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ABSTRACT. — We consider the asymptotic behavior of the solutions of a relaxed Dirichlet
problem in a bounded open set V associated with the p-Lapacian relative to the vector fields
X4 (X1 , R , Xm ) satisfying an Hörmander condition and to measures me , that do not charge
sets of zero p-capacity (with respect to X). We prove that there exists a subsequence of me that
G-converges to a measure m of the same type and we give also correctors for the convergence of
the solutions in H 1, p

0 (V , X).

Comportamento asintotico di certi problemi di Dirichlet rilassati
non lineari e sottoellittici

SUNTO. — Si considera il comportamento asintotico delle soluzioni di un problema di Diri-
chlet rilassato relativo al p-Laplaciano associato con dei campi vettori X4 (X1 , R , Xm ) soddi-
sfacenti una condizione di Hörmander e a misure me , che non caricano insiemi di p-capacità
zero (rispetto a X). Si prova che esiste una sottosuccessione di me che G-converge ad una misura
m dello stesso tipo e si danno correttori relativi alla convergenza delle soluzioni in
H 1, p

0 (V , X).

1. - INTRODUCTION

In this paper we study the asymptotic behavior of solutions of some subellitic non-
linear relaxed Dirichlet problems of monotone type. In the case of the Laplace opera-
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tor the notion of relaxed Dirichlet problems is defined in [15] and their asymptotic
behavior is studied in terms of the G-convergence of the functional associated to the
relaxed Dirichlet problem, [16]. For the extension of those results to the case of uni-
formly elliptic symmetric operators we refer to [7] and [11]. For the case of uniformly
elliptic operators (also non symmetric) see [14]. The case of relaxed Dirichlet prob-
lems relative to a subdifferential of an integral convex functional defined on H 1, p

0 (V),
with 1 EpE1Q , is studied in [13]. The case relative to a partial differential opera-
tor on H 1, p

0 (V), with a degree p homogeneity, has been studied in [17] which is the
main reference of our paper, we also recall the more recent paper [19] where more
general nonlinear elliptic problems in varying domains are studied. Concerning the
general case of a symmetric Dirichlet form the notion of G-convergence has been in-
troduced and studied in [28]; the asymptotic behavior of relaxed Dirichlet problems
has been studied in the strongly local symmetric case in [4][12] and in [27] in some
strongly local non symmetric case. Here we will study the asymptotic behavior of re-
laxed Dirichlet problems in the case of subelliptic operators generated by Hörman-
der’s vector fields with a p-homogeneity in the fields and in particular of the subellip-
tic p-Laplacian. We use methods, which are an adaptation to the subelliptic frame-
work of the one in [17]; we prefer this type of methods since they allow us to exhibit
correctors. Finally we recall that the importance of the class of relaxed Dirichlet is that
this class contains the class of Dirichlet problems in varying domains and that results
concerning the asymptotic behavior of the Dirichlet problem for the Heisenberg
p-Laplacian in periodically varying domains have been given in [3].

We now precise our framework.

Let Xi4 !
j41

N

aij
¯

¯xj

, i41, R , m , be C Q vector fields on R N satisfying an Hörman-

der condition, i.e. the vector Xi and their commutators up to the order k span R N at

every point. e denote by X *i 42 !
j41

N
¯

¯xj

(aij . ) the formal adjoint of the vector field Xi ,

moreover we denote by X the gradient with respect to the vector fields Xi .
We recall that there is a distance d(x , y) connected with the vector fields, which

may be defined as

d(x , y) 4 sup ]f(x)2f(y); f�C 1
0 , NXfNG1((1.1)

[20, 21, 25, 26, 29, 30]. The distance d(x , y) defines a topology on R N which is equiva-
lent to the Euclidean one, [21, 29]; moreover for every compact set K%R N there exists
eD0 and a constant cK such that

Nx2yNGd(x , y) GcK Nx2yNe .

We denote by B(x , r) the ball relative to the distance d with center in x and radius
r . We fix now an open bounded set V%B , where B is a ball with center in V and
radius 4 diam (V).

We recall, [21, 25, 29, 30], that for the balls with center in B and radius rG R0 we
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have a duplication property

m(B(x , r) ) FC u r

R
vn

m(B(x , R) )(1.2)

rG
R

2
, RG R0 , where n4N1k , we define n as the «intrinsic dimension» (or an esti-

mate of) of our problem (where m denotes the Lebesgue measure).
We recall that in our case we have a Poincaré inequality on balls, i.e. there exists a

constant R0 such that for x�B , rG R0 and pF1

�
B(x , r)

Nu2ur Np dxGCr p �
B(x , r)

NXuNp dx(1.3)

where C is a constant independent of x and r and ur denotes the average of u on B(x , r)
and u�C 1 (V), [22, 25, 26]. Using Poincaré inequality (1.3) we can prove that also
Sobolev-Morrey-Campanato type inequality (relative to n) holds, [1, 2, 22].

We denote by H 1, p (V , X), 1 EpE1Q the completion of the functions in
C Q (V) such that (1.4) is finite for the norm

VuVH 1, p (V , X)4 u �
V

NuNp dx1�
V

NXuNp dxv1/p
(1.4)

REMARK 1.1: The space H 1, p (V , X) coincides with the space of all functions
u�L p (V) such that the gradient Xu (in distribution sense) belongs to L p (V),
[23].

The space H 1, p
0 (V , X) will be the completion of C0

Q (V) for the norm (1.4). We
observe that the inequality (1.3) and the Sobolev-Morrey-Campanato type inequalities
hold again for functions in H 1, p (B(x , r), X).

LEMMA 1.2: Let u�H 1, p
0 (B(x , r), X) then

�
B(x , r)

NuNp dxGCr p �
B(x , r)

NXuNp dx

where x�B , rG
R0

3
and C is a constant independent of x , r.

PROOF: We observe that the extension of u by 0 to B(x , 2 r) is in
H 1, p

0 (B(x , 2 r), X), then from (1.3) we have

�
B(x , 2 r)

Nu2u2 rN
p dxGC1 r p �

B(x , 2 r)

NXuNp dx .(1.5)
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From (1.5) we have

Nu2 r NpGC1
r p

m(]x�B(x , 2 r); u40()
�

B(x , r)

NXuNp dx .

We observe that from (1.2) there exists a ball B1%%B(x , 2 r)2B(x , r) such that
m(B1 ) FC2 m(B(x , r) ). Then

Nu2 rN
pG

C1

C2

r p

m(B(x , r) )
�

B(x , r)

NXuNp dx .

From (1.5) we obtain

�
B(x , r)

NuNp dxGC3 Nu2 rN
p m(B(x , 2 r)1C4 r p �

B(x , r)

NXuNp dxGC5 r p �
B(x , r)

NXuNp dx

and the result follows. r

A consequence of the Lemma 1.2. is that

VuVH 1, p
0 (V , X)4 u �

V

NXuNp dxv1/p

is a norm on H 1, p
0 (V , X) equivalent to the norm VuVH 1, p (V , X) . Finally we observe that

H 1, p (V , X) and H 1, p
0 (V , X) are uniformly convex Banach spaces, [4]. We denote by

H 21, q (V , X) the dual of the space H 1, p
0 (V , X), 1

p
1

1

q
41; again H 21, q (V , X) is a

reflexive Banach space. We have easily that H 1, p
0 (V , X) is dense and compactly em-

bedded in L p (V), [4], then L q (V) is dense in and compactly embedded
H 21, q (V , X).

LEMMA 1.3: Let u�H 1, p
0 (V , X)OL Q (V); there exists an uniformly bounded se-

quence un�C Q
0 (V) such that un converges to u in H 1, p

0 (V , X).

PROOF: By definition there exists a sequence vn in C Q
0 (V) such that vn converges to

u in H 1, p
0 (V , X).

Consider a non decreasing function bM�C Q (R), M4 sup
V

u , such that

bM (t) 4 t , NtNGM ; bM (t) 4M11, NtNF (M11)

bM (0) 40; b 8M (t) G1; b 8M (t) 41, NtNEM1
1

2
.

let un4bM (vn ).
The sequence un is uniformly bounded and in C Q

0 (V).
We have also unKu a.e. in V and NXunN4b 8M (vn )NXvnN , then NXunNGNXvnN
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and XunKXu a.e. in V . We end the proof by the dominated convergence
theorem. r

We give now the notion of p-capacity associated with the fields Xi .
Let O be a bounded open set and E%%O we define

capp (E , O ; X) 4 inf { �
V

NXvNp dx ; v�C Q
0 (O), vF1 in a neighborhood of E}

LEMMA 1.4: Let E%%O ; then capp (E , O ; X) 40 if and only if capp (E , O 8 ; X) 4

40, where O 8 is a bounded open set with E%%O 8.

PROOF: It is enough to prove the result in the case O%O 8 .
From the definition we have

capp (E , O 8 ; X) G capp (E , O ; X)

then capp (E , O ; X) 40 implies capp (E , O 8 ; X) 40.
Let now capp (E , O 8 ; X) 40. Let f be a function in C Q

0 (O) with f41 on a
neighborhood of E; there exists a sequence vn in C Q

0 (O 8 ) such that vn41 on a neigh-
borhood of E and s

O 8
NXvn Np dxK0.

Let wn4fvn ; we have wn�C Q
0 (O), wn41 on a neighborhood of E and Xwn4

4fXvn1vn Xf . Since vn converges to 0 in H 1, p
0 (O 8 , X) we have s

O
NXwn Np dxK0,

then capp (E , O ; X) 40. r

We say that a property holds p-q.e. in V if holds up to a set of null p-capacity
(with respect to V or to every bounded open set containing V).

We say that a function u is p-quasi-continuous in V if for every eD0 there exists a
set Ae%V with capp (Ae , V ; X) Ee such that the restriction of u to V2Ae is
continuous.

We say that a sequence un converges p-quasi-uniformly to u in V if for every eD0
there exists a set Ae%V with capp (Ae , V ; X) Ee such that un converges uniformly to
u in V2Ae .

It is easily proved that if vn�C0
Q (V) is a sequence converging in H 1, p

0 (V , X), then
vn (at least after extraction of subsequences) converges p-quasi-uniformly in V ,
[10](see also [24] for the case p42).

Denote by vA the q.e. limit of the vn and by v the limit of the vn in H 1, p
0 (V , X), then

vA is a p-quasi-continuous representative (q.e.) of v .
We observe that from Proposition 6.1. and Corollary 6.7. of [10] two p-quasi-con-

tinuous representatives are equal q.e.. In the following we identify v with its p-quasi-
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continuous representative and we consider v as defined up to set of null p-capacity
(with respect to V).

We observe that from the above results every function in H 1, p (V , X) has a p-
quasi-continuous representative and that the convergence in H 1, p (V , X) implies, at
least after extraction of subsequence the convergence q.e. in V .

Finally we say that a subset U of V is p-quasi-open if for every eD0 there exists a
subset V of V with capp (V , V ; X) Ee and UNV open.

Let O be an open bounded set and E%%O; we have

capp (E , O ; X) 4 inf { �
V

NXvNp dx ; v�H 1, p
0 (O , X), vF1 q.e. on E}

The infimum is really a minimum that is achieved by a function uE called the potential
of the set E with respect to O and we have uE41 q.e. on E . Moreover we observe that
uE can also be defined as the solution of the following variational inequality

uE�H 1, p
0 (O , X), uEF1 q.e. on E

�
O

NXuENp22 XuE X(v2uE ) dxF0

(v�H 1, p
0 (O , X), vF1 q.e. on E

We recall the following result:

LEMMA 1.5: Let E be a closed subset of V. If u�H 1, p
0 (V , X) and u40 q.e. on E,

then u�H 1, p
0 (V2E , X)

PROOF: We can assume without loss of generality uF0 and u�L Q (V).
We consider a sequence vnF0 in C0

Q (V) uniformly bounded and converging to
uF0 in H 1, p

0 (V , X). Up to extraction of subsequences we have that vn converges to u
p-quasi-uniformly and that we can choose vn such that

cappu{Nvn2uND
1

n
}, V ; XvE

1

n

Let En be the set EOmNvn2uND
1

n
n and let wn4 gvn2

1

n
h1

, we have again that wn

converges to u in H 1, p
0 (V , X). We observe that wn are Lipschitz functions and

supp (wn ) % (V2E)NEn moreover we have capp (En , V ; X) G
1

n
.

There exists a sequence un�H 1, p
0 (V , X)OC(V) with un41 on En , 0 GunG1 on

V and such that un converges to 0 in H 1, p
0 (V , X).

Consider the functions wAn4 (12un ) wn ; we have that the support of wAn is con-
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tained in V2E , so wn�H 1, p
0 (V2E , X). Moreover it is easily proved that wAn con-

verges to u in H 1, p
0 (V , X); then, since the supports of wAn are contained in V2E , wAn

converges to u in H 1, p
0 (V2E , X). r

REMARK 1.6: Let V and V 8 be bounded open sets with V%V 8 , let u be in
H 1, p

0 (V , X). We denote again by u the extension of u by 0 to V 8; then
u�H 1, p

0 (V 8 , X).
We shall frequently use the following Lemma about the approximation of the

characteristic function of a p-quasi-open set.
We recall that the characteristic function 1E of a set E in V is defined as 1E41 if

x�E and 1E40 if x�V2E .

LEMMA 1.7: For every p-quasi-open set U of V , there exists an increasing sequence
vn of functions in H 1, p

0 (V , X) which converges to 1U q.e. in V.

PROOF: Let U be p-quasi-open in V . Then there exists a sequence Uk of open sets

of V with capp (Uk , V ; X) G
1

k
such that the sets Ak4UNUk are open. Therefore for

every k there exists an increasing sequence of non-negative functions f k
h in

L Q (V)OH0
1, p (V , X) and with NXf k

hNGM k
h converging to 1Ak

pointwise q.e. in V .

Since capp (Uk , V ; X) G
1

k
for every k there exists uk�H 1, p

0 (V , X) such that ukF1

q.e. in Uk , ukF0 in V and s
V

NXukNp dxG
1

k
. This implies that a subsequence of uk

converges to 0 q.e.. Moreover as f k
hG1Ak

, we have (f k
h2uk )1G1U q.e.. Let us

define

vh4 max
1 GkGh

(f k
h2uk )1 , c4 sup

h
vh .

Then vh�H 1, p
0 (V , X), vhF0 q.e. in V , moreover the sequence vh is increasing and

cG1U q.e. in V . For every hFk we have vhF (f k
h2uk ). As U%Ak we get cF (12

2uk ) q.e. in U .
Taking the limit as kK1Q along a suitable subsequence We obtain cF1 q.e. in

U . This shows c41U which concludes the proof. r

2. - THE SPACE OF MEASURES MP
0 (V , X) AND THE OPERATOR

MEASURES. A Radon measure on V is a continuous linear functional on C0 (V) the
space of all continuous functions with compact support in V , V as in section 1. It is
well known that for every Radon measure l on V there is a countably additive set
function m , defined on the family of all relatively compact Borel subsets of V , such
that l(u) 4 s

V
u dm for every u�C0 (V). In the following we identify l with the set

function m .
A non-negative Borel measure will be a non-negative countably additive set func-
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tion defined on the Borel s-field of V with values in [0 , 1Q]. It is well known that
every non-negative Borel measure which is finite on compact subsets of V is a non-
negative Radon measure (Hamos, Measure Theory, section 13). Let m be a non-nega-
tive Borel measure, we denote by L r

m (V), 1 G rG1Q , the usual Lebesgue space with
respect to the measure m .

We denote by Mp
0(V , X) the sets of all non-negative Borel measures such that

(i) m(B) 40 for every Borel set B%V with capp (B , V ; X) 40

(ii) m(B) 4 inf ]m(U), U quasi-open, B%U(.

Property (ii) is a weak regularity property of the measure m . Since any quasi-open
set differs from a Borel set by a set of p-capacity 0 , every quasi-open set is m-measur-
able for every non-negative Borel measure m which satisfies (i). Therefore m(U) is well
defined when U is quasi-open and condition (ii) make sense.

REMARK 2.1: The condition (ii) appears in [17] but does not appear in some previ-
ous definitions but will be essential in the proof of the uniqueness of the gA-limit (Re-
mark 7.4).

For every open set U%V we consider the Borel measure mU defined as

mU (B) 40 if capp (B0U , V ; X) 40, mU (B) 41Q otherwise .(2.1)

As U is open it is easy to see that this measure belongs to Mp
0 (V , X). The measure mU

will be useful in the study of the asymptotic behavior of sequences of Dirichlet pro-
blems in varying domains (see Remark 3.4 and Theorem 7.6).

If m� Mp
0 (V , X) the space H 1, p

0 (V , X)OL p
m (V) is well defined since the func-

tions in H 1, p
0 (V , X) are defined m-almost everywhere in V .

It is easy to see that H 1, p
0 (V , X)OL p

m (V) is a Banach space for the norm
VuV

p
H 1, p

0 (V , X)OL p
m (V)4VuV

p
H 1, p

0 (V , X)1VuV

p
L p

m (V) .
Finally we say that a Radon measure s belongs to H 21, q (V , X) if there exists

f�H 21, q (V , X) such that

a f , fb 4�
V

f ds (f�C0
Q (V)(2.2)

where a., .b denotes the pairing between H 21, q (V , X) and H 1, p
0 (V , X), 1

p
1

1

q
41.

We identify f and s . We observe that for every non-negative f�H 21, q (V , X) there
exists a non-negative Radon measure s such that (2.2) holds. Moreover every non-
negative Radon measure in H 21, q (V , X) belongs to Mp

0 (V , X).

The Monotone operator.

We will describe here the more generals operators to which our results apply; the

proofs will be developed in the case of the subelliptic p-Laplace operator and are al-
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most the same in the general case. Let Xi4 !
j41

N

aij
¯

¯xj

, i41, R , m , be vector fields on

R N with C Q coefficients. We assume that the vector fields satisfy an Hörmander con-
dition (i.e. the vector fields and their commutators up to the order k span R N at every
point).

We denote X x
i 42 !

j41

N g ¯

¯xj

aij .h the formal adjoint of the field Xi . We denote by X

the vector (X1 , R , Xm ).
Let a : V3R mKR m be a Borel function satisfying the following homogeneity

condition

a(x , tj) 4NtNp22 t a(x , j)(2.3)

for every x�V , t�R , j�R m , 1 EpE1Q , with the convention NtNp22 t40 for t4

40 and 1 EpE2.
We list now some algebraic inequalities that we assume and that are different in

the two cases 1 EpE2 and pF2.
In the case pF2 we assume that there exists constants C0 , C1D0 such that

(a(x , j 1 )2a(x , j 2 ), j 12j 2 ) FC0 Nj 12j 2 Np(2.4)

Na(x , j 1 )2a(x , j 2 )NGC1 (Nj 1N1Nj 2N)p22 Nj 12j 2N(2.5)

for every x�V and for every j1 , j2�R m , where (., .) denotes the scalar product in R m .
In the case 1 EpE2 we assume that here exists constants C0 , C1D0 such

that

(a(x , j 1 )2a(x , j 2 ), j 12j 2 ) FC0 (Nj 1N1Nj 2N)p22 Nj 12j 2N2(2.6)

Na(x , j 1 )2a(x , j 2 )NGC1 Nj 12j 2Np21(2.7)

for every x�V and for every j 1 , j 2�R m , j 1cj 2 .
We observe that (2.3) implies that

a(x , 2j) 42a(x , j)(2.8)

for every x�V and for every j�R m , hence

a(x , 0 ) 40(2.9)

for every x�V while (2.4)-(2.7) and (2.9) imply that

(a(x , j), j) FC0 NjNp(2.10)

Na(x , j)NGC1 NjNp21(2.11)

for every x�V and for every j�R m .
We now define A : H 1, p (V , X) KH 21, q (V , X), 1

p
1

1

q
41, by Au4
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4 !
ij41

m

X x
j (a(x , Xu) ), i.e.

aAu , vb 4�
V

(a(x , Xu), Xv) dx

for every u�H 1, p (V , X), v�H 1, p
0 (V , X). This operator is strongly monotone on

H 1, p
0 (V , X).

The model case is the subelliptic p-Laplacian !
i

X x
i (NXuNp22 Xu), which corre-

sponds to the choice a(x , j) 4NjNp22 j . We observe that in the case pF2 the condi-
tions (2.4) (2.5) are satisfied with C04222p , C14 (p21) and for 1 EpE2 the condi-
tions (2.6) (2.7) are satisfied with C041, C14222p . In the following we develop the
proofs mainly in the case of subelliptic p-Laplacian, but easy modifications gives also
the result under the above assumptions.

We say that u is a superharmonic (subharmonic) relative to the operator A in V if
u�H 1, p (V , X) and

aAu , vb F (G)0

(v�H 1, p
0 (V , X), vF0.

We recall here some properties of sub- or superharmonics:

PROPOSITION 2.2: Let u , v�H 1, p (V , X) be two superharmonic relative to A in V ;
then min (u , v) is again a superharmonic relative to A in V , [10].

PROPOSITION 2.3: Let v be a nonnegative subharmonic relative to A in the ball
B%%V , then

sup
lB

vGClu 1

m(B)
�

B

v dxv
for l� (0 , 1 ) fixed and Cl constant dependent on l , [8, 10].

PROPOSITION 2.4: Let v be a nonnegative superharmonic relative to A in V. There is

a positive number r0 such that for 0 E rE r0 , 0 E sEx(p21) (x4
n

p2n
if nEp ,

where n is the intrinsic dimension relative to V , xD1 if pFn) , then

u 1

m(B)
�

B

v s dxv1/s

GC inf
B

v

where B4B(x0 , r) is such that 4B%V , [8, 10].
We say that u�H 1, p (V , X) is a local solution of

Au40(2.13)

in V if u is both a super- and subsolution relative to A in V .
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PROPOSITION 2.5: Let u be a positive local solution of (2.13) in B4B(x0 , r),
0 E rE r0 , with 4B%V , then

sup
B

uGC inf
B

u

where C does not depend on x0 , r [8, 10].

To end this section we give the following result which is an easy corollary of
Proposition 2.4.

Let w0 be the solution of the problem

w0�H 1, p
0 (V , X); aAw0 , vb 4�

V

v dx , (v�H 1, p
0 (V , X)(2.14)

COROLLARY 2.6: We have w0D0 q.e. in V

PROOF: We have that w0 is a non-negative supersolution in V relative to A .
Assume that for a ball B4B(x0 , r), 0 E rE r0 , 4B%V , we have inf

B
w040; then

inf
B

(w01e) 4e .

Since w01e is a nonnegative supersolution in V relative to A from Proposition 2.4
we have

u 1

m(B)
�

B

w0
s dxv1/s

GCe

where C does not depend on e .
Letting eK0 we obtain

�
B

w0
s dx40.

Since w0 is non-negative in B we have w040 a.e. and then q.e. in B .
We have

Aw040 in D8 (B)(2.15)

and (2.15) contradicts (2.14). Then w0D0 q.e. in V . (From [8, 10] we also have that
w0�C(V) then w0D0 in V). r

Let uk�H 1, p (V , X) be the solutions of the problem

aAu , vb 4 a fk , vb1�
V

v dm k

where fk�H 21, q (V , X), 1

p
1

1

q
41, and m k are Radon measures on V .
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Assume that

ukKu weakly in H 1, p (V , X)(2.16)

fkK f in H 21, q (V , X)(2.17)

m kKm weakly* in the Radon measures on V

COROLLARY 2.6: Assume that (2.16)-(2.18) are satisfied. Then Xuk converges to Xu
strongly in L r (V), 1 G rEp.

We have also that ukKu in H 1, r (V , X) and that (at least after extraction of subse-
quences) a(x , Xuk ) converges strongly in L s (V) to a(x , Xu), 1 G sEq , moreover
XukKXu and a(x , Xuk ) Ka(x , Xu) a.e. in V.

PROOF: The proof of the first part of the Theorem is given in the Appendix at the
end of the paper.

For the second part of the theorem we recall that from embedding theorems we
have ukKu in L p (V) then ukKu in L r (V), since V is bounded; so ukKu in
H 1, r (V , X).

At least after extraction of subsequences we have XukKXu a.e. in V and
s

V
Na(x , Xuk )Nq dxGC , so we have a(x , Xuk ) Ka(x , Xu) a.e. in V and in

L s (V). r

3. - RELAXED DIRICHLET PROBLEMS

Estimates for the solutions.

Let m� M0
p (V , X), f�H 21, q (V , X), 1

p
1

1

q
41, we consider the following re-

laxed Dirichlet problem

u�H 1, p
0 (V , X)OL p

m (V)

aAu , vb1�
V

NuNp22 uv dm4 a f , vb(3.1)

(v�H 1, p
0 (V , X)OL p

m (V)

More generally for c�H 1, p (V , X)OL p
m (V) we consider a problem of type (3.1) with

non-homogeneous boundary conditions

u�H 1, p (V , X)OL p
m (V), (u2c) �H 1, p

0 (V , X)

aAu , vb1�
V

NuNp22 uv dm4 a f , vb(3.2)

(v�H 1, p
0 (V , X)OL p

m (V)
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THEOREM 3.1: Let m� M0
p (V , X), c�H 1, p (V , X)OL p

m (V). The problem (3.2)
has a unique solution. Moreover the solution of (3.2) satisfies the estimate

(3.3) �
V

NXuNp dx1�
V

NuNp dmGC uV f V

q
H 21, q (V , X)1�

V

NXcNp dx1�
V

NcNp dmv
where C is a structural constant.

PROOF: Let B : H 1, p
0 (V , X)OL p

m (V) K (H 1, p
0 (V , X)OL p

m (V) )8 be the operator
defined as

aBz , vb 4 aA(z1c), vb1�
V

Nz1cNp22 (z1c) dm

where v�H 1, p
0 (V , X)OL p

m (V). The operator B is monotone, continuous and coer-
cive; then there exists a solution z�H 1, p (V , X)OL p

m (V) of the problem Bz4 f and
u4z1c is a solution of (3.2).

We take v4 (u2c) as test function in (3.2); we obtain

aAu , u2cb1�
V

NuNp22 u(u2c) dmG a f , u2cb

then

C0�
V

NXuNp dx1�
V

NuNp dmG

GV f V

q
H 21, q (V , X) Vu2cV

q
H 1, p

0 (V , X)1 u �
V

NXuNp dxv1/qu �
V

NXcNp dxv1/p

1

1C1u �
V

NuNp dmv1/qu �
V

NcNp dmv1/p

which implies (3.3) by Young’s inequality. r

The following lemma will be used to prove the continuous dependence on f of the sol-
ution of (3.2).

THEOREM 3.2: Let m� Mp
0 (V , X); let u1 , u2�H 1, p (V , X)OL p

m (V), let
f�H 1, p (V , X)OL Q (V), fF0 q.e. in V.

If 2 GpE1Q

(3.4) C0�
V

NXu12Xu2Np f dx1222p�
V

Nu12u2Np f dmG

G�
V

(NXu1Np22 Xu12NXu2Np22 Xu2 ) f dx1�
V

(Nu1Np22 u12Nu2Np22 u2 ) f dm .
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If 1 EpE2

(3.5) C0u �
V

NXu12Xu2Np f dxv2/p

1G

GK1 (u1 , u2 , f)�
V

(NXu1Np22 Xu12NXu2Np22 Xu2 )(Xu12Xu2 ) f dx

(3.58) �
V

(Nu12u2Np f dm)2/pG

GK2 (u1 , u2 , f)�
V

(Nu1Np22 u12Nu2Np22 )(u12u2 ) f dm .

where

K1 (u1 , u2 , f) 42 u �
V

NXu1Np f dx1�
V

NXu2Np f dxv
22p

p

(3.6)

K2 (u1 , u2 , f) 42 u �
V

Nu1Np f dm1�
V

Nu2Np f dmv(22p) /p

PROOF: The proof is the same as in [17] and is founded on inequalities (2.4)-(2.7)
and on the Hölder inequality. r

The following result shows that the continuous dependence on f of the solutions of
(3.2) is uniform with respect to m .

THEOREM 3.3: Let m� Mp
0 (V , X); let f1 , f2�H 21, q (V , X), 1

p
1

1

q
41, let u1 , u2

be the solutions of (3.2) corresponding to f4 f1 and f4 f2.
If pF2, then

Vu12u2 V

p
H 1, p

0 (V , X)1Vu12u2 V

p
L p

m (V)GCV f12 f2 V

q
H 21, q (V , X)(3.7)

If 1 EpE2, then

Vu12u2 V

p
H 1, p

0 (V , X)1Vu12u2 V

p
L p

m (V)GC G( f1 , f2 , c)V f12 f2 V

2
H 21, q (V , X)(3.8)

where C is a structural constant and

G( f1 , f2 , c) 4 uV f1 V

q
H 21, q (V , X)1V f2 V

q
H 21, q (V , X)1�

V

NXcNp dx1�
V

NcNp dmv
2(22p)

p
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PROOF: Let pF2; we use v4u12u2 as test function in (3.2) and we obtain

(3.9) aAu12Au2 , u12u2 b1�
V

(Nu1Np22 u12Nu2Np22 u2 )(u12u2 ) dm4

4 a f12 f2 , u12u2 b GV f12 f2 VH 21, q (V , X) Vu12u2 VH 1, p
0 (V , X)

If pF2 the result follows from (2.4) and (2.5) by a Young inequality.
Let us consider the case 1 EpE2. From (3.5) and (3.9) we obtain by (2.6), (2.7)

and Theorem 3.2.

(3.10) C0 Vu12u2 V

2
H 1, p

0 (V , X)1Vu12u2 V

p
L 2

m (V)G

GK(u1 , u2 , 1 )V f12 f2 VH 21, q (V , X) Vu12u2 VH 1, p
0 (V , X)

where the constant K(u1 , u2 , 1 ) is given by the Theorem 3.2.
By (3.3) we have K(u1 , u2 , 1 )2GCG( f1 , f2 , c), so (3.8) follows from

(3.10). r

A connection between classical Dirichlet problems on open subsets of V and re-
laxed Dirichlet problems of type (3.1) is given by the following remark.

REMARK 3.4: If U is an open subset of V and v is a function in H 1, p
0 (V , X) such

that v40 q.e. in V0U then the restriction of v to U belongs to H 1, p
0 (U , X), [23].

Conversely if we extend a function v�H 1, p
0 (U , X) by setting v40 in V0U , then v

is p-quasi-continuous and belongs to H 1, p
0 (V , X). Therefore if m is the measure de-

fined by

m(B) 40 if capp (B0U , V , X) 40; m(B) 41Q otherwise

where B is a Borel set, then u�H 1, p
0 (V , X) is a solution of the problem (3.1) if and

only if the restriction of u to U is the solution of the classical boundary value
problem

u�H 1, p
0 (U , X), Au4 f in D8 (U)

and in addition u40 q.e. on V0U .

Estimates for the solutions.

The solutions of relaxed Dirichlet problems satisfy the comparison principles
given in the following propositions.
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PROPOSITION 3.5: Let m� Mp
0 (V , X); let f�H 21, q (V , X), 1

p
1

1

q
41, and let u

be the solution of (3.1). If fF0 in V then uF0 q.e. in V

PROOF: Let v4uR0 then v�H 1, p
0 (V , X)OL p

m (V).
Using v as test function in (3.1) we obtain VvVH 1, p

0 (V , X)40, then v40 q.e. in
V . r

PROPOSITION 3.6: Let m 1 , m 2� Mp
0 (V , X); let f1 , f2�H 21, q (V , X), 1

p
1

1

q
41,

and let u1 , u2 be the solution of (3.1) corresponding to f1 , m 1 and f2 , m 2 . Assume 0 G

G f1G f2 and m 2Gm 1 in V. Then u1Gu2 q.e. in V

PROOF: By Proposition 3.5. u2F0 q.e. in V .
Let v4 (u12u2 )1 . Since 0 GvGu1

1 and m 2Gm 1 we have v�L p
m1

(V) %L p
m2

(V).
Then we can use v as test function in both the relaxed Dirichlet problems and we
obtain

aAu12Au2 , vb1�
V

(Nu1Np22 u12Nu2Np22 u2 ) v dm4 a f12 f2 , vb G0

which implies

�
u1Du2

(NXu1Np22 Xu12NXu2Np22 Xu2 )(Xu12Xu2 ) dxG0

Then V(u12u2 )1
VH 1, p

0 (V , X)40 q.e. in V , so u1Gu2 q.e. in V . r

PROPOSITION 3.7: Let m 1 , m 2� Mp
0 (V , X); let f1 , f2�H 21, q (V , X), 1

p
1

1

q
41,

be Radon measures and let u1 , u2 be the solution of (3.1) corresponding to f1 , m 1 and
f2 , m 2 . If Nf1NG f2 and m 2Gm 1 , then Nu1NGu2 .

PROOF: By Proposition 3.6 we have u1Gu2 q.e. in V . We observe that the function
2u1 is the solution of (3.1) corresponding to 2f1 and m 1 ; so by Proposition 3.6 we ob-
tain also 2u1Gu2 q.e. in V .

Estimates involving auxiliary Radon measures.

We consider now some further estimates for the gradient of the solution u of (3.2).

We begin by proving that if f�L q (V), 1

p
1

1

q
41, then the solutions of (3.2) are ac-

tually solutions in distribution sense of a new equation involving a Radon measure l ,
which depends on u , m , f , and whose variation on compact sets can be estimated in
terms of V f VL q (V) and VXuVL p (V) .
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PROPOSITION 3.8: Let m� Mp
0 (V , X); let f�L q (V), 1

p
1

1

q
41, and let u be the

solution of (3.2) for some c�H 1, p (V , X)OL p
m (V). Let l , l 1 , l 2 be elements of

H 21, q (V , X) defined by Au1l4 f , Au 11l 14 f 1 , A(2u 2 )2l 242f 2. Then
l , l 1 , l 2 are Radon measures, l 1 , l 2F0, l4l 12l 2 , NlNGl 11l 2 . Moreover for
every compact set K we have

Nl(K)NG capp (K , V ; X)1/p (2c1 VXuV

p21
L p (V)1cp , V V f VL q (V) )(3.11)

where c1 and cp , V are structural constants.

PROOF: Let v�H 1, p
0 (V , X), vF0 q.e. in V and let vn4 g 1

n
vhRu 1 . Then vnF0

q.e., vn�H 1, p
0 (V , X)OL p

m (V). As NuNp22 uvnF0 q.e. in V and fvnG f 1 vn a.e. in V ,
by taking vn as test function in (3.2) we obtain

aAu , vn b G�
V

f 1 vn dxG
1

n
�

V

f 1 v dx .

Since Xvn4
1

n
Xv a.e. in ]vEnu 1( and Xvn4Xu 1 a.e. in ]vFnu 1( we obtain

1

n
�

]vEnu 1(

NXuNp22 XuXv dx1 �
]vFnu 1(

NXu 1Np dxG
1

n
�

V

f 1 v dx

so

�
]vEnu 1(

NXuNp22 XuXv dxG�
V

f 1 v dx .

Taking the limit as nK1Q we obtain

�
]u 1D0(

NXuNp22 XuXv dxG�
V

f 1 v dx .

Then

�
V

NXuNp22 XuXv dxG�
V

f 1 v dx

for every v�H 1, p
0 (V , X), vF0 q.e. in V . This implies l 1F0 so l 1 is a Radon

measure.
In a similar way we deduce that also l 2 is a non-negative Radon measure, hence

l4l 12l 2 is also a Radon measure and NlNGl 11l 2 .
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We have

Vl 1 VH 21, q
0 (V , X)Gc1 VXu 1

VL p (V)1cp , V V f 1
VL q (V) .

The same estimate holds also for l 2 . To prove (3.11) for every eD0 we fix a function z
in H 1, p

0 (V , X) such that zF0 q.e. in V , zF1 q.e. in a neighborhood of K and
VzVp

H 1, p
0 (V , X)G capp (K , V ; X)1e . Then

NlN(K) G�
V

z dl 11�
V

z dl 2GVzVp
H 1, p

0 (V , X) (Vl 1 VH 21, q
0 (V , X)1Vl 2 VH 21, q

0 (V , X) ) G

G2(capp (K , V ; X)1e)1/p (c1 VXuV

p21
L p (V)1cp , V V f VL q (V) )

Taking the limit as eK0 we obtain (3.11). l

REMARK 3.9: Under the assumptions of Proposition 3.8, if fF0 then u4u 1 and
l4l 1 . Therefore in this case lF0, hence AuG f in V in the sense of
H 21, q (V , X).

The following theorem together with Proposition 3.8 will be used in the proof of
the main result (Theorem 3.11) of this section.

THEOREM 3.10: Let gn be a sequence in H 21, q (V , X), 1

p
1

1

q
41, let l n be a se-

quence of Radon measures and for every n let un�H 1, p
0 (V , X) be a solution of the

equation

Aun4gn1l n

Assume that un converges weakly in H 1, p
0 (V , X) to some function u , gn converges

strongly in H 21, q (V , X) and l n is bounded in the space of Radon measures (i.e. for
every compact set K%V there exists a constant CK such that Nl n (K)NGCK ).

Then un converges strongly in H 21, r (V , X), 1 E rEp , NXunNp22 Xun converges to
NXuNp22 Xu weakly in L q (V) and strongly in L s (V), 1 E sEq.

PROOF: The sequence un converges to u strongly in L r (V). Moreover in the Ap-
pendix we prove that Xun converges to Xu weakly in L p (V) and strongly in L r (V),
then un converges to u in H 1, r (V , X). Let us fix a subsequence still denoted by un

such that un converges to u and Xun converges to Xu pointwise a.e., then NXunNp22 Xun

converges to NXuNp22 Xu pointwise a.e.. The sequence NXunNp22 Xun is bounded in
L q (V). By Vitali’s convergence theorem NXunNp22 Xun converges to NXuNp22 Xu
strongly in L s (V), then weakly in L q (V). r

As a consequence of Proposition 3.8 and Theorem 3.10 we have the following
result:

THEOREM 3.11: Let gn be a sequence in H 21, q (V , X), 1

p
1

1

q
41, which converges
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to some g in H 21, q (V , X), let m n be a sequence in Mp
0 (V , X) and let c n be a sequence

bounded in H 1, p (V , X)OL p
mn

(V) such that sNc nNdm nGM . Assume that the solution
un of (3.2) corresponding to m4m n , f4gn , c4c n converges weakly in H 1, p (V , X) to
some function u. Then un converges to u in H 1, r (V , X), 1 E rEp , and NXunNp22 Xun

converges to NXuNp22 Xu weakly in L q (V) and strongly in L s (V), 1 E sEq.

PROOF: For the proof of the result we follow the proof of the analogous result in
elliptic framework given in [17].

Given e� (0 , 1 ) we fix a function h�L q (V) such that Vh2gVH 21, q (V , X) Ge
and we consider the solution zn of (3.2) corresponding to m4m n , f4h , c4c n . By
Theorem 3.3 we have

Vzn2un VH 1, p
0 (V , X)GCVh2gn V

a
H 21, q (V , X)(3.12)

where a4
1

p21
if pF2 and a41 if 1 EpE2, while C is a constant depending on

structural constants M, and sup
n

Vgn VH 21, q (V , X) . This implies that zn is bounded in

H 1, p (V , X). Therefore, at least after extraction of subsequences, we may assume that
zn converges weakly in H 1, p (V , X) to some function z and (3.12) gives

Vz2uVH 1, p
0 (V , X)GCVh2gV

a
H 21, q (V , X)GCea .(3.13)

By Proposition 3.8 there exists a sequence l n of Radon measures in H 21, q (V , X) such
that Azn1l n4h in V .

By (3.11) for every compact set K%V the sequence (Nl nN(K) ) is bounded. There-
fore Theorem 3.10 implies that zn converges strongly to z in H 1, r (V , X). Using
Poincaré’s and Hölder’s inequality we obtain

Vun2uVH 1, r (V , X)GCp , V (Vun2zn VH 1, p
0 (V , X)1Vu2zVH 1, p

0 (V , X) )1Vzn2zVH 1, r (V , X)

where Cp , V ia constant depending on structural constants and V . The above inequali-
ty together with (3.12)and (3.13) gives

lim sup
nK1Q

Vun2uVH 1, r (V , X)G2Cp , v ea .

As e is arbitrary we have that un converges to u in H 1, r (V , X); then we can easily
prove that NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (V) and strongly in
L s (V). r

4. - CORRECTOR RESULT

Definition of the corrector.

Let m n be a sequence in Mp
0 (V , X) and let f�L Q (V) Let us consider un as the so-

lution of the problem (3.1) with m4m n . By the estimate (3.3) un is bounded in
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H 1, p
0 (V , X), thus we may assume that un converges weakly in H 1, p

0 (V , X) to some
function u . By Theorem 3.11 Xun converges to Xu in H 1, r (V , X), 1 E rEp . We may
inprove the convergence of Xun and obtain the convergence in L p (V) by means of a
corrector; we define a Borel function Pn : VKR m depending on the sequence m n but
independent of f , u , un . such that if Rn is defined by

Xun4Xu1uPn1Rn(4.1)

then the sequence Rn converges to 0 strongly in L p (V).
In order to construct Pn , let us consider the solution wn of the problem (3.1) with

m4m n and f41. By the estimate (3.3) wn is bounded in H 1, p
0 (V , X), then we may as-

sume that wn converges weakly in H 1, p
0 (V , X) to some function w . Then we define

the Borel function Pn : VKR m

Pn (x) 4
Xwn2Xw

w
if w(x) D0, Pn (x) 40 if w(x) 40(4.2)

We are now in position to state the main theorem of this section:

THEOREM 4.1: Let m n be a sequence of measures in Mp
0 (V , X). Let un and wn the

solution of problem (3.1) with m4m n and m4m n , f41. Assume that un and wn con-
verge weakly in H 1, p

0 (V , X) to some function u and w and define Pn and Rn by (4.1)
and (4.2). Then Rn converges to 0 in L p (V).

REMARK 4.2: Let w0 be the unique function in H 1, p
0 (V , X) such that Aw041 in

V . By The comparison principle in Proposition 3.7 and the homogeneity of A we have
NunNGCwnGCw0 q.e. in V with C4V f V

1/(p21)
L Q (V) , hence NuNGCwGCw0 q.e. in V . As

w0�L Q (V) the sequences un and wn are bounded in L Q (V).

REMARK 4.3: Before proving Theorem 4.1 let us observe that if f�L Q (V) the se-
quence Rn defined by (4.1) (4.2) converges to 0 weakly in L p (V) and strongly in

L r (V), 1 E rEp . Indeed u

w
�L Q (]wD0() by Remark 4.2 and

Rn4Xun2Xu in ]w40((4.3)

Rn4 (Xun2Xu)1
u

w
(Xwn2Xw) in ]wD0((4.4)

while (Xun2Xu) and (Xwn2Xw) converge to 0 weakly in L p (V) and strongly in
L r (V), 1 E rEp .

The corrector result of Theorem 4.1 is formally equivalent to the strong conver-

gence of gun2
uwn

w
h to 0 in H 1, p (V , X). This assertion, which is only formal since w

may be 0 on a set of positive Lebesgue measure, becomes correct in H 1, p (U , X) if U is
an open subset of V where wFeD0.
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Preliminary results.

To prove Theorem 4.1 we use the following lemmas:

LEMMA 4.4: Assume that the conditions in Theorem 4.1 hold. For every eD0 de-

fine Ue4 ]wDe(N ]NuNDew(. Then for every eD0 the functions
uwn

wSe
belong to

H 1, p
0 (V , X)OL p

mn
(V) and one has

lim
nK1Q

u �
Ue

NXun2X u uwn

wSe
vN

p
dx1�

Ue

Nun2
uwn

wSe
N

p
dm nv40(4.5)

PROOF: Define for every eD0 the functions

u e
n 4

uwn

wSe
, r e

n 4un2u e
n

First step. We will prove that u e
n , r e

n �H 1, p
0 (V , X)OL Q (V)OL p

mn
(V) and inves-

tigate their convergence as nK1Q for eD0 fixed.
We observe that the functions u and 1

wSe
are in H 1, p

0 (V , X)OL Q (V) and that

the sequences un and wn are bounded in L Q (V) (see Remark 4.2) and converge to u
and w weakly in H 1, p

0 (V , X). We recall that H 1, p
0 (V , X)OL Q (V) %L Q

m (V) for

every m� M0
p (V , X) so u

wSe
�L Q

m (V). The functions u e
n and r e

n are bounded in

L Q (V) and converge to u

wSe
and u2

u

wSe
weakly in H 1, p

0 (V , X). By Theorem

3.11 un and wn converge to u and w strongly in H 1, r (V , X), 1 E rEp; so u e
n converges

to uw

wSe
strongly in H 1, r (V , X). At least after extraction of subsequences we have

that un , wn , Xun , Xwn , Xu e
n converge a.e. to u , w , Xu , Xw , X g uw

wSe
h ; then

NXunNp22 Xun , NXwnNp22 Xwn , NXu e
n Np22 Xu e

n converge to NXuNp22 Xu , NXwNp22 Xw ,

NX g uw

wSe
h N

p22
X g uw

wSe
h weakly in L q (V) and a.e. in V . As u2

uw

wSe
40 a.e. in

Ue , we obtain that r e
n converges to 0 strongly in L p (Ue ) and NXu e

n Np22 Xu e
n converges

to NXuNp22 Xu weakly in L q (Ue ) Consider now a Lipschitz function Fe defined by

Fe (t) 40 for tGe , Fe (t) 4
t

e
21 for eG tG2e , Fe (t) 41 for tF2e; we define

f4Fe (w) Feg NuN

wSe
h . We have f�H 1, p

0 (V , X)OL Q (V), 0 GfG1 in V q.e.,

f41 in U2e , f40 in V0Ue . By the previous remarks the sequence r e
n f converges to

0 weakly in H 1, p
0 (V , X) and strongly in L p (V).

Second step. We define

E e
n4�

V

(NXunNp22 Xun2NXu e
n Np22 Xu e

n ) Xr e
n f dx1

1�
V

(NunNp22 un2Nu e
n Np22 u e

n ) r e
n f dm n .
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In this step we prove that for e fixed we have

lim
nK1Q

E e
n40 .

We write E e
n as

(4.6) E e
n4�

V

(NXunNp22 Xun2NXu e
n Np22 Xu e

n ) X(r e
n f) dx1

1�
V

(NunNp22 un2Nu e
n Np22 u e

n ) r e
n f dm n2�

Ue

(NXunNp22 Xun2NXu e
n Np22 Xu e

n ) Xf r e
n dx4

4�
V

NXunNp22 Xun X(r e
n f) dx1�

V

NunNp22 un r e
n f dm n2

2�
V

N u

wSe
XwnN

p22 u

wSe
Xwn X ur e

n f dx2�
V

Nu e
n Np22 u e

nv r e
n f dm n1

1�
Ue

uN u

wSe
XwnN

p22 u

wSe
Xwn2NXu e

n Np22 Xu e
nv X(fr e

n ) dx2

2�
Ue

(NXunNp22 Xun2NXu e
n Np22 Xu e

n ) Xf r e
n dx .

We have f40 q.e. in V0Ue , then the function z4 N u

wSe
N

p22 u

wSe
f belongs to

H 1, p
0 (V , X)OL Q (V) (in the case 1 EpE2 we have to take into account that f40

if u

wSe
Ge).

We have

2�
V

N u

wSe
XwnN

p22 u

wSe
Xwn X(r e

n f) dx4

2�
V

NXwnNp22 XwnN u

wSe
N

p22 u

wSe
X(fr e

n ) dx4

2�
V

NXwnNp22 Xwn X uN u

wSe
N

p22 u

wSe
fr e

nv dx1

1(p21)�
V

NXwnNp22 Xwn X u u

wSe
vN u

wSe
N

p22
fr e

n dx .
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We have wn
u

wSe
4u e

n , taking as test function v4 N u

wSe
N

p22 u

wSe
fr e

n in the equa-

tion defining wn we obtain

2�
V

NXwnNp22 Xwn X uN u

wSe
N

p22 u

wSe
fr e

nv dx2

2�
V

Nu e
n Np22 u e

n fr e
n dm n4�

Ue

N u

wSe
N

p22 u

wSe
fr e

n dx .

Taking v4fr e
n as test function in the equation defining un from (4.6) we obtain

E e
n4�

Ue

ffr e
n dx2�

Ue

N u

wSe
N

p22 u

wSe
fr e

n dx1

1(p21)�
Ue

NXwnNp22 Xwn X u u

wSe
vN u

wSe
N

p22
fr e

n dx1

1�
Ue

uN u

wSe
XwnN

p22u u

wSe
Xwnv2NXu e

n Np22 Xu e
nv X(fr e

n ) dx2

2�
Ue

(NXunNp22 Xun2NXu e
n Np22 Xu e

n ) Xfr e
n dx4

4 I 1
n2 I 2

n1 I 3
n1 I 4

n2 I 5
n .

Since u

wSe
�L Q (Ue ), r e

n is bounded in L Q (V) and converges strongly to 0 in

L p (Ue ), while the sequences NXwnNp22 Xwn , NXunNp22 Xun , NXu e
n Np22 Xu e

n converge
weakly in L q (Ue ) it follows that I 1

n , I 2
n , I 3

n , I 5
n converge to 0 . To conclude the proof of

our result it is enough to show that

lim
nK1Q

I 4
n40(4.7)

Since Xwn and Xu e
n converge to Xw and Xu a.e. in Ue it follows that

(4.8) lim
nK1Q

uN u

wSe
XwnN

p22u u

wSe
Xwnv2NXu e

n Np22 Xu e
nv4

4 uN u

wSe
XwN

p22u u

wSe
Xwv2NXuNp22 Xuv
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a.e. in Ue . Let us prove that NuN u

wSe
XwnN

p22g u

wSe
Xwnh2NXu e

n Np22 Xu e
nvNq

is
equi-integrable.

Consider the case pF2. Since u

wSe
�H 1, p

0 (V , X)OL Q (V) and wn is bounded

in L Q (V) there exists a constant C such that

(4.9) NuN u

wSe
XwnN

p22u u

wSe
Xwnv2NXu e

n Np22 Xu e
nvN

q
G

GC1
qu2 N u

wSe
XwnN1Nwn X u u

wSe
vNvq(p22)

Nwn X u u

wSe
vN

q
G

GC uNXwnNq(p22)NX u u

wSe
vN

q
1NX u u

wSe
vN

pv
where we use Lagrange’s formula.

By Hölder’s inequality for every measurable set E%V

�
E

NXwnNq(p22)NX u u

wSe
vN

q
dxG u �

E

NXwnNp dxv
p22

(p21) u �
E

NX u u

wSe
vN

pv
q

p

.

By (4.9) the equi-integrability is proved.
In the case 1 EpE2 we have

NuN u

wSe
XwnN

p22u u

wSe
Xwnv2NXu e

n Np22 Xu e
nvN

q
GC1

qNwn X u u

wSe
vN

p

then the sequence in the left hand side is equi-integrable.
By the Dominated Convergence Theorem (4.8) implies that

u u

wSe
XwnN

p22u u

wSe
Xwnv2NXu e

n Np22 Xu e
nvK

K u u

wSe
NXwNp22u u

wSe
Xwv2NXuNp22 Xuv
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in L q(V). As X(r e
n f) converges to 0 weakly in L P(V) we obtain (4.7) which implies (4.5).

Third step. If 2 Gp then Lemma 3.2 gives

�
V

NXr e
n Np f dx1222p�

V

Nr e
n Np f dm nG E e

n .(4.10)

If 1 EpE2, we observe that the sequences Vun VL p
mn

(V) and Vwn VL p
mn

(V) are bounded by

the estimate (3.3). Since u and 1

wSe
belong to H 1, p

0 (V , X)OL Q (V) we conclude

that Vu e
n VL p

mn
(V) is bounded too.

Since un and u e
n are bounded in H 1, p

0 (V , X) by Lemma 3.2 there exists a constant
K such that

�
V

NXr e
n Np f dx1222p�

V

Nr e
n Np f dm nGK E e

n .(4.11)

Taking (4.10) and (4.11) into account we obtain from (4.5) that

lim
nK1Q

u �
V

NXr e
n Np f dx1222p�

V

Nr e
n Np f dm nv40

hence

lim
nK1Q

u �
V

NXr e
n Np dx1222p�

V

Nr e
n Np dm nv40.(4.12)

As wS2e4wSe q.e. in U2e we have r e
n 4un2

uwn

wS2e
q.e. in U2e and Xr e

n 4Xun2

2X g uwn

wS2e
h a.e. in U2e . Therefore (4.12) implies (4.5) with e replaced by

2e . r

LEMMA 4.5: Let f�L Q (V), let un be solution of (3.1) with m4m n . For every eD0
define Ve4 ]wGe(. Then

lim
eK0

lim sup
nK1Q

u �
Ve

NXunNp dx1�
Ve

NunNp dm nv40.(4.13)

PROOF: For every eD0 let Fe be the Lipschitz function defined at the end of the
first step of the proof of Lemma 4.4 and let z e�H 1, p

0 (V , X)OL Q (V) be the function
defined by z e412Fe (w).
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As z eF0 q.e. in V and z e41 q.e. in Ve by (3.1) we have

�
Ve

NXunNp dx1�
Ve

NunNp dm nG�
V

NXunNp z e dx1�
V

NunNp z e dm n4

4�
V

NXunNp22 Xun X(un z e ) dx1�
V

NunNp z e dm n2�
V

(NXunNp22 Xun Xz e ) un dx4

4�
V

fun z e dx2�
V

(NXunNp22 Xun Xz e ) un dx .

Since un converges strongly to u in L p (V) and is bounded in L Q (V) (Remark 4.2)
while NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (V) (Theorem 3.11), we
can take the limit of the last two terms as nK1Q obtaining

(4.14) lim sup
nK1Q

u �
Ve

NXunNp dx1�
Ve

NunNp dm nvG

G�
V

fuz e dx2�
V

(NXuNp22 XuXz e ) u dx .

As z e is bounded in L Q (V) and converges to the characteristic function of the set
]w40(, while u40 a.e. in ]w40( (Remark 4.2), we have that uz e converges to 0
strongly in L p (V).

In the other hand by Remark 4.2 we have NuNGCw q.e. in V , then

�
V

NuNp NXz eNp dxG
C p

e p
�

]eEwE2e(

w p NXwNp dxG (2C)p �
]eEwE2e(

NXwNp dx

so that uXz e converges to 0 in L p (V). Taking the limit in (4.14) as eK0 we obtain
(4.13). r

LEMMA 4.6: Let f�L Q (V) and un be the solution of (3.1) for m4m n . For every
eD0 define We4 ]wDe(O ]NuNGew(. Then

lim
eK0

lim sup
nK1Q

u �
We

NXunNp dx1 �
We

NunNp dm nv40(4.15)

PROOF: For every eD0 let Fe be the Lipschitz function defined at the end of the

first step of the proof of Lemma 4.4. As u

wSe
�H 1, p

0 (V , X)OL Q (V) (Remark 4.2)

the function z e412Feg NuN

wSe
h belongs to H 1, p (V , X)OL Q (V). As z eF0 q.e. in
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V and z e41 on We by the same computations as in Lemma 4.5 we obtain

u �
We

NXunNp dx1 �
We

NunNp dm nvG�
V

fuz e dx2�
V

(NXunNp22 Xun Xz e ) un dx .

Since un converges strongly to u in L p (V) and is bounded in L Q (V) (Remark 4.2)
while NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (V) (Theorem 3.11) we
can take the limit of the last two terms as nK1Q obtaining

(4.16) lim sup
nK1Q

u �
We

NXunNp dx1 �
We

NunNp dm nvG

G�
V

fuz e dx2�
V

(NXuNp22 XuXz e ) u dx .

As ze is bounded in L Q (V) and converges to the characteristic function of ]u40(,
we have that uz e converges strongly to 0 in L p (V). Moreover

�
V

NuNp NXz eNp dxG
1

e p
�

]0 ENuNE2e(wSe)(

NuNpNX u NuN

wSe
vN

p
dxG

G
2p21

e p
�

]0 ENuNE2e(wSe)(

uu NuN

wSe
vp

NXuNp1 u NuN

wSe
v2p

NXwNpv dxG

G2p21 �
]0 ENuNE2e(wSe)(

(NXuNp1 ( (2e)2p NXwNp ) ) dx

and so uXz e converges strongly to 0 in L p (V) as eK0. Therefore (4.15) follows from
(4.16) taking the limit as eK0. r

PROOF OF THEOREM 4.1: Recall that UeNVeNWe4V , then

�
V

NRnNp dx4 �
Ue

NRnNp dx1�
Ve

NRnNp dx1 �
We

NRnNp dx

Since rn4Xun2Xu2
u

w
(Xwn2Xw) in ]wD0( we deduce from (4.4) that for eD0

fixed

lim
nK1Q

�
Ue

NRnNp dx40
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On the other hand we shall prove

lim sup
nK1Q

�
Ve

NRnNp dx40(4.17)

lim sup
nK1Q

�
We

NRnNp dx40.(4.18)

Since NuNGCw q.e. in V (Remark 4.2) we have Xu4Xw40 in ]w40(.
This fact with Lemma 4.5 (applied to the sequences un and wn) allows us to obtain

(4.17) from the previous inequality.
As NuNGCw q.e. in V (Remark 4.2), we have NRnNGNXun2XuN1eNXwn2XwN

q.e. in We (Remark 4.3). Therefore

412p lim sup
nK1Q

�
We

NRnNp dxG

G lim sup
nK1Q

y�
We

NXunNp dx1 �
We

NXuNp dx1e pu �
We

NXwnNp dx1 �
We

NXwNp dxvz .

As the characteristic function of We converges to the characteristic function of
]wD0(O ]u40( and Xu40 a.e. on the set ]u40(, the previous inequality and
the Lemma 4.6 give (4.17), so the proof is concluded. r

Theorem 4.1 gives the correction of Xun to obtain strong convergence. We observe
that in general the function Xu1uPn is not a X-gradient. The following result gives a
corrector in H 1, p

0 (V , X) for the functions un .

THEOREM 4.7: Let m n be a sequence of measures in Mp
0 (V , x) and let

f�L Q (V).
Assume that un and wn are the solutions to are the solution of problem (3.1) corre-

sponding to m4m n and to m4m n , f41 and that un and wn converge weakly in
H 1, p

0 (V , X) to some function u and w. Define r e
n by

un4
NuNwn

wSe
1 r e

n .

Then

lim
eK0

lim sup
nK1Q

Vr e
n VH 1, p

0 (V , X)40
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PROOF: Since UeNVeNWe4V we have

�
V

Nr e
n Np dx4 �

Ue

Nr e
n Np dx1�

Ve

Nr e
n Np dx1 �

We

Nr e
n Np dx(4.19)

By the Lemma 4.4 Xr e
n converges to 0 strongly in L p (Ue ) as nK0, so we have only to

estimate the last two terms in (4.19) As

Xr e
n 4Xun2

u

wSe
Xwn2

wn

wSe
Xu1

uwn

(wSe)2
X(wSe)

and NuNGCw q.e. in V (Remark 4.2) we have

412p NXr e
n NpGNXunNp1C p NXwnNp1 u wn

wSe
vp

NXuNp1C pu wn

wSe
vp

NXwNp .

We observe that wn is bounded in L Q (V) (Remark 4.2) and converges to w weakly in
H 1, p

0 (V , X), then

412p lim sup
nK1Q

�
Ve

NXr e
n Np dxG

G lim sup
nK1Q

yu �
Ve

NXunNp dx1�
Ve

NXuNp dxv1C pu �
Ve

NXwnNp dx1�
Ve

NXwNp dxvz .

Since NuNGCw q.e. in V (Remark 4.2) we have Xu4Xw40 in ]w40(.
This fact with Lemma 4.5 (applied to the sequences un and wn) gives

lim
eK0

lim sup
nK1Q

�
Ve

NXr e
n Np dx40

Since w4wSe and NuNGew q.e. on We we have

412p NXr e
n NpGNXunNp1e p NXwnNp1 u wn

w
hp

NXuNp1C pu wn

w
vp

NXwNp

q.e. in We and thus

412p lim sup
nK1Q

�
Ve

NXr e
n Np dxG

G lim sup
nK1Q

yu �
We

NXunNp dx1 �
We

NXuNp dxv1e pu �
V

NXwnNp dx1�
V

NXwNp dxvz .
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As the characteristic function of We converges to the characteristic function of
]wD0(O ]u40( and Xu40 a.e. on the set ]u40(, the term s

We

NXunNp dx con-
verges to 0 as eK0; then by Lemma 4.6 we have

lim
eK0

lim sup
nK1Q

�
We

NXr e
n Np dx40.

The result then follows. r

5. - CORRECTOR RESULT

Let m n be a sequence of measures in Mp
0 (V , X) and f�L Q (V) Assume that un and

wn are the solutions to are the solution of problem (3.1) corresponding to m4m n and
to m4m n , f41 and that un and wn converge weakly in H 1, p

0 (V , X) to some function u
and w . In this section we will study the behavior of the following sequences

aAun , wn
b fb2 »Awn , N u

wSe
N

p22 u

wSe
wn

b f«(5.1)

�
V

NunNp22 un wn
b f dm n2�

V

N u

wSe
N

p22 u

wSe
wn

p211b f dm n(5.2)

where bF (p21)S1 and f�H 1, p
0 (V , X)OL Q (V). The estimates will be useful in

the proof of the main result of section 6. For 1 EpE2 the function N u

wSe
N

p22 u

wSe
does not belong to H0

1, p (V , X), then the formula (5.1) (5.2) are not correct. We intro-
duce the locally Lipschitz function Ce (t) defined by

Ce (t) 4NtNp22 t if NtNDe , Ce (t) 4NeNp22 t if NtNGe(5.3)

and we replace in (5.1) (5.2) N u

wSe
N

p22 u

wSe
by Ceg u

wSe
h . We begin with an esti-

mate in the set Ue4 ]wDe(O ]NuNDew(.

LEMMA 5.1: Let m n be a sequence of measures in Mp
0 (V , x) and let

f�L Q (V).
Assume that un and wn are the solutions to are the solution of problem (3.1) corre-

sponding to m4m n and to m4m n , f41 and that un and wn converge weakly in
H 1, p

0 (V , X) to some function u and w. Let eD0 and bF1, define ve4

4Ceg u

wSe
h�H 1, p

0 (V , X)OL Q (V). Then the sequence

NXunNp22 Xun X(wn
b )2NXwnNp22 Xwn X(ve wn

b )

converges weakly in L 1 (Ue ) as nKQ to the function

NXuNp22 XuX(wn
b )2NXwNp22 XwX(ve w b )
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PROOF: By Theorem 4.1 we have

Xun4Xu1
u

w
Xwn2

u

w
Xw1Rn a.e. in Ue(5.4)

where Rn converges strongly to 0 in L p (V). Since ve4 N u

w N
p22 u

w
a.e. in Ue , we

have

(5.5) NXunNp22 Xun X(wn
b )2NXwnNp22 Xwn X(ve wn

b ) 4

4bwn
b21 NXunNp22 Xun Xwn2b2wn

b21N u

w N
p22 u

w
NXwnNp2

2wn
b NXwnNp22 Xwn Xve

a.e. in Ue .
In a similar way we obtain

(5.6) NXuNp22 XuX(w b )2NXwNp22 XwX(ve w b ) 4

4bw b21 NXuNp22 XuXw2bw b21N u

w N
p22 u

w
NXwNp2w b NXwNp22 XwXve

a.e. in Ue .
By Theorem 3.11 the sequences un and wn converge to u and w in H 1, r

0 (V , X),
1 E rEp and so, at least after extraction of subsequences we may assume that un , wn ,
Xun , Xwn converge to u , w , Xu , Xw a.e. in V . This implies that NXunNp22 Xun ,
NXwnNp22 Xwn converge to NXuNp22 Xu , NXwNp22 Xw a.e. in Ue . So we have that

NXunNp22 Xun , N u

w
XwnN

p22 u

w
Xwn converge to NXuNp22 Xu , N u

w
XwN

p22 u

w
Xw a.e.

in Ue .
We prove now that NXunNp22 Xun2

u

w
XwnNp22 u

w
Xwn converges to

NXuNp22 Xu2
u

w
XwNp22 u

w
Xw strongly in L q (Ue ). It is enough to prove that the se-

quence NXunNp22 Xun2
u

w
XwnNp22 u

w
Xwn is equi-integrable.

Consider the case pF2. We recall that u

w
�L Q (Ue ) (Remark 4.2); by (5.4) there

exists a constant C such that

(5.7) NNXunNp22 Xun2N u

w
XwnN

p22 u

w
XwnN

q
G

GC1
qu2 N u

w
XwnN1NXu2

u

w
Xw1RnNvq(p22)

NXu2
u

w
Xw1RnN

q
G

GC uNXwnNq(p22)NXu2
u

w
Xw1RnN

q
1NXu2

u

w
Xw1RnN

pv
a.e. in Ue (where we use Lagrange’s formula).
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We integrate on an arbitrary measurable set E%V; by Hölder’s inequality we
obtain

�
E

NXwnNq(p22)NXu2
u

w
Xw1RnN

q
dxG

G u �
V

NXwnNpv
p22

p21 u �
E

NXu2
u

w
Xw1RnN

p
dxv

q

p

.

We recall that Xwn is bounded in L p (V) and that Rn converges to 0 strongly in L p (V),
so the previous inequality and (5.7) gives the result.

Consider now the case 1 EpE2. We have

NNXunNp22 Xun2N u

w
XwnN

p22 u

w
XwnN

q
GC1

qNXu2
u

w
Xw1RnN

p
.

The result follows from the strong convergence of Rn to 0 in L p (V). Then

NXunNp22 Xun2N u

w
XwnN

p22 u

w
Xwn converges (in both the cases) to NXuNp22 Xu2

2N u

w
XwN

p22 u

w
Xw strongly in L q (Ue ).

We recall that Xwn converges to Xw in L p (Ue ) and that wn is bounded in L Q (V)
(Remark 4.2) and converges to w a.e. in V , then

bw b21uNXunNp22 Xun2N u

w
XwnN

p22 u

w
Xwnv

converges to

bw b21uNXuNp22 Xu2N u

w
XwN

p22 u

w
Xwv

weakly in L 1 (Ue ).
We have that NXwnNp22 Xwn converges weakly in L q (V) to NXwNp22 Xw , then

wn
b NXwnNp22 Xwn Xve converges to w b NXwNp22 XwXve weakly in L 1 (V). The result

follows now from (5.5) (5.6). r

LEMMA 5.2: Let m n be a sequence of measures in Mp
0 (V , X).

Assume that un and wn are the solutions to are the solution of problem (3.1)
corresponding to m4m n and to m4m n , f41 and that un and wn converge weakly
in H 1, p

0 (V , X) to some function u and w. Let eD0 and bF1, define ve4
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4Ceg u

wSe
h�H 1, p

0 (V , X)OL Q (V). Then

aAun , wn
b fb2 aAwn , ve wn

b fb 4 aAu , w b fb2 aAw , ve w b fb1 Re
n

where lim
eK0

lim sup
nK1Q

Re
n40.

PROOF: For every eD0 we have

aAun , wn
b fb2 aAwn , ve wn

b fb 4 Ae
n1 Be

n1 C e
n

where

Ae
n4 �

Ue

fNXunNp22 Xun Xwn
b dx2�

Ue

fNXwnNp22 Xwn X(ve wn
b ) dx

Be
n4 �

VeNWe

fNXunNp22 Xun Xwn
b dx2 �

VeNWe

fNXwnNp22 Xwn X(ve wn
b ) dx

C e
n4�

V

w b NXunNp22 Xun Xf dx2�
Ue

ve wn
b NXwnNp22 Xwn X(f) dx .

In a similar way we define Ae , Be , C e by replacing un and wn by u and w , so

aAu , w b fb2 aAw , ve w b fb 4 Ae1 Be1 C e .

By the Lemma 5.1 we have

lim
nK1Q

Ae
n4 Ae(5.8)

for every eD0.
We have that NXunNp22 Xun , NXwnNp22 Xwn converges weakly in L q (V) to

NXuNp22 Xu , NXwNp22 Xw (Theorem 3.11) and that wn is bounded in L Q (V) (Remark
4.2) and converges strongly to w in L p (V), while ve�L Q (V) (Remark 4.2) we con-
clude that

lim
nK1Q

C e
n4 C e .(5.9)

We now consider the term Bn
e 2 Be . For every measurable set B%V we define

I 1
n (B) 4b�

B

fwn
b21 NXunNp22 Xun Xwn dx

I e , 2
n (B) 4b�

B

fve wn
b21 NXwnNp22 Xwn X(wn ) dx

I e , 3
n (B) 4�

B

fwn
b NXwnNp22 Xwn X(ve ) dx
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In a similar way we define I 1 , I e , 2 , I e , 3 by replacing un and wn by u and w . We
have

(5.10) N Bn
e 2 BeNGN I 1

n (VeNWe )N1N I 1 (VeNWe )N1

1N I e , 2
n (Ve )N1N I e , 2 (Ve )N1N I e , 2

n (We )N1

1N I e , 2 (We )N1N I e , 3
n (VeNWe )2 I e , 3 (VeNWe )N .

Since bF1 the sequence wn
b21 is bounded in L Q (V) (Remark 4.2). Moreover NuNG

GCw (Remark 4.2), by (5.3) we have veG (CSe)p21 q.e. in V . Moreover there exists a
constant K such that

N I 1
n (VeNWe )N1N I e , 2

n (Ve )NGK u �
VeNWe

NXunNp21 NXwnNdx1�
Ve

NXwnNp dxvG

GK yu �
VeNWe

NXunNp dxv1/qu �
V

NXwnNp dxv1/p

1�
Ve

NXwnNp dxz
Then by Lemma 4.5 and 4.6 we have

lim
eK0

lim sup
nK1Q

(N I 1
n (VeNWe )N1N I e , 2

n (Ve )N) 40(5.11)

In a similar way we prove

lim
eK0

(N I 1 (VeNWe )N1N I e , 2 (Ve )N) 40(5.12)

We have NuNGew q.e. in We , so we have also NveNGe p21 q.e. in We . The boundness
of wn

b21 in L Q (V) (Remark 4.2) implies

N I e , 2
n (We )NGKe p21�

V

NXwnNp dx

for a suitable constant K . We recall that wn is bounded in H 1, p
0 (V , X), hence we con-

clude that

lim
eK0

lim sup
nK1Q

N I e , 2
n (We )N40(5.13)

In a similar way we prove

lim
eK0

lim sup
nK1Q

N I e , 2
n (We )N40(5.14)

Since NXwnNp22 Xwn converges to NXwNp22 Xw weakly in L q (V) and wn is bounded
in L Q (V) (Remark 4.2) and converges strongly in L p (V), we conclude that

lim
nK1Q

I e , 3
n (VeNWe ) 4 I e , 3 (VeNWe ).(5.15)
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From (5.10)-(5.15) we have

lim
eK0

lim sup
nK1Q

N Bn
e 2 Be N40.(5.16)

We recall that Re
n4 Ae

n2 Ae1 Be2 Be1 C e
n2 C e the result follows from (5.8), (5.9)

and (5.16).

LEMMA 5.3: Let m n be a sequence of measures in Mp
0 (V , X).

Assume that un and wn are the solutions to are the solution of problem (3.1) corre-
sponding to m4m n and to m4m n , f41 and that un and wn converge weakly in
H 1, p

0 (V , X) to some function u and w. Let eD0 and bF (p21)S1, define u e
n 4

4
uwn

wSe
as in Lemma 4.4. Then

�
Ue

NunNp22 un wn
b f dm n2�

Ue

Nu e
n Np22 u e

n wn
b f dm n

tends to 0 as nK1Q for every f�H 1, p
0 (V , X)OL Q (V).

PROOF: Let f�H 1, p
0 (V , X)OL Q (V) and r e

n 4un2u e
n . We recall that the se-

quences un and u e
n are bounded in L Q (V) (Remark 4.2), then there exists a constant C

such that

NNunNp22 un f2Nu e
n Np22 u e

n fNGCr e
n

We recall that wn is bounded in L Q (V) (Remark 4.2), then there exists a constant K
such that wn

bGKwn
(p21)S1 , then

N�
Ue

NunNp22 un wn
b f dm n2�

Ue

Nu e
n Np22 u e

n wn
b f dm nNG

GCK�
Ue

Nr e
n N(p21)S1 wn

(p21)S1 dm nGCK u �
Ue

Nr e
n Np dm nv

1

pSq u �
Ue

wn
p dm nv

1

pRq

The result follows now from the estimate (3.3) and from the Lemma 4.3. r

LEMMA 5.4: Let m n be a sequence of measures in Mp
0 (V , X).

Assume that un and wn are the solutions to are the solution of problem (3.1) corre-
sponding to m4m n and to m4m n , f41 and that un and wn converge weakly in
H 1, p

0 (V , X) to some function u and w. Let eD0 and bF (p21)S1, define ve4

4Ceg u

wSe
h�H 1, p

0 (V , X)OL Q (V) and let

E e
n4�

V

NunNp22 un wn
b f dm n2�

V

ve wn
b1p21 f dm n

Then lim
eK0

lim sup
nK1Q

N E e
nN40.
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PROOF: We observe that wn
p21 ve4Nun

eNp22 un
e q.e. in ue . By Lemma 5.3 for every

eD0 the sequence

�
Ue

NunNp22 un wn
b f dm n2�

Ue

ve wn
b1p21 f dm n

tends to 0 as nK1Q .
As f is bounded for the proof of the result is enough to prove

lim
eK0

lim sup
nK1Q

�
VeNWe

NunNp21 wn
b dm n40(5.17)

lim
eK0

lim sup
nK1Q

�
Ve

ve wn
b1p21 dm n40(5.18)

lim
eK0

lim sup
nK1Q

�
We

ve wn
b1p21 dm n40.(5.19)

Taking into account that bF1 we have Vwn
b21

VL Q (V)GK for a suitable constant K
(Remark 4.2), then

�
VeNWe

NunNp21 wn
b dm nGK�VeNWe

NunNp21 wn dm nG

GK u �
VeNWe

NunNp dm nv1/qu �
V

NwnNp dm nv1/p

thus (5.17) follows from (3.3) and from the Lemmas 4.5 and 4.6.
We recall that NuNGCw (Remark 4.2), so by (5.3) we have NveNG (CSe)p21 q.e.

in V; then

�
Ve

NveNwn
b1p21 dm nG (CSe)p21 K�

Ve

wn
p dm n

The relation (5.18) follows from Lemma 4.5.
We recall that NuNGew q.e. in We , then

�
We

NveNwn
b1p21 dm nGe p21 �

We

wn
p dm n

and (5.19) follows from (3.3). r
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6. - THE CASE f41

In this section we will study the properties of the set K(V) of the function w such
that

w�H 1, p
0 (V , X), wF0 q.e. in V and AwG1 wF0 in D8 (V).

The results of the present section will be used in the proofs of theorems 7.3, 7.5, and
are independent of the results in sections 4 and 5.

For every w� K(V) we have

�
V

NXwNp dxG aAw , wb G�
V

w dx

the function w in K(V) are uniformly bounded, so K(V) is bounded and weakly rela-
tively compact in H 1, p

0 (V , X).
We also observe that if w0 is the solution of the Dirichlet problem

w0�H 1, p
0 (V , X), Aw041 in D8 (V)

by Proposition 3.6 we have 0 GwGw0 , (w� K(V) (and it is easily proved that
w0�L Q (V)).

Given w� K(V) we define

s412Aw

By the definition of K(V) we have sF0 in D8 (V), so s is a non-negative Radon mea-

sure. As Aw�H 21, q (V , X), 1

p
1

1

q
41, we have s�H 21, q (V , X).

Our aim in this section is to prove the following characterization of K(V) as the
set of the solutions of all relaxed Dirichlet problems corresponding to f41

THEOREM 6.1: The set K(V) is compact in the weak topology of H 1, p
0 (V , X). A

function w�H 1, p
0 (V , X) belongs to K(V) if and only if there exists a measure

m� Mp
0 (V , X) such that w is the solution of the problem

w�H 1, p
0 (V , X)OL p

m (V)

aAw , vb1�
V

NwNp22 wv dm4�
V

v dx(6.1)

(v�H 1, p
0 (V , X)OL p

m (V)

The measure m is uniquely determined by w� K(V). More precisely for every
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w� K(V) and for every Borel set B%V we have

m(B) 4�
B

ds

w p21
if capp (BO ]w40(, V ; X) 40,

m(B) 41Q if capp (BO ]w40(, V ; X) D0

(6.2)

where s is the non-negative Radon measure in H 21, q (V , X) defined by s412

2Aw.

Observe that from (5.2) we have

s (BO ]wD0() 4�
B

w p21 dm(6.3)

for every Borel set B%V .
To prove the Theorem we need some preliminary results:

LEMMA 6.2: Let m� Mp
0 (V , X) and let u�H 1, p

0 (V , X)OL p
m (V). Let un be the sol-

ution of the problem

un�H 1, p
0 (V , X)OL p

m (V)

aAun , vb1�
V

NunNp22 un v dm1n�
V

NunNp22 un v dx4n�
V

NuNp22 u dx(6.4)

(v�H 1, p
0 (V , X)OL p

m (V)

Then un converges to u strongly in H 1, p
0 (V , X) and in L p

m (V)

PROOF: The proof is in some way standard using the algebraic inequality on our
operator and we give the details for sake of completeness. We use un2u as test func-
tion in (5.4) and we obtain

aAun , un2ub1�
V

NunNp22 un (un2u) dm1

1n�
V

(NunNp22 un2NuNp22 u)(un2u) dx40.

Hence

(6.5) aAun2Au , un2ub1�
V

(NunNp22 un2NuNp22 u)(un2u) dm1

1n�
V

(NunNp22 un2NuNp22 u)(un2u) dx42aAu , un2ub2�
V

NuNp22 u(un2u) dm .
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If 2 Gp we have

(6.6) C0 Vun2uV

p
H 1, p

0 (V , X)1222p (Vun2uV

p
L p

m (V)1nVun2uV

p
L p (V) ) G

G2aAu , un2ub2�
V

NuNp22 u(un2u) dm

hence

C0 Vun2uV

p
H 1, p

0 (V , X)1222p (Vun2uV

p
L p

m (V)1nVun2uV

p
L p (V) ) G

GVAuVH 21, q (V , X) Vun2uVH 1, p
0 (V , X)1VuV

p/q
L p

m (V) Vun2uVL p
m (V) .

By Young’s inequality we obtain

C0

q
Vun2uV

p
H 1, p

0 (V , X)1
222p

q
Vun2uV

p
L p

m (V)1222p nVun2uV

p
L p (V) ) G

G
C0

q21

q
VAuV

q
H 21, q (V , X)1

2

q
VuV

p
L p

m (V) .

Then un converges to u weakly in H 1, p
0 (V , X) and in L p

m (V); so (6.6) gives the strong
convergence in both the spaces.

Consider now the case 1 EpE2. From Theorem 3.2 (where we take m as the
Lebesgue measure) we have

Vun2uV

2
L p (V)G2(Vun V

22p
L p (V) )1VuV

22p
L p (V) )�

V

(NunNp22 un2NuNp22 u)(un2u) dx

Then from Theorem 3.2 and (6.5) we have

C0 Vun2uV

p
H 1, p

0 (V , X)1Vun2uV

p
L p

m (V)1nVun2uV

p
L p (V)G

H(un , u) uNaAu , un2ubN1N�
V

NuNp22 u(un2u) dmNvG

H(un , u)(VAuVH 21, q (V , X) Vun2uVH 1, p
0 (V , X)1VuV

p21
L p

m (V) Vun2uVL p
m (V) )

where

H(un , u) 42(Vun V

22p
H 1, p

0 (V , X)1Vun V

22p
L p

m (V)1Vun V

22p
L p (V) )1

12(VuV

22p
H 1, p

0 (V , X)1VuV

22p
L p

m (V)1VuV

22p
L p (V) ) G

2(Vun2uV

22p
H 1, p

0 (V , X)1Vun2uV

22p
L p

m (V)1Vun2uV

22p
L p (V) )1

14(VuV

22p
H 1, p

0 (V , X)1VuV

22p
L p

m (V)1VuV

22p
L p (V) ).
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By Young’s inequality we have

Vun2uV

p
H 1, p

0 (V , X)1Vun2uV

p
L p

m (V)1nVun2uV

p
L p (V)G

GK1 (u)(Vun2uV

32p
H 1, p

0 (V , X)1Vun2uV

32p
L p

m (V)1nVun2uV

32p
L p (V) ) G

G
1

2
(Vun2uV

p
H 1, p

0 (V , X)1Vun2uV

p
L p

m (V)1nVun2uV

p
L p (V) )1K2 (u)

where K1 (u), K2 (u) are constant depending on u .
We have

Vun2uV

p
H 1, p

0 (V , X)1Vun2uV

p
L p

m (V)1 (2n21)Vun2uV

p
L p (V)G2K2 (u)

then un converges to u weakly in H 1, p
0 (V , X) and in L p

m (V). The constant H(un , u) is
bounded (with respect to n , then (6.7) give the strong convergence in H 1, p

0 (V , X)
and in L p

m (V). r

The weak regularity condition in the definition of Mp
0 (V , X) has a fundamental

role in the following Lemma:

LEMMA 6.3: Let m� Mp
0(V , X) and let w be the solution of (6.1). Then m(B)41Q

for every Borel set B%V with capp (BO ]w40(, V ; X) D0.

PROOF: Let u�H 1, p
0 (V , X)OL p

m (V). We have 0 GuG1 q.e. in V . Let un be the

solution of (6.4). By the comparison principles we have 0 GunGn
1

p21 w q.e. in V (re-
call that uG1 q.e. in V), so we have un40 q.e. in ]w40(. By Lemma 6.2 un con-
verges strongly to u in H 1, p

0 (V , X), then u40 q.e. in ]w40(.
Let U be a p-quasi-open set in V such that m(U) E1Q .
We recall that from Lemma 1.7 we have an increasing sequence zn of non-negative

functions in H 1, p
0 (V , X) that converge to 1U q.e. in V (we observe that 0 GznG1 q.e.

in V).
Since m(U) E1Q we have zn�L p

m (V), then by the previous step zn40 q.e. in
]w40(, this implies capp (BO ]w40(, V ; X) 40.

Consider now a Borel set B%V such that capp (BO ]w40(, V ; X) D0. For
every p-quasi-open set containing B we have capp (UO ]w40(, V ; X) D0, so
m(U) 41Q by the previous step. The weak regularity property of the measure m
gives m(B) 41Q. r

LEMMA 6.4: Let l , m� Mp
0 (V , X). Assume that there is a function w in

H 1, p
0 (V , X)OL p

l (V)OL p
m (V) such that

aAw , vb1�
V

NwNp22 wv dl4�
V

v dx(6.8)

aAw , vb1�
V

NwNp22 wv dm4�
V

v dx .(6.9)

Then l4m.
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PROOF: From the comparison principles we have wF0 q.e. in V . Consider the
measures l 0 and m 0 defined as

l 0 (B) 4�
B

w p21 dl , m 0 (B) 4�
B

w p21 dm

where B is a Borel set in V .
The first step of the proof is prove that l 04m 0 .
For every eD0 we define the measures le , me by

le (B) 4 �
BO ]wDe(

w p21 dl , me (B) 4 �
BO ]wDe(

w p21 dm

where B is a Borel set in V .
To prove that l 04m 0 it is enough to prove that le4me (eD0. We have that

w�L p
l (V)OL p

m (V), then le , me are bounded measures, then to prove the result we
have to prove that le (U) 4me (U) for every open set U in V .

Let us fix U and define Ue4UO ]wDe(. The set Ue4 is p-quasi-open. We recall
that from Lemma 1.7 we have an increasing sequence zn of non-negative functions in
H 1, p

0 (V , X) that converge to 1Ue
q.e. in V (we observe that 0 GznG1 q.e. in V). Since

w�L p
l (V)OL p

m (V) and wDe q.e. on ue , we obtain l(Ue ), m(Ue ) E1Q , then
zn�L p

l (V)OL p
m (V). From (6.8) (6.9) we have

�
V

w p21 zn dl4�
V

w p21 zn dm .

Taking the limit as nK1Q we have

le (U) 4 �
Ue

w p21 zn dl4 �
Ue

w p21 zn dm4me (U) .

The above relation prove le4me (eD0, then l 04m 0 . For every Borel set B con-
tained in ]wD0( we have

l(B) 4�
B

1

w p21
dl 0 , m(B) 4�

B

1

w p21
dm 0 .

Consider now a Borel set contained in ]w40( and capp (B , V ; X) D0, by Lemma
6.3 we have l(B) 4m(B) 41Q . For an arbitrary Borel set B in V we have

l(B) 4l(BO ]wD0()1l(BO ]w40() 4

4m(BO ]wD0()1m(BO ]w40() 4m(B)

and the result is proved. r
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PROOF OF THEOREM 6.1: Let us prove that K(V) is compact in the weak topology of
H 1, p

0 (V , X). Let wn be a sequence in K(V). Since K(V) is bounded in H 1, p
0 (V , X),

we may assume that wn converges weakly in H 1, p
0 (V , X) to a function w .

We have to prove that w� K(V).
Consider the measures s n412Awn , s n is a sequence of Radon measures in

H 21, q (V , X), which is bounded in H 21, q (V , X). Since s nF0, we have that s n (K) is
bounded for every compact set K%V . By Theorem 3.10 we have that Awn converges
to Aw weakly in H 21, q (V , X), then AwG1 and w� K(V).

Assume m� Mp
0 (V , X) and let w be the solution of (6.1), then from comparison

principles we have wF0 q.e. in V .
From Proposition 3.8 and Remark 3.9 we have that AwG1 in D8 (V), then

w� K(V).
Assume now w� K(V). Define s412Aw and let m the measure defined by (6.2).
We first prove that m� Mp

0 (V , X).
The measure s is in H 21, q (V , X) and non-negative, then s(B) 4m(B) 40 for

every Borel set B with capp (B , V ; X) 40. We have to prove

m(B) 4 inf ]m(U), U p-quasi-open, B%U((6.10)

for every Borel set in V with m(B) E1Q .

We define the measure m n by m n (B) 4m uBOmwD
1

n
nv .

Observe that

m n (V) 4m u{wD
1

n
}vGn p21 s u{wD

1

n
}vGn p�

V

w ds4 a12Aw , wb.

We fix now a Borel set B with m(B) E1Q . From the definition of m we have

capp (BO ]w40(, V ; X) 40. For nF2 define Bn4BOm 1

n
EwG

1

n21
n and B14

4BO ]wD1(, then m(B) 4!
n

m(Bn ).

We have m n (V) E1Q for every eD0, moreover for every n there exists an open
set Vn with Bn%Vn%V and m(Vn ) Em n (Bn )122n e4m(Bn )122n e . Define Un4

4VnOm 1

n
Ewn . Since w is p-quasi-continuous we have that the set Un is p-quasi-open.

We have also Bn%Un and m(Un ) Gm(Vn ) Gm(Bn )122ne . Define U04UO ]w4

40(, then U4NnF0 Un . Since Un are p-quasi-open, U is p-quasi-open and we have
m(U) Gm(B)1e . We recall that eD0 is arbitrary, then (6.10) follows.

We now prove that w is the solution of (6.1).
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From (6.2) we have

�
V

w p dm4 �
]wD0(

w p dm4 �
]wD0(

w ds4 a12Aw , wb E1Q

so w�L p
m (V). Let v�H 1, p

0 (V , X)OL p
m (V), from (6.2) we have v40 q.e. on

]w40(. We have

aAw , vb1�
V

NwNp22 wv dm4 aAw , vb1 �
]wD0(

w p21 v dm4

4 aAw , vb1 �
]wD0(

v ds4 aAw , vb1�
V

v ds4�
V

v dx

which proves (6.1). The uniqueness of m follows from Lemma 6.4. r

LEMMA 6.4: Let m� Mp
0 (V , X), let w be the solution of (6.1) and let bF1. Then

the set ]w b f , f� D(V)( is dense in H 1, p
0 (V , X)OL p

m (V).

PROOF: We have w�H 1, p
0 (V , X)OL Q (V)OL p

m (V) (Remark 4.2) and bF1,
then the function w b f is in H 1, p

0 (V , X)OL Q (V)OL p
m (V) for every f� D(V).

To prove the result for every u�H 1, p
0 (V , X)OL p

m (V) we have to find a sequence
f n� D(V) such that w b f n converges to u both in H 1, p

0 (V , X) and in L p
m (V).

B y a n a p p r o x i m a t i o n b y t r u n c a t i o n w e m a y a s s u m e u�L Q (V) an d uF0 q. e .
in V .

Let un be the solution of (6.4). By comparison principles we have 0 GunGCw q.e.
in V where C p214nVuVL Q (V)

p21 . From the Lemma 6.2 un converges to u both in
H 1, p

0 (V , X) and in L p
m (V). As consequence we may assume without loss of gener-

ality that there exists a constant C such that 0 GuGCw q.e. in V . We observe that
](u2Ce)1D0( % ]wDe( and that (u2Ce)1 converges as eK0 to u both in
H 1, p

0 (V , X) and in L p
m (V), then we may assume also that ]uD0( % ]wDe( for

some eD0 so u

w b
4

u

(wSe)b
. We recall that u�H 1, p

0 (V , X)OL Q (V), then

u

w b
�H 1, p

0 (V , X)OL Q (V).

There exists a sequence f n� D(V) bounded in L Q (V) which converges to

z4
u

w b
in H 1, p

0 (V , X) and q.e. in V , then also m-a.e. in V .

We recall that w�H 1, p
0 (V , X)OL Q (V) and bF1, then w b f n converges to

w b z4u in H 1, p
0 (V , X). We have w�L Q

m (V)OL p
m (V) (Remark 4.2) and bF1, then

w b in L Q
m (V)OL p

m (V).
We recall that f n are bounded and converge to z4

u

w b
m-a.e., so we have that the

sequence w b f n converges to w b z4u strongly in L p
m (V) (use the Dominated Conver-

gence Theorem). r
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7. - THE gA-convergence

Definition of the gA-convergence.

In this section we introduce the notion of gA convergence in M0
p (V , X), which is

defined as the convergence of the solutions f the corresponding relaxed Dirichlet
problems.

DEFINITION 7.1: Let m n be a sequence in M0
p (V , X) and m� M0

p (V , X). We say
that m n gA-converges to m if for every f�H 21, q (V , X) the solutions of the
problem

un�H 1, p
0 (V , X)OL p

mn
(V)

aAun , vb1�
V

NunNp22 un v dm n4 a f , vb(7.1)

(v�H 1, p
0 (V , X)OL p

mn
(V)

converge weakly in H 1, p
0 (V , X) as nK1Q to the solution u of the problem

u�H 1, p
0 (V , X)OL p

m (V)

aAu , vb1�
V

NuNp22 uv dm4 a f , vb(7.2)

(v�H 1, p
0 (V , X)OL p

m (V)

Let us emphasize the fact that the notion of gA-convergence depends on the oper-
ator A .

Although the definition depends also on V and on the boundary conditions we
shall see in Theorems 7.11, 7.12 that the boundary condition on ¯V does not play an
important role in this problem.

DEFINITION 7.2: The solutions of the problem (6.1) depends continuously on f uni-
formly with respect to m (Theorem 3.3). Then a sequence m n gA-converges to m if the sol-
ution of (6.1) weakly converges in H 1, p

0 (V , X) to the solution of (6.2) for every f in a
dense subset of H 21, q (V , X).

Let m n be a sequence of measures in M0
p (V , X), let wn be the solution of the

problem

wn�H 1, p
0 (V , X)OL p

mn
(V)

aAwn , vb1�
V

NwnNp22 wn v dm n4�
V

v dx(7.3)

(v�H 1, p
0 (V , X)OL p

mn
(V)
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and let w the solution of the problem

w�H 1, p
0 (V , X)OL p

m (V)

aAw , vb1�
V

NwNp22 wv dm4�
V

v dx(7.4)

(v�H 1, p
0 (V , X)OL p

m (V).

The following result characterize the gA-convergence of the m n to m in terms of the
weak convergence in H 1, p

0 (V , X) of wn to w .

THEOREM 7.3: Let m n be a sequence of measures in M0
p (V , X), let wn (w) be the sol-

ution of the problem (7.3) ((7.4)). The following conditions are equivalent:
(a) wn weakly converges to w in H 1, p

0 (V , X)
(b) m n gA-converges to m

PROOF: The fact (b) ¨ (a) derives from the definition of gA-convergence taking
f41.

Assume that (a) holds. Given f�L Q (V) let un be the solutions of problem (7.1).
From (3.3) we have that un is bounded in H 1, p

0 (V , X), then we may assume that un

weakly converge in H 1, p
0 (V , X) to some function u .

We have to prove that u is a solution of (7.2).
By the comparison principles we have NunNGCwn where C4V f V

L Q (V)

1

p21 . As nK1

1Q we have NuNGCw q.e. in V .
For eD0 Ce will be the locally Lipschitz function defined by (5.3) and define ve4

4Ceg u

wSe
h . We have ve�H 1, p

0 (V , X)OL Q (V). Fix bF (p21)S1 and

f� D(V).
We recall that wn�H 1, p

0 (V , X)OL Q (V) (Remark 4.2); we take v4wn
b f as test

function in (7.1) and v4ve wn
b f as test function in (7.3). We obtain

aAun , wn
b fb1�

V

NunNp22 un wn
b f dm n4�

V

f , wn
b f dx

aAwn , ve wn
b fb1�

V

NwnNp22 wn ve wn
b f dm n4�

V

ve wn
b f dx

Then

(7.5) aAun , wn
b fb2aAwn , ve wn

b fb1�
V

NunNp22 un wn
b f dm n2�

V

wn
b1p21 ve f dm n4

4�
V

f , wn
b f dx2�

V

ve wn
b f dx
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From Lemmas 5.2 and 5.4 we obtain

(7.6) aAun , wn
b fb2 aAwn , ve wn

b fb1�
V

NunNp22 un wn
b f dm n2�

V

wn
b1p21 ve f dm n4

4 aAun , wn
b fb2 aAwn , ve wn

b fb1 Re
n

with

lim
eK0

lim sup
nK1Q

N Re
nN40

We recall that wn is bounded in L Q (V) then converges strongly in L p (V) to w . For
every eD0 we have

lim
nK1Q

u �
V

f , wn
b f dx2�

V

ve wn
b f dxv4�

V

f , w b f dx2�
V

ve w b f dx

The above relation with (6.5) (6.6) gives

aAu , w b fb2 aAw , ve w b fb 4�
V

f , w b f dx2�
V

ve w b f dx1 Re

where

lim
eK0

N ReN40.

Define s412Aw; from Theorem 6.1 we have that s is a non-negative Radon mea-
sure in H 21, q (V , X). We have

aAu , w b fb1�
V

ve w b f ds4 int
V

f , w b f dx1 Re(7.7)

We recall that NuNGCw q.e. in V (Remark 4.2), then from (5.3) we have veG

G (CSe)p21 q.e. in V . Recalling the definition of Ce we obtain the convergence q.e. in
V of ve w b to NuNp22 uw (b2p11) . We recall that s is a non-negative Radon measure in
H 21, q (V , X) and w b is bounded, so we have w b f�L 1

s (V) and

lim
eK0

�
V

ve w b f ds4�
V

NuNp22 uw (b2p11) ds .

Then from (7.7) we have

aAu , w b fb1�
V

NuNp22 uw (b2p11) f ds4�
V

f , w b f dx(7.8)
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We recall that NuNGCw q.e. in V (Remark 4.2) and w�L p
m (V), so u�L p

m (V) and

�
V

NuNp22 uw (b2p11) f ds4 �
]wD0(

NuNp22 uw (b2p11) f ds4�
V

NuNp22 uw b f dm

then from (7.8)

aAu , w b fb1�
V

NuNp22 uw b f dm4�
V

f , w b f dx

We recall that the set ]w b f , f� D(V)( is dense in H 1, p
0 (V , X)OL p

m (V), then u is
the solution of (7.2) and m n gA-converges to m (Remark 7.2). r

REMARK 7.4: The uniqueness of the gA-limit is an easy consequence of Theorem
7.3 and Lemma 6.4.

Compactness and density results.

The following result proves the compactness of M0
p (V , X) with respect to the

gA-convergence

THEOREM 7.5: Every sequence in M0
p (V , X) contains a gA-convergent subse-

quence.

PROOF: Let m n be a sequence in M0
p (V , X) and let wn be the solutions of (7.3). By

Theorem 6.1 wn� K(V) (where K(V) is defined at the beginning of section 6). We re-
call that K(V) is compact in the weak topology of H 1, p

0 (V , X), then a subsequence of
wn converges weakly in H 1, p

0 (V , X) to some function w� K(V). By Theorem 6.1
there is a measure m� M0

p (V , X), such that w is solution of (7.4). The result follows
from Theorem 6.3. r

The case of Dirichlet problems in perforated domains is a particular case and it is
considered in the following theorem:

THEOREM 7.6: Let V n be an arbitrary sequence of open subsets of V. Then there
exists a subsequence, still denoted by V n , and a measure m� M0

p (V , X) such that for
every f�H 21, q (V , X) the solution un of the problem

un�H 1, p
0 (V n , X), Aun4 f in D8 (V n )

extended by 0 to V , converges weakly in H 1, p
0 (Vn , X) to the solution u of problem (7.2).

PROOF: The conclusion follows easily from Theorem 7.5 and Remark 3.4. r

Using Theorem 7.3 we prove now the following density result in M0
p (V , X):
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THEOREM 7.7: Every measure m� M0
p (V , X) is the gA-limit of a sequence m n of

Radon measures in M0
p (V , X) such that the solution wn of (7.3) converges strongly in

H 1, p
0 (V , X) to the solution of (7.4).

PROOF: By (6.2) a measure m in M0
p (V , X) is a Radon measure if the solution w of

(7.4) is such that

inf
K

wD0 for every compact set K%V(7.9)

We denote by w0�H 1, p
0 (V , X) the solution of the equation Aw041, then w0 satisfies

(7.9) [8].
Fix m� M0

p (V , X) and denote by w� K(V) the solution of (7.4). We define

wn4wS
1

n
w0 . It is easy to see that wn is a non-negative subsolution of the equation

Au41, so wn� K(V). Moreover the function wn satisfies (7.9) and converges strongly
to w in H 1, p

0 (V , X). Then the measures m n associated with wn , which are Radon mea-
sures according to (7.9), gA converge to m by Theorem 7.3. r

Strong convergence and correctors.

The following result deals with the convergence of solutions, momenta and en-
ergies, when also f varies.

THEOREM 7.8: Let m n be a sequence of measures in M0
p (V , X), which gA-converges

to the measure m� M0
p (V , X) and let fn be a sequence in H 21, q (V , X), which con-

verges to f in H 21, q (V , X). Define un as the solution of the problem

un�H 1, p
0 (V , X)OL p

mn
(V)

aAun , vb1�
V

NunNp22 un v dm n4 afn , vb(7.10)

(v�H 1, p
0 (V , X)OL p

mn
(V)

and u as the solution of problem (7.2). Then the sequence un converges to u weakly in
H 1, p

0 (V , X) and strongly in H 1, r
0 (V , X), 1 E rEp. Moreover NXunNp22 Xun converges

to NXuNp22 Xu weakly in L q (V) and strongly in L s (V), 1 E sEq. Finally the energies
NXunNp dx1NunNp dm n converge to NXuNp dx1NuNp dm weaklyx in the sense of Radon
measures on V , i.e.

(7.11) lim
nK1Q

u �
V

NXunN
pf dx1�

V

NunN
pf dm nv4u �

V

NXuNpf dx1�
V

NuNpf dmv
for every f�C0 (V).
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PROOF: Define vn as the solution of problem (7.1). From Theorem 3.3 the sequence
(un2vn ) converges to 0 strongly in H 1, p

0 (V , X). Using Theorem 3.11 we easily obtain
that un converges to u weakly in H 1, p

0 (V , X) and strongly in H 1, r
0 (V , X), 1 E rEp .

Moreover NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (V) and strongly in
L s (V), 1 E sEq .

By (7.10) for every f� D(V) we have

�
V

NXunNp f dx1�
V

NunNp f dm n4

4�
V

NXunNp22 Xun X(un f) dx1�
V

NunNp f dm n2�
V

unNXunNp22 Xun Xf dx4

4 a fn , un fb2�
V

unNXunNp22 Xun Xf dx .

We recall that fn converges to f in H 21, q (V , X), un converges to u weakly in
H 1, p

0 (V , X) and NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (V) then

lim
nK1Q

u �
V

NXunNp f dx1�
V

NunNp f dm nv4

4 a f , ufb2�
V

uNXuNp22 XuXf dx4 u �
V

NXuNp f dx1�
V

NuNp f dmv
for every f� D(V) (in the second equality we use the fact that u is the solution of (7.2)).

An easy approximation give now (7.11) for all f�C0 (V). r

We consider now a corrector result for the strong convergence in H 1, p
0 (V , X).

THEOREM 7.9: Under the assumptions of Theorem 7.8 let Pn be the correctors de-
fined by (4.4), where un and w are the solutions of (7.3), (7.4). Then for every eD0
there exists a function u e in H 1, p

0 (V , X)OL Q (V)OL p
m (V) such that Vu e2uVH 1, p

0 (V , X)

and Nu eNGC e w for same constant C e , such that the sequence R e
n defined by

Xun4Xu1u e Pn1R e
n(7.12)

satisfies

lim sup
nK1Q

VR e
n VL p (V)Ge .(7.13)

If f�L Q (V) we can take eF0 and u e4u.

PROOF: If f�L Q (V) the result follows from Theorem 4.1. When f�H 21, q (V , X)
for every eD0, aD0, KD0 we can choose f e�L Q (V) such that V f2 f e

VH 21, q (V , X)G

G (Ke)a . If pF2 we choose a4p21 and K4
1

2
C 1/p , where C is the constant appear-
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ing in (7.9). If 1 EpE2 we choose a41, K4MR1 where

M4
1

2
C 21 2

p22

p (V f VH 21, q (V , X)1e)
p22

p21

and C is the constant appearing in (3.10).
We define vn as the solution of problem (7.1), v e

n as the solution of the analogous
problem relative to f e and u e the solution of problem (7.2) relative to f e . For eD0
fixed the sequence v e

n converges to u e weakly in H 1, p
0 (V , X).

From Theorem 3.3 we deduce that

Vu2u e
VH 1, p

0 (V , X)G
e

2
(7.14)

Vvn2vn
e
VH 1, p

0 (V , X)G
e

2
(7.148)

and from Remark 4.2 we have that u e�L Q (V) and u eGC e w q.e. in V with C e4

4V f e
V

1

p21
L Q (V)

. The result of Theorem 4.1 gives that the sequence Q e
n defined by

Xv e
n 4Xu e1u e Pn1Q e

n(7.15)

converges to 0 strongly in L p (V) for eD0 fixed and nK1Q .
From (7.12) (7.15) we obtain

R e
n 4Q e

n 1 (Xu e2Xu)1 (Xvn
e2Xvn )1 (Xun2Xvn ).

Then (7.13) follows from (7.14), (7.14’), (7.15) and from the fact that (un2vn ) con-
verges to 0 strongly in H 1, p

0 (V , X) by Theorem 3.3. r

THEOREM 7.10: Under the assumptions of Theorem 7.8 if the solution wn of (7.3)
converges strongly in H 1, p

0 (V , X) to the solution w of (7.4), then un converges strongly
to u in H 1, p

0 (V , X).

PROOF: For every e let u e be the function introduced in Theorem 7.9. The function
u e

w
is bounded on ]wD0(, if wn converges to w strongly in H 1, p

0 (V , X); then for

eD0 fixed u e Pn converges strongly to 0 in L p (V).
The result follows from (7.12) (7.13). r

Localization properties.

We end the section by proving the local character of the gA-convergence. The fol-
lowing result deals with local solutions in an open subset U of V and we do not pay
any care to the boundary conditions on ¯U . For every open set U%V the duality pair-
ing between H 21, q (U , X) and H 1, p

0 (U , X) is denoted by a., .bU. The operator
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!
i41

m

X x
i (NXvNp22 Xv) as operator from H 1, p

0 (U , X) to H 21, q (U , X), will still be denot-

ed by A .

THEOREM 7.11: Let m n be a sequence of measures in M0
p (V , X), which gA-con-

verges to the measure m� M0
p (V , X). Let U be an open subset of V , let fn be a sequence

in H 21, q (U , X), which converges to f in H 21, q (U , X) and let un be a sequence in
H 1, p (U , X), which converges weakly to some u in H 1, p (U , X).

Suppose that

un�L p
mn

(U 8 ), (U 8%%U

aAun , vbU1�
U

NunNp22 un v dm n4 a fn , vbU(7.16)

(v�H 1, p
0 (U , X)OL p

mn
(U) with supp(v) %%U

u�L p
m (U 8 ), (U 8%%U

aAu , vbU1�
U

NuNp22 uv dm4 a f , vbU(7.17)

(v�H 1, p
0 (U , X)OL p

m (U) with supp(v) %%U

We have that un converges to u strongly in H 1, r (U , X), 1 E rEp and NXunNp22 Xun

converges to NXuNp22 Xu weakly in L q (U) and strongly in L s (U), 1 E sEq. Finally the
energy NXunNp dx1NunNp dm n converges to NXuNp dx1NuNp dm weaklyx in the sense of
Radon measures.

PROOF: Fix an open set U 8%%U and a function z�Lip(U ; X) such that zF0 on
U , z41 on U 8 , supp(z) %U .

We use v4zun as test function in (7.16) and we obtain

�
U 8

NunNp dm nG a fn , zun bU2 aAu , zun bUGM

for a suitable constant M . By Theorem 3.11 the sequence un converges to u weakly in
H 1, p (U 8 , X) and strongly in H 1, r (U 8 , X), 1 E rEp; moreover NXunNp22 Xun con-
verges to NXuNp22 Xu weakly in L q (U 8 ) and strongly in L s (U 8 ), 1 E sEq . We recall
that un is bounded in H 1, p (U , X) and NXunNp22 Xun is bounded in L q (U); then, since
U 8%%U is arbitrary, we have that un converges to u weakly in H 1, p (U , X) and strongly
in H 1, r

0 (U , X), 1 E rEp; moreover NXunNp22 Xun converges to NXuNp22 Xu weakly in
L q (U) and strongly in L s (U), 1 E sEq .

Define f(x) 4exp g12
1

z(x)
h if z(x) D0 and f(x) 40 if z(x) 40. Then

f�Lip(U ; X)OH 1, p
0 (U , X), fF0 in U , f41 in U 8 and f p21�Lip(U ; X)O

H 1, p
0 (U , X), so f p21 v�H 1, p

0 (U , X) for every v in H 1, p
0 (U , X).
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Let us define zn4fun , z4fu and

c n4NfXun1un XfNp22 (fXun1un Xf)2NfXunNp22 fXun

c4NfXu1uXfNp22 (fXu1uXf)2NfXuNp22 fXu .

For every v�H 1, p
0 (V , X) we have

NXznNp22 Xzn Xv4c n Xv1f p21 NXunNp22 Xun4

4c n Xv1NXunNp22 Xun X(f p21 v)2vNXunNp22 Xun X(f p21 )

The function zn is the solution of the problem

zn�H 1, p
0 (V , X)OL p

mn
(V)

aAzn , vbV1�
V

NznNp22 zn v dm n4 agn , vbV(7.18)

(v�H 1, p
0 (V , X)OL p

mn
(V)

where gn�H 21, q (V , X) is defined as

a gn , vbV4�
U

c n Xv dx1 a fn , f p21 vbU2�
U

vNXunNp22 Xun X(f p21 ) dx

Define g�H 21, q (V , X) as

a g , vbV4�
U

cXv dx1 af , f p21 vbU2�
U

vNXuNp22 XuX(f p21 ) dx

We prove now that gn converges to g in H 21, q (V , X).
We have that NXunNp22 Xun converges to NXuNp22 Xu weakly in L q (U), then the

last two terms in gn converges strongly in H 21, q (V , X) to the corresponding terms in
g . To conclude we have to prove that c n converges to c strongly in L q (U). We recall
that un converges to u strongly in H 1, r (V , X), 1 E rEp , so we may assume that un ,
Xun converge to u , Xu a.e. in U . Then c n converges to c a.e. in U .

It remain to prove that the sequence Nc nNq is equi-integrable.
If pF2 there exists a constant C such that

Nc nNqGC(NXunNq(p22)1NunNq(p22) )NunNq4C(NXunNq(p22) NunNq1NunNp )

a.e. in U . We have supp(c n ) % supp(f); then for every measurable E%U the Hölder in-
equality gives

�
E

Nc nNq dxGC yu �
U

NXunNp dxv
p22

p21 u �
EOK

NunNp dxv
q

p

1 u �
EOK

NunNp dxvz
where K4 supp(f). The sequence un converges strongly in L p (K); then the sequence
Nc nNq is equi-integrable.
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If 1 EpE2 we have

Nc nNqGC1
q NXfNp NunNp

a.e. in U; then the sequence Nc nNq is equi-integrable.
The Dominated Convergence Theorem gives that c n converges to c in

L q (U).
We recall that zn converges to z weakly in H 1, p

0 (V , X), then by (7.18) and Theo-
rem 6.8 z is the solution of the problem

z�H 1, p
0 (V , X)OL p

m (V)

aAz , vbV1�
V

NzNp22 zv dm4 ag , vbV(7.19)

(v�H 1, p
0 (V , X)OL p

m (V)

Since f41 in U 8 we have u4z in U 8 then u�L p
m (U 8 ). Moreover if

v�H 1, p
0 (V , X)OL p

m (V) with supp(v) %%U 8 , then ag , vbV =ag , vbU , then (7.17) fol-
lows from (7.19).

The convergence of the energies follows as in Theorem 7.8. r

THEOREM 7.12: Let m n be a sequence of measures in M0
p (V , X), which gA-con-

verges to the measure m� M0
p (V , X) and let U an open subset of V then m n gA-con-

verges to the measure m

PROOF: Fix f�H 21, q (V , X) and denote by un the solution of the problem (7.1)
with V replaced by U . There is a subsequence, still denoted by un , that converges
weakly in H 1, p

0 (U , X) to a function u�H 1, p
0 (U , X). From Theorem 7.11 u�L p

m (U 8 )
for every open set U 8%%U and u is a solution of (7.17).

To conclude the proof we have to prove that u�L p
m (U). We consider a sequence vn

such that vn converges strongly to u in H 1, p
0 (U , X), supp(vn ) %%U , NvnNGNuN q.e. in

U and uvnF0 q.e. in U . We recall that u�L p
m (U 8 ) for every open set U 8%%U; then

vn�L p
m (U). We may also assume that vn converges to u q.e. in U , then

�
U

NuNp dm4 lim inf
nK1Q

�
U

NuNp22 uvn dm .

Use vn as test function in (7.17) we obtain

�
U

NuNp22 uvn dm4 a f , vn bU2 aAu , vn bU

Then

�
U

NuNp dm4 a f , ubU2 aAu , ubUE1Q

so u�L p
m (U) and u is the solution of problem (7.2) with V replaced by U . From the
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uniqueness of the solution of problem (7.2) all the sequences un converges to u and the
proof is complete. r

COROLLARY 7.13: Let m , m n� M0
p (V , X) and V i a family of open subsets of V ,

which covers V. Then m n gA-converges to the measure m in V if and only if m n gA-con-
verges to m in V i for every i.

PROOF: The conclusion follows by Theorems 7.5, 7.12 and from the uniqueness of
the gA-limit. r

APPENDIX

Here we generalize to the subelliptic framework some results given for the eu-
clidean framework in [6] (see also [18]).

We consider a sequence of subelliptic Leray-Lions operators on H 1, p (V , X) of
the form

!
i41

m

X x
i (ak (x , u , Xu) )

where ak : V3R3R mKR satisfies a Carathéodory conditions, i.e. ak (., y, j) is mea-
surable for every y�R and j�R m and ak (x,.,.) is continuous on R3R M for a.e. x�V .
We also assume that

Nak (x , y , j)NGa(x)1A(NyNp211NjNN p21)(A.1)

(ak (x , y , z)2ak (x , y , j) )(z2j) D0(A.2)

where a�L q (V), 1

p
1

1

q
41. We assume that there exists a : V3R3R mKR such

that for a.e. x�V

ak (x,.,.) K a(x,.,.)

uniformly on compact sets of R3R m , then also a satisfies the condition (A.2). Let
uk�H 1, p (V , X), fk�H 21, q (V , X) and m k Radon measures be sequences such
that

ukKu weakly in H 1, p (V , X)

fkK f weakly in H 21, q (V , X)

m kKm weaklyx in the space of Radon measures .

Finally we assume

!
i41

m

X x
i ak (x , uk , Xuk ) 4 fk1m k in D8 (V)
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i.e.

�
V

ak (x , uk , Xuk ) Xv dx4 a fk , uk b1�
V

v dm k

The following result holds:

THEOREM A.1: Let the above assumptions hold. Then Xuk converges to Xu strongly
in L r (V), 1 E rEp.

PROOF: We observe that since the sequence uk weakly converges to u in
H1, p (V , X) then the sequence Xuk is bounded in L p (V). Then to prove the result it is
enough to prove that every subsequence of Xuk contains a subsequence which con-
verges to Xu a.e. in V . We denote

gk4 (ak (x , uk , Xuk )2ak (x , u , Xu) )(Xuk2Xu)

To prove the result it is enough to prove that gk converges to 0 a.e. in V .
We have for K%V compact and dD0, 0 EuE1

�
K

gk
u dx4 �

KO ]Nuk2uNEd(

gk
u dx1 �

KO ]Nuk2uNFd(

gk
u dxG

Gm(V)12uu �
KO ]Nuk2uNEd(

gk dxvu

1m(KO ]Nuk2uNFd()12uu �
K

gk dxvu

The above relation implies

lim
kK1Q

�
K

gk
u dxGm(V)12u lim

kK1Q
u �

KO ]Nuk2uNEd(

gk dxvu

.

Let c of class C 1 (R) such that

c(y) 4y for NyNG1; c(y) 40 for NyNF2; c(y) G2

Nc 8 NGM

We denote

cd4dc u y

d
v

Then

cd (y) 4y for NyNGd ; cd (y) 40 for NyNF2d ; cd (y) G2d

NXcdNGM .

In the set ]Nuk2uNEd( we have

gk4 (ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ).
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Let f� D(V), f41 on K , 0 GfG1 on V , we denote U4 supp(f). We have

(A.1) �
KO ]Nuk2uNEd(

gk dx4 �
KO ]Nuk2uNEd(

gk f dx4

4 �
KO ]Nuk2uNEd(

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dx4

4�
V

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dx1

1 �
]dGNuk2uNE2d(

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dxG

G�
V

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dx1

1M �
UO ]dGNuk2uNE2d(

(Nak (x , uk , Xuk )N1Nak (x , u , Xu)N)(NXukN1NXuN) dx

We estimate now the first term in the left hand side.

�
V

(ak (x , uk , Xuk )2ak (x , u , Xu) )X(cd (uk2u) )f dx4

4�
V

ak (x , uk , Xuk ) X(cd (uk2u) f) dx2

2�
V

cd (uk2u) ak (x , uk , Xuk ) X(f) dx2�
V

ak (x , u , Xu) X(cd (uk2u) ) f dx4

4 a fk1m k , cd (uk2u) fb2

2�
V

cd (uk2u) ak (x , uk , Xuk ) X(f) dx2�
V

ak (x , u , Xu) X(cd (uk2u) ) f dx .

Let m k (U) GMU , then

Nam k , cd (uk2u) fbNG2dMU

So

�
V

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dxG

2dMU1Na fk , cd (uk2u)fbN1

N�
V

cd (uk2u) ak (x , uk , Xuk ) X(f) dxN1N�
V

ak (x , u , Xu) X(cd (uk2u) ) f dxN.
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We obtain

lim sup
kK1Q

�
V

(ak (x , uk , Xuk )2ak (x , u , Xu) ) X(cd (uk2u) ) f dx42dMU

where we use the Dominated Convergence Theorem.
We now consider the second term in the right hand side of (A.1). Let

hk4M(Nak (x , uk , Xuk )N1Nak (x , u , Xu)N)(NXuk N1NXuN)

We have

Vhk VL 1 (U)GC

Moreover (eD0, there are SD0 integer such that C

S
Ee and hD0 with 2S hEe . We

have

!
i41

S

�
UO ]2i21 hGNuk2uNE2i h(

hk dxG�
U

hk dxGC

There at least one term in the left hand side less than C

S
, i.e. there exists ik such

that

�
UO ]2ik21 hGNuk2uNE2ik h(

hk dxG
C

S
Ee .

Denote d k42ik21 h , then 2d kG2S hEe and

�
UO ]dkGNuk2uNE2dk(

hk dxEe .

Choose now in (A.1) d4hGd k we obtain

lim sup
kK1Q

�
KO ]Nuk2uNEh(

gk dxG2hMU1eG (MU11)e .

Then

lim sup
kK1Q

�
K

gk
u dxG

m(V)12uulim sup
kK1Q

�
KO ]Nuk2uNEd(

gkvu

G

Gm(V)12u (MU11)u eu .

As eD0 is arbitrary we obtain

lim
kK1Q

�
K

gk
u dx40

so gk converges to 0 in L 1 (K). Since K is an arbitrary compact set in V we have that gk
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converges to 0 in L 1
loc (V), so every subsequence of gk contains a further subsequence

converging to 0 a.e. in V . Then every subsequence of Xuk contains a further subse-
quence converging to Xu a.e. in V and this implies that every subsequence of uk con-
tains a further subsequence converging to u in H 1, r (V , X), 1 E rEp and this con-
cludes the proof. r
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