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Errata Corrige to the Paper: Some Results on Minimal Barriers
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by Mean Curvature

ABSTRACT. — We provide the complete argument for the proof of step 2 in the demonstra-
tion of Lemma 4.2 in the paper [1].

Errata Corrige al lavoro: Some results on minimal barriers
in the sense of De Giorgi applied to driven motion by mean curvature

SUNTO. — Diamo la dimostrazione completa del passo 2 all’interno della dimostrazione del
Lemma 4.2 nel lavoro [1].

1. - SHORT EXPLANATION

The proof of step 2 in the demonstration of Lemma 4.2 at pag. 52 of the paper [1]
is not completely correct, since formula (4.3) (and consequently formula (4.4)) does

not hold in general in the case that dpt

dt Nt40
is tangent to ¯f (t). To convince oneself of

this assertion, let us consider the following example: let f :[0 , 1] K P(R2 ) be the
smooth flow consisting of the initial circle f (0) 4 ]x�R2 : NxNG1( which translates
in the positive x1-direction. Let pt be the intersection of ¯f (t) with the half-line
](x1 , x2 ) : x141, x2D0(, and p»4 (1 , 0 ) 4p0 . We have (pt2p) Qn40, where n

denotes the outward unit normal to ¯f (0) at p; in particular lim
tK01

u pt2p

t
v Qn40. On
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the other hand, the normal velocity of ¯f (0) at p is clearly nonzero, and this is a con-

tradiction with formula (4.3) in [1]. Note that lim
tK01

N pt2p

t N 41Q. The above con-

structed flow is not a curvature flow, but it is clear that, by adding a suitable forcing

term, similar examples can be easily constructed. Since we miss the proof that dpt

dt Nt40

is not tangent to ¯f (t) in the situation considered in step 2 of Lemma 4.2, we provide
here a different argument to prove the same statement.

2. - PROOF OF STEP 2 INSIDE THE PROOF OF LEMMA 4.2 IN [1]

We begin by recalling that the forcing term g belongs to CQ (Rn3 I)OL Q (Rn3

3I), and satisfies the following property: there exists a constant GD0 such that

Ng(x , t)2g(y , t)NGGNx2yN , x , y�Rn , t� I .(2.1)

We are now in a position to prove step 2 in Lemma 4.2 in [1], i.e., if f : IK P(Rn ),
f� Barr (Fg ), f :[a , b] ’ IK P(Rn ), f� Fg and f (a) ’f(a), then

lim sup
tK01

d(t)2d(t1t)

t
GGd(t), t� [a , b[,

where

d(t) »4 dist ( f (t), Rn 0f(t) ), t� [a , b] .

Suppose by contradiction that there exist t0� [a , b[ with d(t0 ) D0 and LE2Gd(t0 )
such that

lim inf
tK01

d(t01t)2d(t0 )

t
EL .

Observe that we can always assume

d(t0 ) 4 lim inf
tK01

d(t01t)

because, if d(t0 ) E lim inf
tK01

d(t01t) then lim sup
tK01

d(t0 )2d(t0 1t)

t
42Q, and the asser-

tion of step 2 is trivially satisfied. On the other hand, using the definition of barrier it
is not difficult to prove that d(t) G lim inf

tK01
d(t1t) for any t� [a , b[.

Pick a decreasing sequence ]tm( of positive times converging to 0 as mK1Q

such that t01tm� [a , b[ and

lim inf
tK01

d(t01t)2d(t0 )

t
4 lim

mK1Q

d(t01tm )2d(t0 )

tm

,
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and

d(t01tm )2d(t0 )

tm

EL , m�N .(2.2)

Recalling that ¯f (Q) is compact, there exist two sequences ]x m(, ]y m( of points with
x m�¯f (t01tm ) and y m�¯f(t01tm ) such that

Nx m2y mN4d(t01tm ) ELtm1d(t0 ), m�N .(2.3)

Possibly passing to suitable subsequences, we can suppose that

x mKx Q�¯f (t0 ), y mKy Q� Rn 0f(t0 ) as mKQ .

Notice that the conclusion y Q� Rn 0f(t0 ) is ensured by the properties of barriers.
Moreover, using also (2.3) we have

d(t0 ) 4 lim inf
tK01

d(t01t) G lim inf
mK1Q

d(t01tm ) 4 lim inf
mK1Q

Nx m2y mNGd(t0 ),

so that Nx Q2y QN4 lim inf
mK1Q

d(t01tm ) 4d(t0 ).

We now localize our problem as follows. We take an open ball B(x Q ) centered at
x Q and small enough, and we define B(y Q ) »4B(x Q )1 (y Q2x Q ). Clearly B(y Q ) is
a ball centered at y Q. We can assume that B(x Q )OB(y Q ) 4¯ (recall that d(t0 ) D0)
and that x m�B(x Q ) and y m�B(y Q ) for any m�N.

We now need to introduce a notation. Given a nonzero vector j�Rn, we denote
by fj the mean curvature flow with forcing term g of the translated set f (t0 )1j. Note
that fj� Fg and that fj is defined on a time interval of the form [t0 , c], with cD t0 pos-
sibly smaller than b. Note also that, as g may depend on the space variable x, fj (t) does
not coincide, in general, with f (t)1j, t� [t0 , c].

We can suppose that, if j is any translation vector of the form w2z, for z�B(x Q )
and w�B(y Q ), with NjN4d(t0 ), the two evolutions f (Q)OB(x Q ) and fj (Q)OB(y Q )
are the subgraphs of two real-valued smooth functions F , Fj defined on A3 [t0 , t01

1t], with A an open subset of Rn21 and where t D0 can be chosen independently of j.
We can further assume that the evolutions F(Q , Q) and Fj (Q , Q) are also subgraphs with
respect to any direction indicated by the vectors j described above.

Fix now any integer mD0. Without loss of generality we fix a coordinate system in
Rn depending on m as follows: we suppose that x m is at the origin of Rn ; moreover, as
Nx m2y mN4d(t01tm ), the tangent hyperplane Tx m (¯f (t01tm ) ) to ¯f (t01tm ) at the
origin x m is horizontal and

y m4 (0 , d(t01tm ) ) �Tx m (¯f (t01tm ) )3 Vx m 4Rn213R ,

where Vx m denotes the vertical axis ]x m1 (y m2x m ) r : r�R(.
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Define

jm »4d(t0 )
y m2x m

Ny m2x mN
,

and set

x (t01t) 4 (0 , R , 0 , xn (t01t) ) »4¯f (t01t)O Vx m ,

y (t01t) 4 (0 , R , 0 , yn (t01t) ) »4¯fjm
(t01t)O Vx m ,

for tF0 small enough. Note that

x (t01tm ) 4x m40 ,(2.4)

and moreover y (t0 ) 4 x (t0 )1jm ; in particular

Nx (t0 )2y (t0 )N4 yn (t0 )2xn (t0 ) 4d(t0 ) .(2.5)

Observe that by construction we have f (t0 )1jm4 fjm
(t0 ) ’ f(t0 ). Assume first that

fjm
(t0 ) ’f(t0 ). Since f� Barr (Fg ) it follows that fjm

(t01t) ’f(t01t) for tD0 small
enough, so that the vertical component of y m is larger than or equal to the value of
¯fjm

(t01tm ) viewed as a function from A%Rn21 to R computed at the origin of
Rn21. Therefore

yn (t01tm ) Gd(t01tm ) .(2.6)

The two functions F(Q , t0 ) and Fjm
(Q , t0 ) do not have, in general, zero gradient at

(x1 (t0 ), R , xn21 (t0 ) ) 4 (y1 (t0 ), R , yn21 (t0 ) ) 40 �Rn21, but still we can show that
this gradient is quite small. Since Tx m (¯f (t01tm ) ) is horizontal, from the regularity of
the evolution of ¯f (Q) we get that the angle um formed by the normal to ¯f (t0 ) at xm and
the vertical axis is bounded by NumNE O(tm ), so that

cos um411 O(tm
2 ) .(2.7)

The vertical velocity dxn

dt
(t0 ) »4 xn8 (t0 ) of x (t0 ) at t40 is given by

xn8 (t0 ) 4
Vf (x (t0 ), t0 )

cos um

4 Vf (x (t0 ), t0 )(11 O(tm
2 ) ) ,(2.8)

where Vf (x (t0 ), t0 ) is the outer normal velocity of ¯f (t0 ) computed at x (t0 ), and we

made use of (2.7). Similarly, the vertical velocity dyn

dt
(t0 ) »4 yn8 (t0 ) of y (t0 ) at t40 is

given by

yn8 (t0 ) 4
Vfjm

(y (t0 ), t0 )

cos um

4 Vfjm
(y(t0 ), t0 )(11 O(tm

2 ) ) ,(2.9)

where Vfjm
(y (t0 ), t0 ) is the outer normal velocity of ¯fjm

(t0 ) computed at y (t0 ).
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Using (2.3), (2.4), (2.6), a Taylor expansion for xn and yn, (2.5), (2.9), (2.8), (2.1),
and finally (2.5) again we then get

d(t01tm )4Nx m2y mNF yn (t01tm )2xn (t01tm )

4d(t0 )1 (yn8 (t0 )2xn8 (t0 ) ) tm1o(tm )

4d(t0 )1 (Vfjm
(y (t0 ), t0 )2Vf (x (t0 ), t0 ) ) tm (11 O(tm

2 ) )1o(tm )

4d(t0 )1 ( g(y (t0 ), t0 )2g(x(t0 ), t0 ) ) tm (11 O(tm
2 ) )1o(tm )

Fd(t0 )2GNx (t0 )2y (t0 )Ntm (11 O(tm
2 ) )1o(tm )

4d(t0 )2Gd(t0 ) tm (11 O(tm
2 ) )1o(tm )

4d(t0 )2Gd(t0 ) tm1o(tm ) ,

which is in contradiction with (2.2).
It remains to consider the general case when fjm

(t0 ) ’ f(t0 ) (and fjm
(t0 ) is not

contained in f(t0 )). Given a set C’Rn and rD0, define C 2
r »4 ]x�C :

dist (x , Rn 0C) Dr(. Since fjm
(t0 ) is a smooth compact set, if r D0 is sufficiently

small, we have that, for r� [0 , r], the set ( fjm
(t0 ) )2

r is smooth, and the smooth mean
curvature evolutions with forcing term g of ( fjm

(t0 ) )2
r has an existence time which is

independent of r. Moreover, int ( fjm
(t0 ) ) 4 0

r� [0 , r]
( fjm

(t0 ) )2
r . Thanks to the fact that

f� Fg , possibly reducing t D0 we also have

int ( fjm
(t01t) ) 4 0

r� [0 , r]
( fjm

(t01t) )2
r , t� [0 , t] .

Recalling our construction, the definition of d(Q) and the assumption f� Barr (Fg ), we
then get ( fjm

(t01t) )2
r ’f(t01t) for r� [0 , r] and t� [0 , t]. It follows that

int ( ( fjm
(t01t) ) ’f(t01t) for t� [0 , t]. Repeating the previous arguments, we then

conclude the proof.
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