} as the solution of the analogous
problem relative to ¢ and #° the solution of problem (7.2) relative to f¢. For ¢ >0

fixed the sequence v, converges to «* weakly in Hj 7 (2, X).
From Theorem 3.3 we deduce that

(7.14) lle — 2 HHOI”’(Q, xS

N &

(7.14") o, = v g0, x) <

N | &

and from Remark 4.2 we have that #°e L () and #°< C*w g.e. in Q with C*=
=| fEHLﬂ?E o The result of Theorem 4.1 gives that the sequence Q, defined by
(7.15) Xvf=Xu®*+uP,+ Q;
converges to O strongly in L?(£) for ¢ >0 fixed and n— + .
From (7.12) (7.15) we obtain
Ri=0Q!+ (Xu®— Xu) + (Xv: — Xv,) + (Xu, — Xv,).

Then (7.13) follows from (7.14), (7.14’), (7.15) and from the fact that («, —v,) con-
verges to 0 strongly in Hj'?(£2, X) by Theorem 3.3. m

TueoreM 7.10: Under the assumptions of Theorem 7.8 if the solution w, of (7.3)

converges strongly in H}? (2, X) to the solution w of (1.4), then u, converges strongly
to u in HH? (R, X).

Proor: For every ¢ let «° be the function introduced in Theorem 7.9. The function
“_is bounded on {w >0}, if w, converges to w strongly in Hy*?(2, X); then for
w

>0 fixed #°P, converges strongly to 0 in L?(Q).
The result follows from (7.12) (7.13). =

Localization properties.

We end the section by proving the local character of the y“-convergence. The fol-
lowing result deals with local solutions in an open subset U of £ and we do not pay
any care to the boundary conditions on dU. For every open set Uc 2 the duality pair-
ing between H "“(U, X) and Hy'?(U, X) is denoted by (,.);. The operator
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> X} (| Xv|? 2 Xv) as operator from Hy** (U, X) to H ~"4(U, X), will still be denot-
i=1
ed by 4.

Tueorem 7.11: Let p,, be a sequence of measures in N(2, X), which y*-con-
verges to the measure u e M) (2, X). Let U be an open subset of 2, let f, be a sequence
in H™V9(U, X), which converges to f in H™19(U, X) and let u, be a sequence in
HY“(U, X), which converges weakly to some u in H"?(U, X).

Suppose that

u,elf (U, YU'ccU

(716) <Aun>U>U+J'lun|p_2uﬂvdlun:<fn>v>U
U

YveHy (U, X) N L, (U) with supp(v) ccU
uel[(U"), VU'ccU

(7.17) (Au,v)U+f|u|p_2uvdy=(f, vy
u

VYveHy? (U, X) NLL(U) with supp(v) cc U

We have that u, converges to u strongly in H""(U, X), 1 <r<p and |Xu,|"*Xu,
converges to | Xu|?~* Xu weakly in LY(U) and strongly in L*(U), 1 <s < q. Finally the
energy | Xu, | dx + |u, |’ du, converges to |Xu|"dx + |u|? du weakly* in the sense of
Radon measures.

Proor: Fix an open set U’ cc U and a function { € Lip(U; X) such that £ =0 on
U, =1 on U’, supp(Z)cU.
We use v = u, as test function in (7.16) and we obtain

[ 1o 17 du < s G = (Au, G,y <M
.

for a suitable constant M. By Theorem 3.11 the sequence «, converges to « weakly in
H'"7(U’, X) and strongly in H""(U', X), 1 <r < p; moreover |Xu, |’ ?Xu, con-
verges to | Xu|? ~? Xu weakly in LY(U") and strongly in L*(U"’), 1 <5 <g. We recall
that «, is bounded in H"#(U, X) and |Xu, |? ~?Xu, is bounded in L?(U); then, since
U’ cc U is arbitrary, we have that «, converges to # weakly in H?(U, X) and strongly
in Hy'"(U, X), 1 <r < p; moreover |Xu,|””?Xu, converges to |Xu|”~? Xu weakly in
L7(U) and strongly in L*(U), 1 <s<gq.

Define (p(x):exp(l—%) if ¢x)>0 and ¢(x)=0 if E(x)=0. Then

¢peLip(U; X)NHy (U, X), 20 in U, ¢ =1 in U’ and ¢” 'eLip(U; X) N
H{ (U, X), so ¢ tveHy (U, X) for every v in Hi?(U, X).
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Let us define z, = ¢u,, 7= ¢u and
V= |9pXu, + u, Xp|* " (pXu, + u,X¢) — |pXu, |’ ~* pXu,
Y= |¢pXu+ uXp|?*(pXu + uXp) — | pXu|? = pXu.
For every ve Hy (2, X) we have
| Xz, |? * Xz, Xv =9, Xo+ ¢" " | Xu,|" " *Xu, =
=y, Xo+ | Xu, |?”* Xu, X(¢p? ' 0) — 0| Xuu, |72 Xu, X(p? ™)
The function z, is the solution of the problem

2, e H(Q, X) N L, (Q)

(7.18) (Azn,v>9+f|zn|p*2znvdun=<gn,v)Q
Q

Voe HI*(Q, X) N LE ()
where g,e H "7(Q, X) is defined as

(a0 1o = [ Xode (s 0 [0l X X2 )
v ]

Define ge H (R, X) as

(g, v)o= Jvadx +{f, p? " o)y — J’Z)|XZ/£|P72XHX(¢P71) dx
U U
We prove now that g, converges to g in H 17(Q, X).

We have that |Xu,|?~?Xu, converges to |Xu|? =2 Xu weakly in L(U), then the
last two terms in g, converges strongly in H ~'7(£2, X) to the corresponding terms in
g. To conclude we have to prove that ¥, converges to 3 strongly in L7(U). We recall
that u, converges to u strongly in H''"(2, X), 1 <r<p, so we may assume that z,,
Xu, converge to #, Xu a.e. in U. Then 3, converges to ¥ a.e. in U.

It remain to prove that the sequence |y, |? is equi-integrable.

If p = 2 there exists a constant C such that

|91 < CO X, | 7072 4 o, |1072) a0, |7 = CU X, |02 |ty |7+ [, |7)
a.e. in U. We have supp(y,,) C supp(¢p); then for every measurable E c U the Holder in-
equality gives
p—2

(J|Xun|f’dx)”_l(5[ |un|de)’i’+ (Ej |uﬂ|wx)

U NnK NnK

[lw.7de<c
E

where K = supp(¢p). The sequence u, converges strongly in L?(K); then the sequence
|y, |7 is equi-integrable.
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If 1 <p<2 we have
|y, | < Cl | X$|" |u,|”

a.e. in U; then the sequence |1 ,|? is equi-integrable.

The Dominated Convergence Theorem gives that 1, converges to ¥ in
L7(U).

We recall that z, converges to z weakly in Hy'? (£, X), then by (7.18) and Theo-
rem 6.8 z is the solution of the problem

zeH?(Q, X)NLL(RQ)

(7.19) (Az, v)o + f |2]? 22w du = (g, v)q
Q

Voe HI (2, X) N LI (Q)
Since =1 in U’ we have #=z in U’ then #eLl(U'). Moreover if
veHP?(Q, X) N L} (Q) with supp(v) ccU’, then (g, v)o =(g, v)uy, then (7.17) fol-
lows from (7.19).
The convergence of the energies follows as in Theorem 7.8. ®

Tueorem 7.12: Let u,, be a sequence of measures in N(2, X), which y*-con-
verges to the measure ye M2, X) and let U an open subset of Q then u,, y*-con-
verges to the measure u

Proor: Fix fe H '7(L, X) and denote by u, the solution of the problem (7.1)
with Q replaced by U. There is a subsequence, still denoted by #,, that converges
weakly in Hy*? (U, X) to a function # € Hy*? (U, X). From Theorem 7.11 #e L2 (U")
for every open set U'cc U and « is a solution of (7.17).

To conclude the proof we have to prove that z € L} (U). We consider a sequence v,
such that v, converges strongly to « in Hy"? (U, X), supp(v,) cc U, |v,| < |«| qe. in
Uand uv, =0 q.e. in U. We recall that e L7 (U") for every open set U’ cc U; then
v,e L] (U). We may also assume that v, converges to # g.e. in U, then

j|u|”dﬂ=lim inf J |a|? =2 uv, du.
U TRy
Use v, as test function in (7.17) we obtain
[ |u|”’2uvnd,u ={(f,v,)u— (Au, v,y
U
Then
[ Ll du =,y = (Au, < + o0

U
so #e L} (U) and u is the solution of problem (7.2) with € replaced by U. From the
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uniqueness of the solution of problem (7.2) all the sequences #, converges to « and the
proof is complete. ®

CoroLLary 7.13: Let u, u,€ N(Q, X) and Q, a family of open subsets of 2,
which covers Q. Then u, y*-converges to the measure u in Q if and only if u, y“-con-
verges to u in Q; for every i.

Proor: The conclusion follows by Theorems 7.5, 7.12 and from the uniqueness of
the yAlimit. m

APPENDIX

Here we generalize to the subelliptic framework some results given for the eu-
clidean framework in [6] (see also [18]).

We consider a sequence of subelliptic Leray-Lions operators on H"?(2, X) of
the form

m

> XM ap(x, u, Xu))

i=1
where a;: 2 X R X R”— R satisfies a Carathéodory conditions, i.e. 4;(.,y, &) is mea-
surable for every y € R and € e R” and 4, (x,.,.) is continuous on R X RM for a.e. x e Q.
We also assume that

(A1) lap(x, 9, &) | Salx)+A(|y|? '+ |&lp—1)

(A2) (ar(x, 9, &) —ap(x, y, HNE—-E) >0

where a e L1(£2), % + 1 =1 We assume that there exists 2 : £ x R x R”—R such
q

that for a.e. xeQ
ap(x,.,.) = alx,.,.)

uniformly on compact sets of R X R”, then also « satisfies the condition (A.2). Let
u,e H"?(Q, X), f,e H "9(Q2, X) and u; Radon measures be sequences such
that

up—u weakly in H"?(Q, X)
fo—f weakly in H 17(Q, X)
tr—u weakly* in the space of Radon measures.

Finally we assume

> XPap(x, up, Xug) =fo+up in @' (Q)

i=1
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Le.

fak(x, up, Xup) Xvdx = (fp, up) + J’vdﬂk

) 9
The following result holds:

TueoreMm A.1: Let the above assumptions hold. Then Xu, converges to Xu strongly
in L7(Q), 1 <r<p.

Proor: We observe that since the sequence #, weakly converges to # in
H, ,(£2, X) then the sequence Xu, is bounded in L?(£2). Then to prove the result it is
enough to prove that every subsequence of Xu, contains a subsequence which con-
verges to Xu a.e. in 2. We denote

2= (ap(x, wp, Xup) — ap(x, u, Xu))(Xup — Xu)

To prove the result it is enough to prove that g, converges to 0 a.e. in Q.
We have for Kc Q compact and d >0, 0 <6 <1

fggdxz J gldx+ f gldx <
K KN {Jmp=u| <8} KN {Jug=u| =06}
0 0
Sm(Q)le( gkdx) +m(Kﬂ{|uk—u|26})l‘9( J’gkdx)
K {Jup =] <6} K

The above relation implies

0
kliT J'g;fdem(Q)“g lim ( gkdx).
K K {|up—u| <6}
Let ¥ of class C'(R) such that
p(y) =y for |y| <15 v(y) =0 for |y| =2; yp(y) <2

lp | <M

1/)(3:51/)(%)

Ps(y) =y for |y| <O; Ys(y) =0 for |y| =20; p,s(y) <20
[ Xyps| =M.

In the set {|u,—u| <06} we have

We denote

Then

&= (ap(x, wp, X)) — ap(x, u, Xu)) X(@ (e, — u)).
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Let pe D(R), p=10on K, 0<¢p <1 on 2, we denote U= supp(¢p). We have

(A1) [ adx= [ wod=
KN {|up—u| <o} KO {up—u| <0}
= f (ap (o, up, Xup) —ap(x, u, Xu)) X(P s (up — u)) ¢ dx =
Ko {|up—u| <o}
= J(ﬂk(x, up, Xug) —apx, u, Xu)) X(Ps(up — u)) ¢ dx +
2
+ f (ap(x, up, Xug) — ap(x, u, Xu)) X(p s (up, — u)) ¢pdx <
{0 < |up—ul <20}
< j(ﬂk(x, ey Xug) — ap(x, u, Xu)) X(p o (up — ) ¢ dx +
Q
+M f (|ap(x, up, Xog) | + |ap(x, o, Xu) | )| X | + | Xue|) dx
UNA{d=<|up—ul <20}

We estimate now the first term in the left hand side.

jw(x, wy, Xup) — ap(e, u, X)) X( 5 (s — 1)) p dx =

Q

= J.a;e(x, up, Xug) X s(up — u) @) dx —

0
— J-z/)(;(uk— u) ap(x, up, Xup) X(¢) dx — Jak(x, u, Xu) X(Ws(up —u)) ¢pdx =
2 Q

=(fotpp, Yolup—u) p)—
- JWa(ﬂk_ u) ap(x, up, Xup) X(¢) dx — fak(x, u, Xu) X(Ws(up —u)) ¢ dx.
el

Q
Let u,(U) < My, then
(e, Woluy —u) )| <26My
So
f(ﬂk(x, up, Xug) —ap(x, u, Xu)) X(Ps(up —u)) ¢pdx <

o
20My+ [{fo, Yolup —u) )| +

+ fak(x, u, Xu) X(Ws(uy—u)) pdx|.

Q

[0t =) ante, e, Xu) X(9) dx
Q
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We obtain

lim sup |(ag(x, 2y, Xup) — ap(x, u, Xu)) X s(up — u)) ¢ dx =20My

b— +

where we use the Dominated Convergence Theorem.
We now consider the second term in the right hand side of (A.1). Let
hy=M(|ap(x, up, Xup) | + |ap(x, u, Xu) |)(| Xegy | + | Xue|)
We have
[5ellri) < C

Moreover Ve > 0, there are S > 0 integer such that % <eand >0 with 2’y <e. We
have

s
> j @wsj@@sc
i=1
UN {27 < Jup—u| <279} U
. . c . . .
There at least one term in the left hand side less than 5> le there exists 7, such
that

C
| hds < < <e.
UN{2%7 Yy < up — u| <2%n}

Denote 6, =2%"'5, then 20, <255y < e and

bka’x<8.
UN{0p<|up—u| <20;}
Choose now in (A.1) 0 =7 <0, we obtain
lim sup f Ldx <2nMy+e< (My+1)e.

k= te K0 {|up—u| <n}

Then

lim sup J’ gldx <
b— + I

0
m(2)' | lim sup J | <
ko A [~ ] <)
< () O (My+1)°e°.
As ¢ >0 is arbitrary we obtain
. 0 —
kkr}rloo KJgk dx=0

so g, converges to 0 in L' (K). Since K is an arbitrary compact set in £ we have that g,
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converges to 0 in L;}.(£2), so every subsequence of g, contains a further subsequence

converging to 0 a.e. in . Then every subsequence of Xu, contains a further subse-
quence converging to Xz a.e. in £ and this implies that every subsequence of #; con-
tains a further subsequence converging to # in H"" (L, X), 1 <7< p and this con-
cludes the proof. m

(1]
[2]
(3]

(4]
5]
(6]
(7]
(8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

REFERENCES

M. Birori - U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homoge-
neous spaces, Rend. Acc. Naz. Lincei, Mat. e Appl., 6 (IX), 1 (1995), 33-44.

M. Brotr - U. Mosco, Sobolev inequalities on homogeneous spaces, Pot. An., 4(4) (1995),
311-324.

M. Broui - C. Picarp - N. Tcuou, Homogenization of the p-Laplacian associated with the
Heisenberg group, Mem. Di Mat. Rend. Acc. Naz. Sc. Detta dei XL, 22 (1998),
23-42.

M. Birour - N. Tcuou, Asymptotic bebaviour of relaxed Dirichlet problems involving a
Dirichlet form, ZAA, 16 (1997), 281-3009.

M. Birowr - N. Tcrou, Relaxed Dirichlet problem for the subelliptic p-Laplacian, Ann. Mat.
Pura e Appl,, CLXXIX (2001), 39-64.

L. Boccarpo - F. Murat, Almost everywhere convergence of the gradients of solutions to el-
liptic and parabolic equations, Nonlinear An., 19 (1992), 581-597.

G. Burrazzo - G. DaL Maso - U. Mosco, A derivation theorem for capacities with respect to
a radon measure, ]J. Func. An., 71 (1987), 263-278.

L. CapoGNA - D. DanieLLI - N. GAROFALO, An embedding theorem and the Harnack inequali-
ty for nonlinear subelliptic equations, Commun. in P.D.E., 18 (1993), 1765-1794.

L. CarogNa - D. DantLLr - N. Garoraro, Capacitary estimates and the local bebavior of solu-
tions of nonlinear subelliptic equations, Am. J. of Mathematics, 118 (1997), 1153-
1196.

V. M. Cuernikov - S. K. Vopor’vanov, Sobolev spaces and hypoelliptic equations 1, Siberian
Adv. Math., 6(3) (19969, 27-67; II Siberian Adv. Math., 6(4) (1996), 64-96.

G. DaL Maso, Gamma-convergence and u-capacities, Ann. Sc. Norm. Sup. Pisa Cl. Sci., 14
(1987), 423-464.

G. DaL Maso - V. Dk Cicco - L. Notarantonto - N. Tcrou, Limits of variational problems
for Dirichlet forms in varying domains, J. Math. Pures Appl., 77 (1998), 89-116.

G. DAL Maso - A. DerrancescHl, Limzits of nonlinear Dirichlet problems in varying domains,
Man. Math., 61 (1998), 251-278.

G. DAL Maso - A. Garront, New results on the asymptotic behavior of Dirichlet problems in
perforated domains, Math. Mod. Meth. Appl. Sci., 3 (1994), 373-407.

G. DaL Maso - U. Mosco, Wiener criteria and energy decay for relaxed Dirichlet problems,
Arch. Rat. Mech. Anal., 95 (1986), 345-387.

G. DaL Maso - U. Mosco, Wiener’s criterion and I-convergence, Appl. Math. Optim., 15
(1987), 15-63.

G. DaL Maso - F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in per-
forated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa, 24
(1997), 239-290.

G. DaL Maso - F. Murat, Almost everywhere convergence of the gradient of solutions to
nonlinear elliptic systems, Nonlinear An., 31(3/4) (1998), 405-412.



— 113 —

[19]1 G. DaL Maso - 1. V. SkrypNIK, Asymptotic bebavior of nonlinear Dirichlet problems
in varying domains, Ann. Mat. Pura e Appl., 174 (1998), 13-72.

[20] C. L. FrrrervaN - D. PHONG, Subelliptic eigenvalue problems, Harmonic Analysis,
Wadsworth, Chicago, 1981, 590-606.

[21] C. L. FerrErMAN - A. SaNciEz CALLE, Fundamental solution for second order subelliptic ope-
rators, Ann. of Math., 124 (1996), 247-272.

[22] B. Francir - G. Lu - R. L. WuEepeN, Wezghted Poincaré inequalities for Hormander vector
fields and local regularity for a class of degenerate elliptic equations, Pot. An., 4(4) (1995),
361-376.

[23] B. Franchr - R. Serapiont - F. Serra CassaNo, Approximation and imbeddings theorems for
weighted Sobolev spaces with Lipschitz continuous vector fields, Boll. UM.L, 11(7) (1997),
83-117.

[24] M. Fukusnima - Y. OstivMa - M. Takepa, Dirichlet forms and Markov processes, W. de
Gruyter & Co., Berlin-Heidelberg-New York, 1994,

[25]1 D. JerisoN, The Poincaré inequality for vector fields satisfying an Hérmander's condition,
Duke Math. J., 53 (1986), 502-523.

[26] D. JerisoN - A. Sancugz CALLE, Subelliptic second order differential operators, Harmonic
Analysis, Lec. Notes in Math. 1277, Springer Verlag, Berlin-Heidelberg-New York, 1987,
46-77.

[27]1 S. Mararont - N. Tcrou, Limits of relaxed Dirichlet problems involving a non-symmetric
Dirichlet form, Ann. Mat. Pura e Appl., CLXXIX (2001), 65-93.

[28] U. Mosco, Composite media and asymptotic Dirichlet forms, J. Func. An., 123 (1994),
368-421.

[29] A. Nacer - E. SteiN - S. WEINGER, Balls and metrics defined by vector fields 1: Basic proper-
ties, Acta Math., 155 (1985), 102-147.

[30] A. Sancuez CaLLg, Fundamental solutions and geometry of square of vector field, Inv. Math.,
78 (1984), 143-160.



Direttore responsabile: Prof. A. Barrio - Autorizz. Trib. di Roma n. 7269 dell’8-12-1959
«Monograf» - Via Collamarini, 5 - Bologna



