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Errata Corrige to the Paper: Some Results on Minimal Barriers
in the Sense of De Giorgi Applied to Driven Motion
by Mean Curvature

Asstract. — We provide the complete argument for the proof of step 2 in the demonstra-
tion of Lemma 4.2 in the paper [1].

Errata Corrige al lavoro: Some results on minimal barriers
in the sense of De Giorgi applied to driven motion by mean curvature

Sunto. — Diamo la dimostrazione completa del passo 2 all’interno della dimostrazione del
Lemma 4.2 nel lavoro [1].

1. - SHORT EXPLANATION

The proof of step 2 in the demonstration of Lemma 4.2 at pag. 52 of the paper [1]
is not completely correct, since formula (4.3) (and consequently formula (4.4)) does
dp.

T =0
this assertion, let us consider the following example: let 7:[0, 11— P(R?) be the
smooth flow consisting of the initial circle /(0) = {xeR?: |x| <1} which translates
in the positive x;-direction. Let p, be the intersection of Jf(r) with the half-line
{(x1, %) x1=1, x>0}, and p:=(1,0) =p,. We have (p, —p)-v =0, where v
denotes the outward unit normal to 9f(0) at p; in particular lim (u )‘v =0. On

0" T

not hold in general in the case that is tangent to 9f(¢). To convince oneself of
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the other hand, the normal velocity of 9#(0) at p is clearly nonzero, and this is a con-
tradiction with formula (4.3) in [1]. Note that lim 7P | = 4 %, The above con-
T—0" T
structed flow is not a curvature flow, but it is clear that, by adding a suitable forcing
dp,
T =0
is not tangent to Jf(#) in the situation considered in step 2 of Lemma 4.2, we provide

here a different argument to prove the same statement.

term, similar examples can be easily constructed. Since we miss the proof that

2. - PROOF OF STEP 2 INSIDE THE PROOF OF LEmMA 4.2 IN [1]

We begin by recalling that the forcing term g belongs to C* (R” x I) N L * (R” X
% I), and satisfies the following property: there exists a constant G >0 such that

(2.1 |g(x, 1) —gly, )| <=G|lx—y|, x,yeR” tel.

We are now in a position to prove step 2 in Lemma 4.2 in [1], ie., if ¢ : = P(R"),
¢ € Barr (F,), f:la, b1 cI— P(R"), fe T, and f(a) C Pp(a), then

o) =6
lim sup M < GO(1), tela, b,

—0" T
where
o(z) 1= dist (f(£), R"\¢(2)), tela, bl.

Suppose by contradiction that there exist £, € [a, b[ with (¢)) > 0 and A < —GO(¢,)
such that

lim infM <A,

T—0" T
Observe that we can always assume

r—0"
because, if 6(¢,) < lim inf d(#, + 7) then lim sup ) =0+ _ _ oo, and the asser-
0" 70 T

tion of step 2 is trivially satisfied. On the other hand, using the definition of barrier it
is not difficult to prove that d(#) < lim infd(z + 7) for any z€ [a, b[.

70"

Pick a decreasing sequence {7,,} of positive times converging to 0 as 72— + o
such that 7+ 7,,€ [4, 5[ and

ot,+1)—0
lim inf M = lim
70" T m—>+ ® T,

oty +1,,) —0(%)

>
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and

8(ty+1,)—0
2.2) (o + ) — Olto) <A, meN.
7,

Recalling that 9f(+) is compact, there exist two sequences {x”}, {y”} of points with
x"” e df(ty+t,,) and y” € d¢p(¢) + ,,) such that

(2.3) |x” —y"| =0t +1,) <At, + (1), melN .
Possibly passing to suitable subsequences, we can suppose that
x”"—=x"edf(ty), "=y eR'\op(,) asm— .

Notice that the conclusion y* € R”\¢(#,) is ensured by the properties of barriers.
Moreover, using also (2.3) we have

0(ty) = lim inf8(¢, + 7) < lim infd(¢, + 7,,) = lim inf |x” — 3" | < (%),
m—> + x©

‘17*>0+ m—> + ®©

so that |x* —y*| = lim infd(¢, + 7,,) = 6(4).
m— + ©

We now localize our problem as follows. We take an open ball B(x *) centered at
x* and small enough, and we define B(y ®) :=B(x*) + (y* —x ). Clearly B(y *) is
a ball centered at y *. We can assume that B(x *) N B(y ®) = 0 (recall that d(¢,) > 0)
and that x” e B(x*) and y” e B(y ®) for any 7 e\,

We now need to introduce a notation. Given a nonzero vector £ e R”, we denote
by /: the mean curvature flow with forcing term g of the translated set f(#,) + &. Note
that f; € J, and that /; is defined on a time interval of the form [#,, c], with ¢ > £, pos-
sibly smaller than 4. Note also that, as ¢ may depend on the space variable x, f:(z) does
not coincide, in general, with f(¢) + &, te [y, cl.

We can suppose that, if £ is any translation vector of the form w — z, for ze B(x *)
and weB(y ™), with |§| = 0(4), the two evolutions f(-) N B(x ) and f:(-) N B(y *)
are the subgraphs of two real-valued smooth functions F, F; defined on A X [z, #, +
+ 7], with A an open subset of R” ~ ! and where 7 > 0 can be chosen independently of &.
We can further assume that the evolutions F(-, -) and F: (-, -) are also subgraphs with
respect to any direction indicated by the vectors & described above.

Fix now any integer 7z > 0. Without loss of generality we fix a coordinate system in
R” depending on 7z as follows: we suppose that x” is at the origin of R”; moreover, as
|x” —y”| = 0(t + 7,,), the tangent hyperplane T, (3f(z, + 7,,)) to 9f(f, + 7,,) at the
origin x” is horizontal and

ym: (0’ 6(t0+ Tm)) ETX’”(af(l‘O—'—Tm)) X vx’”:Rn_l X Rv

where V,» denotes the vertical axis {x” + (y” —x") r: re R}.
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Define
&, =o)L X
ly" = x"|
and set
X(ty+1)=(0, ..., 0,%,(t, + 1)) := (g + 1) N Oy,
y(ty+1)=1(0,...,0,9,(+ 7)) :=0f (t, +7) NV,
for 7= 0 small enough. Note that
(2.4) X(ty+1,) =x"=0,
and moreover y(#,) = x(¢,) + &,,; in particular
2.5) | x(25) =5 (t0) | =9,(t) —x,(2)) = (ty) .

Observe that by construction we have f(z) + &, =f: (¢,) C ¢(,). Assume first that
fz, () Cp(1y). Since ¢ € Barr (F,) it follows that f; (£, + 7) C¢(4y + 7) for 7> 0 small
enough, so that the vertical component of y” is larger than or equal to the value of
3, (ty+1,,) viewed as a function from ACR”™' to R computed at the origin of
R”~!. Therefore

(2.6) y,(ty+7,) <0(tHh+71,).

The two functions F(-, £,) and F¢ (-, #)) do not have, in general, zero gradient at
X1 (29), ooy Xy—1(2)) = (31(8y), ., 9,-1(2y)) =0e€R” ™! but still we can show that
this gradient is quite small. Since T~ (3f(¢, + 7,,)) is horizontal, from the regularity of
the evolution of 97(-) we get that the angle 6,, formed by the normal to 9(¢,) at x” and
the vertical axis is bounded by |6,,| < O(t,,), so that

(2.7) cosf,=1+0(t%).
The vertical velocity %(z‘o) =X, () of x(#,) at T=0 is given by

VGto), 1)
2.8) % (10) = 2 G Rs), 16)(1 + O22))
cos@,,

where V/(x(#y), #,) is the outer normal velocity of 9f(#,) computed at X (%)), and we
made use of (2.7). Similarly, the vertical velocity % (ty) :==7,(2,) of y(¢,) at T=0 is
given by !

Vi 5(1), ) _
2.9) Wlt) = L =V, (lay), )1+ OT2),

cos @,

where Y_/fgm(i(z‘o), ty) is the outer normal velocity of 9f; (4) computed at ¥ ().
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Using (2.3), (2.4), (2.6), a Taylor expansion for x, and y,, (2.5), (2.9), (2.8), (2.1),
and finally (2.5) again we then get
oty +1,)=|x"=y"|2y,t+1,) %, +7,)
=0(4) + (3, () — X, (t,)) T, + 0(T,,)
=0(ty) + (Vfgm@(l‘o), ty) = Vix(4), 1)) 7,,(1 + O(z3,)) + olT,,)

)
= 0(1y) — G| %(4) —y(8) |7,,(1+O(t2)) + o(7,,)
= () — Go(

) — Go(

ty) 7,,(1+0(2)) + o(z,,)
GO(¢,

)T, +o(t,),

which is in contradiction with (2.2).

It remains to consider the general case when f; (#)C ¢(4) (and f: (#,) is not
contained in ¢(#)). Given a set CCR” and ¢>0, define C, :={xeC:
dist (x, R"\C) > o}. Since f; (#,) is a smooth compact set, if p >0 is sufficiently
small, we have that, for ¢ € [0, @], the set (/z, (#))), is smooth, and the smooth mean
curvature evolutions with forcing term g of (f: (4))), has an existence time which is
independent of o. Moreover, int ( /¢, (£,)) = QEH @]( fgm(to))g_ . Thanks to the fact that

fe J,, possibly reducing 7 >0 we also have

int(f;, ({,+ 7)) = H_](fgm(/fo+f));» 1e[0,7].
eel0,?
Recalling our construction, the definition of d(-) and the assumption ¢ e Barr (F,), we
then get (f: (4 + 7)), Coplty+ 1) for 0e[0,0] and 7e€[0,7]. It follows that
int ((fz, (2 + 7)) C (£ + 1) for Te [0, T]. Repeating the previous arguments, we then
conclude the proof.
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