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ABSTRACT. — We adapt the barriers approach, originally introduced by De Giorgi for geo-
metric evolution problems, to systems of ordinary differential equations. In particular, we com-
pute the regularized minimal closed barrier (RMCB) for the two-body problem. It turns out
that, in general, the RMCB does not satisfy the semigroup property. Moreover, in the example
of the two-body problem, the fattening phenomenon does not appear.

Barriere per sistemi di equazioni differenziali ordinarie:
una applicazione al problema dei due corpi

SUNTO. — Adattiamo il metodo delle barriere, originariamente introdotto da De Giorgi per
trattare problemi geometrici di evoluzione, al caso dei sistemi di equazioni differenziali ordina-
rie. In particolare, calcoliamo la minima barriera regolarizzata chiusa (RMCB) per il problema
dei due corpi. Ne risulta che la RMCB non verifica necessariamente la proprietà di semigruppo.
Inoltre, nel problema dei due corpi, il fenomeno del fattening non si presenta.

1. - INTRODUCTION

The barriers method was defined by De Giorgi in [22, 23] to provide a unique and
global in time solution for a large class of geometric evolution problems, in particular
in the context of mean curvature flow. Concerning motion by mean curvature of
boundaries this method was studied in [9, 10, 12, 18, 14, 17], where the problem of
comparing the minimal barriers with the viscosity solutions is considered. In this one-
codimensional geometric context, it turns out that the barriers approach is very close
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to the set-theoretic subsolutions method as defined by Ilmanen in [27, 28]. One of the
original motivations of De Giorgi [23] was to include in the theory the mean curvature
flow of a manifold of arbitrary codimension; following his ideas, the applicability of
the method has been pursued successfully in [3] (see also [16] and [34]) where, again,
the comparison with the level-set method is considered. The original definition [23] of
barrier was given in a very general setting; interestingly enough, it turns out that the
concept of barrier can be applied to a very different setting with respect to the one
discussed above, namely to systems of ordinary differential equations (see [11, Esem-
pio 3.1] for a very preliminary discussion in this context). The aim of this paper is pre-
cisely to deepen the application of the barriers approach to systems of ODEs, in par-
ticular to the two-body problem. More precisely, we want to define a global solution
to the two-body problem which coincides with the classical solution till the latter
exists, and which is meaningful also after that a singularity occurs (i.e. after a
collision).

The definition of global solutions to the two-body problem is a classical topic, and
indeed various notions of regularization and different methods have been used to de-
fine trajectories beyond the collisions. We recall here: 1) the method of Sundman,
[37], that consists in finding a real analytic branch of the solution that can be regarded
as a continuation of the solution after the collision; 2) the method of Levi-Civita [29],
that consists in changing variables in such a way that the differential equations defin-
ing the flow have no singular points (this second method has been reformulated later
by Easton [24] using topological tools and we shall refer to this method as to Easton’s
regularization); 3) the approach of McGehee [31]. We also quote the recent method
based on the smoothing of the potential and a perturbation of the initial conditions, as
developed in [19].

The unique weak global solution that we propose in the present paper, starting in
j at time t0 , is denoted by 8 c*(j , F, t0 )(t) and is called regularized minimal closed
barrier (RMCB); it is slightly different from the one obtained applying directly the ab-
stract definition of minimal barrier, since an operation of topological closure is re-
quired, see Section 3 for further details. Our main result is the computation of the
RMCB for the two-body problem, with an initial datum j leading to collision. Even if
this example is quite elementary, it suggests some observations.

The RMCB does not satisfy the semigroup property in time, that is, given two
values of time t1 , t2 with t0G t1E t2 , 8 c*(j , F, t0 )(t2 ) is not necessarily equal to
8 c*(8 c*(j , F, t0 )(t1 ), F, t1 )(t2 ). In particular, at the collision time tcoll the RMCB
turns out to be empty, while, for times slightly larger than tcoll , it is a singleton; this
shows that, in general, the RMCB can pass from the empty set to a non-empty set (at
subsequent times). Despite the lack of the semigroup property, still the RMCB is
unique and has reasonable coincidence properties with classical solutions, whenever
they exist.

As we have seen from the above discussion, the properties of the minimal barriers
may differ when applied to different contexts, such as mean curvature flow or systems
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of ODEs. However, there is a common phenomenon that can be isolated, called (at
least in the literature of geometric evolutions) the fattening phenomenon, see
[25,8,15]. In Definition 3.5 we explain what we mean by fattening in the context of
the present paper. Generally speaking, fattening appears in presence of non-unique-
ness; for systems of ODEs, fattening means that 8 c*(j , F, t0 )(t) is not anymore a sin-
gleton in the phase space, but a set with positive Hausdorff dimension. This phe-
nomenon is strictly related to our notion of solution, similarly to what happens for vis-
cosity solutions in mean curvature flow. The Hausdorff dimension of the solution set,
at fixed time, should indicate how complicated is the singularity, namely how differ-
ent orbits can escape out of the singularity, for times larger and close to the singularity
time.

The content of the paper is the following. In Section 2 we introduce some nota-
tion. In Section 3, after recalling the original abstract definition of barrier, we apply it
to our context and we give the definition of 8 c*(j , F, t0 ). In Section 4 we discuss
some examples; in particular, we describe 8 c*(j , F, t0 ) for some singular systems of
ODEs considered by McGehee in [30]. In Section 5 we study some general properties
of RMCB which will be useful in the sequel. In Section 6 we define the RMCB for the
N-body problem, in particular we focus our attention to the case N42. The main re-
sult of the paper is Theorem 6.1 where we compute the RMCB for the two-body pro-
blem, in particular after the collision time. The two-body problem does not present
the fattening phenomenon. Eventually, in Section 7 we point out some comments and
open problems.

2. - NOTATION

We indicate by P (Rn ) the class of all the subsets of Rn , nF1. Given E� P (Rn ),
we denote by E the topological closure of E . Given rD0, we also define

E 1
r »4 ]x�Rn : dist (x , E) Er( .

In particular, if j is a point of Rn , j1
r is the open ball centered at j with radius r .

The symbol H a , with a� [0 , n], stands for the a-dimensional Hausdorff measure
in Rn .

Unless otherwise specified, we denote by I an open interval of R , t0 is a point of I
and we set R»4 sup I and L»4 [t0 , R[.

Given a set-valued map f : LK P (Rn ), we indicate by f the set-valued map
t�LK f(t) for any t�L . Moreover, given two set-valued maps f , c : LK P (Rn ),
by f’c we mean that f(t) ’c(t) for any t�L .

The notation (j k )k denotes a sequence of points j k�Rn .
We say that a function f belongs to C 1 ( [a , b]; Rn ) if there exists an open set U’R

containing [a , b] and a function f
A

� C 1 (U ; Rn ) such that f
A

4 f on [a , b].
The singleton containing the point j�Rn is denoted by ]j(.
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3. - BARRIERS FOR SYSTEMS OF ODES. DEFINITIONS OF MCB AND RMCB

We recall the abstract definition of barrier given by De Giorgi in [23].

DEFINITION 3.1: Let I’R be an interval, S an arbitrary set and r’ S 2. Let us assume
that

S 41 ]E’ S : r’E 2( .(3.1)

Let F be a family of functions of one real variable with the following property:

for each f� F there exist two real numbers a , b with aEb and f : [a , b] K S.

We say that a function f is a barrier with respect to the pair (r , F ) if there exists a con-
vex set J’ I such that f : JK S and if a , b , f satisfy

[a , b] ’ J , f : [a , b] K S, f� F, ( f (a), f(a) )� r ,

then

( f (b), f(b) )� r .

In this case we shall write f� B(r , F, J).

The symbol r stands for the graph of a binary relation on S , and condition (3.1) es-
sentially means that any element of S is either first or second element of a pair belong-
ing to r . Barriers have been studied for geometric evolution problems; on the other
hand, the study of minimal barriers for first and second order partial differential equa-
tions deserves further investigation.

To apply Definition 3.1 to systems of ODEs, we choose

S »4 P (Rn ), r»4 ](A , B) : A’B� P (Rn )((3.2)

in Definition 3.1.
Since we always choose r as in (3.2), from now on we omit the dependence on r in

the notation of barriers and minimal barriers.
It remains to choose the family F of «test trajectories». Let G be a function belong-

ing to C 0 (I3A ; Rn ), for some open set A’Rn . We give the following defini-
tion.

DEFINITION 3.2: A triplet (f ; a , b), with a , b� I , aEb and f : [a , b] K P (Rn ), be-
longs to F if

.
/
´

f� C 1 ( [a , b]; Rn ) ,

d

dt
f (t) 4G(t , f (t) ), t� [a , b] .

(3.3)

If ( f ; a , b) belongs to F, with a little abuse of notation we shall sometimes write
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f� F. Furthermore we shall always identify f� F with the map taking t� [a , b] into
the singleton ] f (t)( � P (Rn ).

With our choice in (3.2) and recalling Definition 3.1, we say that f is a barrier if
there exists an interval J’ I such that f : JK P (Rn ) and for all ( f ; a , b) � F, with
[a , b] ’ J , we have

f (a) �f(a) ¨ f (b) �f(b).

To indicate that f is a barrier on J we write f� B(F, J).

DEFINITION 3.3: Let E’Rn. The minimal closed barrier (MCB) with origin in E at
time t0 with respect to the family F is defined as

8c (E , F, t0 )(t) »41 mf(t) : f� B(F, L); f(t0 ) *En (t�L .(3.4)

Our definition of weak global solution of (3.3) starting from a set E� P (Rn ), is the
following.

DEFINITION 3.4: Let E’Rn. The regularized minimal closed barrier (RMCB) with
origin in E at time t0 with respect to the family F is defined as

8 c*(E , F, t0 )(t) »4 1
rD0

8c (E 1
r , F, t0 )(t) (t�L .(3.5)

In particular, the definition of weak global solution of (3.3) starting from a single-
ton ]j( � P (Rn ), leading to the notion of weak solution to the system in (3.3) coupled
with the initial condition

f (t0 ) 4j ,(3.6)

becomes

8 c*(j , F, t0 )(t) »4 1
rD0

8c (j1
r , F, t0 )(t) (t�L .(3.7)

Concerning Definition 3.4, some comments are in order.

REMARK 3.1: The RMCB in (3.7) is constructed as follows: it takes into account all
orbits starting at distance rD0 from the point j , whose union is a sort of thin tube in
space time (the section at time t of such a tube is, roughly speaking, the set
8c (j1

r , F, t0 )(t) which, by construction, is a closed set). Then 8 c*(j , F, t0 ) is de-
fined as the intersection of all such tubes as the width r at time t0 goes to zero. Notice
that, if there is a global C 1 solution of (3.3) starting at a point h belonging to j1

r , then
all its orbit is contained, by the definition of barrier, in the tube 8c (j1

r , F, t0 ). The
definition is, therefore, based on the following idea: we extract the solution of (3.3),
(3.6) by looking at («most of») the smooth solutions of (3.3) with f (t0 ) 4h�jr

1 , for
small r . Since in principle also these solutions may be not globally defined, we are
lead to use the definition of barrier. Observe also that the family of tests F is made by
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local in time smooth solutions of (3.3), being the initial time of f� F not fixed a priori.
Therefore, to construct RMCB we do not need necessarily smooth global in time test
solutions starting close to j .

REMARK 3.2: The RMCB in (3.5) is constructed using: (i) the intersection between
sets; (ii) the distance function in Rn; (iii) the topological closure in Rn . It is therefore a
concept which, in principle, could be defined in much more generality; for instance,
the space Rn could be replaced by a manifold M with a distance d (of course, the clo-
sure becomes the closure in M and the distance function is d). Another possible gener-
alization could be to replace Rn with an infinite dimensional space (say, a Hilbert or a
Banach space); we shall not discuss whether this concept becomes interesting in this
case.

REMARK 3.3: The reason for which we consider the closure of the sets f(t) in Defi-
nition 3.3 is apparent in the analysis of the examples in Section 4, see for instance
example (B) (and figure (ii)). One useful consequence of the closure operation relies
in Remark 5.4.

DEFINITION 3.5: Let aD0, t1 , t2�L and t2D t1 . We say that 8 c*(j , F, t0 ) devel-
ops a-dimensional fattening at time t2 if 8 c*(j , F, t0 )(t) is a singleton for all
t� [t1 , t2 [ and for any eD0 there exists t� ] t2 , t21e[% I such that

H a (8 c*(j , F, t0 )(t) ) D0 .

If 8 c*(j , F, t0 ) develops fattening, then at some time larger than t2 , it is not a sin-
gleton anymore. Heuristically, this means that, in the vicinity of the position (if any)
corresponding to the singularity time t2 , there is a large number of differently starting
trajectories of the system. This phenomenon can be considered as a lack of uniqueness
of the flow. Note that the above definition does not prevent the possibility that
8 c*(j , F, t0 )(t2 ) 4¯ .

REMARK 3.4: Observe that 8 c*(E , F, t0 ) and 8c (E , F, t0 ) are closed-valued
maps, 8 c*(E , F, t0 ) *8c (E , F, t0 ) and

8c (¯ , F, t0 )(t) 48 c*(¯ , F, t0 )(t) 4¯ (t�L .(3.8)

Eventually, observe that F ’ G implies B(F, L) * B(G, L), hence 8c(E , F, t0) ’
’8c (E , G, t0 ) and 8 c*(E , F, t0 ) ’8 c*(E , G, t0 ).

4. - EXAMPLES

Let us apply the above definitions to Peano’s example: let n41, G(t , v) 4

4G(v) »43v 2/3 for any t�R and v�A»4R , j40 �R and t0 »40. It is not difficult to
check that 8*c (0 , F, 0 )(t) 4 [0 , t 3 ] %R for any tF0. We are therefore in presence
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of one-dimensional fattening at time 0 . Observe that a suitable modification of the
function G into a new function of class C 1 which grows quadratically for vF1 can
force 8*c (0 , F, 0 )(t) to become unbounded in a finite time.

Let t0 »40, n42 and A»4R2 0](0 , 0 )(; we describe 8 c*( (j 1 , j 2 ), F, 0 ), with
(j 1 , j 2 ) �A , for the following plane autonomous systems:

( A )
.
/
´

x
.
4 (x 21y 2 )21/3

y
.
40

( B )
.
/
´

x
.
42x(x 21y 2 )21

y
.
4y(x 21y 2 )21

( C )
.
/
´

x
.
4 (x 21y 2 )21/2

y
.
40

( D )
.
/
´

x
.
4 (x 22y 2 )(x 21y 2 )24/3

y
.
42xy(x 21y 2 )24/3

As observed in [30], we can apply both Easton’s and Sundman’s regularization to ob-
tain a global solution to system (A) for any initial datum (j 1 , j 2 ) (the two regulariza-
tions give rise to the same solution). Only Easton’s regularization is appliable to sys-
tem (C), only Sundman’s regularization to system (D), neither Sundman’s nor East-
on’s regularization to system (B).

The RMCB for these examples is drawn in the following figures for three different
values of t: it is constituted by points, enhanced in the figures using a black small ball
at the initial time and thinner and thinner circles at subsequent times. We also draw
the phase portrait of the equations.

In figure (i) we sketch the flow for both systems (A) and (C); in these cases the
RMCB coincides with the classical solution obtained by Easton’s regularization for
any given initial conditions.

In figures (ii) and (iii) we sketch, respectively, the phase portraits and the
RMCBs for systems (B) and (D). In these cases the RMCB coincides with the
classical solution for all initial data not leading to the origin. For the remaining
initial data (e.g. for (j 1 , j 2 ) 4 (21, 0), as in the figure) the RMCB coincides
with the origin at the singularity time tsing (in particular, 8*c ( (21, 0), F, 0 )(tsing )
is not contained in the domain of G), and it splits into a pair of points with
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opposite y-coordinate for times larger than tsing . To see that this is true, one
can use, for instance, Remark 5.4 in Section 5 below.

5. - GENERAL PROPERTIES OF THE BARRIERS MCB AND RMCB

In this section we shall prove some general properties of barriers. We need the fol-
lowing lemma, which is standard in the theory of ODEs under our assumptions on G ,
see for instance [2, 26].

LEMMA 5.1: Let G� Liploc (I3A). The set S of all initial conditions j�A for which
there exists a unique solution fj of class C 1 of the system in (3.3) in the common time
interval [a , b] % I with fj (a) 4j is open.

The following lemma asserts that the closure of a barrier is still a barrier. This
property is in general not true for barriers to mean curvature flow.

LEMMA 5.2: Let G� Liploc (I3A) and let f� B(F, L). Then f � B(F, L).

PROOF: Let ( f ; a , b) � F be such that f (a) � f(a). We have to prove that
f (b) ’ f(b). If f (a) �f(a) we have f (b) �f(b) ’ f(b) and the assertion follows. On the
other hand, if f (a) � f(a)0f(a), using also Lemma 5.1 we can choose a sequence (pk )k

of points of f(a)OA converging to f (a) �A as kK1Q , such that the solution fk of
the system in (3.3) with fk (a) 4pk is of class C 1 and is defined in the time interval
[a , b] for any k�N . Clearly fk (b) �f(b) for any k�N . By the continuous depen-
dence on the initial data, we then have that the sequence ( fk (b) )n converges to f (b),
and therefore f (b) � f(b). It follows that f � B(F, L). r

PROPOSITION 5.1: Let G� Liploc (I3A) and let E’Rn. The MCB satisfies the fol-
lowing properties:

(i) 8c (E , F, t0 ) � B(F, L);

(ii) 8c (E , F, t0 )(t) 41mf(t) : f� B(F, L), f(t0 ) 4 En for any t�L;

(iii) E1’E2 ¨ 8c (E1 , F, t0 )(t) ’8c (E2 , F, t0 )(t) for any t�L;

(iv)

8c (E , F, t0 )(t2 ) 48cg8c (E , F, t0 )(t1 ), F, t1h(t2 ) t0G t1G t2ER .

PROOF: Property (i) follows from Lemma 5.2 and the fact that the intersections of
barriers is a barrier. Property (ii) follows from the fact that 8c (E , F, t0 )(t0 ) * E and
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that the map c : LK P (Rn ) defined as

c(t) »4
.
/
´

E

8c (E , F, t0 )(t)

t4 t0

tD t0 , t�L

belongs to B(F, L). Property (iii) follows directly from the definitions. Property (iv)
can be proved as follows (see Lemma 3.1 in [13]). Let f : LK P (Rn ) be defined
by

f(t) »4
.
/
´

8c (E , F, t0 )(t)

8c (8c (E , F, t0 )(t1 ), F, t1 )(t)

t0G tG t1

t� ] t1 , R[ ;

then f(t0 ) 4 E and f� B(F, L) by (i) and (ii) of Proposition 5.1. Hence

8c (E , F, t0 )(t2 ) ’f(t2 ) 48c (8c (E , F, t0 )(t1 ), F, t1 )(t2 ) .

Conversely, since 8c (E , F, t0 ) is a barrier on [t1 , R[ which coincides with f(t1 ) at
t4 t1 , we have 8c (E , F, t0 )(t2 ) *8c (f(t1 ), F, t1 )(t2 ) 4f(t2 ), and property (iv) is
proved. r

We call (ii) the inclusion property and (iv) the semigroup property for MCB.

REMARK 5.1: In view of (ii) of Proposition 5.1, when considering 8c (E , F, t0 ) we
can always assume without loss of generality that E is closed.

REMARK 5.2: Thanks to (3.8) and to the semigroup property of MCB, it follows
that, if for some t�L it happens that 8c (E , F, t0 )(t) 4¯ , then 8c (E , F, t0 )(t) 4¯

for all t�L . The interesting fact is that the same property for RMCB is not true in
general.

REMARK 5.3: Let G� Liploc (I3A). Let E’Rn be a closed set. The RMCB satisfies
the following properties:

(i) 8 c*(E , F, t0 ) � B(F, L);

(ii) 8 c*(E , F, t0 )(t) 4 1
rD0

Omf(t) : f� B(F, L); f(t0 ) 4 E 1
r n for any t�L;

(iii) E1’E2 ¨ 8*c (E1 , F, t0 )(t) ’8*c (E2 , F, t0 )(t) for any t�L .

We shall see in Section 6.1 that 8 c*(E , F, t0 ) does not verify the semigroup
property.

We now prove two useful properties relatively to the MCB and the RMCB.

LEMMA 5.3: Let G� Liploc (I3A) and let E’Rn. Then

8c (E , F, t0 )(t) 4 0
z�E

8c (z , F, t0 )(t) (t�L .(5.2)
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PROOF: Set for notational simplicity

FE (t) »4 0
z�E

8c (z , F, t0 )(t) (t�L .

For any z�E we have 8c (z , F, t0 ) ’8c (E , F, t0 ) by the inclusion property; we de-
duce that FE’8c (E , F, t0 ), and therefore FE ’ 8c (E , F, t0 ) 48c (E , F, t0 ).

Conversely, we have FE (t0 ) 4 0
z�E

8c (z , F, t0 )(t0 ) 4E . It is also easy to prove that

FE� B(F, L). Therefore, by Lemma 5.2 we deduce that FE � B(F, L), and we con-
clude that FE *8c (E , F, t0 ). r

LEMMA 5.4: Let G� Liploc (I3A) and let E’Rn. Then

8 c*(E , F, t0 )(t)4 1
rD0

0
h�E 1

r

8c (h , F, t0 )(t)4 1
rD0

0
h�E 1

r

8 c*(h , F, t0 )(t) (t�L .(5.3)

PROOF: Using (3.5), (5.2) and Remark 3.4 we have

8 c*(E , F, t0 ) 4 1
rD0

8c (E 1
r , F, t0 ) 4 1

rD0
0

h�E 1
r

8c (h , F, t0 ) ’ 1
rD0

0
h�E 1

r

8 c*(h , F, t0 )

which in particular proves the first equality of (5.3).
Furthermore, by (5.2), given rD0 we have

0
h�E 1

r

8 c*(h , F, t0 ) 4 0
h�E 1

r

1
rD0

8c (h1
r , F, t0 ) 4 0

h�E 1
r

1
rD0

0
z�h r

1
8c (z , F, t0 ) .

Now for any given h�E 1
r , if rD0 is small enough we have h1

r %E 1
r . Hence

1
rD0

0
z�h r

1
8c (z , F, t0 ) ’ 0

h�E 1
r

8c (h , F, t0 ) .

Using again (5.2), it follows that

0
h�E 1

r

1
rD0

0
z�h r

1
8c (z , F, t0 ) ’8c (E 1

r , F, t0 ) .

Therefore

8c (E 1
r , F, t0 ) * 0

h�E 1
r

8 c*(h , F, t0 ) .

Taking the intersection with respect to rD0, we deduce that

8 c*(E , F, t0 ) * 1
rD0

0
h�E 1

r

8 c*(h , F, t0 ) ,

and this concludes the proof. r
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REMARK 5.4: Assume that E4 ]j(, for j�Rn and let t�L . Then (5.3) is equiva-
lent to

8 c*(j , F, t0 )(t) 4 ]z�Rn : )(j k )k : j kKj , )wk�8 c*(j k , F, t0 )(t), wkKz( ,(5.4)

and to

8 c*(j , F, t0 )(t) 4 ]z�Rn : )(j k )k : j kKj , )wk�8c (j k , F, t0 )(t), wkKz( .(5.5)

5.1. The RMCB of a single point.

The case E4 ]j( where ]j( is a singleton is particularly interesting. If j�A we
denote by uj the unique maximal solution to the system in (3.3) with uj (t0 ) 4j , on the
maximal existence interval [t0 , tsing [’L .

The following propositions show in particular that the MCB and the RMCB coin-
cide with the classical solution till the latter exists.

PROPOSITION 5.2: Let G� Liploc (I3A). Then

8c (j , F, t0 )(t) 4 ]uj (t)( (t� [t0 , tsing [(5.6)

and

8c (j , F, t0 )(t) 4¯ (t� [tsing , R[ .(5.7)

PROOF: As (uj ; t0 , t) � F for each t� ] t0 , tsing [ and uj (t0 ) 4j it follows

uj (t) �8c (j , F, t0 )(t) (t� [t0 , tsing [ .

Conversely, set

f(t) »4
.
/
´

]uj (t)(

¯

t0G tE tsing

t� [tsing , R[ .

To conclude the proof it is enough to show that f� B(F, L), since f(t) is closed for
any t�L . Let ( f ; a , b) � F, with t0GaEb and aE tsing , and let f (a) �f(a). It follows
f (a) 4uj (a), so that f (t) 4uj (t) for all t� [a , b] by uniqueness. Furthermore bE tsing

because, if not, uj could be extended beyond tsing . In particular uj (t) �f(t) for any
t� [a , b]. We observe also that if aF tsing there is no function f� F, therefore in this
case there is nothing to check for f (b).

PROPOSITION 5.3: Let G� Liploc (I3A). Then

8 c*(j , F, t0 )(t) 4 ]uj (t)( t0G tE tsing .(5.8)

PROOF: Fix j�A and an arbitrary t1E tsing . Using Lemma 5.4 and Proposition 5.2
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we have

8 c*(j , F, t0 )(t1 ) 4 1
rD0

0
z�j1

r

uz (t1 ) �uj (t1 ) .

Assume by contradiction that there exists w�Rn , wcuj (t1 ), with

w�8 c*(j , F, t0 )(t1 ).(5.9)

By (5.9) it follows in particular that w� 0
z�j1

s

uz (t1 ) for any sD0. Choose hD0 such

that Nw2uj (t1 )ND2h . By the continuous dependence on data we can select s D0
such that Nuz (t1 )2uj (t1 )NEh for any z�j1

s , a contradiction. r

REMARK 5.5: No general assertion is stated on the behavior of 8 c*(j , F, t0 ) after
tsing . In general, 8 c*(j , F, t0 )(t) may be non-empty for tF tsing .

6. - MINIMAL BARRIERS FOR THE N-BODY PROBLEM

Let ND1. We consider the motion of N bodies with mass m1 , R , mN that are
subject only to their gravitational interaction. Let n»46N , I»4R and t0 »40. The
space R6N is the phase space and S »4 P (R6N ) is, as usual, the class of all subsets of
R6N .

We use the notation p»4 (q , v) with q , v�R3N and

.
/
´

q4 (q1 , R , qN )

v4 (v1 , R , vN )

.
/
´

qi4 (qi , 1 , qi , 2 , qi , 3 ) �R3

vi4 (vi , 1 , vi , 2 , vi , 3 ) �R3
i41, R , N .

Let

D»4 0
1 G iE jGN

](q , v) �R6N : qi4qj( .

We define G(t , p) »4G(p) 4 (G1 (p), R , G6N (p) ), with t�R and p�R6N 0D , as

Gj (q , v) »4

.
`
/
`
´

vr , s with r4 y j21

3
z11; s4 j23 y j21

3
z if 1 G jG3N ,

!
hc j

mh (qh , s2qj , s )

Vqh2qj V
3

with s4 j23 y j21

3
z if 3N11 G jG6N ,

where [Q] denotes the integer part.

DEFINITION 6.1: A triplet ( f ; a , b), with a , b� I , aEb and f : [a , b] K P (R6N ),
belongs to F if

f (t) 4 ](q1 (t), R , qN (t), v1 (t), R , vN (t) )( (t� [a , b],
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qi� C 1 ( [a , b]; R3 ) and vi� C 1 ( [a , b]; R3 ) for any i41, R , N , and the system

f 8 (t) 4G( f (t) )

holds for any t� [a , b].

Let us select j�R6N 0D; we take

8 c*(j , F, 0 )(t)

as generalized solution to the N-body problem with origin in j at time 0 .

6.1. The RMCB for the two-body problem.

In this paragraph we set N42. We shall study the properties of the RMCB and
the MCB for the two-body problem, focusing our attention on initial data j leading to
collisions. If j does not lead to a collision, then 8 c*(j , F, 0 ) coincides with the global
classical solution by Proposition 5.3.

A useful property of the two-body problem is stated in the following remark,
which follows from well-known results on the Kepler problem.

REMARK 6.1: The problem is equivalent to a central motion of one particle on a
plane, so that we can consider j�A»4 gR2 0](0 , 0 )(h3R2 . If j does not lead to a
singularity (that is necessarily a collision), then there is an open neighborhood U%A
of j such that any h�U does not lead to a singularity. On the other hand, if j leads to
a singularity and V is any neighborhood of j in A , then the set of all h�V not leading
to a singularity is dense in V .

The main result of the paper is the following.

THEOREM 6.1: Let N42. Let j�A be an initial condition leading to a collision at
time tcollD0. Let uj be the classical solution of the two-body problem on [0 , tcoll [ start-
ing from j at time 0. Denote by T the length of the maximal interval (backward and for-
ward in time) in which uj is defined. Then

8 c*(j , F, 0 )(t) 4

.
/
´

]uj (t)(

¯

]uj (t2 (h11) T)(

0 G tE tcoll

t4 tcoll1hT

t�] tcoll1hT , tcoll1 (h11) T[

for any h�NN ]0(. In particular 8 c*(j , F, 0 ) is T-periodic.

PROOF: The assertion for times t� [0 , tcoll [ is a consequence of Proposition 5.3.
Let now tF tcoll . Using (5.7), the continuous dependence on the initial data and Re-
mark 6.1 it follows that

8 c*(j , F, 0 )(t) 4 1
rD0

0
z�j1

r

8c (z , F, 0 )(t) 4 1
rD0

0
z�W(j1

r )
uz (t)
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where W(j1
r ) is the set of the initial conditions in j1

r not leading to a collision (hence
corresponding to global solutions). Hence

8 c*(j , F, 0 )(t) 4 ]z�R4 : )(j k )k : j kKj , )wk�ujk
(t), wkKz( ,(6.1)

where each j k does not lead to collision. Recall that ujk
(t) is a singleton. When

t4 tcoll , by known properties of the solutions of the Kepler problem, if j kKj then,
writing wk4 (wk

q , wk
v ) �R23R2 (position and velocity in the plane), necessarily

Nwk
v NK1Q . Hence (6.1) implies that 8 c*(j , F, 0 )(tcoll ) must be empty.
Assume now that t�] tcoll1hT , tcoll1 (h11) T[, with h�N. Using the periodici-

ty of ujk
, from (6.1) we obtain

8 c*(j , F, 0 )(t) 4 ]z�R4 : z4 lim
kK1Q

ujk
(t2 (h11) Tujk

) for some (j k )k : j kKj( ,

where Tujk
is the period of ujk

.
By known properties of the solutions of the Kepler problem, if jkKj then Tujk

KT
and lim

kK1Q
ujk

(t2 (h11) Tujk
) 4uj (t2 (h11) T), and this concludes the proof, in-

deed we can use the periodicity of ujk
to show that 8*c (j , F, 0 )(tcoll1hT) is empty

(h�N just following the previous steps. r

REMARK 6.2: The RMCB coincides (up to the discrete set of times when it is emp-
ty, i.e. the collision times) with the so-called reflection solution (or collision-ejection
solution), that is when the velocity vector reverses direction at collision and the parti-
cles bounce off each other. The reflection solution has been obtained with several dif-
ferent methods, see for instance [1, 29, 35, 31, 32].

7. - FINAL COMMENTS

We conclude the paper with some comments.

REMARK 7.1: Nothing is said in the present paper about the properties (such as
measurability, continuity and so on) of the map tK8 c*(E , F, t0 )(t) � P (Rn ).

REMARK 7.2: It would be of some interest to see whether the barrier method can
be applied to differential inclusions, and to compare it with the various notions of
generalized solution present in the literature (see for instance [4, 5, 6, 7, 20, 26, 36]).
We observe that a necessary requirement in order to implement the barrier method is
to find a non-empty family F of «test» trajectories; the regularity of the elements f of F

can be freely chosen for the particular problem at hand (such as absolute continuity of
f and so on).

Eventually, we point out an open problem. We have already seen that fattening
does not appear after binary collision in the two-body problem. It would be interest-
ing to know whether fattening happens after a multiple collision in the N-body prob-
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lem (for instance at a triple collision for the three-body problem); in positive case, it
would be interesting to estimate the Hausdorff dimension of the RMCB (at fixed
times).
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