

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni 120° (2002), Vol. XXVI, fasc. 1, pagg. 161-165

G. BELLETTINI - M. PAOLINI (*)

Errata Corrige to the Paper: Some Results on Minimal Barriers in the Sense of De Giorgi Applied to Driven Motion by Mean Curvature

Abstract. — We provide the complete argument for the proof of step 2 in the demonstration of Lemma 4.2 in the paper [1].

Errata Corrige al lavoro: Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature

SUNTO. — Diamo la dimostrazione completa del passo 2 all'interno della dimostrazione del Lemma 4.2 nel lavoro [1].

1. - SHORT EXPLANATION

The proof of step 2 in the demonstration of Lemma 4.2 at pag. 52 of the paper [1] is not completely correct, since formula (4.3) (and consequently formula (4.4)) does not hold in general in the case that $\frac{dp_{\tau}}{d\tau}\Big|_{\tau=0}$ is tangent to $\partial f(t)$. To convince oneself of this assertion, let us consider the following example: let $f:[0, 1] \rightarrow \mathcal{P}(\mathbb{R}^2)$ be the smooth flow consisting of the initial circle $f(0) = \{x \in \mathbb{R}^2 : |x| \leq 1\}$ which translates in the positive x_1 -direction. Let p_{τ} be the intersection of $\partial f(\tau)$ with the half-line $\{(x_1, x_2): x_1 = 1, x_2 > 0\}$, and $p := (1, 0) = p_0$. We have $(p_{\tau} - p) \cdot \nu = 0$, where ν denotes the outward unit normal to $\partial f(0)$ at p; in particular $\lim_{\tau \to 0^+} \left(\frac{p_{\tau} - p}{\tau}\right) \cdot \nu = 0$. On

(*) Indirizzo degli Autori: G. Bellettini: Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy. E-mail: belletti@mat.uniroma2.it; M. Paolini: Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121 Brescia.

E-mail: paolini@dmf.unicatt.it

the other hand, the normal velocity of $\partial f(0)$ at p is clearly nonzero, and this is a contradiction with formula (4.3) in [1]. Note that $\lim_{\tau \to 0^+} \left| \frac{p_{\tau} - p}{\tau} \right| = +\infty$. The above constructed flow is not a curvature flow, but it is clear that, by adding a suitable forcing term, similar examples can be easily constructed. Since we miss the proof that $\frac{dp_{\tau}}{d\tau} \Big|_{\tau=0}$ is not tangent to $\partial f(t)$ in the situation considered in step 2 of Lemma 4.2, we provide here a different argument to prove the same statement.

2. - Proof of step 2 inside the proof of Lemma 4.2 in [1]

We begin by recalling that the forcing term g belongs to $\mathcal{C}^{\infty}(\mathbb{R}^n \times I) \cap L^{\infty}(\mathbb{R}^n \times X)$, and satisfies the following property: there exists a constant G > 0 such that

(2.1)
$$|g(x, t) - g(y, t)| \le G |x - y|, \quad x, y \in \mathbb{R}^n, t \in I.$$

We are now in a position to prove step 2 in Lemma 4.2 in [1], i.e., if $\phi : I \to \mathcal{P}(\mathbb{R}^n)$, $\phi \in \text{Barr}(\mathcal{F}_g)$, $f : [a, b] \subseteq I \to \mathcal{P}(\mathbb{R}^n)$, $f \in \mathcal{F}_g$ and $f(a) \subseteq \phi(a)$, then

$$\limsup_{\tau \to 0^+} \frac{\delta(t) - \delta(t+\tau)}{\tau} \leq G\delta(t), \quad t \in [a, b[,$$

where

$$\delta(t) := \operatorname{dist} \left(f(t), \, \mathbb{R}^n \setminus \phi(t) \right), \qquad t \in [a, \, b].$$

Suppose by contradiction that there exist $t_0 \in [a, b]$ with $\delta(t_0) > 0$ and $\Lambda < -G\delta(t_0)$ such that

$$\liminf_{\tau \to 0^+} \frac{\delta(t_0 + \tau) - \delta(t_0)}{\tau} < \Lambda \; .$$

Observe that we can always assume

$$\delta(t_0) = \liminf_{\tau \to 0^+} \delta(t_0 + \tau)$$

because, if $\delta(t_0) < \liminf_{\tau \to 0^+} \delta(t_0 + \tau)$ then $\limsup_{\tau \to 0^+} \frac{\delta(t_0) - \delta(t_0 + \tau)}{\tau} = -\infty$, and the assertion of step 2 is trivially satisfied. On the other hand, using the definition of barrier it is not difficult to prove that $\delta(t) \leq \liminf_{\tau \to 0^+} \delta(t + \tau)$ for any $t \in [a, b[$.

Pick a decreasing sequence $\{\tau_m\}$ of positive times converging to 0 as $m \to +\infty$ such that $t_0 + \tau_m \in [a, b]$ and

$$\liminf_{\tau \to 0^+} \frac{\delta(t_0 + \tau) - \delta(t_0)}{\tau} = \lim_{m \to +\infty} \frac{\delta(t_0 + \tau_m) - \delta(t_0)}{\tau_m}$$

$$-163 -$$

and

(2.2)
$$\frac{\delta(t_0 + \tau_m) - \delta(t_0)}{\tau_m} < \Lambda, \quad m \in \mathbb{N}.$$

Recalling that $\partial f(\cdot)$ is compact, there exist two sequences $\{x^m\}$, $\{y^m\}$ of points with $x^m \in \partial f(t_0 + \tau_m)$ and $y^m \in \partial \phi(t_0 + \tau_m)$ such that

(2.3)
$$|x^m - y^m| = \delta(t_0 + \tau_m) < \Lambda \tau_m + \delta(t_0), \qquad m \in \mathbb{N}.$$

Possibly passing to suitable subsequences, we can suppose that

$$x^m \to x^{\infty} \in \partial f(t_0), \qquad y^m \to y^{\infty} \in \overline{\mathbb{R}^n \setminus \phi(t_0)} \qquad \text{as } m \to \infty$$

Notice that the conclusion $y \stackrel{\infty}{\leftarrow} \overline{\mathbb{R}^n \setminus \phi(t_0)}$ is ensured by the properties of barriers. Moreover, using also (2.3) we have

$$\delta(t_0) = \liminf_{\tau \to 0^+} \delta(t_0 + \tau) \leq \liminf_{m \to +\infty} \delta(t_0 + \tau_m) = \liminf_{m \to +\infty} \left| x^m - y^m \right| \leq \delta(t_0),$$

so that $|x^{\infty} - y^{\infty}| = \liminf_{m \to +\infty} \delta(t_0 + \tau_m) = \delta(t_0).$

We now localize our problem as follows. We take an open ball $B(x^{\infty})$ centered at x^{∞} and small enough, and we define $B(y^{\infty}) := B(x^{\infty}) + (y^{\infty} - x^{\infty})$. Clearly $B(y^{\infty})$ is a ball centered at y^{∞} . We can assume that $B(x^{\infty}) \cap B(y^{\infty}) = \emptyset$ (recall that $\delta(t_0) > 0$) and that $x^m \in B(x^{\infty})$ and $y^m \in B(y^{\infty})$ for any $m \in \mathbb{N}$.

We now need to introduce a notation. Given a nonzero vector $\xi \in \mathbb{R}^n$, we denote by f_{ξ} the mean curvature flow with forcing term g of the translated set $f(t_0) + \xi$. Note that $f_{\xi} \in \mathcal{F}_g$ and that f_{ξ} is defined on a time interval of the form $[t_0, c]$, with $c > t_0$ possibly smaller than b. Note also that, as g may depend on the space variable $x, f_{\xi}(t)$ does not coincide, in general, with $f(t) + \xi$, $t \in [t_0, c]$.

We can suppose that, if ξ is any translation vector of the form w - z, for $z \in B(x^{\infty})$ and $w \in B(y^{\infty})$, with $|\xi| = \delta(t_0)$, the two evolutions $f(\cdot) \cap B(x^{\infty})$ and $f_{\xi}(\cdot) \cap B(y^{\infty})$ are the subgraphs of two real-valued smooth functions F, F_{ξ} defined on $A \times [t_0, t_0 + +\overline{\tau}]$, with A an open subset of \mathbb{R}^{n-1} and where $\overline{\tau} > 0$ can be chosen independently of ξ . We can further assume that the evolutions $F(\cdot, \cdot)$ and $F_{\xi}(\cdot, \cdot)$ are also subgraphs with respect to any direction indicated by the vectors ξ described above.

Fix now any integer m > 0. Without loss of generality we fix a coordinate system in \mathbb{R}^n depending on m as follows: we suppose that x^m is at the origin of \mathbb{R}^n ; moreover, as $|x^m - y^m| = \delta(t_0 + \tau_m)$, the tangent hyperplane $T_{x^m}(\partial f(t_0 + \tau_m))$ to $\partial f(t_0 + \tau_m)$ at the origin x^m is horizontal and

$$y^m = (0, \delta(t_0 + \tau_m)) \in T_{x^m}(\partial f(t_0 + \tau_m)) \times \mathfrak{V}_{x^m} = \mathbb{R}^{n-1} \times \mathbb{R}$$

where \mathfrak{V}_{x^m} denotes the vertical axis $\{x^m + (y^m - x^m) r : r \in \mathbb{R}\}$.

Define

$$\xi_m := \delta(t_0) \frac{y^m - x^m}{|y^m - x^m|},$$

and set

$$\overline{x}(t_0+\tau) = (0, \dots, 0, \overline{x}_n(t_0+\tau)) := \partial f(t_0+\tau) \cap \mathfrak{V}_{x^m},$$

$$\overline{y}(t_0+\tau) = (0, \dots, 0, \overline{y}_n(t_0+\tau)) := \partial f_{\xi_m}(t_0+\tau) \cap \mathfrak{V}_{x^m},$$

for $\tau \ge 0$ small enough. Note that

(2.4)
$$\overline{x}(t_0 + \tau_m) = x^m = 0$$
,

and moreover $\overline{y}(t_0) = \overline{x}(t_0) + \xi_m$; in particular

(2.5)
$$\left| \overline{x}(t_0) - \overline{y}(t_0) \right| = \overline{y}_n(t_0) - \overline{x}_n(t_0) = \delta(t_0).$$

Observe that by construction we have $f(t_0) + \xi_m = f_{\xi_m}(t_0) \subseteq \overline{\phi(t_0)}$. Assume first that $f_{\xi_m}(t_0) \subseteq \phi(t_0)$. Since $\phi \in \text{Barr}(\mathcal{F}_g)$ it follows that $f_{\xi_m}(t_0 + \tau) \subseteq \phi(t_0 + \tau)$ for $\tau > 0$ small enough, so that the vertical component of y^m is larger than or equal to the value of $\partial f_{\xi_m}(t_0 + \tau_m)$ viewed as a function from $A \subset \mathbb{R}^{n-1}$ to \mathbb{R} computed at the origin of \mathbb{R}^{n-1} . Therefore

(2.6)
$$\overline{y}_n(t_0 + \tau_m) \leq \delta(t_0 + \tau_m).$$

The two functions $F(\cdot, t_0)$ and $F_{\xi_m}(\cdot, t_0)$ do not have, in general, zero gradient at $(\overline{x}_1(t_0), \ldots, \overline{x}_{n-1}(t_0)) = (\overline{y}_1(t_0), \ldots, \overline{y}_{n-1}(t_0)) = 0 \in \mathbb{R}^{n-1}$, but still we can show that this gradient is quite small. Since $T_{x^m}(\partial f(t_0 + \tau_m))$ is horizontal, from the regularity of the evolution of $\partial f(\cdot)$ we get that the angle θ_m formed by the normal to $\partial f(t_0)$ at \overline{x}^m and the vertical axis is bounded by $|\theta_m| < \mathcal{O}(\tau_m)$, so that

(2.7)
$$\cos\theta_m = 1 + \mathcal{O}(\tau_m^2)$$

The vertical velocity $\frac{d\bar{x}_n}{dt}(t_0) := \bar{x}'_n(t_0)$ of $\bar{x}(t_0)$ at $\tau = 0$ is given by

(2.8)
$$\overline{x}'_{n}(t_{0}) = \frac{V_{f}(\overline{x}(t_{0}), t_{0})}{\cos \theta_{m}} = \overline{V}_{f}(\overline{x}(t_{0}), t_{0})(1 + \mathcal{O}(\tau_{m}^{2}))$$

where $\overline{V}_f(\overline{x}(t_0), t_0)$ is the outer normal velocity of $\partial f(t_0)$ computed at $\overline{x}(t_0)$, and we made use of (2.7). Similarly, the vertical velocity $\frac{d\overline{y}_n}{dt}(t_0) := \overline{y}'_n(t_0)$ of $\overline{y}(t_0)$ at $\tau = 0$ is given by

(2.9)
$$\overline{y}'_{n}(t_{0}) = \frac{\overline{V}_{f_{\xi_{m}}}(\overline{y}(t_{0}), t_{0})}{\cos \theta_{m}} = \overline{V}_{f_{\xi_{m}}}(\overline{y}(t_{0}), t_{0})(1 + \mathcal{O}(\tau_{m}^{2}))$$

where $\overline{V}_{f_{\xi_m}}(\overline{y}(t_0), t_0)$ is the outer normal velocity of $\partial f_{\xi_m}(t_0)$ computed at $\overline{y}(t_0)$.

Using (2.3), (2.4), (2.6), a Taylor expansion for \overline{x}_n and \overline{y}_n , (2.5), (2.9), (2.8), (2.1), and finally (2.5) again we then get

$$\begin{split} \delta(t_0 + \tau_m) &= \left| x^m - y^m \right| \ge \overline{y}_n(t_0 + \tau_m) - \overline{x}_n(t_0 + \tau_m) \\ &= \delta(t_0) + (\overline{y}'_n(t_0) - \overline{x}'_n(t_0)) \ \tau_m + o(\tau_m) \\ &= \delta(t_0) + (\overline{V}_{f_{\xi_m}}(\overline{y}(t_0), t_0) - \overline{V}_f(\overline{x}(t_0), t_0)) \ \tau_m(1 + \mathcal{O}(\tau_m^2)) + o(\tau_m) \\ &= \delta(t_0) + (g(\overline{y}(t_0), t_0) - g(\overline{x}(t_0), t_0)) \ \tau_m(1 + \mathcal{O}(\tau_m^2)) + o(\tau_m) \\ &\ge \delta(t_0) - G \left| \overline{x}(t_0) - \overline{y}(t_0) \right| \ \tau_m(1 + \mathcal{O}(\tau_m^2)) + o(\tau_m) \\ &= \delta(t_0) - G\delta(t_0) \ \tau_m(1 + \mathcal{O}(\tau_m^2)) + o(\tau_m) \\ &= \delta(t_0) - G\delta(t_0) \ \tau_m + o(\tau_m) \,, \end{split}$$

which is in contradiction with (2.2).

It remains to consider the general case when $f_{\xi_m}(t_0) \subseteq \overline{\phi(t_0)}$ (and $f_{\xi_m}(t_0)$ is not contained in $\phi(t_0)$). Given a set $C \subseteq \mathbb{R}^n$ and $\varrho > 0$, define $C_{\varrho}^- := \{x \in C : \text{dist}(x, \mathbb{R}^n \setminus C) > \varrho\}$. Since $f_{\xi_m}(t_0)$ is a smooth compact set, if $\overline{\varrho} > 0$ is sufficiently small, we have that, for $\varrho \in [0, \overline{\varrho}]$, the set $(f_{\xi_m}(t_0))_{\varrho}^-$ is smooth, and the smooth mean curvature evolutions with forcing term g of $(f_{\xi_m}(t_0))_{\varrho}^-$ has an existence time which is independent of ϱ . Moreover, int $(f_{\xi_m}(t_0)) = \bigcup_{\varrho \in [0, \overline{\varrho}]} (f_{\xi_m}(t_0))_{\varrho}^-$. Thanks to the fact that

 $f \in \mathcal{F}_{g}$, possibly reducing $\overline{\tau} > 0$ we also have

$$\operatorname{int}\left(f_{\xi_m}(t_0+\tau)\right) = \bigcup_{\varrho \in [0,\overline{\varrho}]} (f_{\xi_m}(t_0+\tau))_{\varrho}^{-}, \qquad \tau \in [0,\overline{\tau}].$$

Recalling our construction, the definition of $\delta(\cdot)$ and the assumption $\phi \in \text{Barr}(\mathcal{F}_g)$, we then get $(f_{\xi_m}(t_0 + \tau))_{\varrho}^- \subseteq \phi(t_0 + \tau)$ for $\varrho \in [0, \overline{\varrho}]$ and $\tau \in [0, \overline{\tau}]$. It follows that int $((f_{\xi_m}(t_0 + \tau)) \subseteq \phi(t_0 + \tau)$ for $\tau \in [0, \overline{\tau}]$. Repeating the previous arguments, we then conclude the proof.

REFERENCES

 G. BELLETTINI - M. PAOLINI, Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 19 (1995), 43-67.

Direttore responsabile: Prof. A. BALLIO - Autorizz. Trib. di Roma n. 7269 dell'8-12-1959 «Monograf» - Via Collamarini, 5 - Bologna