G. BELLETTINI - M. PAOLINI (*)

Errata Corrige to the Paper: Some Results on Minimal Barriers in the Sense of De Giorgi Applied to Driven Motion by Mean Curvature

Abstract. - We provide the complete argument for the proof of step 2 in the demonstration of Lemma 4.2 in the paper [1].

Errata Corrige al lavoro: Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature

Sunto. - Diamo la dimostrazione completa del passo 2 all'interno della dimostrazione del Lemma 4.2 nel lavoro [1].

1. - Short explanation

The proof of step 2 in the demonstration of Lemma 4.2 at pag. 52 of the paper [1] is not completely correct, since formula (4.3) (and consequently formula (4.4)) does not hold in general in the case that $\left.\frac{d p_{\tau}}{d \tau}\right|_{\tau=0}$ is tangent to $\partial f(t)$. To convince oneself of this assertion, let us consider the following example: let $f:[0,1] \rightarrow \mathscr{P}\left(\mathbb{R}^{2}\right)$ be the smooth flow consisting of the initial circle $f(0)=\left\{x \in \mathbb{R}^{2}:|x| \leqslant 1\right\}$ which translates in the positive x_{1}-direction. Let p_{τ} be the intersection of $\partial f(\tau)$ with the half-line $\left\{\left(x_{1}, x_{2}\right): x_{1}=1, x_{2}>0\right\}$, and $p:=(1,0)=p_{0}$. We have $\left(p_{\tau}-p\right) \cdot v=0$, where v denotes the outward unit normal to $\partial f(0)$ at p; in particular $\lim _{\tau \rightarrow 0^{+}}\left(\frac{p_{\tau}-p}{\tau}\right) \cdot v=0$. On
(*) Indirizzo degli Autori: G. Bellettini: Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy. E-mail: belletti@mat.uniroma2.it; M. Paolini: Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121 Brescia.

E-mail: paolini@dmf.unicatt.it
the other hand, the normal velocity of $\partial f(0)$ at p is clearly nonzero, and this is a contradiction with formula (4.3) in [1]. Note that $\lim _{\tau \rightarrow 0^{+}}\left|\frac{p_{\tau}-p}{\tau}\right|=+\infty$. The above constructed flow is not a curvature flow, but it is clear that, by adding a suitable forcing term, similar examples can be easily constructed. Since we miss the proof that $\left.\frac{d p_{\tau}}{d \tau}\right|_{\tau=0}$ is not tangent to $\partial f(t)$ in the situation considered in step 2 of Lemma 4.2, we provide here a different argument to prove the same statement.

2. - Proof of step 2 inside the proof of Lemma 4.2 in [1]

We begin by recalling that the forcing term g belongs to $\mathcal{C}^{\infty}\left(\mathbb{R}^{n} \times I\right) \cap L^{\infty}\left(\mathbb{R}^{n} \times\right.$ $\times I$), and satisfies the following property: there exists a constant $G>0$ such that

$$
\begin{equation*}
|g(x, t)-g(y, t)| \leqslant G|x-y|, \quad x, y \in \mathbb{R}^{n}, t \in I \tag{2.1}
\end{equation*}
$$

We are now in a position to prove step 2 in Lemma 4.2 in [1], i.e., if $\phi: I \rightarrow \mathscr{P}\left(\mathbb{R}^{n}\right)$, $\phi \in \operatorname{Barr}\left(\mathscr{F}_{g}\right), f:[a, b] \subseteq I \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right), f \in \mathscr{F}_{g}$ and $f(a) \subseteq \phi(a)$, then

$$
\limsup _{\tau \rightarrow 0^{+}} \frac{\delta(t)-\delta(t+\tau)}{\tau} \leqslant G \delta(t), \quad t \in[a, b[,
$$

where

$$
\delta(t):=\operatorname{dist}\left(f(t), \mathbb{R}^{n} \backslash \phi(t)\right), \quad t \in[a, b]
$$

Suppose by contradiction that there exist $t_{0} \in\left[a, b\left[\right.\right.$ with $\delta\left(t_{0}\right)>0$ and $\Lambda<-G \delta\left(t_{0}\right)$ such that

$$
\liminf _{\tau \rightarrow 0^{+}} \frac{\delta\left(t_{0}+\tau\right)-\delta\left(t_{0}\right)}{\tau}<\Lambda
$$

Observe that we can always assume

$$
\delta\left(t_{0}\right)=\liminf _{\tau \rightarrow 0^{+}} \delta\left(t_{0}+\tau\right)
$$

because, if $\delta\left(t_{0}\right)<\liminf _{\tau \rightarrow 0^{+}} \delta\left(t_{0}+\tau\right)$ then $\limsup _{\tau \rightarrow 0^{+}} \frac{\delta\left(t_{0}\right)-\delta\left(t_{0}+\tau\right)}{\tau}=-\infty$, and the assertion of step 2 is trivially satisfied. On the other hand, using the definition of barrier it is not difficult to prove that $\delta(t) \leqslant \lim _{\tau \rightarrow 0^{+}} \inf \delta(t+\tau)$ for any $t \in[a, b[$.

Pick a decreasing sequence $\left\{\tau_{m}\right\} \stackrel{\tau \rightarrow 0^{+}}{\text {of }}$ positive times converging to 0 as $m \rightarrow+\infty$ such that $t_{0}+\tau_{m} \in[a, b[$ and

$$
\liminf _{\tau \rightarrow 0^{+}} \frac{\delta\left(t_{0}+\tau\right)-\delta\left(t_{0}\right)}{\tau}=\lim _{m \rightarrow+\infty} \frac{\delta\left(t_{0}+\tau_{m}\right)-\delta\left(t_{0}\right)}{\tau_{m}}
$$

and

$$
\begin{equation*}
\frac{\delta\left(t_{0}+\tau_{m}\right)-\delta\left(t_{0}\right)}{\tau_{m}}<\Lambda, \quad m \in \mathbb{N} \tag{2.2}
\end{equation*}
$$

Recalling that $\partial f(\cdot)$ is compact, there exist two sequences $\left\{x^{m}\right\},\left\{y^{m}\right\}$ of points with $x^{m} \in \partial f\left(t_{0}+\tau_{m}\right)$ and $y^{m} \in \partial \phi\left(t_{0}+\tau_{m}\right)$ such that

$$
\begin{equation*}
\left|x^{m}-y^{m}\right|=\delta\left(t_{0}+\tau_{m}\right)<\Lambda \tau_{m}+\delta\left(t_{0}\right), \quad m \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

Possibly passing to suitable subsequences, we can suppose that

$$
x^{m} \rightarrow x^{\infty} \in \partial f\left(t_{0}\right), \quad y^{m} \rightarrow y^{\infty} \in \overline{\mathbb{R}^{n} \backslash \phi\left(t_{0}\right)} \quad \text { as } m \rightarrow \infty .
$$

Notice that the conclusion $y^{\infty} \in \overline{\mathbb{R}^{n} \backslash \phi\left(t_{0}\right)}$ is ensured by the properties of barriers. Moreover, using also (2.3) we have

$$
\delta\left(t_{0}\right)=\liminf _{\tau \rightarrow 0^{+}} \delta\left(t_{0}+\tau\right) \leqslant \liminf _{m \rightarrow+\infty} \delta\left(t_{0}+\tau_{m}\right)=\liminf _{m \rightarrow+\infty}\left|x^{m}-y^{m}\right| \leqslant \delta\left(t_{0}\right)
$$

so that $\left|x^{\infty}-y^{\infty}\right|=\liminf _{m \rightarrow+\infty} \delta\left(t_{0}+\tau_{m}\right)=\delta\left(t_{0}\right)$.
We now localize our problem as follows. We take an open ball $B\left(x^{\infty}\right)$ centered at x^{∞} and small enough, and we define $B\left(y^{\infty}\right):=B\left(x^{\infty}\right)+\left(y^{\infty}-x^{\infty}\right)$. Clearly $B\left(y^{\infty}\right)$ is a ball centered at y^{∞}. We can assume that $B\left(x^{\infty}\right) \cap B\left(y^{\infty}\right)=\emptyset\left(\right.$ recall that $\left.\delta\left(t_{0}\right)>0\right)$ and that $x^{m} \in B\left(x^{\infty}\right)$ and $y^{m} \in B\left(y^{\infty}\right)$ for any $m \in \mathbb{N}$.

We now need to introduce a notation. Given a nonzero vector $\xi \in \mathbb{R}^{n}$, we denote by f_{ξ} the mean curvature flow with forcing term g of the translated set $f\left(t_{0}\right)+\xi$. Note that $f_{\xi} \in \mathscr{F}_{g}$ and that f_{ξ} is defined on a time interval of the form $\left[t_{0}, c\right]$, with $c>t_{0}$ possibly smaller than b. Note also that, as g may depend on the space variable $x, f_{\xi}(t)$ does not coincide, in general, with $f(t)+\xi, t \in\left[t_{0}, c\right]$.

We can suppose that, if ξ is any translation vector of the form $w-z$, for $z \in B\left(x^{\infty}\right)$ and $w \in B\left(y^{\infty}\right)$, with $|\xi|=\delta\left(t_{0}\right)$, the two evolutions $f(\cdot) \cap B\left(x^{\infty}\right)$ and $f_{\xi}(\cdot) \cap B\left(y^{\infty}\right)$ are the subgraphs of two real-valued smooth functions F, F_{ξ} defined on $A \times\left[t_{0}, t_{0}+\right.$ $+\bar{\tau}]$, with A an open subset of \mathbb{R}^{n-1} and where $\bar{\tau}>0$ can be chosen independently of ξ. We can further assume that the evolutions $F(\cdot, \cdot)$ and $F_{\xi}(\cdot, \cdot)$ are also subgraphs with respect to any direction indicated by the vectors ξ described above.

Fix now any integer $m>0$. Without loss of generality we fix a coordinate system in \mathbb{R}^{n} depending on m as follows: we suppose that x^{m} is at the origin of \mathbb{R}^{n}; moreover, as $\left|x^{m}-y^{m}\right|=\delta\left(t_{0}+\tau_{m}\right)$, the tangent hyperplane $T_{x^{m}}\left(\partial f\left(t_{0}+\tau_{m}\right)\right)$ to $\partial f\left(t_{0}+\tau_{m}\right)$ at the origin x^{m} is horizontal and

$$
y^{m}=\left(0, \delta\left(t_{0}+\tau_{m}\right)\right) \in T_{x^{m}}\left(\partial f\left(t_{0}+\tau_{m}\right)\right) \times \mathcal{V}_{x^{m}}=\mathbb{R}^{n-1} \times \mathbb{R},
$$

where $\mathcal{V}_{x^{m}}$ denotes the vertical axis $\left\{x^{m}+\left(y^{m}-x^{m}\right) r: r \in \mathbb{R}\right\}$.

Define

$$
\xi_{m}:=\delta\left(t_{0}\right) \frac{y^{m}-x^{m}}{\left|y^{m}-x^{m}\right|}
$$

and set

$$
\begin{aligned}
& \bar{x}\left(t_{0}+\tau\right)=\left(0, \ldots, 0, \bar{x}_{n}\left(t_{0}+\tau\right)\right):=\partial f\left(t_{0}+\tau\right) \cap \mathcal{V}_{x^{m}} \\
& \bar{y}\left(t_{0}+\tau\right)=\left(0, \ldots, 0, \bar{y}_{n}\left(t_{0}+\tau\right)\right):=\partial f_{\xi_{m}}\left(t_{0}+\tau\right) \cap \mathcal{V}_{x^{m}}
\end{aligned}
$$

for $\tau \geqslant 0$ small enough. Note that

$$
\begin{equation*}
\bar{x}\left(t_{0}+\tau_{m}\right)=x^{m}=0 \tag{2.4}
\end{equation*}
$$

and moreover $\bar{y}\left(t_{0}\right)=\bar{x}\left(t_{0}\right)+\xi_{m}$; in particular

$$
\begin{equation*}
\left|\bar{x}\left(t_{0}\right)-\bar{y}\left(t_{0}\right)\right|=\bar{y}_{n}\left(t_{0}\right)-\bar{x}_{n}\left(t_{0}\right)=\delta\left(t_{0}\right) \tag{2.5}
\end{equation*}
$$

Observe that by construction we have $f\left(t_{0}\right)+\xi_{m}=f_{\xi_{m}}\left(t_{0}\right) \subseteq \overline{\phi\left(t_{0}\right)}$. Assume first that $f_{\xi_{m}}\left(t_{0}\right) \subseteq \phi\left(t_{0}\right)$. Since $\phi \in \operatorname{Barr}\left(\mathscr{F}_{g}\right)$ it follows that $f_{\xi_{m}}\left(t_{0}+\tau\right) \subseteq \phi\left(t_{0}+\tau\right)$ for $\tau>0$ small enough, so that the vertical component of y^{m} is larger than or equal to the value of $\partial f_{\xi_{m}}\left(t_{0}+\tau_{m}\right)$ viewed as a function from $A \subset \mathbb{R}^{n-1}$ to \mathbb{R} computed at the origin of \mathbb{R}^{n-1}. Therefore

$$
\begin{equation*}
\bar{y}_{n}\left(t_{0}+\tau_{m}\right) \leqslant \delta\left(t_{0}+\tau_{m}\right) \tag{2.6}
\end{equation*}
$$

The two functions $F\left(\cdot, t_{0}\right)$ and $F_{\xi_{m}}\left(\cdot, t_{0}\right)$ do not have, in general, zero gradient at $\left(\bar{x}_{1}\left(t_{0}\right), \ldots, \bar{x}_{n-1}\left(t_{0}\right)\right)=\left(\bar{y}_{1}\left(t_{0}\right), \ldots, \bar{y}_{n-1}\left(t_{0}\right)\right)=0 \in \mathbb{R}^{n-1}$, but still we can show that this gradient is quite small. Since $T_{x^{m}}\left(\partial f\left(t_{0}+\tau_{m}\right)\right)$ is horizontal, from the regularity of the evolution of $\partial f(\cdot)$ we get that the angle θ_{m} formed by the normal to $\partial f\left(t_{0}\right)$ at \bar{x}^{m} and the vertical axis is bounded by $\left|\theta_{m}\right|<\mathcal{O}\left(\tau_{m}\right)$, so that

$$
\begin{equation*}
\cos \theta_{m}=1+\mathcal{O}\left(\tau_{m}^{2}\right) \tag{2.7}
\end{equation*}
$$

The vertical velocity $\frac{d \bar{x}_{n}}{d t}\left(t_{0}\right):=\bar{x}_{n}^{\prime}\left(t_{0}\right)$ of $\bar{x}\left(t_{0}\right)$ at $\tau=0$ is given by

$$
\begin{equation*}
\bar{x}_{n}^{\prime}\left(t_{0}\right)=\frac{\bar{V}_{f}\left(\bar{x}\left(t_{0}\right), t_{0}\right)}{\cos \theta_{m}}=\bar{V}_{f}\left(\bar{x}\left(t_{0}\right), t_{0}\right)\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right) \tag{2.8}
\end{equation*}
$$

where $\bar{V}_{f}\left(\bar{x}\left(t_{0}\right), t_{0}\right)$ is the outer normal velocity of $\partial f\left(t_{0}\right)$ computed at $\bar{x}\left(t_{0}\right)$, and we made use of (2.7). Similarly, the vertical velocity $\frac{d \bar{y}_{n}}{d t}\left(t_{0}\right):=\bar{y}_{n}^{\prime}\left(t_{0}\right)$ of $\bar{y}\left(t_{0}\right)$ at $\tau=0$ is given by

$$
\begin{equation*}
\bar{y}_{n}^{\prime}\left(t_{0}\right)=\frac{\bar{V}_{f_{\bar{s} m}}\left(\bar{y}\left(t_{0}\right), t_{0}\right)}{\cos \theta_{m}}=\bar{V}_{f_{\xi_{m}}}\left(\bar{y}\left(t_{0}\right), t_{0}\right)\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right), \tag{2.9}
\end{equation*}
$$

where $\bar{V}_{f_{\xi_{m}}}\left(\bar{y}\left(t_{0}\right), t_{0}\right)$ is the outer normal velocity of $\partial f_{\xi_{m}}\left(t_{0}\right)$ computed at $\bar{y}\left(t_{0}\right)$.

Using (2.3), (2.4), (2.6), a Taylor expansion for \bar{x}_{n} and \bar{y}_{n}, (2.5), (2.9), (2.8), (2.1), and finally (2.5) again we then get

$$
\begin{aligned}
\delta\left(t_{0}+\tau_{m}\right) & =\left|x^{m}-y^{m}\right| \geqslant \bar{y}_{n}\left(t_{0}+\tau_{m}\right)-\bar{x}_{n}\left(t_{0}+\tau_{m}\right) \\
& =\delta\left(t_{0}\right)+\left(\bar{y}_{n}^{\prime}\left(t_{0}\right)-\bar{x}_{n}^{\prime}\left(t_{0}\right)\right) \tau_{m}+o\left(\tau_{m}\right) \\
& =\delta\left(t_{0}\right)+\left(\bar{V}_{f_{\xi_{m}}}\left(\bar{y}\left(t_{0}\right), t_{0}\right)-\bar{V}_{f}\left(\bar{x}\left(t_{0}\right), t_{0}\right)\right) \tau_{m}\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right)+o\left(\tau_{m}\right) \\
& =\delta\left(t_{0}\right)+\left(g\left(\bar{y}\left(t_{0}\right), t_{0}\right)-g\left(\bar{x}\left(t_{0}\right), t_{0}\right)\right) \tau_{m}\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right)+o\left(\tau_{m}\right) \\
& \geqslant \delta\left(t_{0}\right)-G\left|\bar{x}\left(t_{0}\right)-\bar{y}\left(t_{0}\right)\right| \tau_{m}\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right)+o\left(\tau_{m}\right) \\
& =\delta\left(t_{0}\right)-G \delta\left(t_{0}\right) \tau_{m}\left(1+\mathcal{O}\left(\tau_{m}^{2}\right)\right)+o\left(\tau_{m}\right) \\
& =\delta\left(t_{0}\right)-G \delta\left(t_{0}\right) \tau_{m}+o\left(\tau_{m}\right),
\end{aligned}
$$

which is in contradiction with (2.2).
It remains to consider the general case when $f_{\xi_{m}}\left(t_{0}\right) \subseteq \overline{\phi\left(t_{0}\right)}$ (and $f_{\xi_{m}}\left(t_{0}\right)$ is not contained in $\phi\left(t_{0}\right)$). Given a set $C \subseteq \mathbb{R}^{n}$ and $\varrho>0$, define $C_{\varrho}^{-}:=\{x \in C$: $\left.\operatorname{dist}\left(x, \mathbb{R}^{n} \backslash C\right)>\varrho\right\}$. Since $f_{\xi_{m}}\left(t_{0}\right)$ is a smooth compact set, if $\bar{\varrho}>0$ is sufficiently small, we have that, for $\varrho \in[0, \bar{\varrho}]$, the set $\left(f_{\xi_{n}}\left(t_{0}\right)\right)_{\varrho}^{-}$is smooth, and the smooth mean curvature evolutions with forcing term g of $\left(f_{\xi_{m}}\left(t_{0}\right)\right)_{\varrho}^{-}$has an existence time which is independent of ϱ. Moreover, int $\left(f_{\xi_{m}}\left(t_{0}\right)\right)=\underset{\varrho \in[0, \bar{\varrho}]}{\bigcup}\left(f_{\xi_{m}}\left(t_{0}\right)\right)_{\varrho}^{-}$. Thanks to the fact that $f \in \mathscr{F}_{g}$, possibly reducing $\bar{\tau}>0$ we also have

$$
\operatorname{int}\left(f_{\xi_{m}}\left(t_{0}+\tau\right)\right)=\bigcup_{\varrho \in[0, \bar{\varrho}]}\left(f_{\xi_{m}}\left(t_{0}+\tau\right)\right)_{\varrho}^{-}, \quad \tau \in[0, \bar{\tau}]
$$

Recalling our construction, the definition of $\delta(\cdot)$ and the assumption $\phi \in \operatorname{Barr}\left(\mathscr{F}_{g}\right)$, we then get $\left(f_{\xi_{m}}\left(t_{0}+\tau\right)\right)_{\varrho}^{-} \subseteq \phi\left(t_{0}+\tau\right)$ for $\varrho \in[0, \bar{\varrho}]$ and $\tau \in[0, \bar{\tau}]$. It follows that $\operatorname{int}\left(\left(f_{\xi_{m}}\left(t_{0}+\tau\right)\right) \subseteq \phi\left(t_{0}+\tau\right)\right.$ for $\tau \in[0, \bar{\tau}]$. Repeating the previous arguments, we then conclude the proof.

REFERENCES

[1] G. Bellettin - M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 19 (1995), 43-67.

