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On the spectrum of the Laplace-Beltrami operator
for p-forms on asymptotically hyperbolic manifolds (**)

SUMMARY. — Under suitable conditions on the asymptotic decay of the metric, we compute
the essential spectrum of the Laplace-Beltrami operator acting on p-forms on asymptotically hy-
perbolic manifolds.

Sullo spettro dell’operatore di Laplace-Beltrami
per le p-forme su varietá asintoticamente iperboliche

RIASSUNTO. — Sotto opportune ipotesi sull’andamento asintotico della metrica, si calcola lo
spettro essenziale dell’operatore di Laplace-Beltrami per le p-forme su varietá asintoticamente
iperboliche.

1. - INTRODUCTION

The spectrum of the Laplace-Beltrami operator on complete noncompact Rieman-
nian manifolds in its relationships with the geometric properties of the manifold has
been investigated by many authors. In the case of a general Riemannian manifold the
problem turns out to be very difficult, because of the lack of powerful analytic tools
such as the Fourier transform. Hence the attention has mainly focused on particular
classes of Riemannian manifolds, in which these difficulties can be bypassed thanks to
the presence of symmetries or to the imposition of a «controlled» asymptotic be-
haviour of the Riemannian metric.

This is the case for manifolds endowed with rotationally symmetric Riemannian
metrics, where a decomposition technique introduced by Dodziuk in [2] and then

(*) Indirizzo dell’Autrice: Dipartimento di Matematica del Politecnico, corso Duca degli
Abruzzi 24, I-10129 Torino.

(**) Memoria presentata l’8 ottobre 2002 da Edoardo Vesentini, uno dei XL.
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employed by Eichhorn ([4]) and Donnelly ([3]) considerably simplifies the problem.
By this technique, Dodziuk obtained in [2] results on the existence and multiplicity of
L 2 harmonic forms for a Riemannian metric which can be expressed, in geodesic coor-
dinates, as

dt 21g(t) du 2 ,(1.1)

where g(t) is a positive function and du 2 is the standard metric on the sphere SN21.
These techniques were then employed by Eichhorn in [4] for his results on the dis-
creteness of the spectrum of the Laplace-Beltrami operator for Riemannian metrics of
type (1.1), and by Donnelly in [3] in his computation of the spectrum of the Laplace-
Beltrami operator on the hyperbolic space Hn.

A completely different approach to this kind of problems can be found in [5], [6]
and [7], where the essential spectrum is determined on conformally compact Rieman-
nian manifolds through the sophisticated machinery of the pseudodifferential calculus
on manifolds developed by Melrose (see [8] and the references therein).

In the present paper we consider a noncompact Riemannian N-dimensional mani-
fold endowed with a Riemannian metric of type

ds 24 f (t) dt 21g(t) du 2 ,(1.2)

where t� [0 , 1Q), du 2 is the standard metric on SN21 , f (t) D0 and g(t) D0. We
suppose that ds 2 is asymptotically hyperbolic, that is f (t) K1 and g(t) Ksinh2 t as tK

K1Q. As for the behaviour at t40, we suppose that f (t) 41 and g(t) 4 t 2 in a neigh-
bourhood of 0. Via decomposition and perturbation techniques, we compute the es-
sential spectrum of the Laplace-Beltrami operator on p-forms, under suitable hypoth-
esis on the rate of convergence of the metric (1.2) to the hyperbolic metric

dt 21sinh2 t du 2 .

The main result is the following (Theorem 5.11). Let us define

f
A(t) »4 f (t)21,

gA(t) »4g(t)2sinh2 t ;

if for t c 0

NgA(t)NG
C

t
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t
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t
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then the essential spectrum of the Laplace-Beltrami operator is the interval

ymin {u N22p21

2
v2

, u N22p11

2
v2} , 1Qv

if Nc2p , whilst for N42p it is equal to

]0(Ny 1

4
, 1Qv .

The assumptions (1.4), (1.3), though rather general, can be probably weakened. It
would be interesting to get to a more precise knowledge of the spectrum of DM , in
particular as concerns the absolutely continuous spectrum; however, this seems diffi-
cult, because of the lack of a completely developed Fourier theory for p-forms on the
hyperbolic space HN , which would permit to understand whether a perturbation of
the Laplace-Beltrami operator is trace-class or not.

The paper is organized as follows. In section 2, we construct an explicit model of
asymptotically hyperbolic manifold, endowing the interior of the unit ball B N in RN

with a Riemannian metric of type (1.2), where t4settanh (V x V). Moreover, we intro-
duce notations and some preliminaries which will be useful in the subsequent sec-
tions. In section 3 we prove a generalization of the result by Dodziuk in [2] to the case
of a metric of type (1.2); slightly modifying Dodziuk’s proof we give necessary and
sufficient conditions for the existence of L 2 harmonic p-forms on M , and we deter-
mine their multiplicity. We then apply the result to the present situation, proving that
for an asymptotically hyperbolic Riemannian manifold 0 �s p (DM ) if and only if

p4
N

2
. Moreover, we show that in this case 0 belongs also to the essential spectrum

since it is an eigenvalue of infinite multiplicity. In section 4, we first introduce an or-
thogonal decomposition of L 2

p (M) analogous to those employed by Eichhorn and by
Donnelly (see [4] and [3]). The decomposition is obtained in two steps; first, thanks
to the Hodge decomposition on SN21 , we write any p-form v as

v4v 1d5v 2dRdt5 (v 1d5v 2dRdt),

where v 1d (resp. v 1d) is a coclosed (resp. closed) p-form on SN21 parametrized by t ,
and v2d (resp. v2d) is a coclosed (resp. closed) (p21)-form on SN21 parametrized by t.
The decomposition is orthogonal in L 2 and DM splits accordingly as

DM4DM15DM25DM3 .

This allows to reduce ourselves to the study of the spectral properties of DMi ,
i41, 2 , 3.

The second step consists in decomposing v 1d (resp. v 2d , v 2d) according to an or-
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thonormal basis of coclosed p-eigenforms (resp. closed (p21)-eigenforms, coclosed
(p21)-eigenforms) of DSN21. In this way, up to a unitary equivalence, the spectral
analysis of DMi , i41, 2 , 3 , can be reduced to the investigation of the spectra of a
countable number of Sturm-Liouville operators Dil on the half line, parametrized by
the eigenvalues l of DSN21.

In [4] J. Eichhorn proved that for a complete Riemannian metric over a noncom-
pact manifold the essential spectrum of DM coincides with the essential spectrum of
the Friedrichs extension DM

F of the restriction of DM to any exterior domain in M. This
allows to consider the Sturm-Liouville operators Dil on [c , 1Q), for cD0, and to
overcome the difficulties due to the presence of singular potentials at t40.

In section 5, under the assumptions (1.3), (1.4), we compute the essential spectrum
of DM. First, through classical perturbation theory, we compute the spectrum of D F

1l

for every l , and we show that

yu N22p21

2
v2

, 1Qv’s ess (DM1 ).

Then we show that s ess (DM1 ) is exactly the interval yg N22p21

2
h2

, 1Qv. By duality,

we find that s ess (DM2 ) 4 yg N22p11

2
h2

, 1Qv. As for the essential spectrum of DM3 ,

first we compute the essential spectrum of D F
3l for every l , proving that

ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv’s ess (DM3 ).

Then we show that any positive number m such that

mE min {u N22p21

2
v2

, u N22p11

2
v2} ,

can not belong to the essential spectrum of DM3 . Hence,

s ess (DM )0]0( 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv .

Finally, recalling the results of Section 3, we fully determine the essential spectrum
of DM .
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2. - PRELIMINARY FACTS

For NF2, let B N denote the closed unit ball

B N 4 mx 4 (x1 , R , xN ) �RN Nx1
21R1xN

2 G1n ,

and let SN21 denote the sphere

SN214 m(x1 , R , xN ) �RN Nx1
21R1xN

2 41n ,

endowed with a coordinate system (Ui , U i ), i42, R , k11, U i : UiKRN21.
Let us consider the interior of B N,

B N4 m(x1 , R , xN ) �RN Nx1
21R1xN

2 E1n ,

with the coordinate system (Vi , F i ), for i41, R , k11, defined in the following
way: in a neighbourhood of 0 , for some dD0,

V14 m(x1 , R , xN ) �RN Nx1
21R1xN

2 Edn

and

F 1 (x1 , R , xN ) 4 (x1 , R , xN ),

whilst for iD1, x c0,

Vi4 {x �RN N
x

Vx V

�Ui} ,

F i : ViK (0 , 1Q)3U i (Ui ),

F i (x1 , R , xN ) 4 u2 settanh (V x V), U iu x

V x V

vv4: (t , u i ).

We denote by M the manifold B N , endowed with a Riemannian metric ds 2 such that
on F i (Vi ), for iD1,

ds 2 »4 f (t) dt 21g(t) du 2 ,(2.1)

where f (t) D0, g(t) D0 for every t� (0 , 1Q) and du 2 is the standard metric on
SN21. ds 2 is well-defined on B N 0]0(.

We suppose that the metric is asymptotically hyperbolic, that is, as tK1Q ,

f (t) K1, g(t) Ksinh2 t .(2.2)
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As for the behaviour as tK0, we suppose that for t� (0 , e) (e42 settanh (d))

f (t) f1, g(t) 4 t 2 .(2.3)

This assures that ds 2 can be extended to a smooth Riemannian metric on all M; in-
deed, for t� (0 , e), ds 2 is the expression, in polar coordinates, of the Euclidean metric
on RN. As already remarked in the Introduction, the essential spectrum of the
Laplace-Beltrami operator acting on p-forms on a complete noncompact Riemannian
manifold does not change under perturbations of the Riemannian metric on compact
sets ([4]). As a consequence, condition (2.3) does not modify essentially the spectral
properties of the Laplace-Beltrami operator on M.

The manifold M , endowed with the Riemannian metric ds 2 , is complete. Indeed,
in view of (2.7) and (2.6), there exist C1 , C2D0, D1 , D2D0 such that for every
tD0

C1G f (t) GC2 ,

D1 sinh2 tGg(t) GD2 sinh2 t ;

hence the distance dM induced by ds 2 , given by

dM (p1 , p2 ) 4 inf
g�G(p1 , p2 )

�
0

1uf (t(s) ) u dg 1

ds
v2

1g(t(s) )
V

dg i

ds V

2

SN21
v1/2

ds ,

is equivalent to the distance induced by the hyperbolic metric, which is com-
plete.

For p40, R , N , we will denote by C Q (L p (M) ) the space of all smooth p-forms
on M , and by C Q

c (L p (M) ) the set of all smooth, compactly supported p-forms on M.
For any v�C Q (L p (M) ), we will denote by Nv(t , u)N the norm induced by the Rie-
mannian metric on the fiber over (t , u), given in local coordinates by

Nv(t , u)N24g i1 j1 (t , u)Rg ip jp (t , u)v i1 R ip (t , u)v j1 R jp (t , u),

where g ij is the expression of the Riemannian metric in local coordinates. We will de-
note by dM , ˜M , dM , respectively, the differential, the Hodge ˜ operator and the
codifferential on M , defined as in [1]. DM will stand for the Laplace-Beltrami operator
acting on p-forms

DM4dM dM1dM dM ,

which is expressed in local coordinates by the Weitzenböck formula

( (DM ) v)i1 Rip 42g ij ˜i ˜j v i1 R ip 1!
j

R a
j v i1 R aR ip 1 !

j , lc j
R a

ij
b

il vai1 RbRip ,
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where ˜i v is the covariant derivative of v with respect to the Riemannian metric, and
R i

j , R i
k

j
l denote respectively the local components of the Ricci tensor and the Riemann

tensor induced by the Riemannian metric. As usual, L 2
p (M) will denote the completion

of C Q
c (L p (M) ) with respect to the norm VvVL 2

p (M) induced by the scalar product

av , vAbL 2
p (M) »4�

M

vR˜MvA ;

VvVL 2
p (M) reads also

VvV

2
L 2

p (M)4�
M

Nv(t , u)N2 dVM ,

where dVM is the volume element of (M , ds 2 ).
It is well-known that, since the Riemannian metric on M is complete, the Laplace-

Beltrami operator is essentially selfadjoint on C Q
c (L p (M) ), for p40, R , N. We will

denote by DM also its closure.
Now, given v�C Q (L p (M) ), let us write

v4v 11v 2Rdt ,(2.4)

where v 1 and v 2 are respectively a p-form and a (p21)-form on SN21 depending on
t. An easy computation shows that ˜M v can be expressed in terms of (2.4) as

(2.5) ˜M v4 (21)N2p g
N22p11

2 (t) f
2

1

2 (t) ˜SN21 v 21

1g
N22p21

2 (t) f
1

2 (t) ˜SN21 v 1Rdt ,

where ˜SN21 denotes the Hodge ˜ operator on SN21. Moreover, dM and dM split re-
spectively as

dM v4dSN21 v 11 {(21)p ¯v 1

¯t
1dSN21 v 2}Rdt ,(2.6)

(2.7) dM v4g 21 (t) dSN21 v 11 (21)p f
2

1

2 g
2N2112p

2
¯

¯t
gf

2
1

2 g
N1122p

2 v 2
h1

1g 21 dSN21 v 2Rdt ,

where p is the degree of v , dSN21 is the differential on SN21 and dSN21 is the codiffer-
ential on SN21.
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Moreover, the L 2-norm of v�C Q (L p (M) )OL 2
p (M) can be written as

(2.8) VvV

2
L 2

p (M)4 �
0

1Q

g
N22p21

2 (s) f
1

2 (s)Vv 1 (s)V

2
L 2

p (SN21 ) ds1

1 �
0

1Q

g
N1122p

2 (s) f
2

1

2 (s)Vv 2 (s)V

2
L 2

p21 (SN21 ) ds ,

where V .VL 2
p (SN21) is the L 2-norm for p-forms on SN21.

3. - ZERO IN THE SPECTRUM

In the present section we will investigate whether 0 belongs or not to the point
(and essential) spectrum of DM , for differential forms of degree p40, R , N. The
main tool employed is the following generalization of a result of Dodziuk ([2]):

THEOREM 3.1: Let us consider, for NF2, the manifold M endowed with a complete
Riemannian metric of type (2.1), satisfying condition (2.3) for t� (0 , e); then, if we de-
note by H p (M), for p40, R , N , the space of L 2 harmonic p-forms on M , we
have

1) for p� ]0, N , N/2(, H p (M) 4 ]0(;

2) if s
0

Q

f
1

2 (s) g
N21

2 (s) ds41Q , H N (M) C H 0 (M) 4 ]0(; if on the contrary

s
0

Q

f
1

2 (s) g
N21

2 (s) dsE1Q , H N (M) C H 0 (M) 4R ;

3) if p4
N

2
, H p (M) 4 ]0( if s

1

1Q

f
1

2 (s) g
2

1

2 (s) ds41Q ; if on the other hand

s
1

1Q

f
1

2 (s) g
2

1

2 (s) dsE1Q , H
N

2 (M) is a Hilbert space of infinite dimension.

PROOF: The proof follows very closely the argument in [2]; it will be exposed here
for the sake of completeness.

An L 2-form on M is harmonic if and only it is closed and coclosed. Hence,
v� H p (M) if and only if

VvVL 2
p (M)EQ , dv40, d˜M v40.(3.1)

Moreover, ˜M gives an isomorphism between H p (M) and H N2p (M).
The proof of 2) is immediate; if v is a harmonic function, not identically vanishing,

v is constant on M , hence v�L 2 (M) if and only if the total volume of M , given by

s
0

Q

f
1

2 (s) g
N21

2 (s) ds , is finite.
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We now come to the proof of 1). Let v� H p (M), for pc0, N , and let us consider
its decomposition (2.4). Then, in view of (2.6), dM v40 implies

dSN21 v 140, dSN21 v 21 (21)p ¯v 1

¯t
40,

whilst dM ˜M v40 yields

dSN21 ˜SN21 v 240,

g
N22p21

2 f
1

2 dSN21 ˜SN21 v 11
¯

¯t
gg

N22p11

2 f
1

2 ˜SN21 v 2h40.(3.2)

In view of (2.8), the boundedness of the L 2-norm of v reads

(3.3) �
0

1Q

�
SN21

( g
N22p21

2 f
1

2 Nw1 (t , u)N21

1g
N22p11

2 f
2

1

2 Nw2 (t , u)N2 ) dVSN21 dtE1Q ;

moreover, since Nv(t , u)N is bounded in a neighbourhood of 0 , we have that

Nv(t , u)N24g(t)2p Nv 1 (t , u)N21 f (t)21 g(t)12p Nv 2 (t , u)N2GC

for some CD0 for t� (0 , e].
Applying ˜SN21 to both sides of (3.2), we find the following set of condi-

tions:

dSN21 v 140;(3.4)

dSN21 ˜SN21 v 240;(3.5)

dSN21 v 21 (21)p ¯v 1

¯t
40;(3.6)

¯

¯t
gg

N22p11

2 (t) f
2

1

2 (t) v 2
h1 (21)p f

1

2 (t) g
N22p21

2 (t) dSN21 v 140;(3.7)

g 2p (t)Nv 1 (t , u)N21 f 21 (t) g 12p (t)Nv 2 (t , u)N2GC (t� (0 , e];(3.8)

(3.9) �
0

1Q

�
SN21

( g
N22p21

2 f
1

2 Nw1 (t , u)N21

1g
N22p11

2 f
2

1

2 Nw2 (t , u)N2 ) dVSN21 dtE1Q .

Now, it can be shown that if v� H p (M) and v 140, then v 240; indeed, if
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v 2Rdt� H p (M), in view of (3.5) and (3.6) v 2 is a harmonic form on SN21 for every
tD0. Since 0 Gp21 GN22, v 2 (t , u) can be nonzero only if p21 4 deg v 240,
that is, only if v 2 is a function not depending on u. On the other hand, (3.7)
implies

¯

¯t
gg

N21

2 f
2

1

2 v 2
h40,

that is, v 24Cg(t)
2

N21

2 f (t)
1

2 , which diverges as tK0, in contradiction with (3.8), un-
less C40.

Hence, if vc0 and v� H p (M), then v 1c0. Now, applying dSN21 to both sides of

(3.7), since dSN21 commutes with ¯

¯t
, we get

¯

¯t
gg(t)

N22p11

2 f
2

1

2 dSN21 v 2h1 (21)p f (t)
1

2 g(t)
N22p21

2 dSN21 dSN21 v 140,

whence, in view of (3.6),

¯

¯t
ug(t)

N22p11

2 f (t)
2

1

2
¯v 1

¯tv4 f (t)
1

2 g(t)
N22p21

2 dSN21 dSN21 v 1 .

Taking, for fixed tD0, the scalar product of both sides of the last equation with v 1 ,
we get

» ¯

¯t
ug(t)

N22p11

2 f (t)
2

1

2
¯v 1

¯t
v , v 1«

L 2
p (SN21 )

adSN21 v 1 , dSN21 v 1 bL 2
p (SN21 )F0,

whence

¯

¯t »g(t)
N22p11

2 f (t)
1

2
¯v 1

¯t
, v 1«

L 2
p (SN21 )

4

4» ¯

¯t
ug(t)

N22p11

2 f (t)
2

1

2
¯v 1

¯t
v , v 1«

L 2
p (SN21)

1g(t)
N22p11

2 f (t)
2

1

2 » ¯v 1

¯t
,

¯v 1

¯t «
L 2

p (SN21)

F0.

Due to the boundedness of NvN near 0 and to (2.3), Nv 1 (t , u)NSN21 4O(t 2p ) for small
t. As a consequence,

»f (t)
2

1

2 g(t)
N22p11

2
¯v 1

¯t
, v 1«

L 2
p (SN21 )

4O(t N ),
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hence

¯

¯t
av 1 , v 1 bL 2

p (SN21 )42 » ¯v 1

¯t
, v 1«

L 2
p (SN21 )

F0

for every tD0, that is, Vv 1 (t)VL 2
p (SN21 ) is a nondecreasing function of t.

Now, let v 1c0; since Vv 1 (t)VL 2
p (SN21 ) is nondecreasing and VvVL 2

p (M)E1Q ,

�
1

1Q

g(s)
N22p21

2 f (s)
1

2 dsGC �
1

1Q

g(s)
N22p21

2 f (s)
1

2
Vv 1 (s)V

2
L 2

p (SN21 ) dsGVvV

2
L 2

p (M)E1Q .

Hence for pc0, N , H p (M) c ]0( implies

�
1

1Q

g(s)
N22p21

2 f (s)
1

2 dsE1Q ,

and, by duality,

�
1

1Q

g(s)
2N12p21

2 f (s)
1

2 dsE1Q .

If N42p , the two integrands coincide. If, on the contrary, N22pc0, then, since
(N22p21)(2N12p21) 412 (N22p)2 , either one of the exponents is zero, or
the two exponents have opposite signs; in both cases one of the integrals diverges.
Hence, for p� ]0, N , N/2(, H p (M) 4 ]0(.

Finally we come to 3). For p4N/2 , if s
1

1Q

g(s)21/2 f (s)1/2 ds41Q , H p (M) 4 ]0(.

This proves the first half of 3). We still have to prove that if s
1

1Q

g(s)21/2 f (s)1/2 dsE1

1Q , H N/2 (M) has infinite dimension. To this purpose, let us recall that if N42p the
Hodge ˜ operator acting on forms of degree p depends only on the conformal struc-
ture of the manifold. Hence the conditions VvVL 2

p
E1Q , dv40, d * v40 are con-

formally invariant.
Now, let us suppose that s

1

1Q

g(s)21/2 f (s)1/2 dsE1Q , and let us denote by B(0 , r)

the open ball in RN with radius

r4exp u �
1

1Q

g(s)21/2 f (s)1/2 dsv
centered in 0 , endowed with polar coordinates. Then consider the mapping:

F : M0]0( KRN 0]0(
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given by

F(t , u) »4 uexp u �
1

t

g(s)21/2 f (s)1/2 dsv , uv .

In view of condition (2.3), F can be extended to a C 1-diffeomorphism of M into
B(0 , r), which is actually C Q on M0]0(. Moreover, an easy computation shows that F
is conformal from M , endowed with the metric (2.1), to B(0 , r), endowed with the
Euclidean metric.

Let us denote by H the (infinite-dimensional) space of all smooth p-forms on
B(0, r) harmonic with respect to the Euclidean metric; since F is conformal and N42p,
F *H consists of forms of degree p , square-summable on M , smooth on M (up to modifi-
cations at 0) and harmonic. As a consequence, H N/2 (M) has infinite dimension. r

In our case, since f (t) K1 and g(t) Ksinh2 t as tK1Q , then

�
0

1Q

f (s)
1

2 g(s)
N21

2 ds41Q ,

whilst

�
1

1Q

f (s)
1

2 g(s)
2

1

2 dsE1Q .

As a consequence we can easily deduce the following

THEOREM 3.2: For NF2, let us consider the manifold M , endowed with a Rieman-
nian metric of type (2.1), satisfying conditions (2.2) and (2.3). Then

1. if pcN/2 , then 0 �s p (DM );

2. if p4N/2 , H p (M) is a Hilbert space of infinite dimension, hence
0 �s ess (DM )Os p (DM ).

4. - HODGE DECOMPOSITION AND UNITARY EQUIVALENCE

From (2.6) and (2.7), a lengthy but straightforward computation gives

DM v4 (DM v)11 (DM v)2Rdt ,

where

(4.1) (DM v)14g 21 (t) DSN21 v 11 (21)p f 21 (t) g 21 (t)
¯g

¯t
dSN21 v 21

2f
2

1

2 (t) g
2N1112p

2 (t)
¯

¯t
uf

2
1

2 (t) g
N2122p

2 (t)
¯v 1

¯t
v
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and

(4.2) (DM v)24g 21 (t) DSN21 v 21 (21)p g 22 (t)
¯g

¯t
dSN21 v 11

2
¯

¯t
{f

2
1

2 (t) g
2N2112p

2 (t)
¯

¯t
gf

2
1

2 (t) g
N1122p

2 (t) v 2
h} .

Here we denote by DSN21 the Laplace-Beltrami operator on SN21.
Since for every v�C Q (L p (M) )OL 2

p (M) we have that v 1�L 2
p (M),

v 2Rdt�L 2
p (M) and

av 1 , v 2RdtbL 2
p (M)40,

(2.4) gives rise to an orthogonal decomposition of L 2
p (M) into two closed subspaces.

However, (4.1) and (4.2) show that DM is not invariant under this decomposition. As a
consequence, further decompositions are required.

It is well-known that, for 0 GpGN21,

C Q (L p (SN21 ) ) 4dC Q (L p21 (SN21 ) )5dC Q (L p11 (SN21 ) )5 H p (SN21 ),

where H p (SN21 ) is the space of harmonic p-forms on SN21 (empty if pc0, N21),
and the decomposition is orthogonal in L 2

p (SN21 ). Hence, for 0 GpGN21,

L 2
p (SN21 ) 4 dC Q (L p21 (SN21 ) )5dC Q (L p11 (SN21 ) )5 H p (SN21 ).

Thus, for 1 GpGN21, every v�L 2
p (M) can be written as

v4v 1d5v 2dRdt5 (v 1d5v 2dRdt),(4.3)

where v 1d (resp. v 1d) is a coclosed (resp. closed) p-form on SN21 parametrized by t ,
and v2d (resp. v2d) is a coclosed (resp. closed) (p21)-form on SN21 parametrized by t.
In this way we get the orthogonal decomposition

L 2
p (M) 4 L1 (M)5 L2 (M)5 L3 (M),

where for every v�L 2
p (M), v 1d� L1 (M), v 2dRdt� L2 (M) and

v 1d5 (v 2dRdt) � L3 (M). Since

dSN21 DSN21 4DSN21 dSN21 , dSN21 DSN21 4DSN21 dSN21 ,

¯

¯t
dSN21 4dSN21

¯

¯t
,

¯

¯t
dSN21 4dSN21

¯

¯t
,

the Laplace-Beltrami operator is invariant under this decomposition, and can be writ-
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ten as the orthogonal sum

DM4DM15DM25DM3 .

It is easy to see that, for i41, 2 , 3 , DMi is essentially selfadjoint on
C Q

c (L p (M) )O Li (M). We denote again by DMi its closure.
Since the orthogonal sum is finite, for 1 GpGN21,

s ess (DM ) 4 0
i41

3

s ess (DMi ),

s p (DM ) 4 0
i41

3

s p (DMi ).

For p40 (resp. p4N), any v�L 2 (M) can be written as v4v 1d (resp. v4

4v 2dRdt), where v 1d (resp. v 2d) is a coclosed (resp. closed) 0-form (resp. (N21)-
form) parametrized by t on SN21. Hence L 2

0 (M) 4 L1 (M) (resp. L 2
N21 (M) 4 L2 (M))

and DM4DM1 (resp. DM4DM2).
As a consequence, in order to determine the spectrum of DM it suffices to study the

spectral properties of DMi , i41, 2 , 3.
Then, let us introduce a further decomposition. First of all, we decompose v 1d ac-

cording to an orthonormal basis ]t 1k(k�N of coclosed p-eigenforms of DSN21 ; this
yields

v 1d45k hk (t) t 1k ,(4.4)

where hk (t) t 1k�L 2
p (M) for every k�N , and the sum is orthogonal in L 2

p (M), thanks
to (2.1). We will call p-form of type I any p-form v�L 2

p (M) such that

v4h(t) t 1 ,

where t 1 is a coclosed normalized p-eigenform of DSN21 , corresponding to some
eigenvalue l. For every k�N , let us denote by l k

p the eigenvalue of DSN21 associated
to t 1k . Since for every k�N

(4.5) DM1 (h(t) t 1k ) 4
l k

p

g(t)
h(t) t 1k2

2f (t)
2

1

2 g(t)
2N1112p

2
¯

¯t
uf (t)

2
1

2 g(t)
N2122p

2
¯h

¯t
v t 1k ,

DM1 is invariant under the decomposition (4.4), and, since if v4h(t) t 1k

VvV

2
L 2

p (M)4�
0

Q

g(s)
N22p21

2 f (s)
1

2 h(s)2 ds ,
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DM1 is unitarily equivalent to the direct sum with respect to k�N of the
operators

D 1lk
p : D(D 1lk

p ) %L 2 (R1 , g
N22p21

2 f
1

2 ) KL 2 (R1 , g
N22p21

2 f
1

2 )

D 1lk
p h4 { l k

p

g(t)
h(t)2 f (t)

2
1

2 g(t)
2N1112p

2
¯

¯t
gf (t)2

1

2 g(t)
N2122p

2 h} .
(4.6)

If we introduce the transformation

w(t) 4h(t) f (t)
1

4 g(t)
N22p21

4 ,(4.7)

a direct (but lengthy) computation shows that DM1 is unitarily equivalent to the direct
sum, over k�N , of the operators

D1lk
p : D(D1lk

p ) %L 2 (R1 ) KL 2 (R1 )

given by

(4.8) D1lk
p w42

¯

¯t
u 1

f

¯w

¯t
v1 {2

7

16

1

f 3
u ¯f

¯t
v2

1
1

4

1

f 2

¯ 2 f

¯t 2
2

2
1

2

1

f 2

¯f

¯t

(N2122p)

4

1

g

¯g

¯t
1

1

f

(N22p21)

4

(N22p25)

4

1

g 2
u ¯g

¯t
v2

1

1
1

f

(N22p21)

4

1

g

¯ 2 g

¯t 2
1

l k
p

g
n w .

Analogously, we decompose v 2d according to an orthonormal basis of closed (p21)-
eigenforms ]t 2k(k�N of DSN21 :

v 2dRdt45k hk (t) t 2kRdt .(4.9)

We will call p-form of type II a p-form v�L 2
p (M) such that

v4h(t) t 2Rdt ,

where t 2 is a coclosed normalized (p21)-eigenform, corresponding to some eigenval-
ue l of DSN21. For every k�N

DM2 (h(t) t 2kRdt) 4 (D 2lk
p21 h) t 2kRdt ,

where

(4.10) D 2lk
p21 h4

l k
p21

g(t)
h(t)2

2
¯

¯t
{f (t)

2
1

2 g(t)
2N2112p

2
¯

¯t
gf (t)

2
1

2 g(t)
N1122p

2 h(t)h} .
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Here, again, for every k�N we denote by l k
p21 the eigenvalue of DSN21 corresponding

to the eigenform t 2k . Since if v4h(t) t 2kRdt

VvV

2
L 2

p (M)4�
0

Q

g(s)
N22p11

2 f (s)
2

1

2 h(s)2 ds ,

introducing the transformation

w(t) 4h(t) f (t)
2

1

4 g(t)
N1122p

4 ,(4.11)

we find that DM2 is unitarily equivalent to the direct sum, with respect to k�N , of the
operators

D2lp21
k

: D(D2lp21
k

) %L 2 (R1 ) KL 2 (R1 )

(4.12) D2lp21
k

w42
¯

¯t
u 1

f

¯w

¯t
v1 {2

7

16

1

f 3
u ¯f

¯t
v2

1
1

4

1

f 2

¯ 2 f

¯t 2
2

2
1

2

1

f 2

¯f

¯t

(N2112p)

4

1

g

¯g

¯t
1

1

f

(N22p11)

4

(N22p15)

4

1

g 2
u ¯g

¯t
v2

1

1
1

f

(2N12p21)

4

1

g

¯ 2 g

¯t 2
1

l k
p21

g
n w .

Finally, we decompose v 2d with respect to an orthonormal basis of coclosed (p21)-
eigenforms ]t 3k(k�N of DSN21 . For every k�N we denote by l k

p21 the eigenvalue cor-

responding to the eigenform t 3k ; then { 1

kl k
p21

dSN21 t 3k}
k�N

is an orthonormal basis

of closed eigenforms of DSN21 for closed p-forms. Hence, we get the following decom-
position for v 1d5v 2dRdt:

v 1d5v 2dRdt45ku 1

kl k
p21

h1k dSN21 t 3k5 (21)p h2k t 3kRdtv .

We call p-form of type III any p-form v such that

v4
1

kl
h1 (t) dSN21 t 35M (21)p h2 (t) t 3Rdt ,

where t 3 is a normalized coclosed (p21)-eigenform of DSN21 , corresponding to the
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eigenvalue l. A direct computation shows that

(4.14) DM3u 1

kl p21
k

h1 (t) dSN21 t 3k5M (21)p h2 (t) t 3kRdtv4

4 uD 1lk
p21 h11

1

f (t)

1

g(t)

¯g

¯t
kl k

p21h2v u 1

kl k
p21

dSN21 t 3kv5

5uD 2lk
p21 h21

1

g 2 (t)

¯g

¯t
kl k

p21h1v ( (21)p t 3kRdt) ;

moreover, if v4
1

kl k
p21

h1 (t) dSN21 t 3k5M (21)p h2 (t) t 3kRdt , then

VvV

2
L 2

p (M)4 �
0

1Q

g(s)
N22p21

2 f (s)
1

2 h1 (s)2 ds1 �
0

1Q

g(s)
N1122p

2 f (s)
2

1

2 h2 (s)2 ds .

Hence, introducing the transformation

w1 (t) 4g
N22p21

4 (t) f
1

4 (t) h1 (t)

w2 (t) 4g
N22p11

4 (t) f
2

1

4 (t) h2 (t) ,
(4.15)

we find that DM3 is unitarily equivalent to the direct sum, with respect to k�N , of the
operators

D3lk
p21 : D(D3lp21

k
) %L 2 (R1 )5L 2 (R1 ) KL 2 (R1 )5L 2 (R1 )

D3lp21
k

(w15w2 ) 4 uD1lp21
k

w11g(t)
2

3

2 f (t)
2

1

2
¯g

¯t
kl p21

k w2v5

5uD2lp21
k

w21g(t)
2

3

2 f (t)
2

1

2
¯g

¯t
kl p21

k w1v .

(4.16)

As remarked in the Introduction, J. Eichhorn proved in [4] that for a complete
Riemannian metric over a noncompact manifold the essential spectrum of DM coin-
cides with the essential spectrum of the Friedrichs extension DM

F of the restriction of
DM to any exterior domain in M. Thus, if we consider, for 0 EhE1, the Friedrichs
extension DM , h

F of the operator

D 8M , h : C Q
c (L p (M0B(0 , h) ) ) KL 2 (M0B(0 , h) )

D 8M , h v4DM v ,



— 132 —

we have that

s ess (DM ) 4s ess (DM , h
F )

for every h , 0 EhE1. Hence, in order to compute the essential spectrum of DM it suf-
fices to determine the essential spectrum of DM , h

F for some h , 0 EhE1. For the sake
of simplicity we will write DM

F instead of DM , h
F .

The same orthogonal decompositions obtained for DM hold also for DM
F : namely,

we have a decomposition

L 2
p (M0B(0 , h) ) 4 L1 (M0B(0 , h) )5 L2 (M0B(0 , h) )5 L3 (M0B(0 , h) )

analogous to (4.3), and DM
F splits accordingly as

DM
F 4DM1

F 5DM2
F 5DM3

F ,

where, for i41, 2 , 3 , DMi
F is the Friedrichs extension of the restriction of DM to

C Q
c (L p (M0B(0 , h) ) )O L i (M0B(0 , h) ). Moreover (see [4]), for i41, 2 , 3 ,

s ess (DMi ) 4s ess (DMi
F ).

Let c4settanh (h); again, it is possible to show that, for i41, 2 , DMi
F is unitarily

equivalent to the direct sum, over k�N , of the Friedrichs extensions D F
ilk

p of the
operators

D 8ilk
p : C Q

c (c , 1Q) KL 2 (c , 1Q)

given by (4.8) if i41 and by (4.12) if i42.
Analogously, DM3

F is unitarily equivalent to the direct sum, over k�N , of the
Friedrichs extensions D F

3lk
p21 of the operators

D 83lk
p21 : C Q

c (c , 1Q)5C Q
c (c , 1Q) KL 2 (c , 1Q)5L 2 (c , 1Q)

given by (4.16). Moreover, for every i41, 2 , 3 , for every k�N and for every cD0,
we have that s ess (Dilk

) 4s ess (D F
ilk

).

Thus, much information about the essential spectrum of DM can be recovered
by the investigation of the essential spectra of the selfadjoint operators D F

1lp
k
,

D F
2lp21

k
and D F

3lk
p21 for arbitrarily large c. Since the Hodge ˜ operator isometrically

maps p-forms of type I onto (N2p)-forms of type II, it suffices to consider
the cases i41 and i43. We remark that, since the direct sums in (4.4) and
(4.13) have an infinite number of summands, for i41, 3

s ess (DMi ) &0
k

s ess (D F
ilk

)
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but we cannot argue that

s ess (DMi ) 40
k

s ess (D F
ilk

).

5. - THE ESSENTIAL SPECTRUM

In the present section, we will compute the essential spectrum of DM , under suit-
able assumptions on the asymptotic behaviour of f and g. Namely, if

f
A(t) »4 f (t)21 ,

gA(t) »4g(t)2sinh2 t ;

we will suppose that for t c 0

NgA(t)NG
C

t
, N ¯gA

¯t N G
C

t
, N ¯ 2 gA

¯t 2 N G
C

t
,(5.1)

N f
A(t)NG

C

t
, N ¯ f

A

¯t N G
C

t
, N ¯ 2 f

A

¯t 2 N G
C

t
.(5.2)

For i41, 2, 3 and for every k�N , let DMi and Dilk
be defined as in Section 4.

First of all, we will determine the essential spectrum of DM1 . To this purpose, let
us recall some basic facts.

DEFINITION 5.1: ([9]) Let A be a selfadjoint operator on a Hilbert space H. An op-
erator C such that D(A) % D(C) is called relatively compact with respect to A if and
only if C(A1 iI)21 is compact.

In terms of the Hilbert space D(A) endowed with the norm VfVA given by

VfV

2
A4VfVH

2 1VAfVH
2 ,

C is relatively compact if and only if C is compact from D(A) with the norm V .VA to H

with the norm V .VH . Moreover, we recall the following Lemma (for a proof see [9]):

LEMMA 5.2: Let A be a selfadjoint operator on a Hilbert space H, and let C be a
symmetric operator such that C is a relatively compact perturbation for A n for some po-
sitive integer n. Suppose further that B4A1C is selfadjoint on D(A), Then

s ess (A) 4s ess (B).

Finally, we recall that, given a selfadjoint operator A on a Hilbert space H,
m�s ess (A) if and only if there exists a Weyl sequence ]wn( % D(A) for m , that is, a se-
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quence ]wn( % D(A) with no convergent subsequences in H, bounded in H and such
that

lim
nK1Q

(A2m) wn40 in H .

We are now in position to prove our first result.

LEMMA 5.3: Let M be endowed with a Riemannian metric of type (2.1), satisfying
conditions (5.1), (5.2); then for 0 GpGN21,

s ess (D1lk
p

F ) 4 yu N22p21

2
v2

, 1Qv
for every k�N.

PROOF: Let us consider the Friedrichs extension D10
F of the operator with constant

coefficients

D10 : C Q
c (c , 1Q) KL 2 (c , 1Q)

D10 w42
¯ 2

¯t 2
w1

(N2122p)2

4
w .(5.3)

It is well-known that s ess (D10
F ) 4 yg N22p21

2
h2

, 1Qv . We will show that D F
1lk

p 2D F
10

is a relatively compact perturbation of (D F
10 )2 for every k�N. This, thanks to Lemma

5.2, will give the conclusion.
First of all, it is not difficult to see that for every k�N ,

D( (D F
10 )2 ) % D(D F

1lk
p 2D F

10 );

indeed, comparing the domains of D1lk
p

F and of D10
F , we find that

D(D10
F ) 4 D(D F

1lk
p ).

We still have to check that for every sequence ]wn( % D( (D F
10 )2 ) such that

Vwn V

2
L 2 1V(D F

10 )2 wn V

2
L 2 GC(5.4)

there exists a subsequence ]wnl
( such that ](D F

1lk
p 2D F

10) wnl
( converges in L 2(c, 1Q).

To this purpose, let us observe that conditions (5.1) and (5.2) yield:

u12
1

f
v�L 2 (c , 1Q)OL Q (c , 1Q);(5.5)

1

f 2

¯f

¯t
�L 2 (c , 1Q)OL Q (c , 1Q);(5.6)

W1 (t) �L 2 (c , 1Q)OL Q (c , 1Q),(5.7)
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where

(5.8) W1 (t) »4 {2
7

16

1

f 3
u ¯f

¯t
v2

1
1

4

1

f 2

¯ 2 f

¯t 2
1

2
1

2

1

f 2

¯f

¯t

(N2122p)

4

1

g

¯g

¯t
1

1

f

(N22p21)

4

(N22p25)

4

1

g 2
u ¯g

¯t
v2

1

1
1

f

(N22p21)

4

1

g

¯ 2 g

¯t 2
1

l

g
n2

(N22p21)2

4
.

Moreover, by (5.4), the sequence ]wn( is bounded in W 3, 2 (c , 1Q), and the Sobolev

embedding theorem implies that ]wn(, m ¯wn

¯t
n , m ¯ 2 wn

¯t 2 n are bounded sequences in
L Q (c , 1Q).

Now, for every n , m�N

(5.9) V(D F
1lk

p 2D F
10 )(wn2wm )VL 2 (c , 1Q)G

G
V
u12

1

f
v ¯ 2

¯t 2
(wn2wm )

V

L 2 (c , 1Q)
1

V

¯f

¯t
(wn2wm )

V

L 2 (c , 1Q)
1

1VW1 (wn2wm )VL 2 (c , 1Q) .

Let us begin with the third summand. For any compact subset K% (c , 1Q) and for
every n , m�N

VW1 (wn2wm )V

2
L 2 (c , 1Q)GC�

K

(wn2wm )2 ds1C �
(c , 1Q)0 K

W1
2 (s) ds ,

where C is a positive constant independent of K. Indeed, W1
2�L Q (c , 1Q) and

(wn2wm )2 is bounded in L Q (c , 1Q).
Let us consider a sequence ]ch( % (c , 1Q) such that chK1Q as hK1Q and

for every h�N

C �
ch

1Q

W1
2 (s) dsE

1

h
.

For h41, thanks to the Rellich-Kondrachov theorem, there exists a subsequence
]wn(1)( such that ](wn(1) )N(c , c1 )( converges in L 2 (c , c1 ). Hence, for every dD0 there
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exists n(1) such that for every n , mD n(1)

�
c

1Q

W1
2 (wn(1)2wm(1) )2 dsE

d

3
11 .

Analogously, for h42 there exists a subsequence ]wn(2)( ’ ]wn(1)( such that for every
dD0 there exists n(2) such that for every n , mD n(2)

�
c

1Q

W1
2 (wn(2)2wm(2) )2 dsE

d

3
1

1

2
.

Going on in this way, for every h�N we can find a subsequence ]wn(h)( ’ ]wn(h21)(

such that for every dD0 there exists n(h) such that for every n , mD n(h)

�
c

1Q

W1
2 (wn(h)2wm(h) )2 dsE

d

3
1

1

h
.

Through a Cantor diagonal process, then, we can find a subsequence ]wnl
( ’ ]wn(

such that ]W1 wnl
( is a Cauchy sequence in L 2 (c , 1Q).

As for the estimates of the other two summands, recalling (5.5) and (5.6), since

m ¯wnl

¯t
n and m ¯ 2 wnl

¯t 2 n are bounded in L Q (c , 1Q) and in W 1, 2 (K) for any compact set

K% (c , 1Q), we can apply the same procedure. As a consequence, we can extract a
subsequence, again denoted by ]wnl

(, such that ](D F
1lk

p 2D F
10 ) wnl

( converges in
L 2 (c , 1Q). This yields the conclusion. r

As a consequence,

yu N22p21

2
v2

, 1Qv%s ess (DM1 ) .

On the other hand, the following Lemma holds:

LEMMA 5.4: Let M be endowed with a Riemannian metric of type (2.1), such that

f (t) K1 and g(t) Ksinh2 t as tK1Q ; for 0 GpGN21, if mE g N22p21

2
h2

, then
m�s ess (DM1 ).

PROOF: First of all, for every k�N let us write D 81lk
p as

D 81lk
p w42

¯

¯t
u 1

f

¯w

¯t
v1 uV1 (t)1

l k
p

g
v w ,
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where

(5.10) V1 (t) »4 {2
7

16

1

f 3
u ¯f

¯t
v2

1
1

4

1

f 2

¯ 2 f

¯t 2
2

2
1

2

1

f 2

¯f

¯t

(N2122p)

4

1

g

¯g

¯t
1

1

f

(N22p21)

4

(N22p25)

4

1

g 2
u ¯g

¯t
v2

1

1
1

f

(N22p21)

4

1

g

¯ 2

g¯t 2
} .

Now, let mE g N2122p

2
h2

. Since for every k�N the essential spectrum of D F
1lk

p does

not depend on c and since V1 (t) converges to g N22p21

2
h2

Dm as tK1Q , we can
choose cD0 such that for every tDc

V1 (t)2mDC

for some positive constant CD0.
If m�s ess (DM1 ) 4s ess (DM1

F ), there exists a Weyl sequence for m , that is a sequence
]v k( % D(DM1

F ) such that

av k , v k bL 2
p (M)GC ,

lim
kK1Q

(DM1
F v k2mv k ) 40,

from which it is not possible to extract any subsequence converging in L 2
p (M). More-

over, we can suppose that

v k4hk (t) t 1k ,

where t 1k is a coclosed normalized p-eigenform of DSN21 corresponding to l k
p and

l k
p K1Q as kK1Q. Hence, via unitary equivalence, there exists a sequence

]wk( % D(D F
1lk

p ) such that

Vwk VL 2 (c , 1Q)GC

lim
kK1Q

VD F
1lk

p wk2mwk VL 2 (c , 1Q)40,(5.11)

from which we cannot extract any L 2-converging subsequence. Then

aD F
1lk

p wk2mwk , wk bL 2 (c , 1Q)K0

as kK1Q , and, since for every k�N

D(D F
1lk

p ) %W 1, 2
0 (c , 1Q),
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we get

(5.12) �
c

1Q

1

f (s)
u ¯wk

¯s
v2

(s) ds1 �
c

1Q

[V1 (s)2m] wk
2 (s) ds1 �

c

1Q

l k
p

g(s)
wk

2 (s) dsK0

as kK1Q. Since all the terms are positive, we have

�
c

1Q

[V1 (s)2m] wk
2 (s) dsK0

as kK1Q , whence

�
c

1Q

wk
2 (s) dsK0

as kK1Q , because

�
c

1Q

wk
2 (s) dsG

1

C
�
c

1Q

[V1 (s)2m] wk
2 (s) ds .

This yields a contradiction. Hence, if mG g N22p21

2
h2

, m�s ess (DM1 ). r

As a consequence

PROPOSITION 5.5: Let M be endowed with a Riemannian metric of type (2.1), satis-
fying conditions (5.1), (5.2); then, for 0 GpGN21,

s ess (DM1 ) 4 yu N22p21

2
v2

, 1Qv .

By duality,

PROPOSITION 5.6: Let M be endowed with a Riemannian metric of type (2.1), satis-
fying conditions (5.1), (5.2); then, for 1 GpGN ,

s ess (DM2 ) 4 yu N22p11

2
v2

, 1Qv .

We still have to determine the essential spectrum of DM3 for 1 GpGN21. First
of all, we compute the essential spectrum of D F

3lk
p21 for every k�N:
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LEMMA 5.7: Let M be endowed with a Riemannian metric of type (2.1), satisfying
conditions (5.1) and (5.2); then, for 1 GpGN21,

s ess (D F
3lk

p21 ) 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv

for every k�N.

PROOF: Let us consider the Friedrichs extension D30
F of the operator

D30 : C Q
c (c , 1Q)5C Q

c (c , 1Q) KL 2 (c , 1Q)5L 2 (c , 1Q)

(5.13) D30 (w15w2 ) »4 u2
¯ 2 w1

¯t 2
1 u N22p21

2
v2

w1v5

5u2
¯ 2 w2

¯t 2
1 u N22p11

2
v2

w2v .

It is not difficult to see that

s ess (D F
30 ) 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv .

As in Lemma 5.3, we will show that D F
3lk

p21 2D F
30 is a relatively compact perturbation

of (D F
30 )2. First of all, D( (D F

30 )2 ) % D(D30
F ) 4 D(D F

3lk
p21 2D F

30 ); indeed, an explicit com-
parison of the domains shows that D(D30

F ) 4 D(D F
3lk

p21 ) for every k�N.
We still have to check that for every sequence

]w1n5w2n( % D( (D F
30 )2 )

such that

Vw1n5w2n VL 25L 2 1V(D F
30 )2 (w1n5w2n )VL 25L 2 GC ,(5.14)

there exists a subsequence ]w1nl
5w2nl

( such that

(D F
3lk

p21 2D F
30 )(w1nl

5w2nl
)

converges in L 2 (c , 1Q)5L 2 (c , 1Q).
Now, (5.14) implies that ]win( is bounded in W 3, 2 (c , 1Q) for i41, 2; hence

]win(, m ¯win

¯t
n and m ¯ 2 win

¯t 2 n are bounded in L Q (c , 1Q) and in W 1, 2 (K) for every
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compact subset K% (c , 1Q). For every n , m�N

V(D F
3lk

p21 2D F
30 )( (w1n2w1m )5 (w2n2w2m ) )VL 2 (c , 1Q)5L 2 (c , 1Q)G

GV(D F
1lk

p21 2D F
10 )(w1n2w1m )VL 2 (c , 1Q)1V(D F

2lk
p21 2D F

20 )(w2n2w2m )VL 2 (c , 1Q)1

1VV3lk
p21 (w1n2w1m )VL 2 (c , 1Q)1VV3lk

p21 (w2n2w2m )VL 2 (c , 1Q) ,

where

V3lk
p21 (t) »4g(t)

2
3

2 f (t)
2

1

2
¯g

¯t
kl k

p21 .

The first two terms can be estimated as in Lemma 5.3; as for the last two terms, since
under conditions (5.1) and (5.2)

V3lk
p21 �L 2 (c , 1Q)OL Q (c , 1Q),

following the argument of Lemma 5.3 we get the conclusion. r

We still have to check whether the essential spectrum of DM3 can contain any other
m�R. The techniques of Lemma 5.4 can not be applied in this case, because D3lk

p21 is
a coupled system of differential operators. Hence different techniques are needed. We
have

LE M M A 5 . 8 : L e t M be en d o w e d w i t h a Ri e m a n n i a n m e t r i c o f t y p e ( 2 . 1 ) , s a -
tisfying conditions (5.1) and (5.2). For 1GpGN21, if 0EmE

E min {g N22p21

2
h2

, g N22p11

2
h2}, then m�s ess (DM3 ).

PROOF: We already know from Lemma 5.7 that for every k�N ,

s ess (D F
3lk

p21 ) 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv .

As a consequence, given a positive mE min {g N22p21

2
h2

, g N22p11

2
h2}, m belongs

to the essential spectrum of DM3 if and only if there exist a sequence ]m k( of eigenval-
ues of DM and a corresponding sequence ]F k( of p-forms of type III such that

m kKm as kK1Q

and for every k�N

DM F k2m k F k40.
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Since mD0, we can suppose, up to the choice of a subsequence, that either for every
dM F kc0 for every k�N or dM F kc0 for every k�N. Let us suppose to be in the
first case. In view of (2.6), dM F k is a (p11)-form of type II; moreover,

VdM F k VL 2 (M)EC for every k�N

DM dM F k2m k dM F k40 for every k�N ,

and

m kKm as kK1Q .

Hence, m�s ess (DM2 ), and, thanks to Proposition 5.6,

mD u N22(p11)11

2
v2

4 u N22p21

2
v2

,

in contradiction with our hypothesis.
If on the contrary we are in the second case, in view of (2.7), dM F k is a (p21)-

form of type I; moreover,

VdM F k VL 2 (M)EC for every k�N ,

DM dM F k2m k dM F k40 for every k�N ,

and

m kKm as kK1Q .

Hence, m�s ess (DM1 ), and by Proposition 5.5

mD u N22(p21)21

2
v2

4 u N22p11

2
v2

,

in contradiction with our hypothesis.
This yields the conclusion. r

Hence,

PROPOSITION 5.9: Let M be endowed with a Riemannian metric of type (2.1), satis-
fying conditions (5.1), (5.2); then, for 1 GpGN21,

s ess (DM3 )0]0( 4 ymin {u N22p21

2
v2

, u N22p11

2
v2} , 1Qv .

REMARK 5.10: By an argument similar to that of Lemma 5.8 it is possible to show
that if there exist a sequence ]m k( of positive eigenvalues of DM and a corresponding



— 142 —

sequence ]F k( of p-forms of type III such that

m kK0 as kK1Q

and for every k�N

DM F k2m k F k40,

then 0 �s ess (DM3 ).
Recalling the results of section 3, finally we can completely determine the essential

spectrum of DM :

THEOREM 5.11: Let M be endowed with a Riemannian metric of type (2.1) satisfying

condition (2.3) and conditions (5.1), (5.2). Then, if pc

N

2
,

s ess (DM ) 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv

whilst if p4
N

2

s ess (DM ) 4 ]0(Ny 1

4
, 1Qv .

PROOF: Thanks to Propositions 5.5, 5.6, 5.9 we have that

s ess (DM )0]0( 4 ymin {u N22p21

2
v2

, u N22p11

2
v2}, 1Qv .

Moreover, in view of Remark 5.10, 0 can belong to the essential spectrum of DM if and
only if it is an eigenvalue of DM of infinite multiplicity. In view of Theorem 3.2, this

happens only if p4
N

2
. The conclusion follows. r
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